Purdue University
Purdue e-Pubs

Department of Computer Science Technical

Reports Department of Computer Science

1978

Measuring Improvements in Program Clarity
Ronald D. Gordon

Report Number:
78-265

Gordon, Ronald D., "Measuring Improvements in Program Clarity" (1978). Department of Computer
Science Technical Reports. Paper 196.
https://docs.lib.purdue.edu/cstech/196

This document has been made available through Purdue e-Pubs, a service of the Purdue University Libraries.
Please contact epubs@purdue.edu for additional information.

https://docs.lib.purdue.edu/
https://docs.lib.purdue.edu/cstech
https://docs.lib.purdue.edu/cstech
https://docs.lib.purdue.edu/comp_sci

MEASURING IMPROVEMENTS IN PROGRAM CLARITY

Ronald D. Gordon
Purdue University

Department of Computer Sciences
West Lafayette, Indiana 47907

CSD-TR 265

May 1978

Measuring Improvements in Program Clarity

by Ronald D. Gordon

Purdue University-
Department of Computer Sciences
West Lafayette, Indiana 473906

April 1978

ABSTRACT

The sharply rising cost incurred during the production of quality
software has brought with it the need for the development of new
techniques of software measurement. In particular, the ability to
objectlvely assess the clarity of a program is essential In order to
rationally develop useful engineering guidelines for efficient
software production and language development.

A functional relation between the clarity of a program and the
number and frequency of operators and operands which occur in the
program is presented. Thls measure of program clarity provides an
estimate of the amount of mental effort required to understand the
program, assuming that the reader Is fluent in the programming
language employed.

This measure is tested by applying it to several published examples
which demonstrate improvements in program clarity. The objective
assessment which Is provided using this measure is found to agree with
the experimental data gathered.

Keywords and Phrases: program clarity, software measurement, software
complexlty, cognltive psychology, software science

CR categorles: 4.0, 4.6

Introduction

An important problem in quality software research is the
measurement of programming style. Many different techniques have been
presented which attempt to provide a quantitative assessment of the
various aspects which contribute to the quality of software products.
At the present, many experts are attempting to prepare guidelines
which, if followed, will have the effect of improving programming
style. Such an improvement In style will decrease the amount of work
required to prepare a program and the amount of effort expended In
understanding and maintaining the resulting product. The essential
issue then, [s to minimlze such mental effort. In other words, to
accurately assess programming style we must be able to accurately
assess the amount of mental effort expended in preparing and
understanding the code.

In this paper a measure of program clarity is presented which is a
function of the number and frequency of the operators and operands
occurring in the program. The resulting value represents the amount
of mental work which must be performed in order to comprehend the
functlion of the code.

Several factors influence how easy or difficult it is to understand
a particular program. The factors may be categorized into three broad
areas: programmer ability, program form, and program structure.
Several researchers have studied many of these factors In detail.

The level of fluency of the programmer with the programming
language employed greatly influences the difficulty experienced during
program comprehension. Shneiderman[66] performed several experiments
with groups of both inexperienced and experienced programmers. His
empirical results show that there are marked differences between those
groups with respect to certain coding practices. For example, novice
programmers have more difficulty with modular programs, while
experienced programmers Find the straight line code more dIfficult to
understand. Long sequences of IF-THEN-statements were easier to
follow for the inexperienced programmers than was the corresponding
nested IF-THEN-ELSE structure. The reverse was true for advanced
programmers.

The programmer s familiarity with the problem domain can also
strongly influence the ease with which a program is understood. Such
Famillarlty might enable a programmer to recognize blocks of code very
quickly as 1f a template matching operation had been mentally
employed. Shneiderman[67] suggests that background information be
col lected about the types of programs which a programmer has worked
with and the resulting information used as a covariate In a
statistical analysis of various performance measures.

Many researchers have studied the influence of program form on the
amount of effort required for program comprehension. Weissman([77,78]
conducted several emplirical studles focusing on such popular Issues as
commenting, the placement of declarations, indentation, and the use of

2

mnemonic variable names. His major contribution was the development
of a suitable experimental methodology designed to enable researchers
to gather suitable empirical evidence which could be used to validate
the effects of program style on the relative difficulty of
comprehens ion experienced by programmers. Several experimental
procedures are presented in his reports which attempt to measure the
degree of comprehension achieved by a programmer after studying a
glven program. Hand-simulation tasks, varltous types of qutzzes, and
methods of self-evaluation were employed. useful results.

Some experiments have been performed which attempt to assess the
impact of program structure on program comprehensibillty. Program
structure includes several factors related to the syntactic
representation of an algorithm In a programming language. For
example, the number of executable statements, the complexity of the
control flow graph of the program, the depth of statement nesting,
clustering of data references, and the iocality of operations are all
factors which influence program structure and affect the clarity of
the program. '

Previous work which studied the affects of program structure
tnclude that of Gannon and Horning[20]. Ten programming language
differences between TOPS3-2 and TOP5-10 were studied. In order to
assess the deslrability of various syntactic elements, the persistence
of program bugs during program development was measured. The
syntactic form of conditional IF-statements was studied by Sime,
Green, and Guest[71]. They found that nested IF-THEN-ELSE structures
were easier to comprehend than the corresponding IF-GO TO forms for
naive programmers. The relationship between the complexity of control
flow and program understanding was investigated by Love[53]. That
study found that programs with simple control flow were easier for
experienced programmers to understand. No statistically signiflicant
difference in comprehensibility was found for inexperienced
programmers, however, as the complexity of the control flow was
varied.

Glleadi[22] proposed a measure of program structure In an attempt
to measure how well-structured a given flowchart was with respect to
the precepts of structured programming. Under such a measure, the
flowchart was mapped to a representative finite state, sequential
automaton. The state transitions of the automaton correspond to the
control flow paths represented by the flowchart. A measure of
software work was applied to the automaton to estimate the amount of
work represented by the flowchart., Ideally, well-structured
flowcharts would have small measured values since their representation
of the task teo be performed was short and elegant. Unfortunateiy,
this measure did not agree well with the accepted notions of good
structure in many instances.

The purpose of thls study is to develop and empirically verify a
measure of program clarity which is a simple function of the program’s
structure. Such a measure does not reflect the iInfluence of
programmer fluency or familiarity with the problem area. In thlis

study, it Is assumed that the programmer is fluent in the |anguage
employed and not so familiar with the problem area that recognition is
accompl ished instantanecusly, after only a cursory inspection of the
code. Further, factors which affect the program form are considered
to be of marginal significance. Comparable methods of indentation,
paragraphing, and variable nomenclature are assumed to have been
employed when comparing two programs. When these assumptions are not
valid, the results which are obtained using the measure formulated may
not accurately approximate the observed difficulty in understanding
the program.

The measure presented provides an estimate of the mental effort
required for comprehension. Such an absolute measure is useful since
it allows us to compare two programs, perhaps scolving different tasks,
and determine not only which Is easler to understand, but also how
much of a differaence is Involved.

Measurable Properties of Algorithms

Several program features have traditionally been associated with
program clarity. Such features inciude the number of
statements[53,76] and the density of GO TOs[14,59]. However, very few
substantive hypotheses relating such features to program clarity have
been presented. On the other hand, the methodoliogy of experimental
science has shown remarkable success in providing useful theories and
workable laws governing many properties of algorithms[27,28]. A
conslise review of many of the results developed In this fleld has been
prepared by Fitzsimmons and Love[17B].

The relationships developed make use of the following measurable
properties of a program:

7, — The number of distinct operators
N> — The number of distinct operands
N; — The total number of operators
N, — The total number of operands

These parameters may be easily obtained for programs written in any
programming language. The theories developed relate these values to
such properties as program length, implementation level, volume, etc.
Software science has provided useful relations which enable the
potential number of software errors to be calculated, and allow the
amount of effort or programming time

Several fundamental properties are defined for an implementation of
an algorithm based on the four basic parameters specified above.
These properties Include the program vocabulary, 7, and the program
length, N:

=1y t N
N = N, + N,

The program volume, V, is defined In terms of these measures, as
the number of total usages of operators and operands in the
implementation, times the number of bits which would be required to
provide a unique designator for each of the »n different items
composing the program vocabulary. The program volume then has the
units of bits.

V = N logan

The program length, N, may be closely approximated as a function of
the number of unlique operators and operands used in the Implementation
of the algorithm[27]. The resulting expression has been subjected to
saeveral experlimental tests, and the results indicate that for well-
written programs, the approximation is very accurate[28,31].

R = n,logzny + n2logams

Program level is a measure of the succinctness of an Iimplementation
of an algorithm. The highest level at which an algorithm may be
represented is in the form of a procedure call. The level of such a
representation is taken to be one. More lengthy representations
involving many operators and the repetitious use of operands have a

lower level[26]. The following estimator for implementation level Is
used:
L= _2m7n,
71 Na

It should be noted, however, that program level may affect the ease
or difficulty of understanding in two contrasting ways. For a person
who understands all of the terms involved, a concept may be grasped
more quickly or easily the higher the level at which it Is presented.
On the other hand, in order to convey a given concept to a person less
familiar with, or less fluent in, a specific area requires a greater
volume, and a lower level. As the saying goes, "A Word to the Wise is
Sufficient,"” and for a person fluent in a language, the difficulty of
comprehension (s expected to vary inversely with the level.

The Difficulty of Program Construction

The relationships of software science have been employed to
estimate the difficulty of program construction. Hypothesizing that
the difficulty of programming increases as the volume of the program
Increases and decreases as the program level increases, Halstead[30]
suggested the ratlo £ = V/L as a measure of the mental effort required
to create a program. Program Impurities, or flaws In program
structure, lower the level of the implementation and/or increase the
program length and yet do not represent an increase in the amount of
programming effort expended. In order to minimize the influence of
such impurities on the measure of programming effort, the estimator of
program length, R, is substituted for N in the calculation of program
volume. The resulting measure for program effort is:

En = R _log,nm

=

L

Several studies have been performed to test the useful lness of this
measure for programming effort. In one experiment, Zislis[84]
selected a dozen algorithms from the Communications of the ACM and
prepared rough specifications for each. This set of program
specifications was then used to implement a suitable program. Three
implementation languages were employed — PL/I, Fortran, and APL. For
each of the 36 programs thus obtained, the software science measures
were obtalned and the measure Em calculated.

An estimate of programming time was obtained by dividing En by the
number of elementary mental discriminations performed per second of
human thought. This constant of proportionality is refered to as the
Stroud number and is considered to be roughly 18 discriminations per
second for concentrating programmers. The correlation coeflclents
between the actual and predicted programming times for the programs in
this experiment were: '

Fortran 0.87
PL/I 0.94
APL 0.93

The predicted time for the entlre experiment was 22.51 hours. This
estimate compares well with the observed time of 20.15 hours.

In another experiment performed by Gordon and Halstead[23], eleven
problems were selected from two published sources. Each problem
statement was utilized to prepare a correctly running program which
was verified by executing a complex test case for which a correct
answer was known. The entire time required to prepare the solution
was measured. The software sclence measures were then appllied to
predict the programming time for each of the resulting programs.

The total predicted programming time was 374 minutes, which was
within 3% of the actual total time required, 385 minutes. The
correlation coefflicient between the estimated and actual times was

0.934. In contrast, when the number of program statements was
correlated with the observed programming times, a coefficlent of 0.887
was obtained. Although it is a common practice to attempt to estimate
programming time from such a simple measure, this experiment
demonstrated that statement counts can predict programming times less
well than software science.

The scope of the hypothesis was enlarged as published data became
available Tor large programs. The work reported by Akiyamal1], in an
Independent study of programming effort and software system debugging,
may be used to obtain an estimate of the total effort involved during
the development of a large programming project. A value of 84 labor
months of effort is obtained when such an analysis is carried out[18].
This figure compares reasonably well with Akiyama“'s estimate of about
100 labor months.

Measuring Improvements in Clarity

The results presented in the previous section indicate that It is
indeed possible to obtaln a good approximation of the amount of mental
work performed during program construction as a Function of easily
measured features of the program Itself,

Not all of the effort expended during program construction,
however, can be estimated based on the resulting code. This is a
consequence of the expenditure of "wasted" effort. As a program is
produced, a false start may have been made, and portions of the code
struck out once a better approach was recognized. While methods of
top—down or structured programming attempt to minimize this effect, it
is not uncommon for the programmer to consider several software
mechanisms or data structures and their effects on subsequent
processing before settling upon one which Is regarded best suited for
the task at hand[12]. The effort expended on such endeavors is not
available for measure, since the code is simply not present in the
final version of the program. This type of behavior is not reflected
in the measure Em. The term N log,n assumes that the programmer
prepares the code with perfect insight inltially, whereas in actual
practice, additlonal operators and operands are considered and
rejected.

For a moment, let us consider how such code revisions affect the
program which results. When a statement is first drafted, the
translation from thought to concrete form is imprecise, yielding an
expression which is perhaps unclear, or at worst, incorrect. As one
might polish a composition, so the programmer refines what he has
written, in order to present a more perfect statement of the solution.
As a result, the program is clearer. It is easier to understand
because it is a more coherent representation of the mental image
developed by the programmer.

Subsequently, when the code is studied, a reader would need to
expend less than the original amount of effort In order to comprehend
the ldeas of the first programmer. This would be expected, since the
refined program most falthfully portrays those concepts upon which its
operation is based.

Thus, what we might actually be able to measure in this manner is
not the total amount of effort expended during program construction,
but the amount of mental effort required to subsequently comprehend
the program. We can measure programming effort insofar as the amount
of program revision is small. When the program has undergone many
changes, the resuiting code fails to reflect the additional
expendlture of effort.

While it is true that the measure presented was developed based on
a model of program generation, it is not unreasonable to expect it to
yleld an accurate estimate for the amount of mental work expended
during program assimilation. The process which Is performed whille
worklng to understand a program Is in many respects, similar to the

process of program generation. In order to comprehend the program,
the reader might retrace the thought process which was followed during
program generation. A clear program provides several signposts,
enabling the reader to follow the development of the program In
reverse order as it were, from solution to the initial functional
specification of the module.

We may consider the relationshlip which exists between programming
and comprehension effort from another viewpoint. Once a programmer
understands an algorithm, the additional effort required to express it
as a program In a language for which fluency has been achieved is
relatively small. In such a case, the total programming effort is
approximately equal to the effort expenhded for comprehension.

These considerations provide the motivation for additional
experiments in order to assess the validity of a measure such as E as
an indicator of the amount of effort required to understand a given
program. Already, the evidence provided by the experiments conducted
support the use of such a measure. Insofar as programming and
comprehension efforts are closely related, the success of those
experiments indicates that program clarity may be accurately
approximated as a simple function of the number and frequency of
operators and operands occuring in the program.

In formulating an expression for the amount of mental effort
required for program comprehension, the effect of Impurities which are
present in the implementation should be taken into account. While it
is true that the presence of Impurities does not represent an Increase
in programming effort expended, they are expected to have an adverse
effect on the comprehensibility of the code. As a result, no attempt
should be made to minimize their effect. Consequently, the true
program length, N, rather than the estimator of program length, A, is
used In approximating the effort of understanding. The following
elegant estimator for the amount of mental effort required to
understand a program then results:

E. =V

L

10

Experimental Verification of the Hypothesis

Recently, several articles and texts have been published which
provide numerous examples of good programming style contrasted with
implementations lacking proper organization or structure, and clarity.
These examples provide an excellent source of empirical data which may
be utilized to test the proposed measure of program understandability.
Since the use of good programming style and proper structuring reduce
the amount of effort involved In understanding the program (the
programs which result are "clearer") one needs only to calculate the
corresponding values of E, for each good and bad version and verify
that the poorly written code has a higher measured value of E., than
its well-written counterpart.

This experlimental procedure proceeds on the premise that the
examples presented in the literature are correctly ranked according to
their clarity. Although the authors have rated the code presented in
an obviously subjective manner, It is reasonable to expect that in
nearly all cases, their analysis of the select few programs chosen for
publication is correct. That is, in a large majority of cases,
programs that are well wrlitten and easy to understand will be
contrasted with less clear, poorly written code. Since the authors
have carefully fashioned the examples used in their publications,
ostensibly to make their point very clear, such a conclusion is well
founded. Conscientious authors will develop examples which provide a
high contrast between good and bad style In order to emphasize and
demonstrate the various issues being developed.

With this view, a large sample of contrasting programs was
gathered. This sample could then be used to test various methods of
measuring program clarity. In order to be considered accurate, such a
measure would have to provide an ordering, conslstent with the
opinions expressed in the literature.

A few published examples, however, have not been generally accepted
as good examples of improvements In programming style. Instead, some
authors have argued that the "better” code which was presented
demonstrated only a minimal [mprovement in clarity, and a few reasoned
that the code might actually be considered poorer! Such objections,
for example, have been raised by Ledgard[50] over the tree searching
and insertion example presented by Knuth[44]. 1In such a situation,
the code in questlion was not Included in the sample of programs used
to test the performance of the hypothesis.

Table 1 1ists the sources for the programs collected. The sample
includes the work of several different authors. The tasks addressed
by these programs cover a wide spectrum of topics and were written in
several different languages Tncluding COBOL, PL/I, and FORTRAN.

In order to be included in the sampie, both the poorly written and
the contrasting well-written code had to perform the same task, or
very nearly so. If, in addition to restructuring the program in order
to demonstrate an improvement in clarity, the author also chose to

(N

inciude addlitional code, say to perform parameter validation or error
recovery, the example was not iTncluded unless the author contended
that this improved program, including the supplementary code, still
required less total effort to comprehend. The use of a different
aigorithm, or a different type of data structure was allowed. Many of
the examplies were included which demonstrate Improvements in clarity
as a result of such changes.

Another obvious requirement which each program had to meet was
simply that the type of improvement cited had to be an improvement in
clarity, rather than Improved execution speed, decreased memory
requirements, higher accuracy, etc. Further, examplies which
demonstrated improvements in clarity due to the use of more
descriptive variable names or techniques such as
“prettyprinting”[36,49], were not included.

12

Number

1A
1B
2A
2B
3A
3B
4A
4B
5A
5B
B6A
6B
7A
7B

Table 1:
Text Pag
[22] 386
[22] 36
[22] 36
[22] 36
[40] 305
[40] 306
[40] 305
[40] 306
[40] 306
[40] 306
[40] 306
[40] 306
[40] 306
[40] 307
[40] 306
[40] 307
[40] 307
[40] 307
[40] 308
[40] 309
[40] 311
[40] 311
[40] 311
[40]) 312
[40] 312
[40] 312
[40] 313
[40] 313
[40] 314
[40] 314
[40] 315
[40] 316
[40] 316
[40] 317
[40] 317
[40] 318

[9] 21

[9] 21

[9] 24

[9] 24

[9] 24

[9] 24

[9] 24

(9] 24

[9] 25

[9] 25

Program References

e Flgure

NMNMNMMNMMOMNMNNN
NMONMNMNMNNNMNND-

5a
5b
Be
Eb
T1a
1c
1a
1b
1c
1b
2a
2b
2a
2c
2b
2c
3a
3b
43
4b
Ba
6b
7a
7b
8a
8b
9a
Sb
10a
10b
11a
11b

— -l
WKaNN
o oTn

13b

(NN
-

PHWWNN
T TO oo

on

—
oo

Language

ALGOL
ALGOL
ALGOL
ALGOL
FORTRAN
FORTRAN
FORTRAN
FORTRAN
FORTRAN
FORTRAN
FORTRAN
FORTRAN
FORTRAN
FORTRAN
FORTRAN
FORTRAN
FORTRAN
FORTRAN
FORTRAN
FORTRAN
FORTRAN
FORTRAN
FORTRAN
FORTRAN
PL/I
PL/IT
PL/I
PL/I
PL/I
PL/I
FORTRAN
FORTRAN
FORTRAN

FORTRAN_

PL/I

PL/I
COBOL
COBOL
COBOL
COBOL
COBOL
COBOL
COBOL
COBOL
COBOL
COBOL

13

Number
24A
24B
25A
25B
26A
26B
27A
27B
28A
28B
29A
29B
30A
30B
31A
31B
32A
32B
33A
33B
34A
34B
35A
35B
36A
36B
37A
37B
38A
38B
39A
39B
40A,
40B
41A
41B
42A
42B
434
438
4445
44B
45A
45B
46A
468

Text
[9]
(9]
(9]
[9]
[9]
[9]

[80]

[80]

[80]

[80]
[80]

[80]

[44]

[44]

[44]
[44]

[44]

[44]

[39]

[39]
[39]
[39]
[39]
[39]
[39]
[39]
[39]
[39]
[39]
[39]
[39]
[39]
[39]
[39]
(39]
[39]
[39]
[39]
[39]
[39]
[39]
[39]
[39]
[39]
[39]
[39]

Table 1,

Page
25
25
25
25
41
42

253

253

2b4

+ 254

256

257

266

266

270

270

271

271

— e et el o s e
NN=2N= ==k

12

16
20
20
21
21
21
22
21
22
22

23
24
31
33
39
40

cont i nued

Figure Language
2.2.4a COBOL
2.2.4c COBOL
2.2.4b CcoBOL
2.2.4c COBOL
2.13a COBOL
2.13b COBOL
3.17 PASCAL
3.16 PASCAL
3.20 PASCAL
3.22 PASCAL
5.34 PASCAL
5.37 PASCAL
Ta ALGOL

1 ALGOL

3 ALGOL
3.1a ALGOL
da ALGOL

4 ALGOL
1a FORTRAN
1b FORTRAN
2a FORTRAN
2b FORTRAN
2a FORTRAN
2c FORTRAN
2b FORTRAN
2c FORTRAN
3a FORTRAN
3b FORTRAN
ba FORTRAN
5b FORTRAN
7a FORTRAN
7b FORTRAN
8a FORTRAN
8b FORTRAN
8a FORTRAN
8¢ FORTRAN
8b FORTRAN
8c FORTRAN
Sa FORTRAN
Sb FORTRAN
10a FORTRAN
10b FORTRAN
tta FORTRAN
11b FORTRAN
12a FORTRAN
12b FORTRAN

14

After the programs had been collected, a careful count of the
software parameters %y, 7., N;, and N, was obtained. For each program
It was then possible to calculate the expected amount of mental effort
required for comprehenslion, E.,. The number of executable statemants,
Ne, was also obtained and this value Is listed in Table 2 along with
the other parameters. In this manner, a comparison could be made
between E. and the traditionally accepted hypothesis that program
understandability is proportional to the number of program statements.

The examples are paired in Table 2, listing the poorer version of
the code first, as indicated by the analysis and comment of the
original author. A comparison can then be made in order to ascertaln
how well the measures E. and N, agree with the observed ranking
presented in the 1lterature. In a few instances, code was presented
representing "good," "better,"” and "best" implementations. Such a
sltuation enables us to make 3 comparisons. For this reason, some
programs may appear in more than one comparison within Table 2.

In analyzing the empirical data obtained, credit is given to a
proposed measure of program clarity when it indicates that the amount
of effort expended for program comprehension had decreased by a
significant amount. Unfortunately, just what percentage of
improvement should be required is not known precisely. Workers in
this area have simply not been able to quantify improvements In
programming style. As a result, when an improvement is noted, the
amount of improvement is not reported. In the analysis presented
here, at least a 10% Improvement had to be reflected by a measure in
order that the measure be considered In agreement with the literature.
Since these examples were developed in order to unquestionably
demonstrate an improvement in style, a significant reduction in the
amount of mental effort required for comprehension would normally be
expected. Indeed, most [mprovements in style were reflected by a much
more dramatic reduction in E,.

On the other hand, several examples undergo only a localized
enhancement which affects only a few of the statements of the entire
program. 3ince the measures studied in this research attempt to
assess the total effort required for comprehension, such a change will
not result in a very large decrease, overall. A threshold value of
about 10% appears to be low enough to account for this latter effect,
while high enough to filter out those cases which show only a marginal
amount of improvement. The assumption here is that a measure which
shows less than a 10% reductlon in effort is not in agreement with
what the author contends is a clear improvement.

15

Number

1A
1B

2A
2B

3A
3B

aA
4B

BA
5B

BA
6B

7A
7B

8A
8B

9A
9B

10A
10B

HA
11B

12A
12B

T

-
_Lw

—_—
_.Lw

N o ApAh o Ao @O @~ U

—

10

‘Table 2: Empirical Data Gathered

a2
10

—

-
.
-
5
7
5
7
7
7
4
4
4
4
4
4
9
8
5
8
8
6
3
3

N,

35
26

30
26

17
16

17
22

16
22

26
10

26
5

10
5

28
19

56
24

38
33

10
&

N2

30
22

6
6

v

294
2001

238
2001

108
104~

108
1561

104
1561

143
601

143
271

60
271

200
1361

456
1631

286
2321

53
361

D

19.
17.

23.
.291

17
9.

4.

9.
10.

4.
10.

50
291

21
10
641

10
291

64
29t

.00
.001

.00
.00}

.00
.00}

.33
.501

.00
.381

.94
. B3=

.00
.001

Eo

5734
34601

5b18
34601

979
4831

979
16071

483
16071

2008
3001

2008
54}

300
541

1869
10201

7304
15251

6263
48331

372
1801

Ng

12
8l

8
B~

3
41

3
61

4
61

13
51

13
11

5
11

8
6l

20
71

8
6l

4
2i

16

Table 2, continued

Number 3 s N, N, ' D E. Ng
13A 10 4 17 8 95 10.00 952 8
138 7 3 12 8 66! 9.33x 6201 71
14A 8 8 21 14 140 7.00 280 6
14B 9 8 19 14 135~ 7.88! 1062~ 6=
15A 6 4 20 14 113 10.50 1186 7
1B 5 4 12 10 701 6.25]) 4361 51
16A 14 11 36 25 283 15.91 4507 7
16B 15 9 29 12 2201 15.83~ 3485} T
17A g 6 19 12 121 9.00 1090 4
17B 7 5 13 12 901 8.40=x 7531 4=
18A 26 34 189 131 1830 50.09 94677 73
18B 22 19 83 61 7711 35.321 272461 111
19A 7 5 9 5 50 3.50 176 3
19B 8 4 13 6 68t 6,00t 4091 3=
20A 8 2 11 2 43 4.00 173 5
20B 6 2 7 2 271 3.00] 811 4]
21A 8 4 13 5 67 5.63 375 6
21B 9 4 11 4 5681 4.50]) 2501 G
22A 5 2 6 2 22 2.50 56 3
22B 3 1 3 1 8! 1.501 12} 2!
23A 9 9 20 15 146 7.50 1095 9
23B 11 8 17 12 1251 7.33= 9191l 51
24A 9 9 20 15 146 7 .50 1085 9
24B 8 10 10 13 9861 5.20/ 499/ 51

e

Number

25A
258

26A
26B

27A
27B

28A
28B

29A
29B

30A
30B

31A
31B

32A
32B

33A
33B

34A
34B

3bA
358

36A
36B

sy

11

15

15
13

13
13

0 e O U~ N-—=

Tia

O w

RO ARbh AR NN AN NN NN D OO0 O O

N,

17
10

47
12

27
20

25
21

25
25

28
28

35
35

38
31

8
5

19
12

19
5

12
5

Table 2,
Na

12
13

41
9

21
13

21
17

21
21

25
23

286
25

15
9

2
2

10
10

10
4

12
4

continued

v

125
961

428
801

217
1401

195
1811

202
1 95a

229
220z

272
285

221
18601

32
201

104
701

104
271

83
27}

7
5

21
6

19.
14.

22.
18.

17.
14,

23,

21

27.
31.

—

MO MO MO NW W

D

.33
.201

.96
.00l

69
081

75
42}

06
44

21
., 36=

86
o7t

.79
50t

.50
501

.00
.25

.00
.00!

.00
.00!

Ec

919
489

9320
4801

4275
19741

4445
29731

3447
2821 |

5318
47081

7578
88681

2605
21601

111
49]

1040
4361

1040
54|

415
54|

Ng

5
Bx

14
4]

9
6l

9
71

2
Sar

2
81

10
O

12
101

3
21

7
51

7
11

5
(R

18

Table 2, continued

Number 74 N2 N N, Vv D E. Ng
37A 5 6 12 12 83 5.00 415 3
37B 6 5 10 8 621 4.80~ 299! 114
38A 13 21 58 45 524 13.93 7299 11
38B 14 19 41 33 3731 12.161 4538} 9l
39A 9 6 17 12 113 9.00 1020)
39B 7 6 13 12 931 7.00! 6481 41
40A 10 5 22 9 121 9.00 1090 13
40B 9 5 17 11 1071 9.90t 1055« 71
41A 10 5 22 9 121 9.00 1090 12
41B 8 5 14 7 781 5.601 4351 71
42A 9 5 17 11 107 9.90 1055 7
428 8 5 14 7 781 5.8601 435] VES
43A 8 6 12 9 80 6.00 480 4
43B 7 6 9 9 671 5.25] 3501 11
44A 10 10 19 14 143 7.00 988 11
448 9 10 17 14 132~ 6.30% 8301 10=
45A 16 23 67 46 597 16.00 9556 26
458 12 24 32 31 3261 7.751 2524 61
46A 13 16 75 62 666 25.19 16763 15
46B 11 16 48 29 3661 9.971 3650} 111

The Experimental Results

Several factors affect the overall or net clarity of a program as

perceived by an Individual. The diverse nature of such elements is
conveyed by the large number of various techniques, transformations,
and guidelines proposed as aids to good programming style. As

observed in the examples, several seemingly unrelated aspects of
programming style must be addressed Individually before a thorough
understanding of program clarity may be achieved.

At least this is certainly the attitude presented in the literature
today, and supported through the ongolng stream of publicatlions which
treat several seemingly distinct aspects contributing to program
clarity by dlisplaying numerous and sundry examples. Lacking an
understanding of the underlying fundamental issues and concepts
involved, we could hope to do no better than to collect and categorize
the many techniques which arise, forming at best a crude patchwork of
ad hoc remedies for the unfathomable programs whlch many programmers
prepare.

Ideally, the development of a single theory of program clarity
wouid tie together many of these diverse proposals and provide a
unifled framework wupon which further study may be based. Such a
theory would be recognized by its abllity to accurately assess the
clarity of programs incorporating the many proposed techniques for
improving clarity. Further, the simple parameters utilized in such a
successful theory would be identified as cruclal or atomic elements
affecting the mental process involved during comprehension.

The experiment performed is a direct attempt to test one
formulation of Just such a theory. By selecting a wide class of
programs, covering the broadest spectrum of proposed methodologies,
the abillty of a proposed measure to account for the various aspects
of program clarity on a fundamental level may be assessed. Only a
theory capable of suitably approximating the essential processes
involved during program comprehension can be expected to be able to
account for the many unrelated examples presented in the literature.

The proposed hypothesis was subjected to this test. Additionally,
an alternate hypothesis relating the number of executable statements
to program clarlty was examined. The results of the experiment
provide significant evidence in support of the use of E, as a measure
of clarity. A total of 46 comparisons was made, ranking 76 versions

of wvarious programs. For 40 of these compariscns, the measure E_
properly indlcated a significant decrease in the amount of effort
required for comprehenslion. This measure performed better than the

alternative measure N,. The latter agreed with the published reports
In only 31 cases.

The results provide a significant indicatlion that program clarity
may be assessed by means of a simple formulation of elementary program
features. Each example meeting the criteria above, from every article
located during the literature search undertaken, was included in the

20

sample. A few vyears ago, such a sample would have been very small,
and as time passes, the sample will grow. At present, the sample Is
as large as It can be, or very nearly so. While the absolute number
of examples present in the sample is not extremely large, the sample
does present a substantial test of the hypothesis because of the great
diversity of techniques covered. The results of this experiment
demonstrate the abllity of the hypothesis to directly address those
factors which fundamentally affect program clarity.

Supportive evidence is also provided by an unusual example proposed
by Ledgard and Marcotty[50], demonstrating two programs which solve
the same problem but which employ an entlirely different set of control
structures. The point stressed in that article was that both
implementations required an equal amount of effort in order to
comprehend them. Yet the programs, one 29 and the other 24 statements
long, could not be considered of equal complexity on the basis of
size. Depth of statement nesting and the types of structures employed
differed, making any conclusions drawn from such a basis fallacious.
Nonetheless, E, wvaried by less than 3% for the two programs,
Iindicating, in agreement with the authors, that the programs required
almost an equal amount of mental effort to understand.

A LOOK AT A FEW OF THE EXAMPLES

We now turn our attention to a few of the Individual examples, and
take a closer look at the improvements made to the code along with the
corresponding changes in E.. The first example is a selected fragment
of code which is presented by Kernighan and Plauger[40]. The examples
compared, 15A and 15B, are shown in Figures 1 and 2. Here the
difficulty encountered when [F-statements are nested in a tree—like
fashion is demonstrated. 1If the code [s rewritten so as to present a
more linear structure, a much clearer program results. The analysls
of the code shows an improvement of roughly 65% over the original
verston using the software science measures.

IF X >=Y
THEN IF Y >= Z
THEN SMALL = Z;
ELSE SMALL = Y;
ELSE IF X >= Z
THEN SMALL = Z;
ELSE SMALL = X;

Figure 1: The Code of Example 1BA

21

SMALL=X;
IF ¥ < SMALL

THEN SMALL =Y,
IF Z2 < SMALL
THEN SMALL = Z,

Figure 2: The Code of Example 15B

Not only has E. provided a reasonable indication of clarity here,
but Tt has done so without resorting to an analysis of such
macroscopic features such as the depth of statement nesting, or a
detailed flow analysis of the program. The success enjoyed by this
approach leads us to recognize that while such features are Iindeed
factors affecting program clarity, they are not the most atomic
features. Evidently, the process of comprehension may be modeled as a
process which deals wlith the details of a program on a much more
microscopic level.

The code presented in Figure 3 represents the simplest solution to
the task of Example 15. The solution utilizes a procedure which is
assumed available within the Jlanguage employed. The corresponding
Increase [In clarlty Is reflected by a decrease in E.,, from 436
elementary mental discriminations (EMD) for the code of Example 15B,
to 15 EMD for the procedure call.

CALL MINIMUM (SMALL, X, Y, 2Z);

Flgure 3: A Minimal Solution for Example 15

The presentation of the solution at such a high level of
abstraction requires significantly less effort to understand. It Is
important to note that such an analysis Is appropriate for a
programmer capable of fluently recognizing the operator MINIMUM, and
its behavior. If, however, the amount of effort expended by a
particular person was observed to be above that predicted by the
measure, we may be justified in concluding that the assumptlion of
fluency is false, since the theory does not hold. Instead, the theory
provides a measure of clarity under an easlly speclified standard
condition of fluency.

In another example, the desirability of the GO TO-statement as a
means of controlling the execution sequence of a program is studied.
For those languages which lack suitable alternatives, several
guidelines have been established so that the GO TO will be used In
only specific, easlly understood situations. For example, one might
allow its use only to implement a simple Iteration, or a break arising
from an exceptional condition. The code of Example 13A is shown In
Figure 4 and although the GO TO-statements are only used Tn compllance
with the rules suggested above, it Iis apparent that the code is

22

difficult to comprehend. A value of 952 discriminations is calculated
for this code.

DCL NEWIN DEC FLOAT(4);
LARGE DEC FLOAT(4) INIT(.OE1);

NEXT_C: GET LIST (NEWIN);
IF NEWIN >= 0
THEN IF NEWIN > LARGE
THEN LARGE=NEWIN;
ELSE GO TO NEXT_C;
ELSE GO TO FINISH;
GO TO NEXT_C;
FINISH: PUT LIST (LARGE);:

Figure 4: The Code of Example 13A

The code of Example 13B is much clearer. The control flow has been
reorganized so that a more linear representation is possible. Most,
but not all of the GO TO"s have been removed. Here again, the
increase in program clarity is reflected by a decrease in E.. A value
of 620 discrimlnations is obtained by means of the simple analysls
technique proposed. This represents a 35% reduction in the amount of
effort which must be expended in order to understand the improved
version of the program. Such a reducticon is reasonable for the

improvements cited.

DECLARE (NEWIN, LARGE) DECIMAL FLOAT(4);

LARGE=0;
NEXT_C: GET LIST (NEWIN);
IF NEWIN > LARGE
THEN LARGE = NEWIN;
IF NEWIN >= 0
THEN GO TO NEXT-C;
PUT LIST {(LARGE);

Flgure 5: The Code of Example 13B

23

The Exceptional Cases

There are six examples for which the value E., does not refitect the
anticipated decrease in programming effort. For an experiment of this
nature, involving such a diverse and varied collection of programming
examples, the overall behavior of the proposed measure to accurately
reflect the improvements claimed is significant evidence in support of
the theory, even in light of these few anomalous cases. Surprisingly,
a careful investigation of these cases provides additional evidence in
favor of such a theory. All six examples are reconciled, the
Initially curlous results being due to the following causes:

g8 The code by itself did not properly demonstrate the proposed
Improvement suggested by the author.

g The assumption of fluency during the examination of one example
was inappropriate.

g Finally, one author’s suspicions that the example presented
mlght not demonstrate an improvement 1in clarlity seemed
Jjustified. '

THE POORLY CONSTRUCTED EXAMPLES

In COBOL, Chmura and Ledgard advocate the use of the CALL verb in
order to invoke general purpose subprogram modules[2]. In this way,
the resulting program becomes clearer, and If lucky, someone else
might have already written the needed module so that a great deal of
work may be avolded. The "poor' code of Example 19A is presented in
Figure 6. This code utllizes the PERFORM verb In order to link to a
paragraph contained within the program. The "better'" code, shown In
Figure 7, makes use of the CALL verb to link to a module, presumably
already available within the installation’s library.

PRODUCE-ACT ION-RPT-HEADER.
ACCEPT TODAYS-DATE FROM DATE.
PERFORM CALCULATE-JULIAN-DAY.
MOVE JULIAN-DAY
TO EDITED-JULIAN-DAY IN ACTION-RPT-HEADER.

Figure 6: The Code of Example 19A

PRODUCE~ACT ION-RPT-HEADER.
CALL "CALCULATE-JULIAN-DAY"
USING JULIAN-DAY.
CANCEL "CALCULATE-JULIAN-DAY".
MOVE JULIAN-DAY
TO EDITED-JULIAN-DAY IN ACTION-RPT-HEADER.

Figure 7: The Code of Example 19B

24

The code presented in Figure 7, however, is not clearer than that
of Figure 6 when considered by itself. Indeed, Example 19B requires
an additional statement utilizing the CANCEL verb, and a special
symbol must be present to set off the external module name from the
rest of the text. These requirements ungquestionably add to the
complexity of Example 19B. As the analysis shows, Example 19A is
easier to understand than is Example 19B. Here, the code presented by
the authors simply does not tell the whole story.

Clearly, the authors intended for the reader to imagine the code
representing the paragraph CALCULATE-JULIAN-DAY, and in assessing the
amount of effort required to understand Example 19A, the amount of
effort expended to comprehend the non-standard module was to be
included. Example 19B, including the additional mechanisms employed,
would then be easier to understand since the standard Iibrary module
is presumably fluently recognized and the details of Its construction
do not contribute to the difficuity of understanding the program.
Here too, the proposed hypothesis has accurately assessed the
situation, and has provided a simple measure which may in addition, be
used to gauge how large a module must be before the utillzation of the
CALL verb becomes profitable.

In another example, the excessive use of GO TO-statements Is
avolded in an attempt to improve a poorly written piece of code.
Unfortunately, the better code, presented as Example 40B, contains a
very cumbersome and difficult to comprehend IF-statement. As a
result, only a small overall improvement is actually achieved. The
code for Example 40A, and the modified version, 40B, is shown in
Figures 8 and 9, respectively.

LOGICAL FEM(8), MALE(8)
READ (5,6) IGIRL, FEM
9 READ (5,6) IBOY, MALE
DO 8 I=1, 8
IF (FEM(I)) GO TO 7
IF (.NOT.MALE(I)) GO TO 8
GO TO 9
7 IF (.NOT.MALE(I)) GO TO 9
8 CONTINUE
WRITE (2,10) IBOY
GO TO 9
STOP
END

Figure 8: The Code of Example 40A

25

LOGICAL FEM(8), MALE(8)
READ (5,10} IGIRL, FEM
20 READ (5,10} IBOY, MALE
DO 30 =1, 8
IF ((FEM(I).AND..NOT.MALE(I))
$ (MALE(I) .AND. .NOT.FEM(I)))
30 CONTINUE
WRITE (2,40) IBOY
GO TO 20
END

.OR.
GO TO 20

Figure 9: The Code of Example 40B

Because standard FORTRAN does not allow us to directly test whether
or not two LOGICAL variables are equal, we must resort to an indirect
approach. In Example 40A, a chain of G0 TO"s wind through the program
in order to evaluate the situation. In fact, such a test may be most
suitably performed by an exclusive—or operation, but alas, FORTRAN
does not allow for this either. In Example 40B we are forced to
express the exclusive—or operator in a clumsy fashion, leaving the
reader to ponder what operation is actually performed by the IF-
statement. Nelther scolution is very attractive and the measure E,
shows only a slight improvement in clarity.

The authors make this point and conclude that what is actually

needed Is elther an operator, .XOR., or alternately a change of
variable type to INTEGER. Such changes cut to the heart of the matter
and allow the test to be made directly. Example 42B utillzes the

latter approach. Assuming that the data can be presented using 1 and
O to represent the values .TRUE. and .FALSE., the operator .EQ. may be
utilized to achieve the desired test. The code which results is shown
In Figure 10, It is much simpler than the original code of Example
40A, and the measure of program clarity, E.,, indicates a 40%
improvement.

INTEGER FEM{(8), MALE(8)

READ (5,10) IGIRL, FEM
20 READ (5,10) IBOY, MALE

DO 30 I=1, 8

IF (FEM(I).NE.MALE(I)) GO TO 20
30 CONTINUE

WRITE (2,40) IBOY

GO TO 20

END

Figure 10: The Code of Example 42B

Conslder next, the code requlired to implement a billing algorithm
from the specifications provided in the table below:

26

Condition Action

QTY < 10 set BILL_A to 0.00

10 < QTY £ 200 ? (do nothing)
200 < QTY < 500 add 0.50 to BILL_A
500 < QTY add 1.00 to BILL_A

The actions which are specified may be realized in PL/I by
employing a nested IF-structure. Such a technique has led to the
production of the code presented in Figure 11%1:

IF QTY > 10
THEN IF QTY > 200
THEN IF QTY >= 500
THEN BILL_A=BILL_A+1.0Q0;
ELSE BILL_A=BILL_A+0.50;
ELSE;
ELSE BILL_A=0.00;

Figure 11: The Code of Example 14A

As one of their simple programming proverbs, Kernighan and
Plauger[39] suggest that a null ELSE-clause is a symptom of poorly
structured code, Indeed, in this example the nested IF-structure may
be reorganized, removing this anomaly, and the authors clalm that a
clearer program results. This was done, and the resulting code Iis
shown in Figure 12. While an improvement in clarlty is clalmed, the
measure E. indicates to the contrary, that the code is slightly more
difficult to comprehend, although less than a 10% difference is
involved.

IF QTY >= KOO
THEN BILL.A=BILL_-A+1.00;
ELSE IF QTY > 200
THEN BILL_A=BILL_A+0.50;
ELSE IF QTY <= 10
THEN BILL_A=0.00;

Figure 12: The Code of Example 14B

Consider, however, the following question which might arise after
the original programmer and specifications were no longer available:
Under what condition is the varliable BILL_A left unaltered? This
situation may later require that an action be performed. For which
version would the inclusion of the additionali code be most easily
accompl ished? Without a doubt, the code of Example 14A is superior to
that of Example 14B with respect to these considerations. Evidentiy,
less effort |is required in order to formulate a mental image of the
program’s function and operation given the code of Example 14A.

27

This reasoning leads one to the conclusion that the authors® claim

is not simply justified. In this particular example, the decision
table presented is not more simply represented in the CASE-1ike format
employed in Example 14B. Indeed, some ‘"optimization" has been

performed in order to prepare a program segment which neatly avoids
the unspecified case. This perturbation necessitates the expendi ture
of additional effort during program construction. During any attempt
to wunderstand the resulting code, additional effort must be invested
in order to mental ly reconstruct the original functional
specification.

In this example the authors” choice of problem is considered to be
at fault. The point which was to be made was that a CASE statement,
missing in PL/I, could be routinely constructed using a nested IF-
structure in which the action to be performed appeared as the THEN-
clause. Because of the ease with which CASE statements may be
formulated and understood in structured languages like Pascal, similar
improvements ought to be achlevable In PL/I using such a simple
convention. The measure E. does indicate an improvement in clarity
for such situations in which the alternative is a nested IF statement
implementing a tree—like decision structure.

Even so, the simpie scheme which is proposed can never present as
clear or as easily understood an image as a CASE statement might for
an obvious reason. The IF statement, unlike the CASE operator In
Pascal, 1is a very general verb. When employed, even In this 1imited
role, some effort must be expended in order to recognize the type of
operation being syntheslized. This additional effort is not required
For a programmer who is Fluent with the CASE verb and recognizes the
operation accomplished directly.

THE REQUIREMENT OF FLUENCY

It is quite understandable that an example which incorporates
rarely utillzed or poorly understood language features, will requlire
more effort to understand than that predicted by the theory.
Actually, the observed effort will vary from individual te individual

depending on several factors, including his familiarity with the
problem area as well as his understanding of the language constructs
emplovyed. The theory provides a normalized measurement, which

minimizes the effects of such variations by conslidering the difficulty
of comprehension for a fluent programmer. This somewhat idealized
situation Is very nearly matched In practice, and as a result, the
application of the theory yields an accurate estimate of the
difflculty experienced by a wide segment of the programmers most
likely to review the code. In general, the results obtained are
characteristic of the amount of effort expended under the standard
condition of fluency and are quite useful when the effects of a
technique or program transformation are to be studied.

An example which demonstrates the necessity for the condition of
fluency is that of Examples 4A and 4B. The code is written In

28

FORTRAN, a small language for which fluency has been achieved by many
people. Yet some are very puzzled by the code presented In Flgure 13.

DO 1 I=1,N
DO 1 J=1,N
1 X(I,d)=(1/N*(J/]}

Figure 13: The Code of Example 4A

The difficulty which arises as one attempts to understand the code
of Example 4A stems from the unusual use of the integer division
operator. Here, the operator is used not to obtain a quotient, but to
achieve truncation. In a sense, it is as if a common element, having
a familiar meaning, was used In a context requiring a secondary
meaning, one which was not fluently receognized by most programmers.
It is true that most good FORTRAN programmers recognize the fact that
integer division truncates its result, but when they use the operator,
their primary intent is to obtain the quotient of two Integers.
Through repeated experience with this operator in situations in which
It Is so used, this meaning is fluently established. Unfortunately,
this is not the function of the operator as used in Example 4A.

In contrast to Example 4A, for which a very low value of E; Is
obtained, Example 4B presents a much more expliclit statement of the
operation to be performed. That code yields a much higher value of
Ec., while many people will experience less difficulty understanding
its operation. It is only when the property of truncation by
reference to integer division is fluently recognized, that so small an
expenditure of mental effeort would be expected in practice. In this
case the theory provides an accurate indication of the effort required
For a fluent programmer to comprehend the code provided.

DO 20 i=1,N)
Do 10 J=1,N
IF (1.EQ.J) X(I,J)
IF (I.NE.J) X(I,J)
10 CONTINUE
20 CONTINUE

I

1.0
0.0
Figure 14: The Code of Example 4B

A QUESTIONABLE EXAMPLE

One example included in the sample was of dubious value to this
study. Knuth presents a short segment of code which in his opinion,
might be improved by the removal of the GO TO statement which in
Example 31A Implements a break condition[44]. Already, we have noted
that the use of a GO TO In such a situation may be justified, and some

29

authors have postulated that such usage need not complicate a program
unduly. On the other hand, such guidelines may not be applicable in
all situations and as was seen In Example 13, a significant
improvement may be possible once the code is reorganized to circumvent
the need for such a GO TO.

[:=H{X);
WHILE A[I]#0 DO
BEGIN IF A[I]=X
THEN GO TO FOUND FI;
1:=1-1;

IF 1=0
THEN 1:=M FI;
END;
NOT FOUND: A[I]:=X; B[I]:=0;
FOUND: BLIl:=B[1]+1;

Figure 15: The Code of Exampie 31A

Arter performing the suggested modificatlon, the code shown In
Figure 16 results. Yet, after studying the modified version of this
algorithm, Knuth finds the results Inconclusive, the program "perhaps,
somewhat easier to understand."

I:=H{X);
WHILE A[I]#0 AND A[I]#X DO
IF 1=0 ’
THEN I:=M
ELSE I:=1-1 FI:
IF A[I1#X

THEN A[1]:=X; B{I]:=0 F1;
BII]:=B[I]+1;

Figure 16: The Code of Example 31B

Perhaps the <code is not easler to understand! The Improvement In
clarity, if any, is not apparent. The measure E, indicates that the
code is slightly more difficult to understand, and it is easy to see
in Figure 16 why this is so. The logical condition controlling the
execution of the WHILE-statement 1is much more complex, and the
condition which actually leads to the termination of the loop must be
tested for separately. All of these factors must be consldered in
studying the code and as a result of the added complexity of Example
31B, the amount of effort required to comprehend the statement of the
program will be larger than that expended during a study of Example
31A. Such a concluslon is reasonable and the results obtained using
the measure E. support this position.

30

Summary and Conclusions

Several fTactors have been observed which Influence the amount of
mental effort expended in order to understand a computer program. The
fluency of the reader with the programming language employed and the
familtarity with the problem area may greatly Influence the ease or
difficulty of the task[66,68]. In this study, it is assumed that the
programmer Is fluent in the language employed and not so familiar with
the problem area that recognition is accomplished instantaneously,
after only a cursory inspection of the code.

Researchers have also attempted to develop relationships between
measurable program features such as the degree of documentation, use
of indentation and descriptive variable names, and the ease of
comprehension[20,66,70,77,78§. While studies found that subjects
clearly preferred programs written using such features, no
statistically significant differences in comprehension were
detected[53,69].

This investlgation considers such factors to be of marginal
significance. Comparable methods of indentation, paragraphing, and
variable nomenclature are assumed to have been employed throughout the
program. When these assumptions are not valid, the results which are
obtained using the hypothesls formulated may not accurately
approximate the observed difficulty in understanding the program.

This study has investigated the relationship which exists between
the number and frequency of operators and operands occurring in a
program and the observed difficulty experienced in understanding the
program. An expression was presented which yields an estimate of the
nunber of elementary mental discriminations performed during
comprehansion.

In order to test the proposed measure, several publlished examples
demonstrating improvements in program clarity were obtained. In the
majority of cases, when the measure was applied the improvements cited
in the]literature were reflected by a corresponding reduction in the
predicted effort for comprehension. When the few cases for which such
a reduction was not observed were examined more closely, mitigating
factors that tended to support the theory were uncovered. Alternate
measures of program clarity, such as the number of executable
statements or the program volume, did not reflect the improvements In
clarity cited as well,.

Early research in software science demonstrated that it had been
possible to estimate the amount of effort expended during program
construction using a formula closely related to this measure of
program clarity[23,84]. Once a programmer understands an algorithm,
the additional effort required to express it as a program in a
language for which fluency has been achleved is relatively small. In
such cases, programming time and comprehension time would be
approximately equal. The empirical data available for both small
programs and large systems are highly correlated with the measures of

31

programming and comprehension effort. The data demonstrate that the
hypothesls presented is capable of providing reasonable estimates of
mental work over a wide range of program sizes ¢ from programs
requiring a fraction of a minute to understand and prepare, to systems
which are the product of 100 labor months of effort. Alternate
methods of assesslng program clarity, for example, functions of the
number of Illnes of code produced, fail to fit the data over such a
wide range of program sizes and complexity[76].

A deeper understanding of the relationship which exists between the
effort required for program comprehension and that required for
program construction has been reached. The initlal attempts to
provide a measure which would provide a suitable approximation of the
amount of effort expended during program construction have not been
Inval idated. Rather, additional confirmation has been provided
supporting the hypothesis that the measure Ew provides a good
approximation of programming effort when the initial version of a

program Is considered. As further effort is expended to enhance the -

clarity of the program, succeeding verslions will have required a total
expenditure of labor which exceeds the estimate provided by the
measure Emn. Then, the measure of comprehension effort, E,, properly

reflects the amount of effort required to understand the revised
program, and this effort is less in comparison to the effort required
to understand the initial version. In effect, such a measure closely
approximates a function which vyields the minimumn mental effort
required for either the construction of the program when the version
at hand is the initial form produced, or the comprehension of the
program In its: present form.

Our understanding of the complex problem of measuring program
clarity now has a useful, working foundation based on the hypothesis
developed and supported by the empirical evidence thus far obtained.
More experiments to refine and deepen this knowledge are called for.
These experiments may now be performed with a sharper resolution as a
result of this research, to verify and replicate the exper iments
performed here, and to focus on the contribution of less influential
features which affect program clarity. Both small and large programs
should be included in such studies, and a variety of techniques for
assessing comprehensibility empioyed.

32

[1]

[3]

[4]

[5]

[8]

[9]

[10]

[12]

[13]

[14]

[15]

[16]

BIBL IOGRAPHY

F. Akiyama, "An Example of Software System Debugging,”
Proceedings of the IFIP Congress, 1971.

Rudolf Bayer, "A Theoretical Study of Haistead's Software
Phenomenon, " Technical Report 69, Department of Computer

Sciences, Purdue University, West Latayette, Indiana, May 1972.

Robert Bohrer, "Halstead’s Criterion and Statistical Algorithms,"
Proceedings of the Eighth Annual Computer Science/Statistics

Interface Symposium, Los Angeles, California, February 1975.

S. J. Boles and John D. Gould, "A Behavioral Analysis of
Programming: On the Frequency of Syntactical Errors," Research

Publication RC 3907, IBM Thomas. J. Watson Research Center,

Yorktown Heights, New York, 1972.

J. Buxton and B. Randell, edi tors, "So%tware Engineering
Techniques," Report on a Conference Sponsored by the NATQO Science
Committee, Rome, Italy, 1969.

Louis J. Chmura and Henry F. Ledgard, Cobol With Style:

Programming Proverbs, Rochelle Park, New Jersey: Hayden Books,
1976.

Linda M. Cornell and Maurice H. Halstead, "Predicting the Number
of Bugs Expected in a Program Module," Technical Report 205,
Department of Computer Sclences, Purdue University, West
Lafayette, Indlana, October 1976.

Ole-J. Dahl, Edsger W. Dijkstra, and C. A. R. Hoare, Structured
Programming, New York, New York: Academic Press, 1972.

Peter J. Denning, "Guest Editor’s Overview," ACM Computing

Surveys, Volume 6, Number 4, December 1974, pages 209-211.

Edsger W. Dijkstra, "GO TO-Statement Considered Harmful,"
Communications of the ACM, Volume 11, Number 3, March 1968, pages
147, 148.

James L. Elshoff, "Measuring Commercial PL/I Programs Usling
Halstead’s Criteria," ACM SIGPLAN Notices, Volume 11, Number 5,
May 1976, pages 38-46.

James L. Elshoff, "A Numerical Profile of Commercial PL/I
Programs," Research Publication 1927, General Motors Research
Laboratories, Warren, Michigan, April 1975.

33

[17] J. C. Emery, "Modular Data Processing Systems Written in COBOL,"
Communications of the ACM, Volume 5, Number 5, May 1962, pages
263-268.

[177B] Ann Fitzsimmons and Thomas Love, "A Review and Evaluation of
Software Science,” ACM Computing Surveys, Volume 10, Number 1,
March 1978, pages 3-18.

{18] Yasao Funami and Maurice H. Halstead, "A Software Physics
Analysis of Aklyama’s Debugging Data," Technhical Report 144,
Department of Computer Sclences, Purdue Unlversity, West
Lafayette, Indiana, May 1975.

[19] John D. Gannon, "An Experimental Evaluation of Data Types on
Programming Reliability,"” ACM SIGPLAN Notices: Language Design

for Reliable Software, Volume 12, Number 3, March 1977, page 141.

[20] John D. Gannon and James J. Horning, “Language Design for
Programming Reliability," IEEE Transactions on Software

Engineering, Volume SE-1, Number 2, June 1975, pages 179-191.

[21] Thomas S. Gilb, Software Metrics, Cambridge, Massachusetts:
Winthrop Publishers, 1977.

[22] Amos N. Gileadi and Henry F. Ledgard, "On a Proposed Measure of
Program Structure," ACM SIGPLAN Notices, Volume. 9, Number 5, May
1974, pages 31-36.

[23] Ronald D. Gordon and Maurice H. Halstead, "An Exper iment
Comparing FORTRAN Programming TImes With the Software Physics
Hypothesis," AFIPS Conference Proceedings, New York, New York,
Volume 45, 1976, pages 93b—-937.

[24] John D. Gould, "Some Psychologlcal Evidence on How People Debug
Computer Programs,' International Journal of Man—-Machine Studies,
Volume 7, Number 2, March 1975, pages 151-182.

[25] Maurice H. Halstead, Elements of Software Science, New York, New
York: Eisevier North—-Holland, Inc., 1977.

[26] Maurice H. Halstead, "Language Level, a Missing Concept in
Information Theory," ACM SIGME: Performance Evaluation Review,
Volume 2, Number 1, March 1973, pages 7-8.

[27] Maurice H. Halstead, "Natural Laws Controlling Algorithm
Structure?”, ACM SIGPLAN Notices, Volume 7, Number 2, February
1972, pages 19-26.

[28] Maurice H. Halstead, '"Software Physics: Basic Principles,”
Research Report RJ 1582, IBM Thomas J. Watson Research Center,
Yorktown Heltghts, New York, May 1975.

34

[29]

[30]

[31]

[32]

[33]

[34]

[(35]

[36]

[37]

[38]

[39]

[40]

[42]

Maurice H. Halstead, "A Theoretical Relaticonship Between Mental
Work and Machline Language Programming,” Technical Report 67,
Department of Computer Sclences, Purdue University, West
Lafayette, Indiana, February 1972,

Maurice H. Halstead, "Toward a Theoretical Basis for Estimating
Programming Efforts," Proceedings of the ACM Natlonal Conference,
Minneapolis, Minnesota, Volume 30, October 1975, pages 222-224.

Maurice H. Halstead and Rudolf Bayer, "Algorithm Dynamics,"
Proceedings of the ACM National Conference, Atlanta, Georgia,
Volume 28, August 1973, pages 126-135.

Maur ice H. Halstead and Paul M. Zislis, "Experimental
Verification of Two Theorems of Software Physics," Technical

Report 97, Department of Computer Sciences, Purdue Unliversity,

West Lafayette, Indiana, June 1973.

Maurice H. Halstead, Ronald D. Gordon, and James E. Eishoff, "On
Software Physics and GM"s PL/I Programs," Research Publlication

2175, General Motors Research Laboratories, Warren, Michigan,
June 1876.

P. Henderson and R. Snowdon, "An Experiment In Structured
Programming,"” BIT, Volume 12, Number 1, 1972, pages 38-53.
I. D. HI11l, R. S. Scowen, and B. A. Wichmann, "Writlng Algorithms

in ALGOL 60," Software_.Practice and Experience, Volume 5, Number
3, July—-September 1975, pages 223-244,

Jon F. Hueras and Henry F. Ledgard, "An Automatic Formatting
Program for PASCAL," Technical Report 14, Department of Computer
and Information Sclences, University of Massachusetts, Amherst,
Massachusetts, August 1976.

Thomas E. Huli, "Would You Believe Structured FORTRANZ?" ACM
SIGNUM Newsletter, Velume 8, Number 4, October 1973, pages 13-16.

Michael A. Jackson, Principles of Program Design, New York, New
York: Academlc Press, 1975.

Brian W. Kernlghan and Phillip J. Plauger, The Elements of
Programming Style, New York, New York: McGraw-Hill, 1974.

Brian W. Kernighan and Phillip J. Plauger, "“Programming Style:
Examples and Counterexamples," ACM Computlng Surveys, Volume 6,
Number 4, December 1974, pages 303-319.

Donald E. Knuth, "An Empirical Study of FORTRAN Programs,"
Software_ Practlice and Experlience, Volume 1, 1971, pages 105-133.

35

[43]

[44]

[45]

[46]

[47]

(48]

[49]

[501

[52]

[53]

(55]

[56]

[57]

[58]

Donald E. Knuth, "A Review of “Structured Programming”, "
Technical Report 371, Department of Computer Sciences, Stanford
Universlity, Stanford, California, June 13873,

Donald E. Knuth, "Structured Programming With GO TO-Statements,"”
ACM Computling Surveys, Volume 6, Number 4, December 1974, pages

261-301.

Donald E. Knuth and R. W. Floyd, "Notes on Avoiding GO TO-
Statements,” Information Processing Letters, Volume 1, Number 1,
February 1971, pages 23-31.

Henry F. Ledgard, "The Case for Structured Programming,”" BIT,
Volume 14, Number 1, 1974, pages 45-57.

Henry F. Ledgard, Programming Proverbs, Rochelle Park, New
Jersey: Hayden Books, 1975.

Henry F. Ledgard, Programming Proverbs for FORTRAN Programmers,
Rochelle Park, New Jersey: Hayden Books, 1975.

Henry F. Ledgard and William C. Cave, "Cobol Under Control,"
Communications of the ACM, Volume 19, Number 11, November 1976,

pages 601-608.

Henry F. Ledgard and Michael Marcotty, "A Genealogy of Control
Structures,” Communications of the ACM, Volume 18, Number 11,
November 1975, pages 629-639.

L. T. Love and A. B. Bowman, "An Independent Test of the Theory
of Software Physics,"” ACM SIGPLAN Notices, Volume 11, Number 11,
November 1976, pages 42-49.

Thomas Love, "An Experimental Investigation of the Effect of
Program Structure On Program Understanding,'" ACM SIGPLAN Notices:
Language Design for Reliable Software, Volume 12, Number 3, March

1977, pages 105-113.

Daniel D. McCracken, "Revolution in Programming: An Overview,"
Datamatlion, Volume 19, Number 12, December 1973, pages 50-52.

Daniei D. McCracken and Gerald M. Weinberg, 'How to Write a
Readable FORTRAN Program,” Datamation, Volume 18, Number 10,
October 1972, pages 73-77.

Clement L. McGowan and John R. Kelly, Top Down Structured

Programming Techniques, New York, New York: Petrocelli Books,
1975.
Edward F. Miller, Jr. and George E. Lindamoond, '"Structured

Programming: Top Down Approach,'" Datamation, Volume 19, Number
12, December 1973, pages 55-57.

36

[59]

[e0]

[61]

[62]

[63]

[65]

[66]

[67]

[68]

[69]

[70]

[711

Peter Naur, "GO TO-Statements and Good ALGOL Style,” BIT, Volume
3, Number 3, 1963, pages 204-208.

Peter Naur, "Programming Language, Natural Language, and
Mathematics," Communications of the ACM, Volume 18, Number 12,
December 1975, pages 676—683.

Peter Naur and B. Randell, edlitors, "Software Engineering,”
Report on a Conference Sponsored by the NATO Science Committee,
Garmische, Germany, 1968.

Karl J. Ottenstein, "A Program to Count Operators and Operands
for ANSI-Fortran Modules,"” Technical Report 196, Department of
Computer Sciences, Purdue University, West Lafayette, Indiana,
June 1976.

K. V. Roberts, "The Readablllity of Computer Programs,' Computer
Bullietin, Volume 10, Number 4, March 1967, pages 17-24.

J. T. Schwartz, "What Constitutes Progress 1in Programming?"
Communications of the ACM, Volume 18, Number 1%, November 1975,
pages 663, 664.

Ben Shnelderman, "Exploratory Experiments 'n Programmer
Behavior,” International Journal of Computer and Information

Sciences, Volume 5, Number 2, June 1976.

Ben Shneiderman, "Human Factors Experiments for Developing
Quality Software," Department of Information Systems Management,
University of Maryland, College Park, Maryland, (unpublished
paper).

Ben Shneiderman, "Measuring Program Quality and Comprehension,"
Technical Report 16, Department of Information Systems

Management, University of Maryland, College Park, Maryland,
February 1977.

Ben Shneiderman and D. McKay, "Experimental Investigations of
Computer Debugging and Modification," Proceedings of the 6th
International Congress of the International Erogonomics

Association, July 1976.

Ben Shnelderman, R. Mayer, D. McKay, and P. Heller, "Experimental
Investigation of the Utility of Detailed Flowcharts in
Programming," Communications of the ACM, (to appear, 1977).

M. E. Sime, T. R. Green, and D. J. Guest, "Psychological
Evaluation of Two Conditional Constructions Used in Computer
Languages,"” International Journal of Man-Machine Studies, Volume
5, Number 1, January 1973, pages 105-113.

37

- Wiy

[72]

[73]

[74]

[761]

[77]

[78]

[791]

[80]

(81]

[82]

[83]

[84]

Michael J. Spier, "A Critical Look at the State of Our Science,”
ACM SIGOPS Notices, Volume 8, Number 2, April 1974, pages 9-15.

Michael J. Spier, "Software Malpractice c A Distasteful
Experience,” Software.Practice and Experience, Volume 6, Number
3, July—-September 1976, pages 293-289.

Thomas B. Steel, Jr., "Guest Editoriat,” I[IEEE Transactions on

Software Engineering, Volume SE-1, Number 4, December 1975, page
349.

Claude E. Walston and Charles P. Fellx, "A Method of Program
Measurement and Estimation,” IBM Systems Journal, Volume 16,
Number 1, 1977, pages 54-73. - -

Laurence M. Weissman, “"A Methodology for Studying the
Psychological Complexity of Computer Programs," Ph.D. Thesis,
Department of Computer Science, University of Toronto, Toronto,
Ontario, Canada, 1974.

Laurence M. Weissman, "Psychological Complexity of Computer
Programs: An Experimental Methodolegy,"” ACM SIGPLAN Notices,
Volume 9, Number &6, June 1974, pages 25-36.

Niklaus Wirth, "An Assessment of the Programmlng Language
PASCAL," IEEE Transactlions on Software Engineering, Volume SE-1,
Number 2, June 1975, pages 192-198.

Niklaus Wirth, "On the Compositicn of Well-Structured Programs,"
ACM Computing Surveys, Volume 6, Number 4, December 1974, pages
247-259.

James M. Yohe, "An Overvliew of Programming Practices," ACM
Computing Surveys, Volume 6, Number 4, December 1974, pages 221-
245.

Edward A. Youngs, "Human Errors in Programming," International
Journal of Man-Machine Studies, Volume 6, Number 3, May 1974,
pages 361-376.

Edward Yourdan, Technigques of Program Structure and Design,
Englewood Cliffs, New Jersey: Prentlice-Hall, 1975.

Paul M. Zislls, "An Experiment in Algorithm Implementation,"
Technical Report 96, Department of Computer Sciences, Purdue
University, West Lafayette, Indiana, June 1973.

38

	Measuring Improvements in Program Clarity
	Report Number:
	

	tmp.1307986960.pdf.M9wNK

