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1. Introduction. We describe modifications of the Purdue University

version of ELLPACK77 (see Rice [1977]) to solve the Laplace equation

subject to mixed boundary conditions on the boundary of a rectangule

and Neumann conditions on straight line segments in the interior of

the rectangle.

In Section 2 a brief description is given of the physical origin

of the problem, namely the analysis of the performance of a

magnetohydrodynamic electric generator. Section 3 contains a

mathematical model of the generator. Section 4 contains a new result:

we show that one can determine the efficiency of the model for all values

of one of its parameters by solving a single pair of boundary value

problems. Section 5 very briefly describes how the efficiency of

the generator can be increased by inserting insulating vanes in

the fluid; in the mathematical model, these are modeled by slits

in the interior of the rectangular domain on which Neumann boundary

conditions are specified. Section 6 contains a brief outline of the

ELLPACK system and its application to this problem. Section 7 gives

the complete system of finite difference equations whose solution is

taken as an approximation to the electric potential in the generator.

The ELLPACK module 5-POINT STAR, which was written by Ronald

F. Boisvert of Purdue University, was modified to solve this problem.

We thank him for his help during our modification of his routines.

1 Departments of Computer Science and Mathematics, Purdue University.
2

Department of Nuclear Engineering, Purdue University.
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2. Physical phenomenon. In this section we describe the idealized

physical situation which we consider.

An inviscid incompressible fluid flows with constant speed v in

the x-direction in a channel between a pair of planes at y = -h

and at y = h. All variation in the z-direction is neglected. The

fluid is electrically conductive with uniform conductivity o.

Except between

electric insulators.

x = -x
e

Between

and x = xe ' the channel walls are

-xe and xe they are electrodes with

infinite electric conductivity.

A magnetic field of intensity B is imposed in the z-direction.

It ;s uniform across the channel and its magnitude depends only on

x. Its magnitude is symmetric with respect to x. it is constant

for x between -xe and xe ' and it tends to zero as x tends

to infinity; a special case is B(x) = 0 for Ixl > o.

The Lorentz force which acts on the electric charges in the

fluid causes charge separation and charges of different sign

collect near the walls of the channel. This creates an electric

field in the fluid with potential ~. We use 2~O to denote

the resulting potential difference of the electrodes and take ~O

to be the potential of the electrode on the wall at x = h. The

channel hei:ght is 2h and it follows from Maxwell IS equations that

2~O is given by

The device becomes an electric generator when wires are attached

to the electrodes and ends of an electric resistance; this produces an
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electric current in the wires and resistance. The potential difference

between the electrodes is reduced to a fraction n of its open

curcuit value 2~O; the fraction depends on the load and n is

called the load factor.

The current density j in the fluid ;s

j = a(E + yxIT) = a(-grad ~ + yxIT).

We write the magnitude of the magnetic field as BOb(x) with b(x)

equal to unity for x

are

and x. The z-componente

other two components

between -xe

current density is zero and itsJ" of thez

We call the term in jy which involves ~ the electrostatic contri~ution

and the term which involves the magnetic field the magnetic contribution.

When there ;s an external current, then jy is positive in

the vicinity of the electodes because there the magnetic contribution

dominates the electrostatic one. The magnetic field decreases rapidly

as x increases from xe and for large x, jy is negative because

there the electrostatic contribution dominates the magnetic one and

this give rise to a counter-current. The net amount of current which

can be drawn from the system is diminished by this counter-current.

It is part of our research to determine the effect on the performance

predicted by the mathematical model of thin insulators (vanes) placed

in the fluid; ·as expected, these vanes decrease the counter-eurrent.
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To determine the net current which can be drawn from the system

per unit channel width (in the z-direction), one integrates jy

along a line parallel to the x-axis and by symmetry, one can integrate

25 from x = 0 to x = ro The value obtained is independent ofy

y for y between y = -h and y = h. The total electric power P

per unit channel width is the product of the current and 2n~O = 2nvB
O
h.

One obtai ns

P = 4nvBOhcr f~ [-a¢(x,y)(ay + vBOb(x)] dx, P independent of y.

The total power W per unit channel width needed to maintain the

flow ;s the integral of vjyBOb over the whole channel. This is

given by

ro ro

W= 4vcr fa dy fa dx [-a¢(x,y)(ay + vBOb(x)] BOb(x).

Considering only these two powers. the efficiency E of the device

; 5 taken to be

E = Pffl.

[We remark that one of the things which ;s neglected in

this model is the effect of viscosity which gives rise to friction

effects and makes the fluid speed nonuniform across the channel.

A second thing which is neglected is the variation of the magnetic

field across the channel and between -xe and xe ' A third

thing which is neglected is the finite width of the channel.]
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3. Mathematical model. We approximate the infinite channel with a

finite one with end points txmax where xmax is much larger than

either xe or h. The matematical model of the idealized situation

described in Section 2 ;s taken to be

(3-1 a) a2~(x,y)/ax2 + a2~(x,y)/ay2 = 0, a < x < xmax ' 0< y < h,

(3-1b) ~(x.h) = nhvBO' o~x~xe'

(3-1c) a~(x.h)/ay = vB
O

b(x), xe < x < xmax '

(3-1d) ~(xmax ,Y) = O. O~y~h,

(3-le) ~(x.O) = 0, o < x < xmax'

(3- 1f) a~(o,y)/ax = 0, o < y < h.

The function b which specifies the magnetic field is equal to

unity for x between 0 and x and in some of our experiments ite

was equal to zero for x larger than xe; in others it was

(3-2) b(x)
(1

= lexp(-[x-xe]/efold),

o < x < x
= = e

x < xe

where efold ;s a constant which specifies the rate of decay of

the magnetic field beyond the end of the conductor.

The channel half-width h ;s taken as the unit of length and

we set

x = hX, y = hY, ~(x,y) = ~(hX,hY) = .'(X,Y),

x e = hX e, xmax = hXmax ' b(x) = b(hX) = B(X), efold = hEFOLD

a~(x,y)fax = (l/h)a4>'(X,Y)/ax, a~(x,y)/ay = (l/h)a4>'(X,Y)/aY.
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With the exception of (3-1c), the equations (3-1) and (3-2) are

transformed by making the changes:

x ~ X. Y ~ y. ~ ~ ~'. b + B. h + 1~ efold + EFOLD.

Equation (3-1c) becomes

a1'(X,1)/aY = hvBOB(X),

Now set ~r = hvBO$ to get the system

Xe<X<Xmax

(3-3a) a21(X,y)/ax2 + a2.(X,y)/ay2 = 0, o < X < Xmax ' O<Y<l,

(3-3b) .(X,l) = n. o < X < Xe'= =

(3-3c) a.(x, l)/aY = B(X), X < X<Xmax '-e

(3-3d) 1(Xmax ' Y) = 0, O.-£Y.'£l,
- -

(3-3e) .(X,O) = O. O<X<X •
~. = max

(3-30 a.(o,Y)/ax = 0, o < Y < 1,

(3-4) B(X) {

l ,

= exp(-[X-X ]/EFOLD),
e

o ~X~Xe'

X < X.
e

The power P and the rate of work W then become

(3) 2 2 Xmax () ( )]-Sa P = n4,v BOo [0 [-a. X,Y lay + B X dX

(3-5b) W=
X

[ max dX
o [-a.(x,y)/ay + B(X)] B(X)

Thus, ;n this model, the efficiency E = PjW does not depend

2 2on the value of v BOo.

An analysis of this mathematical model by conformal mapping is

given by Sutton, Hurwitz, and Poritsky [1961].



7

4. Efficiency as a function of load factor. In this section

we present a result which does not seem to be in the literature which

significantly reduces the amount of computation to determine the

efficiency E = P/W as a function of load factor n. Namely, for

a fixed geometry and magnetic field, the efficiency can be determined

by solving a single pair of boundary value problems.

Suppose that the geometry and the function B are fixed. Then

the solution of (3-3) depends only on the value of ~. Let ~l denote

the solution when n is equal to some given value "," Consider

the solution $ for an arbitrary value of n. We can write

where 0/ satisfies

(4-1a) a2~(X,Y)/ax2 + a2~(X,Y)/ay2 = 0, O<X<X , O<Y<l.max

(4-1b) ~(X, 1) = 1, o~ X ~~ Xe'

(4-1e) a~(x,l)/aY = 0 X < X < X •e max

(4-1d) ~(Xmax' Y) = 0, O~Y~l.

(4-1 e) ~(X,O) = 0, a~ x < Xmax '

(4-lf) a~(o,Y)/ax = 0, o < Y < 1,

The efficiency E(n) for a given value of load factor n is then

given by

(4-2a)

where the constants a,B,y,o are given by
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(4-2c)

(4-2d)

(4-2e)

8

X
a = f O

max [-ao1(X,Y)/ay + B(X)] dX

x
B = f O

max
~(X,Y) dX

1 X
Y = fa dY f o

max [-ao1(X,Y)/ay + B(X)] B(X) dX

1 X
o = f dY f max [-a~(x,Y)/aY] B(X) dXa a
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5. Reduction of the counter 'current. The efficiency of the device

;s limited by the amount of counter-current mentioned in Section 2.

This counter-current can be reduced by inserting insulating vanes

parallel to the X-axis in the fluid. These vanes are symmetric

with respect to X = a and to Y = 0 and a pair might be on the X-axis.

We denote the left (L) and right (R) endpoints of these vanes in

the first quadrant by

and (X(R,k) ,y(k)), k = 1,2, ...

The mathematical models (3-3) and (4-1) are augmented by the boundary

conditions

(5-la) a.(x,y(k))/ay = B(X), X(L,k) < X < X(R,k), k = 1,2, ...

(5-1 b) X(L,k) < X < X(R,k), k = 1,2, ...

If one of these vanes, say for k = 1. is on the X-axis, then

(3-3e) and (4-1e) are replaced with

(5-lc) .(X,o) = ~(X,O) = 0, o < X < X(L,k)
- , X(R,k) < X < X

= max

together with (5-la) and (5-1b) with k = 1.

The thickness of the vanes ;s neglected in the mathematical model

and thus the rectangle [O,X ]x[O,h] contains slits. Althoughmax
the V-derivative of the potential is continuous across these

slits (because of (5-1a), the potential itself is discontinuous

at the slits.
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6. General operator of ElLPACK. The ELLPACK system is a research

tool for testing the performance of the various components which make

up a program designed to obtain approximations to solutions of elliptic

partial differential equations. ELLPACK is made up a a number of

modules, for example, the DISCRETIZATION module constructs a set of

linear algebraic equations whose solution gives an approximation to

the solution of the user specified partial differential equation.

Each module has several different versions, for example there are

several different discretizations one can use which vary from the

standard divided central difference approximation to the most recently

developed methods of approximating elliptic partial differential equations.

There have been numerous contributors to the components which maKe

up ELlPACK and these include people at several different universities.

The current version of ElLPACK, called ElLPACK77, treats problems

with the domain of the partial differential equation the interior

of a rectangle or a cube. A new version of ELlPACK is being prepared

which will treat,'general domains.

An ELLPACK progrm consists of (a) a series of statements written

in the ELLPACK user ori ented 1anguage 'grouped to form ELLPACK segments

and (b) a set of user supplied Fortran FUNCTION and SUBROUTINE sUbprograms.

The ELLPACK77 segments are:

(i) EQUATION. which specifies the elliptic partial differential

equation to be solvedj

(ii) BOUNDARY. which specifies the rectangular domain and the

conditions on the solution of the partial differential

equation at the boundaries.
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(iii) GRID. which specifies the number of vertical and horizontal

mesh lines, a rectangular mesh is generated;

(iv) OPTIONS. which specifies, for example, the amount of

ElLPACK generated information about the execution of the

program;

(v) DISCRETIZATION. which specifies which of the discretization

method ;s to be used;

(vi) INDEX. which specifies the indexing of the algebraic

equations and the unknowns;

(vii) SOLUTION. which specifies which of several linear

algepraic equation solvers l~ to be used;

(viii) OUTPUT. which specifies the ELLPACK generated output,

for example: print.8 table of the values of the

approximation at mesh points, construct a contour

plot of the approximation;

(ix) SEQUENCE. which specifies the order of the exectuion of

the ELLPACK segments and the number of times the

sequence is to be executed;

(x) FORTRAN. which specified that the lines of the program

which follow are user supplied Fortran FUNCTION and

SUBROUTINE sUbprograms, these are for the boundary

conditions and other needed routines as well as

a SUBROUTINE called TEST which is described below.

The current version, ELLPACK77, of ELLPACK can be used to generate an

approximation U to the potential $ or ~. the solutions of (3-1) and

(4-1). Paul Gherson of Purdue used ELLPACK77 to find estimates of $
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for various values of the electrode endpoint X • the endpoint of the

rectangle Xmax ' different magnetic fields S, different load factors n.

and for various conditions on Y = 0, namely the boundary condition

(3-3e) and the condition (5-1) for k=l and y(1)=o. His

results are given in the report by Gherson and Lykoudis [1978J.

One of the discretization modules 5-POINT STAR which was

written by Ronald F. Boisvert was modified by Robert E. Lynch to

handle the case of insulator vanes in the interior of the rectangular

domain. In addition to medifying the routines used by 5-POINT STAR,

Gherson's BOUNDARY. segment was changed slightly and an additional

DISCRETIZATION module was specified in order to increase the sizes of

certain of the ELLPACK generated arrays so that the modi fed 5-POINT

STAR would operator properly. Also, Gherson's' FORTRAN. seqment

was completely vewritten in order to handle all the various cases

to be treated; the new FORTRAN. segment has about three times the

number of 1i_nes of Gherson IS. The new segment has about 900 1i nes

with numerous comments.

In some of our recent test cases, the SEQUENCE. segment was:

SEQUENCE. LOOP = 6
DISCRETIZATION
INDEXING
SOLUTION
OUTPUT
TEST

The statement LOOP = 6 instructs the ELLPACK system to ex.ecute- the

SEQUENCE six times. As with Gherson's SUBROUTINE TEST, ours set

initial values of parameters with DATA statements; some of these
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specify values such as the location of the endpoints of the interior

insulating strips. the value of EFOLD, and so on; others control

the operation and they are "switches", for example the LOGICAL variable

MAGFON (MAgnetic Field ON) is set to .TRU.. when B is to be nonzero

and it is set to .FALSE. when B ;s to be zero. During the execution

of the SEQUENCE the odd numbers of times (1,3,5), MAGFON is set to

.TRUE. and the approximation U gives estimates of the potential ~

for a fixed value of load factor n,; a-eifferent value of EFOLD:

is .used so that of> for n, -1.9 'obtained for three different values

of EFOLD. During the even number of times (2,4,6), MAGFON is set to

.FALSE., the load factor ;s set to unity, and the approximation U

gives estimates of the potential ~. The values of the integrals

a,B,y,o in (4-2) are estimated by the Trapezoid Rule, va~,ues

of efficiency for n == 0,1/40,2/40, ... is computed,. and a graph

load factor is generated. Sample output is shown below.

.400
EFOLO =.5 1. 2.

.200

.000+__~ -,--__---, -,-------'--'-J---,:::-:-_
000 .200 .400 .600 .800 t .000
. LORD FRCTOR
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7. Discrete model. The ELLPACK module 5-POINT STAR which we

modified uses finite difference approximations to derivatives. There

are three basic ones which we display below in terms of a given function

U of z:

dU(O)/dz = [-3u(0) + 4u(AZ) - u(2Az)J/2AZ

dU(O)/dz = [u(-2AZ) - 4u(Az) + 3u(0)J/2Az _ (Az 2/3)d 3u(0)/dz3 + ...

Use of the values of the divided differences as approximations to the

values of the derivatives leads to local error which is the order of
2

62. Provided that the u is smooth, then when one halves 6z one

expects the error to be approximately quartered. This applies to

finite difference approximations to ellptic partial differential

equations for sufficiently small 6z and prOVided the solution has

continuous fourth derivatives in the region and at the boundary.

For the mathematical models decribed above for the potentials ~

and ~. the solutions have derivatives with singularities at the

end of the electrode and at the ends of insulator vanes. Consequently,

one expect that the error does not decrease as the square of the

mesh spacing as this spacing tends to zero. The error probably

decreases as the first power of the mesh spacing as it tends to zero.

We now describe the approximations used in 5-POINT STAR and

their modifications which allow the slit-region problems to be treated.

We use some of the variable names of ELLPACK and our routines, such

as TEST so that this report will also serve as partial documentation
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for the programs involved.

The horizontal sides of the rectangle are AX < X < BX and the

vertical sides are AY < Y < BY.= =
Numerical values for AX, BX, AV,

and BY are user supplied in the BOUNDARY. segement of the ELLPACK

program. In our case, AX = AY ;: 0 .• BX = Xmax ' and BY = 1.

The number of vertical and horizontal mesh lines are NGRIDX and

NGRIDY. respectively. Numerical values of these are specified in

the GRID. segment of the ELLPACK program. Uniform mesh spacing is

used by 5-POINT STAR and the spacing are HX and HY defined by

HX = (-AX+BX)/(NGRIOX-l),

HY = (-AY+BY)/(NGRIOY-l).

We denote the mesh points by (Xr,YJ ) and the values are stored in

the ELLPACK arrays GRIOX and GRIOY. The values are

XI = AX + (I-l)HX = GRIOX(I), 1= 1, ... ,NGRIOX,

YJ = AY + (J-l)HY = GRIDY(J), J = 1, ... ,NGRIDY.

The approximation to the solution of the partial differential

equation is denoted by U and this can be considered as a two-dimensional

array and, depending on which problem ;s solved,

At each interior mesh point. the Laplace equation is approximated

with its usual divided central difference approximation (this is

modified at certain points as explained below):



16

[U(I-l,J) - 2U(I,J) + U(I+1,J)]/HX2

(6-1a) + [U(I,J-1) - 2U(I,H) + U(I,J+l)]/Hy2 = 0, 1= 2, ,NGRIOX-l,

J = 2, ,NGRrDX-1.

The vertical mesh line number of the endpoint of the electrode (conductor)

is denoted by ICONDR and its value is set in a DATA statement in

SUBROUTINE TEST. Since AX = 0, the X-coordinate of the endpoint of

the conductor is

Xe = (ICONDR-l)HX = GRIDX(ICONDR).

The LOGICAL variable HAVANE (HAve VANE) is set to .TRUE. or

.FALSE. in a DATA statement in TEST. When it is .TRUE., then there

;s an insulator strip (vane) on the X-axis, and in this case the

horizontal mesh line numbers must also be set by a DATA statement

in TEST. The endpoints are denoted by IVANEL (l for Hleft")

and IVANER (R for "right"). The coordinates of the endpoints are

then determined by the modified 5-POINT STAR to be at (x(L,l) ,D)

and (x(R,l) ,0) where

X(L,l) = (IVANEL-l)HX = GRIDX(IVANEL),

X(R,l) = (IVANER-l)HX = GRlOX(IVANER).

The boundary conditions on the boundary of the rectangle are

given below in the same order as in (3-3) [see also (5-1)]:

(6-1b) U(I,NGRlOY) = LOAOFA, I = 1, ... ,ICONOR,

(LOADFA for LOAD FActor; this is declared REAL and set in a DATA statment

in SUBROUTINE TEST),
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[U(I,NGRIDY-2) - 4U(I,NGRIDY-1) + 3U(I,NGRIDY)]/2HY

(6-1 c)

= B(GRIDX( I)), 1 = ICONDR+l, ... ,NGRIDX-l,

(6-1d) U(NGRIDX,J) = 0, J = 1, ... ,NGRIDY,

U( 1,1) = 0, 1 = 1, .•. , IVANEL-l and
(6- 1e)

I = IVANER+1 , ... ,NGRIDX-l ,

[-3U(I,1) + 4U(I,2) - U(I,3)]/2HY

(6-1e')

= B(GRIDX(I)), 1 = IVANEL, ... ,IVANER,

[-3U(1,J) + 4U(2,J) - U(3,J)]/2HY

(6-lf)

= O. J = 2, ... ,NGRIDY-l.

The total number of algebraic equations in (6-1) is equal to the total

number of mesh points NGRIDX*NGRIDY, hence there is one equation for

each mesh point and thus for each unknown u(r,J).

The equations (6-1) give the set of algebraic equations generated

by 5-POINT STAR and which are used in the case that there are no

insulator vanes in the interior of the rectangle. We now consider

ther case in which there are insulator vanes in the interior; we allow

for one or two such vanes or slits.

The horizontal mesh line number of a slit ;s set in a DATA statment

in TEST. The variable names are JYSLlD and JYSL2D (0 for "down").

If one or both of these are nonzero, then this informs the system that

there is one or two interior slits and in this case the corresponding

vertical mesh line numbers for the endpoints must be set in a DATA
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statement in TEST. The endpoints are denoted by

IXSLIL, IXSL1R for JYSLID and

IXSL2L, IXSL2R for JYSL2D,

where II LII and uR" 5 tand for III eft" and "ri ght" . The boundary

condition at the slit is o$/ay = B(X) and at the downward side of

the slit, the difference equation approximation is

[U(I,JYSLkD-2) - 4U(I,JYSLkD-l) + 3U(I,JSLkD))/2HY

(6-1g) = B(GRIDX(I)), 1= IXSLkL, ... ,IXSLkR

for k = 1 and/or k = 2.

The value of a~/aY is continuous across a slit, but the value

of ~ is discontinuous; that is

Since the value of U at both the bottom and the top of the slit

are unknowns, we need to add another equation:

[-3U(I,JYSLkD+1) + 4U(I,JYSLkD+2) - U(I,JYSLkD+3))/2HY

(6-lh) = B(GRIDX(I)), 1= IXSLkL, ... ,IXSLkR

for k = 1 and/or k = 2.

The mesh points (I,JYSLkD) and (I,JYSLkD+1)' correspond to the

same point (XI'Y3~~LkD) in the region. Consequently, in order to

obtain an approximation to the potential in a rectangular region with

interior slits, we double the number of horizontal mesh points



19

along each interior slit.

This is done by a modification of 5-POINT STAR. When the module

lS called to be executed, it calls a subroutine which determines whether

or not there are interior slits and modifies the horizontal mesh

line coordinates. We give three examples. Suppose that one wants

estimates of $ on a mesh with horizontal mesh spacing HY =.1 and

vertical mesh spacing HX = 1. where Xmax = 20.

Example 1: no interior slits.

In TEST one includes the statement

DATA JYSL1D, JYSL2D / 0, 0 /

The GRID. segment of the ELLPACK program is

GRID. UNIFORM X = 21 $ UNIFORM Y = 11

Then NGRIDX = 21, NGRIDY = 11, HX = 20/20 = 1, HY = 1/10 = .1

Example 2: one interior slit with endpoints (4,.3) and (10,.3)

In TEST one includes the statement

DATA JYSL1D, JYSL2D, IXSL1L, IXSL1R / 4, 0, 5, 11 /

The GRID. segment of the ELLPACK program ;s

GRID. UNIFORM X = 21 $ UNIFORM Y = 12

Then NGRIDX = 21, NGRIDY = 12, and the ELLPACK system set

HY = 20/20 = 1, HY = 1/11 = .0909D90 ... It also generates

values for GRIDX and GRIDY with spacing 1. and 1/11,

respecitively. The modified 5-POINT STAR determines that

JYSL1D ;s nonzero so that there ;s an interior slit. It

then knows that there is a pair of horizontal mesh lines which

correspond to the same value of Y along the slit. It

changes HY from 1/11 to 1/10 =.1 and it resets the
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the values of the Y coordinates of the mesh lines:

YJ = (J-l)HY = GRIDY(J), J = 1, ... ,JYSLlD

YJYSL1D+1 = YJYSL1D + HY*10-5 = GRIDY(JYSL1D+l)

YJ = (J-2)HY = GRIDY(J), J = JYSL1D+2, ... ,NGRIDY.

The values in GRIDY are then:

J =

GRIDY(J)

1, 2,3,4, 5, 6,7,8,9,10,11,12

-6= 0.,.1,.2,.3,.3+10 ,.4,.5 •. fi,.7,.8,.9,1.

Example 3: two interior slits with endpoints (4,.3),(10,.3) and

(J,.7),(5,.7):

In TEST one includes the statements

DATA JYSLlD, IXSLlL, IXSL1R / 4, 5, 11 /

DATA JYSL2D, IXSL2L, IXSL2R / g, 4, 6 /

The GRID. segment of the ELL PACK program is

GRID. UNIFORM X = 21 $ UNIFORM Y = 13

The ELLPACK system sets HX = 20/20 = 1., HY = 1/12 = .08333 ...

and generates values of GRIDX and GRIDY with these spacing.

The modified 5-POINT STAR finds that both JYSL1D and

JYSL2D are nonzero so that there are two interior slits.

It then knows that there are two pairs of horizontal mesh

lines which correspond to the two values of Y along the slits.

It changes the value HY from 1/12 to 1/10 =.1 and it

resets the values of the Y coordinates of the mesh lines:
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YJ = (J-l)HY = GRIDY(J), J = 1, ... ,JYSLlD

YJYSLID+I = YJYSLID + HY*10-
5 = GRIDY(JYSLID+l)

YJ = (J-2)HY = GRlDY(J), J = JYSLlD+2, ... ,JYSL2D

YJYSL2D+l = YJYSL2D + HY*IO-5 = GRIDY(JYSL2D+l)

YJ = (J-3)HY = GRIDY(J), J = JYSL2D+2, ... ,NGRIDY

The values in GRIDY are then:

J :: 1, 2,3,4, 5. 6,7,8, g, 10, 11,12,13

-6 7 -6:: 0.,.1 •. 2,.3,.3+10 ,.4,.5,.6 •. 7,. +10 ,.8,.9,1.

By introducing these lines of "double" mesh points, we have added

additional unknowns, namely the values of U(I,JYSLkD) and U(I,JYSLkD+l),

I:: 1, ...• NGRIDY. Equations corresponding to some of these are given in

(6-1g) and (6-lh), specifically for 1= IXSLkL .... ,IXSLkR. At points

off of the slits. the potential is continuous, so we add the equations

U(I,JYSLkD) - U(I,JYSLkD+l) = D. 1= 1, ... ,IXSLkL-1 and
(6-1i)

1= IXSLkR+l , ...•NGRIDX

In equation (6-1a) we give the approximation for the laplace equation;

but now that does not apply for (I,J) on these lines of double mesh

points. In (6-1a) the range of the subscripts changes from

1= 2•... ,NGRIDX-l, J = 2, ... ,NGRIDX-l

to
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1= 2, ... ,NGRIDX-l,

J = JYSL1D+2, ... ,JYSL2D-2,

J = 2, ... ,JYSL2D-2

J = JYSL2D+2, ... ,NGRIDY-l

The approximation to the Laplace equation for a mesh point with

JYSLkD and at a distance at least 2HX from the end of a slit

is taken as [note the "+2" in the second pair of square brackets]

[U(I-l,JYSLkD) 2U(I,JYSLkD) + U(I+l,JYSLkD)]/HX2

(6-1j) + [U(I,JYSLkD-l) - 2U(I,JYSLkD) + U(I,JYSLkD+2)]/Hy2 = 0,

1= 2, ... ,IXSLkL-2, and 1= IXLSkR+2, ... ,NGRlDX.

For mesh points immediately to the right and to the left of the

end points of the slits, we incorporate the average value of U

at the top and bottom of the end of the slit and use [again, note the 1I+2"J

[U(I-l,JYSLkD) 2U(I,JYSLkD) + U(I+l,JYSLkD)/2 + U(I+l,JYSLkD+l)/2]/HX 2

(6-1k) + [U(I,JYSLkD-l) - 2U(I,JYSLkD) + U(I,JYSLkD+2)]/Hy2 = D,

for I = IXSLkL-l

and

[U(I-l,JYSLkD)/2 + U(I-l,JYSLkD+l)/2 - 2U(I,JYSLkD) + U(I+l,JYSLkD)]/HX2

(6-1l) + [U(I,JYSLkD-l) - sU(I,JYSLkD) + U(I,JYSLkD+2)]/Hy2 = D

for I = IXSLkR+l

These last two equations involve a linear combination of six

of the unknowns; the usual approximation to Laplace's equation involves
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five as in (6-1a). The ELLPACK module 5-POINT STAR constructs a

set of difference equations which has at most five of the unknowns

in them; consequently. the ELLPACK system does not allocate a

sufficient amount of storage when the DISCRETIZATION. segement of

the ELLPACK program is

DISCRETIZATION. 5-POINT STAR

In order to obtain the necessary storage, we include a second

discretization module--this is not subsequently used, its purpose

is merely to obtain extra storage. Hence in an ELLPACK program

which estimates the potential of a region with slits, one uses

-
DISCRETlZATION(l)

DISCRETIZATION(2)

5-POINT STAR

HOLR 9-POINT (IORDER=40)

and in the SEQUENCE. segment, DISCRETIZATION is replaced with

DISCRETIZATION(l).

Caution: The locations of the end of the conductor. and

the endpoints of the slits and vane are given in terms of mesh

line numbers. Consequently, if the number of grid lines ;s changed

in the ELLPACK GRID. then the integer values ICONDR, JYSLIO, and

so on, must be changed in'order to obtain the same geometry.

Caution: Because a three term approximation is used for

the normal derivative at an insultor, for accuracy one must have

at least two interior (non-slit) mesh lines between any pair

of insulators. In Example 3 above. with two slits, note that

there are two i nteri or mesh 1i nes between the lower slit and Y = 0

(J = 2,3) and two between the upper slit and Y= 1 (J = 11,12)
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and these are the minimal number. There are three between the

pair of interior slits (J = 6.7,8) and this is one more than

the required minimum number.

Caution: The derivatives of the potential are singular

at the end point of the conductor and at the end of the

insulator slits and vane. One should run a few test cases to

determine the mesh spacing which yields sufficient accuracy.

In particular, the vertical mesh line spacing should be smaller

than the length of the conductor.
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