Overview of Paul E. Sabine’s 1931 paper: A Critical Study of the Precision of Measurement of Absorption Coefficients by Reverberation Methods

Yangfan Liu
Purdue University, liu278@purdue.edu

Follow this and additional works at: https://docs.lib.purdue.edu/herrick

https://docs.lib.purdue.edu/herrick/193

This document has been made available through Purdue e-Pubs, a service of the Purdue University Libraries. Please contact epubs@purdue.edu for additional information.
Overview of Paul E. Sabine’s 1931 paper: A Critical Study of the Precision of Measurement of Absorption Coefficients by Reverberation Methods

Yangfan Liu
Purdue University
About Paul E. Sabine

- A well-known American physicist and acoustician.
About Paul E. Sabine

- A well-known American physicist and acoustician.

Books by Paul E. Sabine
About Paul E. Sabine

- A well-known American physicist and acoustician.
- Distant cousin of Wallace Sabine (father of architecture acoustics)

Wallace C. Sabine
About Paul E. Sabine

- A well-known American physicist and acoustician.
- Distant cousin of Wallace Sabine (father of architecture acoustics)
- First director of Riverbank Acoustical laboratories (built by Wallace Sabine)
About Paul E. Sabine

- A well-known American physicist and acoustician.
- Distant cousin of Wallace Sabine (father of architecture acoustics)
- First director of Riverbank Acoustical laboratories (built by Wallace Sabine)
- One of the founding members of Acoustical Society of America
- Fourth president of Acoustical Society of America
About Paul E. Sabine

- A well-known American physicist and acoustician.
- Distant cousin of Wallace Sabine (father of architecture acoustics)
- First director of Riverbank Acoustical laboratories (built by Wallace Sabine)
- One of the founding members of Acoustical Society of America
- Fourth president of Acoustical Society of America
- His son, Hale J. Sabine, is also a renowned acoustician.
About Paul E. Sabine

- A well-known American physicist and acoustician.
- Distant cousin of Wallace Sabine (father of architecture acoustics)
- First director of Riverbank Acoustical laboratories (built by Wallace Sabine)
- One of the founding members of Acoustical Society of America
- Fourth president of Acoustical Society of America
- His son, Hale J. Sabine, is also a renowned acoustician.
Wallace C. Sabine was asked to diagnose the acoustics of the lecture hall in Fogg Art Museum.
Wallace C. Sabine was asked to diagnose the acoustics of the lecture hall in Fogg Art Museum.

W. C. Sabine developed the reverberation theory for material testing (organ pipe, stop watch and ear).
• Wallace C. Sabine was asked to diagnose the acoustics of the lecture hall in Fogg Art Museum.

• W. C. Sabine developed the reverberation theory for material testing (organ pipe, stop watch and ear).

• Sabine’s theory was applied to the design of the Boston Symphony Hall.
• Wallace C. Sabine was asked to diagnose the acoustics of the lecture hall in Fogg Art Museum.

• W. C. Sabine developed the reverberation theory for material testing (organ pipe, stop watch and ear).

• Sabine’s theory was applied to the design of the Boston Symphony Hall.

• Colonel George Fabyan offered to build Riverbank Acoustical Laboratories.
History Before the Paper

- Wallace C. Sabine was asked to diagnose the acoustics of the lecture hall in Fogg Art Museum.
- W. C. Sabine developed the reverberation theory for material testing (organ pipe, stop watch and ear).
- Sabine’s theory was applied to the design of the Boston Symphony Hall.
- Colonel George Fabyan offered to build Riverbank Acoustical Laboratories.
- W. C. Sabine died shortly after Riverbank Lab was built.
• Wallace C. Sabine was asked to diagnose the acoustics of the lecture hall in Fogg Art Museum.

• W. C. Sabine developed the reverberation theory for material testing (organ pipe, stop watch and ear).

• Sabine’s theory was applied to the design of the Boston Symphony Hall.

• Colonel George Fabyan offered to build Riverbank Acoustical Laboratories.

• W. C. Sabine died shortly after Riverbank Lab was built.

• George Fabyan found Paul E. Sabine to direct the Riverbank Lab.
History Before the Paper

1895 • Wallace C. Sabine was asked to diagnose the acoustics of the lecture hall in Fogg Art Museum.

1900 • W. C. Sabine developed the reverberation theory for material testing (organ pipe, stop watch and ear).

1913 • Colonel George Fabyan offered to build Riverbank Acoustical Laboratories.

1919 • Sabine’s theory was applied to the design of the Boston Symphony Hall.

1919 • W. C. Sabine died shortly after Riverbank Lab was built.

1919 • George Fabyan found Paul E. Sabine to direct the Riverbank Lab.

1924 • P. E. Sabine was doing material tests at Riverbank using the same method as W. C. Sabine.
Wallace C. Sabine was asked to diagnose the acoustics of the lecture hall in Fogg Art Museum.

- W. C. Sabine developed the reverberation theory for material testing (organ pipe, stop watch and ear).

- Sabine’s theory was applied to the design of the Boston Symphony Hall.

- Colonel George Fabyan offered to build Riverbank Acoustical Laboratories.

- W. C. Sabine died shortly after Riverbank Lab was built.

- George Fabyan found Paul E. Sabine to direct the Riverbank Lab.

- P. E. Sabine was doing material tests at Riverbank using the same method as W. C. Sabine.

- Started to use electronic devices for measurements.
Wallace C. Sabine was asked to diagnose the acoustics of the lecture hall in Fogg Art Museum.

- W. C. Sabine developed the reverberation theory for material testing (organ pipe, stop watch and ear).
- Sabine’s theory was applied to the design of the Boston Symphony Hall.
- Colonel George Fabyan offered to build Riverbank Acoustical Laboratories.
- W. C. Sabine died shortly after Riverbank Lab was built.

George Fabyan found Paul E. Sabine to direct the Riverbank Lab.

- P. E. Sabine was doing material tests at Riverbank using the same method as W. C. Sabine.
- Started to use electronic devices for measurements.
- Similar labs are built (Bureau of Standards and other universities).
- Compare tests from different sources and places.
• Wallace C. Sabine was asked to diagnose the acoustics of the lecture hall in Fogg Art Museum.

1895

• W. C. Sabine developed the reverberation theory for material testing (organ pipe, stop watch and ear).

1900

• Sabine’s theory was applied to the design of the Boston Symphony Hall.

1913

• Colonel George Fabyan offered to build Riverbank Acoustical Laboratories.

1919

• W. C. Sabine died shortly after Riverbank Lab was built.

1919

• George Fabyan found Paul E. Sabine to direct the Riverbank Lab.

1919

• P. E. Sabine was doing material tests at Riverbank using the same method as W. C. Sabine.

1924

• Started to use electronic devices for measurements.

1931

• Similar labs are built (Bureau of Standards and other universities).

• Compare tests from different sources and places.

• Published the paper that studies the precision of reverberation measurements.
History Before the Paper

- Wallace C. Sabine was asked to diagnose the acoustics of the lecture hall in Fogg Art Museum.
- W. C. Sabine developed the reverberation theory for material testing (organ pipe, stop watch and ear).
- Sabine’s theory was applied to the design of the Boston Symphony Hall.

A CRITICAL STUDY OF THE PRECISION OF MEASUREMENT OF ABSORPTION COEFFICIENTS BY REVERBERATION METHODS

By Paul E. Sabine
Riverbank Laboratories

- George Fabyan found Paul E. Sabine to direct the Riverbank Lab.
- P. E. Sabine was doing material tests at Riverbank using the same method as W. C. Sabine.
- Started to use electronic devices for measurements.
- Similar labs are built (Bureau of Standards and other universities).
Better understand the numerical results from material test

- Tolerance of error in results that will not significantly affect the acoustical quality in a room.

Meet the designed absorption:

- If absorption coefficient is 0.7, 3200 square feet is needed.
- If absorption coefficient is 0.6, 3700 square feet is needed.
- But no significant effect on reverberation time, if a material of 0.6 is measured as 0.7 (an error of 15%).
Motivation of the Paper

- Better understand the numerical results from material test
 - Tolerance of error in results that will not significantly affect the acoustical quality in a room.
 - Consistency among tests from different sources, different ways to calculate the absorption coefficient and different labs.
 - How much error is expected from different test methods
 - What factors can affect the measurement errors.
Experimental Parameters

- **Reverberation time**: time for the sound decay from the stop of the source to audibility.

- **Sources**: organ pipes and loudspeaker (steady and flutter tone).

- **Observations**: 25 observations from 5 locations for each test condition.

- **Test sequence**: alternating measurements with and without the material sample in the chamber.
Calculus Absorption Coefficient

- Reverberation theory *(Wallace Sabine)*:

\[w(t) = w_0 e^{-\left(\frac{4V}{cA_s}\right)t}, \]

- \(w \) – intensity (energy density),
- \(c \) – sound speed,
- \(V \) – room volume.
- \(A_s \) – room absorption.
Calculating Absorption Coefficient

- Reverberation theory \((Wallace Sabin)\):

 \[w(t) = w_0 e^{-\left(\frac{4V}{cA_s}\right)t} \]

 - \(w\) – intensity (energy density), \(V\) – room volume.
 - \(c\) – sound speed,
 - \(A_s\) – room absorption.

- Loudspeaker measurements:
 - Fixed Current
 - Regardless of room condition
 - Radiation power proportional to room absorption
 - Fixed Intensity
Loudspeaker measurements:

- Variable intensity method

\[\frac{A_s' - A_s}{S} = 15.4 \frac{m' - m}{S}, \]

- Variable source method

\[A_s' T' = A_s T, \]

Organ pipe measurements (constant radiation power):

- Constant source method

\[A_s' = \frac{1}{T'} \left(A_s T - \frac{4V}{c} \ln \frac{T}{T'} \right), \]

\[V - \text{room volume}, \quad c - \text{sound speed} \]
Magnitude of Errors

- Error in absorption coefficient and its contributing factors
 - Assume 1% error in A_s', the percent error in absorption coefficient can be calculated:

<table>
<thead>
<tr>
<th>Ratio of absorbing power A_s'/A_s</th>
<th>Percent error in coefficient</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.25</td>
<td>9.0</td>
</tr>
<tr>
<td>1.50</td>
<td>5.0</td>
</tr>
<tr>
<td>1.75</td>
<td>3.7</td>
</tr>
<tr>
<td>2.0</td>
<td>3.0</td>
</tr>
</tbody>
</table>

- Better to use a more reverberant room, however, the error in determining the reverberation time by ear is greater.

- Magnitude of hearing error can be illustrated by results from three different days

<table>
<thead>
<tr>
<th></th>
<th>T</th>
<th>T'</th>
<th>A_s</th>
<th>A_s'</th>
<th>$A_s'-A_s$</th>
</tr>
</thead>
<tbody>
<tr>
<td>Average</td>
<td>12.66</td>
<td>7.68</td>
<td>5.10</td>
<td>8.20</td>
<td>3.09</td>
</tr>
<tr>
<td>Average deviation</td>
<td>0.123</td>
<td>0.063</td>
<td>0.05</td>
<td>0.067</td>
<td>0.023</td>
</tr>
<tr>
<td>Percent deviation</td>
<td>1.0</td>
<td>0.8</td>
<td>1.0</td>
<td>0.8</td>
<td>0.7</td>
</tr>
</tbody>
</table>

- Hearing error can be eliminated by alternately measure times with and without the sample.
Magnitude of Errors

- Precision of different methods
 - Constant source method
 - A trained observer may duplicate the values of absorption coefficient within 4 or 5 per cent (256 to 2048 Hz).
 - Variable intensity method
 - Error is four or five times greater than the constant source method
 - Best reproducibility is 1% for the slope of logarithmic decay curve
 - 1% error in original data may introduce 12% error in absorption coefficient
 - Variable source method
 - More sensitive to error in reverberation for highly reverberant rooms
Comparison of Results

- At 128 Hz, large variation occurs.
 - Sound field is not diffuse
 - Sample size is not large enough

- At 128 Hz, very well agreement.

- At 512 Hz, organ pipe results in Riverbank agree with loudspeaker results in Bureau of Standard.

- At the two highest frequencies, organ pipes give consistently lower values.

<table>
<thead>
<tr>
<th>Pitch</th>
<th>Material</th>
<th>Coefficient</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Organ Pipe</td>
</tr>
<tr>
<td>128</td>
<td>A</td>
<td>.08</td>
</tr>
<tr>
<td>128</td>
<td>B</td>
<td>.08</td>
</tr>
<tr>
<td>128</td>
<td>C</td>
<td>.13</td>
</tr>
<tr>
<td>128</td>
<td>D</td>
<td>.—</td>
</tr>
<tr>
<td>256</td>
<td>A</td>
<td>.18</td>
</tr>
<tr>
<td>256</td>
<td>B</td>
<td>.29</td>
</tr>
<tr>
<td>256</td>
<td>C</td>
<td>.46</td>
</tr>
<tr>
<td>256</td>
<td>D</td>
<td>.42</td>
</tr>
<tr>
<td>512</td>
<td>A</td>
<td>.48</td>
</tr>
<tr>
<td>512</td>
<td>B</td>
<td>.62</td>
</tr>
<tr>
<td>512</td>
<td>C</td>
<td>.67</td>
</tr>
<tr>
<td>512</td>
<td>D</td>
<td>.64</td>
</tr>
<tr>
<td>1024</td>
<td>A</td>
<td>.54</td>
</tr>
<tr>
<td>1024</td>
<td>B</td>
<td>.55</td>
</tr>
<tr>
<td>1024</td>
<td>C</td>
<td>.57</td>
</tr>
<tr>
<td>1024</td>
<td>U</td>
<td>.69</td>
</tr>
<tr>
<td>2048</td>
<td>A</td>
<td>.54</td>
</tr>
<tr>
<td>2048</td>
<td>B</td>
<td>.59</td>
</tr>
<tr>
<td>2048</td>
<td>C</td>
<td>.62</td>
</tr>
<tr>
<td>2048</td>
<td>D</td>
<td>.71</td>
</tr>
</tbody>
</table>
Conclusion of the Paper

- Measurements by reverberation methods are approximate estimates rather than precise determination.

- Precise enough results can be achieved for applications to practical problems.

- There is no optimum reverberation time of a room for best precision.

- Considerable variation in absorption coefficients often does not produce appreciably differences in the acoustical quality of a room.

- Difference in characteristics such as color and appearance may often outweigh the difference in absorption coefficients.
History After the Paper

- London considered insufficient diffuse level and converting results from impedance tube tests.
• London considered insufficient diffuse level and converting results from impedance tube tests.

• Northwood, et. al. found results for finite-sized sample may exceed true values due to diffraction.
• London considered insufficient diffuse level and converting results from impedance tube tests.

• Northwood, et. al. found results for finite-sized sample may exceed true values due to diffraction.

• Kosten, et. al. organized a Round Robin showing diffusion level and sample size can significantly affect the result.
History After the Paper

- London considered insufficient diffuse level and converting results from impedance tube tests.
- Northwood, et. al. found results for finite-sized sample may exceed true values due to diffraction.
- Kosten, et. al. organized a Round Robin showing diffusion level and sample size can significantly affect the result.
- ten Wolde found the sample edge-effect can also increase the measured value.
History After the Paper

- London considered insufficient diffuse level and converting results from impedance tube tests.
- Northwood, et. al. found results for finite-sized sample may exceed true values due to diffraction.
- Kosten, et. al. organized a Round Robin showing diffusion level and sample size can significantly affect the result.
- ten Wolde found the sample edge-effect can also increase the measured value.
- Schultz clarified the definition of diffusion and developed a way to check diffusion level during the measurement.
• London considered insufficient diffuse level and converting results from impedance tube tests.

• Northwood, et. al. found results for finite-sized sample may exceed true values due to diffraction.

• Kosten, et. al. organized a Round Robin showing diffusion level and sample size can significantly affect the result.

• ten Wolde found the sample edge-effect can also increase the measured value.

• Schultz clarified the definition of diffusion and developed a way to check diffusion level during the measurement.

• de Brujin performed a mathematical analysis on the edge-effect.
History After the Paper

1950 • London considered insufficient diffuse level and converting results from impedance tube tests.

1959 • Northwood, et. al. found results for finite-sized sample may exceed true values due to diffraction.

1960 • Kosten, et. al. organized a Round Robin showing diffusion level and sample size can significantly affect the result.

1967 • ten Wolde found the sample edge-effect can also increase the measured value.

1971 • Schultz clarified the definition of diffusion and developed a way to check diffusion level during the measurement.

1973 • de Brujin performed a mathematical analysis on the edge-effect.

1980 • Thomasson generalized the formula converting impedance to absorption coefficient (size, backing and radiation).
1950 • London considered insufficient diffuse level and converting results from impedance tube tests.

1959 • Northwood, et. al. found results for finite-sized sample may exceed true values due to diffraction.

1960 • Kosten, et. al. organized a Round Robin showing diffusion level and sample size can significantly affect the result.

1967 • ten Wolde found the sample edge-effect can also increase the measured value.

1971 • Schultz clarified the definition of diffusion and developed a way to check diffusion level during the measurement.

1973 • de Brujin performed a mathematical analysis on the edge-effect.

1980 • Thomasson generalized the formula converting impedance to absorption coefficient (size, backing and radiation).

1981 • Thomas looked at some limiting cases of edge-effect theories in experiments.

1988 • Benedetto, et. al. showed remarkable influence from the installation of diffusors.
History After the Paper

1950
- London considered insufficient diffuse level and converting results from impedance tube tests.

1959
- Northwood, et. al. found results for finite-sized sample may exceed true values due to diffraction.

1960
- Kosten, et. al. organized a Round Robin showing diffusion level and sample size can significantly affect the result.

1967
- ten Wolde found the sample edge-effect can also increase the measured value.

1971
- Schultz clarified the definition of diffusion and developed a way to check diffusion level during the measurement.

1973
- de Brujin performed a mathematical analysis on the edge-effect.

1980
- Thomasson generalized the formula converting impedance to absorption coefficient (size, backing and radiation).

1981
- Thomas looked at some limiting cases of edge-effect theories in experiments.

1988
- Benedetto, et. al. showed remarkable influence from the installation of diffusors.

1988
- International standard, ISO–354, was developed (revised in 2003).

1988
- Hidaka, et. al. proposed a correction for atmospheric absorption.
Davy, et. al. investigated the optimum locations of the diffusors.
History After the Paper

• Davy, et. al. investigated the optimum locations of the diffusors.

• Cops, et. al. considered experimental control, locations of source, sample and receivers and using Eyring’s equation.
History After the Paper

• Davy, et. al. investigated the optimum locations of the diffusors.

• Cops, et. al. considered experimental control, locations of source, sample and receivers and using Eyring’s equation.

• Toyoda, et. al. used ray tracing to investigate the diffusor effect and the angular dependence of power incidence.
History After the Paper

- Davy, et. al. investigated the optimum locations of the diffusors.
- Cops, et. al. considered experimental control, locations of source, sample and receivers and using Eyring’s equation.
- Toyoda, et. al. used ray tracing to investigate the diffusor effect and the angular dependence of power incidence.
- Jeong proposed an angular weighting for angular dependence (ray tracing).
History After the Paper

- Davy, et. al. investigated the optimum locations of the diffusors.
- Cops, et. al. considered experimental control, locations of source, sample and receivers and using Eyring’s equation.
- Toyoda, et. al. used ray tracing to investigate the diffusor effect and the angular dependence of power incidence.
- Jeong proposed an angular weighting for angular dependence (ray tracing).
- Vercammen suggested using Eyring’s formula at high frequencies with reference absorber to improve reproducibility.
Davy, et. al. investigated the optimum locations of the diffusors.

Cops, et. al. considered experimental control, locations of source, sample and receivers and using Eyring’s equation.

Toyoda, et. al. used ray tracing to investigate the diffusor effect and the angular dependence of power incidence.

Jeong proposed an angular weighting for angular dependence (ray tracing).

Vercammen suggested using Eyring’s formula at high frequencies with reference absorber to improve reproducibility.

Jeong, et. al. found the reproducibility of results can be improve by converting random incidence absorption coefficient to Sabine absorption coefficient.
History After the Paper

1989
• Davy, et. al. investigated the optimum locations of the diffusors.

1995
• Cops, et. al. considered experimental control, locations of source, sample and receivers and using Eyring’s equation.

2004
• Toyoda, et. al. used ray tracing to investigate the diffusor effect and the angular dependence of power incidence.

2009
• Jeong proposed an angular weighting for angular dependence (ray tracing).

2010
• Vercammen suggested using Eyring’s formula at high frequencies with reference absorber to improve reproducibility.

2015
• Jeong, et. al. found the reproducibility of results can be improve by converting random incidence absorption coefficient to Sabine absorption coefficient.

2015
• Liu and Bolton proposed a room acoustic simulation method using equivalent source model that can potentially be used to predict the reverberant test results.
Davy, et. al. investigated the optimum locations of the diffusors.

Cops, et. al. considered experimental control, locations of source, sample and receivers and using Eyring’s equation.

Toyoda, et. al. used ray tracing to investigate the diffusor effect and the angular dependence of power incidence.

Jeong proposed an angular weighting for angular dependence (ray tracing).

Vercammen suggested using Eyring’s formula at high frequencies with reference absorber to improve reproducibility.

Jeong, et. al. found the reproducibility of results can be improve by converting random incidence absorption coefficient to Sabine absorption coefficient.

Liu and Bolton proposed a room acoustic simulation method using equivalent source model that can potentially be used to predict the reverberant test results.