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Abnormal neural sensitivity to rewards as a candidate process of high 
depression risk in the FMR1 premutation: A pilot study 

Roslyn Harold a,*, Bridgette Kelleher a, Keisha Novak a,1, Wei Siong Neo a, Teagan Stump a,2, 
Taylor Lee a, Tessa Garwood a, Elizabeth Berry-Kravis b, Dan Foti a 

a Purdue University, Department of Psychological Sciences, 703 Third Street, West Lafayette, IN 47907, USA 
b Rush University Medical Center, Department of Neurology, 1725 W Harrison St Suite 710, Chicago, IL 60612, USA   

A R T I C L E  I N F O   
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A B S T R A C T   

The etiological heterogeneity of depression poses a challenge for prevention and intervention efforts. One so-
lution is to map unique etiological pathways for subgroups defined by a singular risk factor. A relevant popu-
lation for this approach is women who carry the premutation of the fragile X messenger ribonucleoprotein 1 (FMR1) 
gene, who are at high risk for adult-onset depression. This study explores a candidate neurophysiological marker 
of depression risk: reduced reward sensitivity, indexed by the reward positivity (RewP). The RewP has been 
linked to depression risk in the general population, but is unexplored within FMR1 premutation carriers. 16 
women with the FMR1 premutation and a matched control group completed a simple guessing task while the 
electroencephalogram was recorded. Among premutation carriers, RewP difference score (win versus loss) was 
reduced. These preliminary finding suggest that the FMR1 premutation may confer increased risk for depression 
in part through abnormal neural sensitivity to rewards.   

1. Introduction 

For decades, the field searched for a universal cause of major 
depressive disorder (MDD). It is now clear that MDD follows the process 
of equifinality, whereby it is the common outcome of a wide range of 
genetic, physiological, and environmental factors [1]. Yet for any one 
individual, it is not clear what unique combination of factors causes 
MDD to develop. Mapping specific pathways to MDD is necessary for 
tailored prevention efforts and intervention targets that will optimize 
public health outcomes. One promising approach for isolating such 
pathways is to focus on genetically homogenous subtypes that are likely 
characterized by unique pathophysiological processes [2]. A recent 
genome-wide association study yielded 19 functionally distinct genetic 
pathways that confer MDD risk, each of which is a unique starting point 
for mapping MDD etiology [3]. 

Critically, one such genetic pathway is regulated by the fragile X 
messenger ribonucleoprotein 1 gene (FMR1). The fragile X premutation is a 
55–199 CGG repeat expansion in the FMR1 promotor region, and it 
occurs in approximately 1:200 women [4]. Women who are carriers of 

the Fragile X premutation (PMC) are at high risk for adult-onset MDD, 
with 54% developing depression by age 50, independent of parental 
status [5]. The pathophysiological processes through which this pre-
mutation confers increased risk for depression, however, are unknown. 

To begin to explore candidate processes of high depression risk 
among PMC, we tested neural sensitivity to reward delivery, as 
measured by the reward positivity (RewP). The RewP is an event-related 
potential that occurs within 300 ms following reward delivery [6], 
captures the initial evaluation of outcome valence [7], and correlates 
with reward-related BOLD signal within the medial prefrontal cortex 
and ventral striatum [8,9]. In the general population, reduced RewP 
amplitude has been linked to current MDD diagnosis [10,11], symptom 
severity [12,13,14,15], and prospectively predicts MDD onset in at-risk 
cohorts [16,17,18]. Thus, reduced RewP can be understood as a 
neurophysiological indicator of depression vulnerability. The RewP is 
thus far unexplored in PMC. Given findings linking the RewP to MDD 
vulnerability in the general population, as well as the established finding 
of high MDD prevalence in PMC, we hypothesized that the RewP might 
also be blunted in PMC. Reduced RewP amplitude in PMC would suggest 
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a candidate pathophysiological process that is consistent with the 
known increased risk of MDD in this population, and that is shared with 
MDD vulnerability in the general population. 

2. Material and methods 

2.1. Participants 

Data were collected at Purdue University from 16 female-sexed PMC, 
all of whom self-identified as women, and a control group of 16 women 
with no personal or family history of fragile X syndrome, autism, or 
intellectual disability. Two PMC participants were sisters, and three 
others were from the same family (sisters, daughter). PMC participants 
were recruited regionally through online advertisements, support 
groups, and the National Fragile X Foundation. Groups were matched on 
age and education level. Exclusion criteria for both groups were history 
of serious head injury, psychosis, neurological illness, or past-year 
substance use disorder. Participants were not specifically recruited 
based upon MDD status, although lifetime MDD history was assessed 
during study procedures. 

Study procedures were approved by the Institutional Review Board 
at Purdue University and were in accordance with the Declaration of 
Helsinki. One participant was excluded from analyses because of poor 
quality ERP data. Thus, data were available from 15 controls and 16 
PMC. 

2.2. Genetic protocol 

Whole blood samples were collected from PMC and sent to Rush 
University Medical Center (EBK), where FMR1 genotyping for CGG 
repeat length and Fragile X messenger ribonucleoprotein (FMRP) mea-
surement were done. Genotyping was performed with the AmplideX® 
FMR1 and FMR1 mPCR reagents (Asuragen, Inc.) and FMRP was assayed 
using the Luminex-based method [19]. 

2.3. Cognitive and clinical assessment 

Cognitive functioning was assessed using the Wechsler Abbreviated 
Scale of Intelligence-II (WASI-II) [20]. Lifetime history of MDD was 
determined using the Mini International Neuropsychiatric Interview for 
DSM-5 (MINI) [21], administered by Master’s-level interviewers and 
supervised by DF. 

2.4. Neurophysiological assessment 

The continuous electroencephalogram (EEG) was recorded from 32 
Ag/AgCl active scalp electrodes with an actiCHAmp amplifier (Brain 
Products) while participants completed a simple guessing task using 
Presentation software (Neurobehavioral Systems, Inc., Berkeley, CA) to 
elicit the RewP [10]. On each trial, participants were shown an image of 
two doors and were asked to choose a door. Participants then received 
feedback indicating whether they won ($.40, ‘↑’) or lost money ($.20, 
‘↓’) on that trial. Unbeknownst to participants, feedback was pseudo-
random such that they won on 50% of trials (25 out of 50 trials). 
Stimulus timing was as follows: doors were presented until a behavioral 
response was made; a fixation mark (‘+’) for 1000 ms; a feedback 
stimulus for 2000 ms; a fixation mark for 1500 ms; “Click for the next 
round” instructions until a behavioral response was made. 

Offline EEG analysis was performed in BrainVision Analyzer soft-
ware (Brain Products). EEG data were referenced to the average mastoid 
(TP9/TP10), filtered from .1–30 Hz, and segmented relative to feedback 
onset (− 200 to 800 ms). Data were corrected for blinks and eye move-
ments [22]. Artifacts were identified as a step of 50 µV between samples, 
> 200 µV difference within 200 ms intervals, or < 0.5 µV change within 
100 ms intervals; additional artifacts were identified by visual inspec-
tion. Segmented data were then averaged separately for wins and losses, 

and baseline corrected relative to the pre-stimulus interval (− 200 to 0 
ms). The RewP was scored separately for wins (RewP-win) and losses 
(RewP-loss) as the average amplitude from 275–325 ms3 at each of two 
frontocentral electrodes (Fz and Cz). The RewP-diff reflects the differ-
ence between conditions (win minus loss). 

2.5. Statistical analysis 

Group comparisons in sample characteristics were performed using t- 
tests and Fisher’s exact test. RewP amplitudes were compared across 
groups using a repeated-measures ANOVA with factors of Valence (win 
versus loss), Electrode (Fz versus Cz) and Group (PMC versus Control); 
analogous ANCOVA models adjusted for effects of cognitive ability and 
lifetime MDD. Significant higher-order interactions were followed up 
with independent-samples t-tests. 

2.6. Data Availability 

De-identified data that support the findings of this study are avail-
able from the corresponding author upon reasonable request. 

3. Results 

3.1. Sample characteristics 

Sample characteristics are reported in Table 1. Premutation status 
was confirmed for all carriers (CGG repeat length: M=97.38, SD=16.88, 
Range: 79–150). The groups had similar demographic characteristics. 
Lifetime MDD was somewhat more common in the control group, but 
current MDD and past month psychiatric medication status were similar 
between groups. Of those currently taking psychiatric medications, 75% 
were taking a single selective serotonin reuptake inhibitor. One PMC 
and one control reported polytherapy of psychiatric medication, and 
both participants reported as-needed use of a benzodiazepine medica-
tion. PMC had lower Verbal Comprehension but similar Matrix 
Reasoning and Full-Scale IQ. 

3.2. Reward sensitivity 

RewP amplitude and scalp topography for the PMC and control 
groups are shown in Fig. 1. 

Main effects of Valence (F1,29= 16.85, p < .001, η2=.368) and Elec-
trode (F1,29= 51.44, p < .001, η2=.639) significantly predicted RewP 
amplitude; the main effect of premutation status was not significant 
(F1,29= 1.32, p = .261, η2=.043). Critically, the interaction between 
premutation status and outcome valence was significant (F1,29= 5.34, 
p = .028, η2=.156), and this interaction remained significant after 
controlling for Verbal Comprehension and lifetime MDD (F1,27 =5.36, 
p = .028, η2=.166). Effects did not vary by electrode site (Valence x 
Electrode: F1,29= 0.34, p = .565, η2=.012; Electrode x Group: F1,29=

3.71, p = .064, η2=.113; Valence x Electrode x Group: F1,29= 0.67, 
p = .420, η2=.023). 

Follow-up t-tests in the control group yielded significant differences 
in RewP amplitude between wins and losses (Fz: t14 =5.30, p < .001; Cz: 
t14 =4.72, p < .001). Among PMC, the RewP was not significantly 
different between win and loss conditions (Fz: t15 =1.41, p = .179; Cz: 

3 We chose this time window by inspecting the grand average of the differ-
ence waveform while blind to group status. Because a 100 ms time window is 
often used in the literature, we also analyzed the data using a 100 ms time 
window from 250–350 ms, and, separately, a 100 ms time window around the 
peak of the difference wave for each participant using a semi-automated peak 
detection algorithm. Results were not substantively changed by use of the wider 
time window either at 250–350 ms or using peak detection. Thus, we report 
results from the more conservative 50 ms time window. 
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t15 =0.74, p = .474). Altogether these results show reduced differentia-
tion of wins versus losses among PMC. Panel C of Fig. 1 displays the 
mean RewP-diff for controls and PMC next to the individual RewP-diff 
scores for each of the PMC; 11 of 16 PMC (68.75%) exhibited RewP- 
diff scores that were less than the standard error of the control group. 

To explore whether reduced RewP amplitude was explained by 
premutation status versus the CGG repeat length, we analyzed vari-
ability among the PMC group. The bivariate correlation between RewP- 
diff and the number of CGG repeats was not significant (Spearman’s 
ρ.14, p = .613). Other studies have observed nonlinear associations 
between CGG repeats and phenotypic characteristics of PMC [23,24]; 
following this, we calculated the correlation between CGG repeats and 
RewP-diff amplitude within mid-range (79− 100) and high-range 
(>100) expansions. Associations were similarly small and 
non-significant (mid-range: n = 10, ρ− .25, p = .487; high-range: n = 6; 
ρ− .06, p = .913). Finally, we tested the mean difference in the RewP-diff 
amplitude between the mid-range and high-range groups. The 
mid-range group had a numerically smaller RewP-diff amplitude 
(M=0.25, SD=2.72) compared to the high-range group (M=1.87, 
SD=3.38) with a medium effect size (d=− 0.54), but this group differ-
ence was not significant (t14=− 1.05, p = .310). 

4. Discussion 

This study shows for the first time that neural sensitivity to reward 
delivery, as measured by RewP amplitude, may be affected by PMC 
status in adult women. These preliminary findings are notable consid-
ering genome-wide association studies in the general population have 
linked depression risk to a genetic pathway regulated by FMRP [3], the 
protein product of FMR1, and the established finding that PMC are at 
high risk of adult-onset MDD [5]. In general population, blunted RewP 
amplitudes indicate MDD vulnerability [12,16,17,25]. Together with 
the current findings, this raises the possibility that reduced differentia-
tion in the RewP is a downstream consequence of genetic variability in 
FMR1, which warrants further investigation. 

Thus, the RewP may represent a candidate process of MDD vulner-
ability relevant to PMC and shared with the general population. 

Table 1 
Sample characteristics and group comparisons between PMC and controls.   

PMC Controls Comparison  

(n = 16) (n = 15)  

N % N % p-value 

Ethnicity     1.000 
Hispanic/Latino 1 6.3 1 6.3  
Not Hispanic/Latino 14 87.5 14 93.3  
Missing 1 6.3 0 0.0  

Race     .315 
Euro American 15 93.8 11 81.3  
Other 1 6.3 3 18.8  
Missing 0 0.0 1 3.7  

Household Income     .264 
< $75,000 7 43.8 10 66.7  
$75,000 or more 8 50.0 4 26.7  
Preferred not to answer 1 6.3 1 6.7  

Education     .220 
At least some college 10 62.5 13 86.7  
Post-graduate education 6 37.5 2 13.3  

Lifetime MDD     .073 
Present 6 37.5 11 73.3  
Absent 10 62.5 4 26.7  

Current MDD     .157 
Present 2 12.5 0 0.0  
Absent 14 87.5 15 100.0  

Past-month psychiatric medication     .193 
Yes 3 18.8 6 40.0  
No 13 81.3 9 60.0    

M SD M SD p- 
value 

Age (years) 39.56 9.54 43.47 11.42 .309 
Cognitive Functioning      

Verbal Comprehension 52.56 5.39 59.13 9.80 .027 
Matrix Reasoning 56.00 5.48 54.73 6.71 .568 
Full Scale IQ 107.31 7.37 112.00 11.75 .191 

Reward processing (Fz/Cz 
average in µV)      
RewP-wins 15.44 5.66 14.18 6.85 .290 
RewP-losses 14.58 5.11 11.11 5.90 .045 
RewP-diff 0.86 2.99 3.07 2.27 .014  
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Fig. 1. A) Waveforms are presented separately for monetary wins and losses; solid lines represent mean activity and dotted lines represent the 95% confidence 
interval. Shaded gray bars indicate the time window where the RewP was scored (275–325 ms). B) Headmaps depict the contrast of win versus loss conditions (i.e. 
RewP-diff). C) Average RewP-diff amplitude for controls (gray bar, left) and PMC (first white bar). Error bars show the standard error of the mean for each group. 
RewP-diff amplitude for individual PMC are depicted by subsequent white bars. Nested data for family members among the premutation group are indicated by a 
(family 1) and b (family 2); * ’s indicate participants who were currently in a major depressive episode at the time of data collection. 
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Abnormal RewP may help to explain how PMC status confers increased 
risk for adult-onset MDD. Additionally, the RewP was elicited using a 
simple task that is brief (<10 min) and has been used effectively in a 
wide range of populations [26], making it reasonable to administer to a 
large cohort with a range of cognitive functioning. If replicated in larger 
samples, the RewP may be leveraged alongside other MDD risk factors in 
order to construct a tailored etiological model of MDD specific to PMC. 

MDD occurs in PMC alongside comorbid anxiety disorders, obsessive 
compulsive disorder, and substance use disorders, as well as a wide 
range of physical health problems [27]. This complexity makes it 
important to identify intermediate phenotypes that can explain how the 
FMR1 premutation confers risk to targeted clinical outcomes. In the 
general population, reduced RewP differentiation specifically predicts 
MDD onset and not comorbid anxiety disorders [18]. Future work 
should test whether reduced RewP differentiation prospectively predicts 
depression onset in PMC, the clinical specificity of this relationship, and 
links with genetic variability among PMC (e.g., possible non-linear as-
sociations with CGG repeat length). This would help clarify if reduced 
RewP differentiation is a feature of PMC that accounts for increased risk 
for MDD or is instead a phenotypic characteristic of PMC unrelated to 
incidence of MDD. Future work in larger sample should also clarify 
whether abnormal RewP in PMC is driven by abnormal reactivity to 
wins, losses, or both. 

The current study is the first to identify a candidate pathophysio-
logical process of high depression risk among PMC: altered reward 
processing, indicated by indicated by reduced RewP amplitude. While 
limited by the small sample size and the absence of genetic information 
from controls, this preliminary finding lays a foundation for future 
research to improve the prediction of MDD risk among PMC. 
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