
Purdue University Purdue University

Purdue e-Pubs Purdue e-Pubs

Department of Computer Science Technical
Reports Department of Computer Science

1978

Measuring Improvements in Program Clarity Measuring Improvements in Program Clarity

Ronald D. Gordon

Report Number:
78-265

Gordon, Ronald D., "Measuring Improvements in Program Clarity" (1978). Department of Computer
Science Technical Reports. Paper 196.
https://docs.lib.purdue.edu/cstech/196

This document has been made available through Purdue e-Pubs, a service of the Purdue University Libraries.
Please contact epubs@purdue.edu for additional information.

https://docs.lib.purdue.edu/
https://docs.lib.purdue.edu/cstech
https://docs.lib.purdue.edu/cstech
https://docs.lib.purdue.edu/comp_sci

MEASURING IMPROVEMENTS IN PROGRAM CLARITY

Ronald D. Gordon

Purdue University
Department of Computer Sciences
West Lafayette. Indiana 47907

CSD-TR 265

May 1978

Measuring Improvements in Program Clarity

by Ronald D. Gordon

Purdue University
Department of Computer Sciences

West Lafayette, Indiana 47906

April 1978

ABSTRACT

The sharply rising cost incurred during the production of quality
software has brought with it the need for the development of new
techniques of software measurement. In particular, the ability to
objectively assess the clarity of a program is essential In order to
rationally develop useful engineering gUidel ines for efficient
software production and language development.

A functional relation between the clarity of a program and the
number and frequency of operators and operands which occur in the
program Is presented. This measure of program clarity provides an
estimate of the amount of mental effort required to understand the
program, assuming that the reader Is fluent in the programming
language employed.

This measure is tested by applying it to several published examples
which demonstrate improvements in program clarity. The objective
assessment which is provided using this measure is found to agree with
the experimental data gathered.

Keywords and Phrases: program clarity, software measurement, software
complexity, cognitive psychology. software science

CR categories: 4.0. 4.6

1

Introduction

An Important problem in qual ity software research Is the
measurement of programming style. Many different techniques have been
presented which attempt to provide a quantitative assessment of the
various aspects which contribute to the quality of software products.
At the present, many experts are attempting to prepare gUidel ines
which, if followed, will have the effect of improving programming
style. Such an improvement in style will decrease the amount of work
required to prepare a program and the amount of effort expended In
understanding and maintaining the resulting product. The essential
issue then, Is to minimIze such mental effort. In other words, to
accurately assess programming style we must be able to accurately
assess the amount of mental effort expended in preparing and
understanding the code.

In this paper a measure
function of the number and
occurring in the program.
of mental work which must
function of the code.

of program clarity is presented which is a
frequency of the operators and operands
The resulting value represents the amount

be performed in order to comprehend the

Several factors influence how easy or difficult it is to understand
a particular program. The factors may be categorized into three broad
areas: programmer abil ity, program form, and program structure.
Several researchers have studied many of these factors In detail.

The level of fluency of the programmer wIth the programming
language employed greatly influences the difficulty experienced during
program comprehension. Shneiderman[66] performed several experiments
with groups of both inexperienced and experienced programmers. His
empirical results show that there are marked differences between those
groups with respect to certain coding practices. For example, novice
programmers have more difficulty with modular programs, while
experienced programmers find the straight I ine code more difficult to
understand. Long sequences of IF-THEN-statements were easier to
follow for the inexperienced programmers than was the corresponding
nested IF-THEN-ELSE structure. The reverse was true for advanced
programmers.

The programmer~s familiarity with the problem domain can also
strongly influence the ease with which a program is understood. Such
familiarity might enable a programmer to recognize blocks of code very
quickly as if a template matching operation had been mentally
employed. Shneiderman[67] suggests that background information be
collected about the types of programs which a programmer has worked
with and the resulting information used as a covariate In a
statistical analysis of various performance measures.

Many researchers have studied the influence of program form on the
amount of effort required for program comprehension. Weissman[77,78]
conducted several empirical studies focusing on such popular Issues as
commenting, the placement of declarations, indentation, and the use of

2

mnemonic variable names. His major contribution was the development
of a suitable experimental methodology designed to enable researchers
to gather suitable empirical evidence which could be used to validate
the effects of program style on the relative difficulty of
comprehension experienced by programmers. Several experimental
procedures are presented In his reports which attempt to measure the
degree of comprehension achieved by a programmer after studying a
given program. Hand-simulation tasks, various types of quizzes, and
methods of self-evaluation were employed. useful results.

Some experiments have been performed which attempt to assess the
impact of program structure on program comprehensibility. Program
structure includes several factors related to the syntactic
representation of an algorithm In a programming language. For
example, the number of executable statements, the complexity of the
control flow graph of the program, the depth of statement nesting,
clustering of data references, and the local ity of operations are all
factors which influence program structure and affect the clarity of
the program.

Previous work which studied the affects of program structure
Include that of Gannon and Horning[20]. Ten programming language
differences between TOPS-2 and TOPS-10 were studied. In order to
assess the desirability of various syntactic elements, the persistence
of program bugs during program development was measured. The
syntactic form of conditional IF-statements was studied by Sime,
Green, and Guest[71]. They found that nested IF-THEN-ELSE structures
were easier to comprehend than the corresponding IF-GO TO forms for
naive programmers. The relationship between the complexity of control
flow and program understanding was investigated by Love[53]. That
study found that programs with simple control flow were easier for
experienced programmers to understand. No statistically significant
difference in comprehensibility was found for inexperienced
programmers, however, as the complexity of the control flow was
varied.

Glleadi[22] proposed a measure of program structure In an attempt
to measure how weI I-structured a given flowchart was with respect to
the precepts of structured programming. Under such a measure, the
flowchart was mapped to a representative finite state, sequential
automaton. The state transitions of the automaton correspond to the
control flow paths represented by the flowchart. A measure of
software work was appl ied to the automaton to estimate the amount of
work represented by the flowchart. Ideally, well-structured
flowcharts would have small measured values since their representation
of the task to be performed was short and elegant. Unfortunately,
this measure did not agree well with the accepted notions of good
structure in many instances.

The purpose of this study is to develop and empirically verify a
measure of program clarity which Is a simple function of the program s
structure. Such a measure does not reflect the Influence of
programmer fluency or familiarity with the problem area. In this

3

study, it Is assumed that the programmer is fluent in the language
employed and not so familiar with the problem area that recognition is
accompl ished instantaneously, after only a cursory inspection of the
code. Further, factors which affect the program form are considered
to be of marginal significance. Comparable methods of indentation,
paragraphing, and variable nomenclature are assumed to have been
employed when comparing two programs. When these assumptions are not
val id, the results which are obtained using the measure formulated may
not accurately approximate the observed difficulty in understanding
the program.

The measure presented provides an estimate of the mental effort
required for comprehension. Such an absolute measure is useful since
it al lows us to compare two programs, perhaps solving different tasks,
and determine not only which Is easier to understand, but also how
much of a difference is involved.

4

Measurable Properties of Algorithms

Several program features have traditionally been associated with
program clarity. Such features include the number of
statements[53,76] and the density of GO TOs[14,59]. However, very few
substantive hypotheses relating such features to program clarity have
been presented. On the other hand, the methodology of experimental
science has shown remarkable success in providing useful theories and
workable laws governing many properties of algorithms[27,28]. A
conslse review of many of the results developed In this field has been
prepared by Fitzsimmons and Love[17B].

The relationships developed make use of the following measurable
properties of a program:

n1 The number of distinct operators
n2 The number of distinct operands
N1 The total number of operators
N2 The total number of operands

These parameters may be easily obtained for programs written in any
programming language. The theories developed relate these values to
such properties as program length, implementation level, volume, etc.
Software science has provided useful relations which enable the
potential number of software errors to be calculated, and allow the
amount of effort or programming time

Several fundamental properties are defined for an implementation of
an algorithm based on the four basic parameters specified above.
These properties Include the program vocabulary, n, and the program
length, N:

n = n1 + n2
N = N1 + N2

The program volume, V, is defined In terms of these measures, as
the number of total usages of operators and operands in the
implementation, times the number of bits which would be required to
provide a unique designator for each of the n different items
composing the program vocabulary. The program volume then has the
units of bits.

v = N log,n

The program length, N, may be closely apprOXimated as a function of
the number of unique operators and operands used In the Implementation
of the algorlthm[27]. The resulting expression has been subjected to
several experimental tests, and the results indicate that for well­
written programs, the approximation is very accurate[28,31].

5

Program level is a measure of the succinctness of an implementation
of an algorithm. The highest level at which an algorithm may be
represented is in the form of a procedure cal I. The level of such a
representation is taken to be one. More lengthy representations
involving many operators and the repetitious use of operands have a
lower level [26]. The fol lowing estimator for implementation level Is
used:

It should be noted, however, that program level may affect the ease
or difficulty of understanding in two contrasting ways. For a person
who understands all of the terms involved, a concept may be grasped
more qUickly or easily the higher the level at which it Is presented.
On the other hand, in order to convey a given concept to a person less
famil iar with, or less fluent in, a specific area requires a greater
volume, and a lower level. As the saying goes, "A Word to the Wise is
Sufficient," and for a person fluent in a language, the difficulty of
comprehension is expected to vary inversely with the level.

6

The Difficulty of Program Construction

The relationships of software science have been employed to
estimate the difficulty of program construction. Hypothesizing that
the difficulty of programming increases as the volume of the program
Increases and decreases as the program level increases, Halstead[30]
suggested the ratio E = V/L as a measure of the mental effort required
to create a program. Program Impurities, or flaws In program
structure, lower the level of the implementation and/or increase the
program length and yet do not represent an increase in the amount of
programming effort expended. In order to minimize the influence of
such impurities on the measure of programming effort, the estimator of
program length, ~, is substituted for N in the calculation of program
volume. The resulting measure for program effort is:

Several studies have been performed to test the usefullness of this
measure for programming effort. In one experiment, ZisI15[84]
selected a dozen algorithms from the Communications of the ACM and
prepared rough specifications for each. This set of program
specifications was then used to Implement a suitable program. Three
implementation languages were employed - PL/I. Fortran, and APL. For
each of the 36 programs thus obtained, the software science measures
were obtained and the measure En calculated.

An estimate of programming time was obtained by dividing En by the
number of elementary mental discriminations performed per second of
human thought. This constant of proportional ity Is refered to as the
Stroud number and is considered to be roughly 18 discriminations per
second for concentrating programmers. The correlation coeflclents
between the actual and predicted programming times for the programs in
this experiment were: .

Fortran
PL/I
APL

0.87
0.94
0.93

The predicted time for the entire experiment was 22.51 hours. This
estimate compares well with the observed time of 20.15 hours.

In another experiment performed by Gordon and Halstead[23], eleven
problems were selected from two published sources. Each problem
statement was util ized to prepare a correctly running program which
was verified by executing a complex test case for which a correct
answer was known. The entire time required to prepare the solution
was measured. The software science measures were then appl led to
predict the programming time for each of the resulting programs.

The total predicted programming time was 374 minutes, which was
within 3% of the actual total time required, 385 minutes. The
correlation coefficient between the estimated and actual times was

7

0.934. In contrast, when the number of program statements was
correlated with the observed programming times, a coefficient of 0.887
was obtained. Although it is a common practice to attempt to estimate
programming time from such a simple measure, this experiment
demonstrated that statement counts can predict programming times less
well than software science.

The scope of the hypothesis was enlarged as pUbl ished data became
available for large programs. The work reported by Akiyama[1], in an
Independent study of programming effort and software system debugging,
may be used to obtain an estimate of the total effort involved during
the development of a large programming project. A value of 84 labor
months of effort is obtained when such an analysis is carried out[18].
This figure compares reasonably well with Akiyama~s estimate of about
100 labor months.

8

Measuring Improvements in Clarity

The results presented in the previous section indicate that it is
indeed possible to obtain a good approximation of the amount of mental
work performed during program construction as a function of easily
measured features of the program Itself.

Not all of the effort expended during program construction,
however, can be estimated based on the resulting code. This is a
consequence of the expenditure of "wasted" effort. As a program is
produced. a false start may have been made, and portions of the code
struck out once a better approach was recognized. While methods of
top-down or structured programming attempt to minimize this effect, it
is not uncommon for the programmer to consider several software
mechanisms or data structures and their effects on sUbsequent
processing before settl ing upon one which Is regarded best suited for
the task at hand[12]. The effort expended on such endeavors is not
available for measure, since the code is simply not present in the
final version of the program. This type of behavior is not reflected
in the measure En. The term N 10g2n assumes that the programmer
prepares the code with perfect insight initially, whereas in actual
practIce, additIonal operators and operands are considered and
rejected.

For a moment, let us consider how such code revisions affect the
program whIch results. When a statement is first drafted, the
translation from thought to concrete form is imprecise, yielding an
expression which is perhaps unclear, or at worst, incorrect. As one
might pol ish a composition, so the programmer refines what he has
written, in order to present a more perfect statement of the solution.
As a result, the program is clearer. It is easier to understand
because it is a more coherent representatIon of the mental image
developed by the programmer.

Subsequently, when the code is studied, a reader would need to
expend less than the original amount of effort In order to comprehend
the Ideas of the first programmer. This would be expected, since the
refined program most faithfully portrays those concepts upon which its
operation is based.

Thus, what we might actually be able to measure in this manner is
not the total amount of effort expended during program construction,
but the amount of mental effort required to sUbsequently comprehend
the program. We can measure programming effort insofar as the amount
of program revision is small. When the program has undergone many
changes, the resulting code fails to reflect the additional
expenditure of effort.

While it is true that the measure presented was developed based on
a model of program generation, it is not unreasonable to expect it to
yield an accurate estimate for the amount of mental work expended
during program assimilation. The process which Is performed while
working to understand a program Is in many respects, similar to the

9

process of program generation. In order to comprehend the program,
the reader might retrace the thought process which was followed during
program generation. A clear program provides several signposts,
enabling the reader to follow the development of the program In
reverse order as it were, from solution to the initial functional
specification of the module.

We may consider the relationship which exists between programming
and comprehension effort from another viewpoint. Once a programmer
understands an algorithm, the additional effort required to express it
as a program In a language for which fluency has been achieved is
relatively small. In such a case, the total programming effort is
approximately equal to the effort expended for comprehension.

These considerations provide the motivation for additional
experiments In order to assess the val idity of a measure such as E as
an indicator of the amount of effort required to understand a given
program. Already, the evidence provided by the experiments conducted
support the use of such a measure. Insofar as programming and
comprehension efforts are closely related, the success of those
experiments indicates that program clarity may be accurately
approximated as a simple function of the number and frequency of
operators and operands occuring in the program.

In formulating an expression for the amount of mental effort
required for program comprehension, the effect of Impurities which are
present in the implementation should be taken into account. While it
is true that the presence of Impurities does not represent an Increase
in programming effort expended, they are expected to have an adverse
effect on the comprehensibij ity of the code. As a result, no attempt
should be made to minimize their effect. Consequently, the true
program length, N, rather than the estimator of program length, N, is
used In approximating the effort of understanding. The following
elegant estimator for the amount of mental effort required to
understand a program then results:

10

Experimental Verification of the Hypothesis

Recently, several articles and texts have been publ ished which
provide numerous examples of good programming style contrasted with
implementations lacking proper organization or structure, and clarity.
These examples provide an excellent source of empirical data which may
be utilized to test the proposed measure of program understandabll ity.
Since the use of good programming style and proper structuring reduce
the amount of effort involved In understanding the program (the
programs which result are "clearer") one needs only to calculate the
corresponding values of Ec for each good and bad version and verify
that the poorly written code has a higher measured value of Ec than
its well-written counterpart.

This experimental procedure proceeds on the premise that the
examples presented in the literature are correctly ranked according to
their clarity. Although the authors have rated the code presented In
an obviously subjective manner. It is reasonable to expect that in
nearly all cases, their analysis of the select few programs chosen for
pUblication is correct. That is, In a large majority of cases,
programs that are well written and easy to understand will be
contrasted with less clear, poorly written code. Since the authors
have carefully fashioned the examples used in their publ ications,
ostensibly to make their point very clear, such a conclusion is well
founded. Conscientious authors will develop examples which provide a
high contrast between good and bad style In order to emphasize and
demonstrate the various issues being developed.

With this view, a large sample of contrasting programs was
gathered. This sample could then be used to test various methods of
measuring program clarity. In order to be considered accurate, such a
measure would have to provide an ordering, consistent with the
opinions expressed in the literature.

A few pUblished examples, however. have not been generally accepted
as good examples of improvements In programming style. Instead, some
authors have argued that the "better" code which was presented
demonstrated only a minimal Improvement In clarity, and a few reasoned
that the code might actually be considered poorer! Such objections,
for example, have been raised by Ledgard[50] over the tree searching
and insertion example presented by Knuth[44]. In such a situation,
the code in question was not Included in the sample of programs used
to test the performance of the hypothesis.

Table 1 lists the sources for the programs collected. The sample
includes the work of several different authors. The tasks addressed
by these programs cover a wide spectrum of topics and were written in
several different languages Including COBOL, PL/I, and FORTRAN.

In order to be included in the sample, both the poorly written and
the contrasting well-written code had to perform the same task, or
very nearly so. If, in addition to restructuring the program in order
to demonstrate an Improvement in clarity, the author also chose to

11

include additional code, say to perform parameter val idation or error
recovery, the example was not included unless the author contended
that this improved program, including the supplementary code, stil I
required less total effort to comprehend. The use of a different
algorithm, or a different type of data structure was allowed. Many of
the examples were included which demonstrate improvements in clarity
as a result of such changes.

Another obvious requirement which each program had to meet was
simply that the type of improvement cited had to be an improvement in
clarity, rather than Improved execution speed, decreased memory
requirements, higher accuracy, etc. Further, examples which
demonstrated Improvements in clarity due to the use of more
descriptive variable names or techniques such as
"prettyprinting"[36.49J, were not included.

12

Table 1: Program References

Number Text Page Figure Language
1A [22] 36 5a ALGOL
1B [22] 36 5b ALGOL
2A [22] 36 5c ALGOL
2B [22] 36 5b ALGOL
3A [40] 305 1a FORTRAN
3B [40] 306 1c FORTRAN
4A [40] 305 1a FORTRAN
4B [40] 306 1b FORTRAN
5A [40] 306 1c FORTRAN
5B [40] 306 1b FORTRAN
6A [40] 306 2a FORTRAN
6B [40] 306 2b FORTRAN
7A [40] 306 2a FORTRAN
7B [40] 307 2c FORTRAN
8A [40] 306 2b FORTRAN
8B [40] 307 2c FORTRAN
9A [40] 307 3a FORTRAN
9B [40] 307 3b FORTRAN

10A [40] 308 4a FORTRAN
lOB [40] 309 4b FORTRAN
11 A [40] 311 6a FORTRAN
11 B [40] 311 6b FORTRAN
12A [40] 311 7a FORTRAN
12B [40] 312 7b FORTRAN
13A [40] 312 8a PL/I
13B [40] 312 8b PL/I
14A [40] 313 9a PL/I
14B [40] 313 9b PL/I
15A [40] 314 10a PL/I
15B [40] 314 10b PL/I
16A [40] 315 11 a FORTRAN
16B [40] 316 11 b FORTRAN
17A [40] 316 12a FORTRAN
17B [40] 317 12b FORTRAN
18A [40] 317 13a PL/l
18B [40] 318 13b PL/I
19A [9] 21 2.5a COBOL
19B [9] 21 2.5b COBOL
20A [9] 24 2.2.1 a COBOL
20B [9] 24 2.2.1 b COBOL
21A [9] 24 2.2.2a COBOL
21B [9] 24 2.2.2b COBOL
22A [9] 24 2.2.3a COBOL
22B [9] 24 2.2.3b COBOL
23A [9] 25 2.2.4a COBOL
23B [9] 25 2.2.4b COBOL

13

Table 1 • continued

Number Text Page Figure Language
24A [9] 25 2.2.4a COBOL
24B [9J 25 2.2.4e COBOL
25A [9] 25 2.2.4b COBOL
25B [9] 25 2.2.4e COBOL
26A [9] 41 2.13a COBOL
26B [9] 42 2.13b COBOL
27A [80] 253 3.17 PASCAL
27B [80] 253 3.16 PASCAL
28A [80] 254 3.20 PASCAL
28B [80] 254 3.22 PASCAL
29A [80] 256 5.34 PASCAL
29B [80] 257 5.37 PASCAL
30A [44] 266 1a ALGOL
30B [44] 266 1 ALGOL
31A [44] 270 3 ALGOL
31B [44] 270 3.1 a ALGOL
32A [44] 271 4a ALGOL
32B [44] 271 4 ALGOL
33A [39] 3 1a FORTRAN
33B [39] 3 1b FORTRAN
34A [39] 11 2a FORTRAN
34B [39] 11 2b FORTRAN
35A [39] 11 2a FORTRAN
35B [39] 12 2e FORTRAN
36A [39] 11 2b FORTRAN
36B [39] 12 2e FORTRAN
37A [39] 12 3a FORTRAN
37B [39] 12 3b FORTRAN
38A [39] 15 Sa FORTRAN
38B [39] 16 5b FORTRAN
39A [39] 20 7a FORTRAN
39B [39] 20 7b FORTRAN
40A [39] 21 8a FORTRAN
40B [39] 21 8b FORTRAN
41A [39] 21 8a FORTRAN
41B [39] 22 8e FORTRAN
42A [39] 21 8b FORTRAN
42B [39] 22 8e FORTRAN
43A [39] 22 9a FORTRAN
43B [39] 22 9b FORTRAN
44A [39] 23 10a FORTRAN
44B [39] 24 lOb FORTRAN
45A [39] 31 11 a FORTRAN
45B [39] 33 11 b FORTRAN
46A [39] 39 12a FORTRAN
46B [39] 40 12b FORTRAN

14

Arter the programs had been collected, a carerul count or the
software parameters n1' n2' N" and N2 was obtained. For each program
it was then possible to calculate the expected amount of mental erfort
required for comprehensIon, E c • The number or executable statements,
Ns ' was also obtained and this value Is I isted in Table 2 along with
the other parameters. In this manner, a comparison could be made
between E c and the trad I tiona 11 y accepted hypothes i's that program
understandabil ity is proportional to the number of program statements.

The examples are paired in Table 2, 1 istlng the poorer version of
the code rirst, as indicated by the analysis and comment of the
original author. A comparison can then be made In order to ascertain
how well the measures Ec and Ns agree with the observed ranking
presented in the literature. In a rew instances, code was presented
represent I ng "good, " "better," and "best" impl ementat ions. Such a
situation enables us to make 3 comparisons. For this reason, some
programs may appear in more than one comparison within Table 2.

In analyzing the empirical data obtained, credit is given to a
proposed measure of program clarity when it indicates that the amount
of effort expended for program comprehension had decreased by a
significant amount. Unfortunately, just what percentage of
improvement should be required is not known precisely. Workers in
this area have simply not been able to quantify improvements In
programming style. As a result, when an improvement Is noted, the
amount of improvement is not reported. In the analysis presented
here, at least a 10% Improvement had to be reflected by a measure in
order that the measure be considered In agreement with the 1 iterature.
Since these examples were developed in order to unquestionably
demonstrate an improvement in style, a significant reduction In the
amount of mental effort required for comprehension would normally be
expected. Indeed, most Improvements in style were reflected by a much
more dramatic reduction in Ec •

On the other hand, several examples undergo only a localized
enhancement which affects only a few of the statements of the entire
program. Since the measures studied in this research attempt to
assess the total effort required for comprehension, such a change will
not result in a very large decrease, overal I. A threshold value of
about 10% appears to be low enough to account for this latter effect,
while high enough to filter out those cases which show only a marginal
amount of improvement. The assumption here is that a measure which
shows less than a 10% reductIon in effort is not In agreement with
what the author contends is a clear improvement.

15

Table 2: Empirical Data Gathered

Number 77, 772 N, N2 V D Eo Ns

1A 13 10 35 30 294 19.50 5734 12
lB 11 7 26 22 2001 17.291 34601 81

2A 13 7 30 25 238 23.21 5518 8
2B 11 7 26 22 2001 17.291 34601 8"

3A 7 5 17 13 108 9.10 979 3
3B 5 7 16 13 104" 4.641 4831 41

4A 7 5 17 13 108 9.10 979 3
4B 8 7 22 18 1561 10.291 16071 61

5A 5 7 16 13 104 4.64 483 4
5B 8 7 22 18 1561 10.291 16071 61

6A 8 4 26 14 143 14.00 2008 13
6B 4 4 10 10 601 5.001 3001 51

7A 8 4 26 14 143 14.00 2008 13
7B 4 4 5 4 271 2.001 541 1 1

8A 4 4 10 10 60 5.00 300 5
8B 4 4 5 4 271 2.001 541 1 1

9A 8 9 28 21 200 9.33 1869 8
9B 8 8 19 15 1361 7.501 10201 61

lOA 12 15 56 40 456 16.00 7304 20
10B 10 8 24 15 1631 9.381 15251 71

11 A 13 8 38 27 286 21.94 6263 8
11 B 10 6 33 25 2321 20.83" 48331 61

12A 7 3 10 6 53 7.00 372 4
12B 5 3 6 6 361 5.001 1801 21

16

Table 2, continued

Number 71, 712 N, N2 V D Eo Ns
13A 10 4 17 8 95 10.00 952 8138 7 3 12 8 661 9.33.. 6201 71

14A 8 8 21 14 140 7.00 980 6148 9 8 19 14 135.. 7.881 1062.. 6..

15A 6 4 20 14 113 10.50 1186 7158 5 4 12 10 701 6.251 4361 51

16A 14 11 36 25 283 15.91 4507 7
168 15 9 29 19 2201 15.83.. 34851 7..

17A 9 6 19 12 121 9.00 1090 4178 7 5 13 12 901 8.40.. 7531 4..

18A 26 34 189 131 1890 50.09 94677 73
188 22 19 83 61 771 I 35.321 272461 11 I

19A 7 5 9 5 50 3.50 176 3
198 8 4 13 6 681 6.001 4091 3..

20A 8 2 11 2 43 4.00 173 5
208 6 2 7 2 271 3.001 81 I 41

21A 9 4 13 5 67 5.63 375 6
218 9 4 11 4 561 4.501 2501 6..

22A 5 2 6 2 22 2.50 56 3228 3 1 3 1 81 1.501 121 21

23A 9 9 20 15 146 7.50 1095 9
238 11 9 17 12 1251 7.33.. 9191 51

24A 9 9 20 15 146 7.50 1095 9248 8 10 10 13 961 5.201 4991 51

17

Table 2, continued

Number 71, 712 N, N2 V D E, NS

25A 11 9 17 12 125 7.33 919 5
258 8 10 10 13 961 5.201 4991 5",

26A 15 14 47 41 428 21.96 9390 14
268 8 6 12 9 801 6.001 4801 41

27A 15 8 27 21 217 19.69 4275 9
278 13 6 20 13 1401 14.081 19741 61

28A 13 6 25 21 195 22.75 4445 9
288 13 6 21 17 161 1 18.421 29731 71

29A 13 8 25 21 202 17.06 3447 9
298 11 8 25 21 195R:l 14.441 28211 9",

30A 13 7 28 25 229 23.21 5318 7
308 13 7 28 23 220", 21.36", 47081 81

31A 15 7 35 26 272 27.86 7578 10
318 15 7 35 29 285R:l 31 .071 88681 9",

32A 1 1 7 38 15 221 11.79 2605 12
328 12 4 31 9 1601 13.501 21601 101

33A 7 2 8 2 32 3.50 111 3
338 5 2 5 2 201 2.501 491 21

34A 8 4 19 10 104 10.00 1040 7
348 5 4 12 10 701 6.251 4361 51

35A 8 4 19 10 104 10.00 1040 7
358 4 4 5 4 271 2.001 541 1 I

36A 5 6 12 12 83 5.00 415 5
368 4 4 5 4 271 2.001 541 1 I

18

Table 2, continued

Number 7), 7). N, N. V D Eo N,

37A 5 6 12 12 83 5.00 415 3
37B 6 5 10 8 621 4.80~ 2991 1 1

38A 13 21 58 45 524 13.93 7299 11
38B 14 19 41 33 3731 12.161 45381 91

39A 9 6 17 12 113 9.00 1020 6
39B 7 6 13 12 931 7.001 6481 41

40A 10 5 22 9 121 9.00 1090 13
40B 9 5 17 11 1071 9.901 1055" 71

41A 10 5 22 9 121 9.00 1090 12
41B 8 5 14 7 781 5.601 4351 71

42A 9 5 17 11 107 9.90 1055 7
42B 8 5 14 7 781 5.601 4351 7"

43A 8 6 12 9 80 6.00 480 4
43B 7 6 9 9 671 5.251 3501 1 1

44A 10 10 19 14 143 7.00 998 11
44B 9 10 17 14 132" 6.30~ 8301 10"

45A 16 23 67 46 597 16.00 9556 26
45B 12 24 32 31 3261 7.751 25241 61

46A 13 16 75 62 666 25.19 16763 15
46B 11 16 48 29 3661 9.971 36501 1 1 1

19

The Experimental R~sults

Several factors affect the overall or net clarity of a program as
perceived by an Individual. The diverse nature of such elements is
conveyed by the large number of various techniques, transformations,
and guidel ines proposed as aids to good programming style. As
observed in the examples, several seemingly unrelated aspects of
programming style must be addressed Individually before a thorough
understanding of program clarity may be achieved.

At least this is certainly the attitude presented in the 1 iterature
today. and supported through the ongoIng stream of pUbl icatlons which
treat several seemingly distinct aspects contributing to program
clarity by displaying numerous and sundry examples. Lacking an
understanding of the underlying fundamental issues and concepts
Involved, we could hope to do no better than to collect and categorize
the many techniques which arise, forming at best a crude patchwork of
ad hoc remedies for the unfathomable programs whIch many programmers
prepare.

Ideally, the development of a single theory of program clarity
would tie together many of these diverse proposals and provide a
unified framework upon which further study may be based. Such a
theory would be recognized by its abll ity to accurately assess the
clarity of programs incorporating the many proposed techniques for
improving clarity. Further, the simple parameters utll ized in such a
successful theory would be identified as crucial or atomic elements
affecting the mental process involved during comprehension.

The experiment performed is a direct attempt to test one
formulation of Just such a theory. By selecting a wide class of
programs, covering the broadest spectrum of proposed methodologies,
the ability of a proposed measure to account for the various aspects
of program clarity on a fundamental level may be assessed. Only a
theory capable of suitably approximating the essential processes
involved during program comprehension can be expected to be able to
account for the many unrelated examples presented in the literature.

The proposed hypothesis was subjected to this test. Additionally,
an alternate hypothesis relating the number of executable statements
to program clarity was examined. The results of the experiment
provide significant evidence in support of the use of Ec as a measure
of clarity. A total of 46 comparisons was made, ranking 76 versions
of various programs. For 40 of these comparisons, the measure Ec
properly indicated a significant decrease in the amount of effort
required for comprehension. This measure performed better than the
alternative measure Ns ' The latter agreed with the published reports
In only 31 cases.

The results provide a significant indication that program
may be assessed by means of a simple formulation of elementary
features. Each example meeting the criteria above, from every
located during the I iterature search undertaken, was included

clarity
program
article
in the

20

sample. A few years ago, such a sample would have been very small,
and as time passes, the sample will grow. At present, the sample is
as large as It can be, or very nearly so. While the absolute number
of examples present In the sample is not extremely large, the sample
does present a substantial test of the hypothesis because of the great
diversity of techniques covered. The results of this experiment
demonstrate the abll ity of the hypothesis to directly address those
factors which fundamentally affect program clarity.

Supportive evidence is also provided by an unusual example proposed
by Ledgard and Marcotty[50J. demonstrating two programs which solve
the same problem but which employ an entirely different set of control
structures. The point stressed in that article was that both
Implementations required an equal amount of effort in order to
comprehend them. Yet the programs, one 29 and the other 24 statements
long, could not be considered of equal complexity on the basis of
size. Depth of statement nesting and the types of structures employed
differed, making any conclusions drawn from such a basis fallacious.
Nonetheless, Ec varied by less than 3% for the two programs,
Indicating, in agreement with the authors, that the programs required
almost an equal amount of mental effort to understand.

A LOOK AT A FEW OF THE EXAMPLES

We now turn our attention to a few of the Individual examples, and
take a closer look at the improvements made to the code along with the
corresponding changes in Ec • The first example 15 a selected fragment
of code which is presented by Kernighan and Plauger[40]. The examples
compared, 15A and 158, are shown in Figures 1 and 2. Here the
difficulty encountered when IF-statements are nested in a tree-l ike
fashion is demonstrated. If the code Is rewritten so as to present a
more 1 inear structure, a much clearer program results. The analysis
of the code shows an improvement of roughly 65% over the original
version using the software science measures.

IF X >~ Y
THEN IF Y >= Z

THEN SMALL ~ z;
ELSE SMALL ~ Y;

ELSE IF X >~ Z
THEN SMALL ~ Z·,
ELSE SMALL = X;

Figure 1: The Code of Example 15A

21

SMALL~X;

IF Y < SMALL
THEN SMALL ~ Y;

IF Z < SMALL
THEN SMALL ~ Z;

Figure 2: The Code of Example 158

Not only has Ec provided a reasonable indication of clarity here,
but It has done so without resorting to an analysis of such
macroscopic features such as the depth of statement nesting. or a
detailed flow analysis of the program. The success enjoyed by this
approach leads us to recognize that while such features are indeed
factors affecting program clarity, they are not the most atomic
features. EVidently, the process of comprehension may be modeled as a
process which deals with the details of a program on a much more
microscopic level.

The code presented in Figure 3 represents the simplest solution to
the task of Example 15. The solution util izes a procedure which is
assumed available within the language employed. The corresponding
Increase In clarity Is reflected by a decrease In Ec • from 436
elementary mental discriminations (EMD) for the code of Example 158,
to 15 EMD for the procedure call.

CALL MINIMUM (SMALL, X, Y, Z);

FIgure 3: A Minimal Solution for Example 15

The presentation of the solution at such a high level of
abstraction requires significantly less effort to understand. It is
important to note that such an analysis Is appropriate for a
programmer capable of fluently recognizing the operator MINIMUM, and
its behavior. If, however, the amount of effort expended by a
partIcular person was observed to be above that predicted by the
measure, we may be justified in concluding that the assumptIon of
fluency Is false, since the theory does not hold. Instead, the theory
provides a measure of clarity under an easily specified standard
condition of fluency.

In another example, the desirabil ity of the GO TO-statement as a
means of control 1 ing the execution sequence of a program Is studied.
For those languages which lack suitable alternatives, several
guidel ines have been establ ished so that the GO TO will be used In
only specific, easily understood situations. For example, one might
allow its use only to implement a simple Iteration, or a break arising
from an exceptional condition. The code of Example 13A is shown In
Figure 4 and although the GO TO-statements are only used in compl lance
with the rules suggested above, it is apparent that the code is

22

difficult to comprehend. A value of 952 discriminations Is calculated
for this code.

DCL NEWIN DEC FLOAT(4);
LARGE DEC FLOAT(4) INIT(.OE1);

NEXT_C: GET LIST (NEWIN);
IF NEWIN >~ 0

THEN IF NEWIN > LARGE
THEN LARGE~NEWIN;

ELSE GD TD NEXT_C;
ELSE GO TO FINISH;

GD TD NEXT_C;
FINISH: PUT LIST (LARGE);

Figure 4: The Code of Example 13A

The code of Example 13B is much clearer. The control flow has been
reorganized so that a more 1 inear representat!on is possible. Most,
but not all of the GO TO's have been removed. Here again, the
increase in program clarity is reflected by a decrease in Ec . A value
of 620 discriminations is obtained by means of the simple analysIs
technique proposed. This represents a 35% reduction in the amount of
effort which must be expended in order to understand the improved
version of the program. Such a reduction is reasonable for the
improvements cited.

DECLARE (NEWIN, LARGE) DECIMAL FLOAT(4);

LARGE~O;

NEXT_C: GET LIST (NEWIN);
IF NEWIN > LARGE

THEN LARGE ~ NEWIN;
IF NEWIN >~ 0

THEN GO TO NEXT_C;
PUT LIST (LARGE);

Figure 5: The Code of Example 13B

23

example presented
in clarity seemed

The Exceptional Cases

There are six examples for which the value Ec does not reflect the
anticipated decrease in programming effort. For an experiment of this
nature, involving such a diverse and varied collection of programming
examples, the overall behavior of the proposed measure to accurately
reflect the improvements claimed is significant evidence in support of
the theory, even in I ight of these few anomalous cases. Surprisingly,
a careful investigation of these cases provides additional evidence in
favor of such a theory. All six examples are reconciled, the
Initially curious results being due to the following causes:

@ The code by itself did not properly demonstrate the proposed
Improvement suggested by the author.

@ The assumption of fluency during the examination of one example
was inappropriate.

@ Finally, one author's suspicions that the
mIght not demonstrate an improvement
Justified.

THE POORLY CONSTRUCTED EXAMPLES

In COBOL, Chmura and Ledgard advocate the use of the CALL verb in
order to invoke general purpose sUbprogram modules[9]. In this way,
the resulting program becomes clearer, and if lucky, someone else
might have already written the needed module so that a great deal of
work may be avoIded. The "poor" code of Example 19A is presented in
Figure 6. This code utll izes the PERFORM verb In order to 1 ink to a
paragraph contained within the program. The "better" code, shown in
Figure 7, makes use of the CALL verb to I ink to a module, presumably
already available within the installation's 1 ibrary.

PRODUCE-ACTION-RPT-HEADER.
ACCEPT TODAYS-DATE FROM DATE.
PERFORM CALCULATE-JULIAN-DAY.
MOVE JULIAN-DAY

TO EDITED-JULIAN-DAY IN ACTION-RPT-HEADER.

Figure 6: The Code of Example 19A

PRODUCE-ACTION-RPT-HEADER.
CALL "CALCULATE-JULIAN-DAY"

USING JULIAN-DAY.
CANCEL "CALCULATE-JULIAN-DAY".
MOVE JULIAN-DAY

TO EDITED-JULIAN-DAY IN ACTION-RPT-HEADER.

Figure 7: The Code of Example 198

24

The code presented in Figure 7, however, is not clearer than that
of Figure 6 when considered by itself. Indeed, Example 198 requires
an additional statement util izlng the CANCEL verb, and a special
symbol must be present to set off the external module name from the
rest of the text. These requirements unquestionably add to the
complexity of Example 19B. As the analysis shows, Example 19A is
easier to understand than is Example 19B. Here, the code presented by
the authors simply does not tell the whole story.

Clearly, the authors intended for the reader to imagine the code
representing the paragraph CALCULATE-JULIAN-DAY, and in assessing the
amount of effort required to understand Example 19A, the amount of
effort expended to comprehend the non-standard module was to be
included. Example 19B, including the additional mechanisms employed,
would then be easier to understand since the standard library module
is presumably fluently recognized and the details of Its construction
do not contribute to the difficulty of understanding the program.
Here too, the proposed hypothesis has accurately assessed the
situation, and has provided a simple measure which may in addition, be
used to gauge how large a module must be before the util rzation of the
CALL verb becomes profitable.

In another example, the excessive use of GO TO-statements is
~volded in an attempt to improve a poorly written piece of code.
Unfortunately, the better code, presented as Example 40B, contains a
very cumbersome and difficult to comprehend IF-statement. As a
result, only a smal I overall improvement is actually achieved. The
code for Example 40A, and the modified version, 40B, is shown in
Figures 8 and 9, respectively.

LOGICAL FEM(8). MALE(8)
REAO (5.6) IGIRL, FEM

9 REAO (5.6) IBOY, MALE
DO 8 I~1. 8
IF (FEM(I» GO TO 7
IF (.NOT.MALE(I» GO TO 8
GO TO 9

7 IF (.NOT.MALE(I» GO TO 9
8 CONTINUE

WRITE (2.10) IBOY
GO TO 9
STOP
END

Figure 8: The Code of Example 40A

25

LOGICAL FEM(B), MALE(B)
READ (5,10) IGIRL, FEM

20 READ (5,10) IBoy, MALE
DO 30 I~1, B
IF «FEM(I).AND .. NOT.MALE(I» .0R.

$ (MALE(I).AND .. NoT.FEM(I») GO TO 20
30 CONTINUE

WRITE (2,40) IBoy
GO TO 20
END

Figure 9: The Code of Example 408

Because standard FORTRAN does not allow us to directly test whether
or not two LOGICAL variables are equal. we must resort to an indirect
approach. In Example 40A, a chain of GO TO~s wInd through the program
in order to evaluate the situation. In fact, such a test may be most
suitably performed by an exclusive-or operation, but alas, FORTRAN
does not al low for this either. In Example 408 we are forced to
express the exclusive-or operator in a clumsy fashion, leaving the
reader to ponder what operation is actually performed by the IF­
statement. NeIther solution is very attractive and the measure Ec
shows only a sl ight improvement in clarity.

The authors make this point and conclude that what is actually
needed Is either an operator, .XOR., or alternately a change of
variable type to INTEGER. Such changes cut to the heart of the matter
and allow the test to be made directly. Example 428 uti! Izes the
latter approach. Assuming that the data can be presented using 1 and
o to represent the values .TRUE. and .FALSE., the operator .EQ. may be
utilized to achieve the desired test. The code which results is shown
In Figure 10. It is much simpler than the original code of Example
40A, and the measure of program clarity. Eel indicates a 40%
improvement.

INTEGER FEM(B), MALE(B)
READ (5,10) IGIRL, FEM

20 READ (5,10) IBoy, MALE
DD 30 I~l, B
IF (FEM(I).NE.MALE(I» GO TO 20

30 CONTINUE
WRITE (2,40) IBoy
GO TO 20
END

Figure 10: The Code of Example 428

Consider next, the code required to implement a billing algorithm
from the specifications provided in the table below:

26

Condition Action
QTY ,;; 10 set BILL_A to 0.00

10 < QTY ,;; 200 ? (do nothing)
200 < QTY < 500 add 0.50 to BILL_A
500 ,;; QTY add 1.00 to BILL_A

The actions which are specified may
employing a nested IF-structure. Such
production of the code presented in Figure

be realized in PL/I
a technique has led to

11 :

by
the

IF QTY > 10
THEN IF QTY > 200

THEN IF QTY >~ 500
THEN BILL_A-BILL_A+1 .00;
ELSE BILL_A~BILL_A+0.50;

ELSE;
ELSE BILL_A~O.OO;

Figure 11: The Code of Example 14A

As one of their simple programming proverbs, Kernighan and
Plauger[39] suggest that a null ELSE-clause is a symptom of poorly
structured code. Indeed, in this example the nested IF-structure may
be reorganized, removing this anomaly. and the authors claim that a
clearer program results. This was done, and the resulting code is
shown in Figure 12. While an improvement in._.~larrty i.s claimed, the
measure E c indicates to the contrary, that the code is 51 ightly more
difficult to comprehend, although less than a 10% difference is
involved.

IF QTY >~ 500
THEN BILL_A~BILL_A+1 .00;
ELSE IF QTY > 200

THEN BILL_A~BILL_A+0.50;

ELSE IF QTY <~ 10
THEN BILL_A=O.OO;

Figure 12: The Code of Example 14B

Consider, however, the following question which might arise after
the original programmer and specifications were no longer available:
Under what condition is the variable BILL_A left unaltered? This
situation may later require that an action be performed. For which
version would the inclusion of the additional code be most easily
accompl ished? Without a doubt, the code of Example 14A is superior to
that of Example 148 with respect to these considerations. Evidently,
less effort is required in order to formulate a menta'l image of the
program's function and operation given the code of Example 14A.

27

This reasoning leads one to the conclusion that the authors' claim
Is not simply Justified. In this partIcular example, the decision
table presented is not more simply represented in the CASE-like format
employed in Example 14B. Indeed, some "optimization" has been
performed in order to prepare a program segment which neatly avoids
the unspecified case. This perturbation necessitates the expenditure
of additional effort during program construction. During any attempt
to understand the resulting code, additional effort must be invested
in order to mentally reconstruct the original functional
specification.

In this example the authors~ choice of problem Is considered to be
at fault. The point which was to be made was that a CASE statement,
missing in PL/I, could be routinely constructed using a nested IF­
structure in which the action to be performed appeared as the THEN­
clause. Because of the ease with which CASE statements may be
formulated and understood in structured languages 1 ike Pascal. similar
improvements ought to be achIevable In PL/I using such a simple
convention. The measure Ec does indicate an improvement in clarity
for such situations in which the alternative is a nested IF statement
implementing a tree-l ike decision structure.

Even so, the simple scheme which is proposed can never present as
clear or as easily understood an image as a CASE statement might for
an obvious reason. The IF statement, unl ike the CASE operator In
Pascal, is a very general verb. When employed, even In this limited
role. some effort must be expended in order to recognize the type of
operation being synthesized. This additional effort is not required
for a programmer who Is fluent with the CASE verb and recognizes the
operation accompl ished directly.

THE REQUIREMENT OF FLUENCY

It is quite understandable that an example which incorporates
rarely utilized or poorly understood language features, will require
more effort to understand than that predicted by the theory.
Actually, the observed effort will vary from individual to individual
depending on several factors, including his famil iarity with the
problem area as well as his understanding of the language constructs
employed. The theory provides a normal ized measurement, which
minimizes the effects of such variations by considering the diffiCUlty
of comprehension for a fluent programmer. This somewhat ideal ized
situation Is very nearly matched In practice, and as a result. the
appl ication of the theory yields an accurate estimate of the
diffICUlty experienced by a wide segment of the programmers most
likely to review the code. In general. the results obtained are
characteristic of the amount of effort expended under the standard
condition of fluency and are quite useful when the effects of a
technique or program transformation are to be studied.

An example which demonstrates
fluency is that of Examples

the
4A

necess i ty
and 48.

for
The

the
code

condition
is written

of
In

28

FORTRAN,
people.

a small language for which fluency has been achieved by many
Yet some are very puzzled by the code presented In Figure 13.

D01I~1,N

D01J~1,N

X(I,J)~(I/J)*(J/I)

Figure 13: The Code of Example 4A

The difficulty which arises as one attempts to understand the code
of Example 4A stems from the unusual use of the integer division
operator. Here, the operator is used not to obtain a quotient, but to
achieve truncation. In a sense, it is as if a common element, having
a famil iar meaning, was used in a context requiring a secondary
meaning, one which was not fluently recognized by most programmers.
It Is true that most good FORTRAN programmers recognize the fact that
integer division truncates its result, but when they use the operator,
their primary intent Is to obtain the quotient of two Integers.
Through repeated experience with this operator in situations in which
It Is so used, this meaning is fluently establ ished. Unfortunately,
this is not the function of the operator as used in Example 4A.

In contrast to Example 4A, for which a very low value of E c is
obtained, Example 48 presents a much more expl iclt statement of the
operation to be performed. That code yields a much higher value of
Ee , while many people will experience less difficulty understanding
its operation. It is only when the property of truncation by
reference to integer division is fluently recognized, that so small an
expenditure of mental effort would be expected in practice. In this
case the theory provides an accurate indication of the effort required
for a fluent programmer to comprehend the code provided.

DO 20 I~1,N

DO 10 J~1 ,N
IF (I.EQ.J) X(I ,J)=1.0
IF (I.NE.J) X(I ,J)~O.O

10 CONTINUE
20 CONTINUE

Figure 14: The Code of Example 48

A QUESTIONABLE EXAMPLE

One example included in the sample was of dubious value to this
stUdy. Knuth presents a short segment of code which in his opinion,
might be improved by the removal of the GO TO statement which in
Example 31A Implements a break condition[44]. Already, we have noted
that the use of a GO TO in such a situation may be justified, and some

29

authors have postulated that such usage need not compl icate a program
unduly. On the other hand, such gUidel ines may not be applicable in
all situations and as was seen In Example 13, a sIgnificant
Improvement may be possible once the code is reorganized to circumvent
the need for such a GO TO.

I:~H(X);

WHILE A[I]*O DD
BEGIN IF A[I]~X

THEN GO TO FOUND FI;
I :~I-l;
IF I~O

THEN I :=M FI;

NOT FOUND:
FOUND:

END;
A[I] :=X; B[I] :~O;

B[I] :-B[I]+1;

Figure 15: The Code of Example 31A

After performing the suggested modificatIon, the code shown In
Figure 16 results. Yet, after studying the modified version of this
algorithm, Knuth finds the results inconclusive, the program "perhaps.
somewhat easier to understand."

I:~H(X);

WHILE A[I]*O AND A[I]*X DO
IF I~O

THEN I :=M
ELSE 1:=1-1 FI;

IF A[I]*X
THEN A[I]:~X; B[I]:~O Fl;

B[I] :~B[I]+1;

Figure 16: The Code of Example 318

Perhaps the code is not easier to understand! The Improvement In
clarity, if any, is not apparent. The measure Ec indicates that the
code is sl ightly more difficult to understand, and it is easy to see
In Figure 16 why this is so. The logical condition control I ing the
execution of the WHILE-statement is much more complex, and the
condition which actually leads to the termination of the loop must be [I.
tested for separately. All of these factors must be considered in
studying the code and as a result of the added complexity of Example
318, the amount of effort required to comprehend the statement of the
program will be larger than that expended during a study of Example
31A. Such a conclusion is reasonable and the results obtained using
the measure Ec support this position.

30

Summary and Conclusions

Several factors have been observed which Influence the amount of
mental effort expended in order to understand a computer program. The
fluency of the reader with the programming language employed and the
famil iarlty with the problem area may greatly Influence the ease or
difficulty of the task[66,68]. In this study. it is assumed that the
programmer Is fluent in the language employed and not so famll iar with
the problem area that recognition is accompl ished instantaneously.
after only a cursory inspection of the code.

Researchers have also attempted to develop relationships between
measurable program features such as the degree of documentation, use
of indentation and descriptive variable names, and the ease of
comprehension[20,66,70,77,78]. While studies found that subjects
clearly preferred programs written using such features, no
statistically significant differences in comprehension were
detected[53,69] .

This investigation considers such factors to be of marginal
significance. Comparable methods of indentation, paragraphing, and
variable nomenclature are assumed to have been employed throughout the
program. When these assumptions are not valid, the results which are
obtained using the hypothesis formulated may not accurately
approximate the observed difficulty in understanding the program.

This study has investigated the relationship which exists between
the number and frequency of operators and operands occurring in a
program and the observed difficulty experienced in understanding the
program. An expression was presented which yields an estimate of the
number of elementary mental discriminations performed during
comprehension.

In order to test the proposed measure, several published examples
demonstrating improvements in program clarity were obtained. In the
majority of cases, when the measure was applied the improvements cited
in the literature were reflected by a corresponding reduction in the
predicted effort for comprehension. When the few cases for which such
a reduction was not observed were examined more closely. mitigating
factors that tended to support the theory were uncovered. Alternate
measures of program clarity, such as the number of executable
statements or the program volume, did not reflect the improvements In
clarity cited as well.

Early research in software science demonstrated that it had been
possible to estimate the amount of effort expended during program
construction using a formula closely related to this measure of
program clarity[23,84]. Once a programmer understands an algorithm,
the additional effort required to express it as a program in a
language for which fluency has been achieved is relatively small. In
such cases, programming time and comprehension time would be
approximately equal. The empirical data available for both small
programs and large systems are highly correlated with the measures of

31

programming and comprehension effort. The data demonstrate that the
hypothesis presented is capable of providing reasonable estimates of
mental work over a wide range of program sizes c from programs
requiring a fraction of a minute to understand and prepare, to systems
which are the product of 100 labor months of effort. Alternate
methods of assessing program clarity, for example, functions of the
number of 1 ines of code produced, fail to fit the data over such a
wide range of program sizes and complexlty[76].

A deeper understanding of the relationship which exists between the
effort required for program comprehension and that required for
program construction has been reached. The initial attempts to
provide a measure which would provide a suitable approximation of the
amount of effort expended during program construction have not been
inval idated. Rather, additional confirmation has been provided
supporting the hypothesis that the measure En provides a good
approximation of programming effort when the initial version of a
program is considered. As further effort is expended to enhance the
clarity of the program, succeeding versions will have required a total
expenditure of labor which exceeds the estimate provided by the
measure En. Then, the measure of comprehension effort, Ec ' properly
reflects the amount of effort required to understand the revised
program, and this effort is less in comparison to the effort required
to understand the initial version. In effect, such a measure closely
approximates a function which yields the minimum mental effort
requIred for either the construction of the program when the version
at hand is the initial form produced, or the comprehension of the
program In its-present form.

Our understanding of the complex problem of measuring program
clarity now has a useful, working foundation based on the hypothesis
developed and supported by the empirical evidence thus far obtained.
More experiments to refine and deepen this knowledge are cal led for.
These experiments may now be performed with a sharper resolution as a
result of this research, to verify and repl icate the experiments
performed here, and to focus on the contribution of less influential
features which affect program clarity. Both smal I and large programs
should be included in such studies, and a variety of techniques for
assessing comprehensibil ity employed.

32

[1] F. Akiyama,
Proceedings of

BIBLIOGRAPHY

"An Example of Software
the IFIP Congress, 1971.

System Debugging,"

[3] Rudolf Bayer, "A Theoretical
Phenomenon," Technical Report
Sciences, Purdue University, West

Study of Halstead~s Software
69, Department of Computer

Lafayette, Indiana, May 1972.

[4] Robert Bohrer, "Halstead's Criterion and Statistical Algorithms,"
Proceedings of the Eighth Annual Computer Science/Statistics
Interface Symposium, Los Angeles, Cal ifornia, February 1975.

[5] S. J. Boles and John D. Gould, "A Behavioral Analysis of
Programming: On the Frequency of Syntactical Errors," Research
Publ icatlon RC 3907, IBM Thomas J. Watson Research Center,
Yorktown Heights, New York, 1972.

[8] J. Buxton and B. Rande II, ed I tors, "Software Eng i neer i ng
Techniques," Report on a Conference Sponsored by the NATO Science
Committee, Rome, Italy, 1969.

[9] Louis J. Chmura and
Programming Proverbs,
1976.

Henry F.
Roche 11e

Ledgard,
Park, New

Cobol
Jersey:

Wi th
Hayden

Style:
Books,

[10] Linda M. Cornell and Maurice H. Halstead, "PredIcting the Number
of Bugs Expected in a Program Module," Technical Report 205,
Department of Computer Sciences, Purdue University, West
Lafayette, Indiana, October 1976.

[12] Ole-J. Dahl. Edsger W. Dijkstra, and C. A. R. Hoare, Structured
Programming, New York, New York: Academic Press, 1972.

[13] Peter J. Denn i ng, "Gues t Ed i tor's Overy Iew, " ACM Comput i ng
Surveys, Volume 6, Number 4, December 1974, pages 209 211.

[14] Edsger W. Dijkstra, "GO TO-Statement Considered Harmful,"
Communications of the ACM, Volume 11, Number 3, March 1968, pages
147, 148.

[15] James L. Elshoff, "Measuring Commercial PL/I
Halstead's CriterIa," ACM SIGPLAN Notices, Volume
May 1976, pages 38-46.

Programs Using
11, Number 5,

[1 6] James L. Elshoff, "A Numerical Profi le of
Programs," Research Publication 1927, General
Laboratories, Warren, Michigan, April 1975.

Commercial PL/I
Motors Research

33

[17] J. C. Emery, "Modular Data Processing Systems
Communications of the ACM, Volume 5, Number 5,
263 268.

Written in COBOL,"
May 1962, pages

[178] Ann Fitzsimmons and Thomas Love, "A Review and Evaluation of
Software Sc I ence." ACM Comput i ng Surveys. Va I urne 10, Number 1,
March 1978, pages 3 18.

[18] Yasaa Funami and Maurice H. Halstead, "A Software Physics
Analysis of Ak'yama~s Debugging Data," Technical Report 144,
Department of Computer Sciences, Purdue University. West
Lafayette, Indiana, May 1975.

[1 9] John D. Gannon, "An Experimental Evaluation of
Programmi ng Re 1 i ab iii ty. II ACM SIGPLAN Not j cas:
for ReJ lable Software, Volume 12, Number 3, March

Data Types on
Language Design
1977, page 141.

[20] John D. Gannon and James J. Horn Ing, "Language Des i gn for
Prograrrnning Rel iabil ity," IEEE Transactions on Software
Engineering, Volume SE-1, Number 2, June 1975, pages 179 191.

[21] Thomas S. Gi Ib, Software Metrics, Cambridge. Massachusetts:
Winthrop Publ ishers, 1977.

[22] Amos N. Glleadi and Henry F. Ledgard. "On
Program Structure," ACM SIGPLAN Notices,
1974, pages 31-36.

a Proposed Measure
Volume_ 9, Number 5,

of
May

[23] Ronald D. Gordon and Maurice H. Halstead, "An Experiment
Comparing FORTRAN Programming Times With the Software Physics
Hypothesis," AFIPS Conference Proceedings, New York, New York,
Volume 45, 1976, pages 935 937.

[24] John D. Gould, "Some Psychological Evidence on How People Debug
Computer Programs," International Journal of Man-Machine Studies,
Volume 7, Number 2, March 1975, pages 151 182.

[25] Maurice H. Halstead, Elements of Software Science, New York, New
York: Elsevier North-Holland, Inc.) 1977.

[26] Maurice H. Halstead, "Language Level, a Missing Concept in
Information Theory," ACM SIGME: Performance Evaluation Review,
Volume 2. Number 1, March 1973, pages 7 9.

[27] Maurice H. Halstead, "Natural Laws Controll ing
Structure?", ACM SIGPLAN Notices, Volume 7, Number
1972, pages 19 26.

Algorithm
2, February

[28] Maurice
Research
Yorktown

H. Halstead, "Software Physics: Basic Principles,"
Report RJ 1582, IBM Thomas J. Watson Research Center,

Heights, New York, May 1975.

34

[29] Maurice H.
Work and
Department
Lafayette,

Halstead, "A Theoretical Relationship Between Mental
Machine Language Programming," Technical Report 67,
of Computer Sciences, Purdue University, West

Indiana, February 1972.

[30] Maurice H. Halstead, "Toward a Theoretical Basis for Estimating
Programming Efforts," Proceedings of the ACM National Conference,
Minneapol is, Minnesota, Volume 30, October 1975, pages 222 224.

[31] Maurice H. Halstead and Rudolf Bayer, "Algorithm Dynamics,"
Proceedings of the ACM National Conference, Atlanta, Georgia.
Volume 28, August 1973, pages 126 135.

[32] Maurice H. Halstead and Paul M. Zisl is, "Experimental
Verification of Two Theorems of Software Physics," Technical
Report 97, Department of Computer Sciences, Purdue University,
West Lafayette, Indiana, June 1973.

[33] Maur Ice H. Ha I stead, Rona I d D. Gordon. and James E. E 1shoff, "On
Software Physics and GM~s PL/I Programs," Research Publication
2175, General Motors Research Laboratories, Warren, Michigan,
June 1976.

[34] P. Henderson
Programming,"

R. Snowdon, "An
Volume 12, Number

Experiment In Structured
1, 1972, pages 38-53.

[35] I. D. Hill, R. S. Scowen, and B. A. Wichmann, "Writing Algorithms
In ALGOL 60," SoftwarecPractice and Experience, Volume 5, Number
3, July-September 1975, pages 223 244.

[36] Jon F. Hueras and Henry F. Ledgard, "An Automatic Formatting
Program for PASCAL," Technical Report 14, Department of Computer
and Information Sciences, University of Massachusetts, Amherst,
Massachusetts, August 1976.

[37] Thomas E. Hull, "Woul d You
SIGNUM Newsletter, Volume 8,

Be I i eve Structured FORTRAN?" ACM
Number 4, October 1973, pages 13-~

[38] Michael A. Jackson, Principles of Program Design, New York, New
York: Academic Press, 1975.

[39] Brian W. Kernighan and Phill ip J. Pl auger , The Elements of
Programming Style, New York, New York: McGraw-Hi I I, 1974.

[40] Brian W. Kernighan and Phill Jp J. Plauger, "Programming Style:
Examples and Counterexamples," ACM Computing Surveys, Volume 6,
Number 4, December 1974, pages 303 319.

[42] Donald E. Knuth,
SoftwareePractice

"An Empirical
and Experience,

Study of FORTRAN Programs,"
Volume 1, 1971, pages 105-133.

35

[43] Dona 1dE. Knuth, "A Rev Iew of 'Structured Programm i ng' , "
Technical Report 371, Department of Computer Sciences. Stanford
University, Stanford, California, June 1973.

[44] Dona IdE. Knuth, "Structured Programml ng Wi th GO TO-Statements,"
ACM Computing Surveys, Volume 6, Number 4, December 1974, pages
261 301.

"Notes on Avoiding GO TO­
Letters, Volume 1, Number 1,

[45] Donald E. Knuth and R. W. Floyd,
Statements," Information Processing
February 1971, pages 23 31.

[46] Henry F. Ledgard, "The Case for Structured Programming," BIT,
Volume 14, Number 1, 1974, pages 45-57.

[47] Henry
Jersey:

F. Ledgard, Programming
Hayden Books, 1975.

Proverbs, Rochelle Park, New

[48] Henry F. Ledgard, Programming Proverbs for FORTRAN Programmers,
Rochelle Park, New Jersey: Hayden Books, 1975.

Under Contro 1 , "
November 1976,

C. Cave, "Cobol
19, Number 11,

[49] Henry F. Ledgard and William
Communications of the ACM, Volume
pages 601 608.

[50] Henry F. Ledgard and Michael Marcotty, "A Genealogy of Control
Structures," Communications of the ACM, Volume 18, Number 11,
November 1975, pages 629 639.

[52] L. T. Love and A. B. Bowman, "An Independent Test of the Theory
of Software Physics," ACM SIGPLAN Notices, Volume 11, Number 11,
November 1976, pages 42 49.

[53] Thomas Love, "An Experimental Investigation of the Effect of
Program Structure On Program Understanding," ACM SIGPLAN Notices:
Language Design for ReI iable Software, Volume 12, Number 3, March
1977, pages 105 113.

[55] Daniel D. McCracken, "Revolution in Programming: An
Datamation, Volume 19, Number 12, December 1973, pages

Overv i ew, "
50-52.

"How to Write a
18 , Number 10,

Gerald M. Weinberg,
Datamation, Volume

[56] Daniel D. McCracken and
Readable FORTRAN Program,"
October 1972, pages 73-77.

[57] Clement L. McGowan and John R. Kelly, Top Down Structured
Programming Techniques, New York, New York: Petrocell i Books,
1975.

[58] Edward F. Miller, Jr. and George E. Llndamoond,
Programming: Top Down Approach," Datamation, Volume
12, December 1973, pages 55-57.

"Structured
19, Number

36

[59] Peter Naur, "GO TO-Statements and Good ALGOL Style," BIT, Volume
3, Number 3, 1963, pages 204-208.

[60] Peter Naur,
Mathematics,"
December 1975,

"Programming Language, Natural Language,
~C:::o::mm=-u;on"i;i"ic"a;ct7i05;;n"s,----,o,-f,------,tc.h"e,--,A=C",M, Vo 1ume 18, Number
pages 676 683.

and
12,

[61] Peter Naur and B. Randell, editors, "Software Engineering,"
Report on a Conference Sponsored by the NATO Science Committee,
Garmische, Germany, 1968.

[62] Karl J. Ottenstein, "A Program to Count Operators and Operands
for ANSI-Fortran Modules," Technical Report 196, Department of
Computer Sciences, Purdue University, West Lafayette, Indiana,
June 1976.

[63] K. V. Roberts,
Bulletin, Volume

"The Readability of Computer Programs," Computer
10, Number 4, March 1967, pages 17-24.

[65] J. T. Schwartz, "What Constitutes Progress
"C::o:;mm:;;:u""n"i"cpa;-t"-'.i0iii;n::;si--,o",f,--,t"h"e"-A"",C,,,M, Vo I ume 18, Number
pages 663, 664.

in
11 ,

Programming?"
November 1975,

[66] Ben Shne I derman , "Exploratory
Behav ior, " Internat iona 1 Journa 1
Sciences. Volume 5, Number 2, June

Experiments
of Computer

1976.

in
and

Programmer
Information

[67] Ben Shnejderman, "Human Factors Experiments for Developing
Qual i ty Software," Department of I nformat ion Systems Management,
University of Maryland, College Park, Maryland, (unpubl ished
paper) .

[68] Ben Shneiderman, "Measuring Program Qual ity and Comprehension,"
Technical Report 16, Department of Information Systems
Management, University of Maryland, College Park, Maryland,
February 1977.

[69] Ben Shneiderman and D. McKay, "Experimental Investigations of
Computer Debugging and Modification," Proceedings of the 6th
Internat i ona I Congress of the Internat iona 1 Erogonom ics
Association, July 1976.

[70] Ben Shne Iderman, R. Mayer, D. McKay, and P. Heller, "Experimental
Investigation of the Utility of Detailed Flowcharts in
Programm i ng," Commun icat ions of the ACM, (to appear, 1977).

[71] M. E. Sime, T. R. Green. and D. J. Guest, "Psychological
Evaluation of Two Conditional Constructions Used in Computer
Languages," International Journal of Man-Machine Studies, Volume
5, Number 1. January 1973, pages 105 113.

37

i
\

[72] Michael J. Spier, "A Critical Look at the State
ACM SIGOPS Notices. Volume 8, Number 2, April

of Our Science,"
1974, pages 9-15.

[73] Michael J. Spier. "Software Malpractice c

Exper i ence, " Software"Pract' ce and Exper i ence,
3, July-September 1976, pages 293 299.

A Distasteful
Volume 6, Number

[74] Thomas B.
Software
349.

Stee1. Jr., "Guest
Engineering, Volume

Editorial,"
SE-1. Number

IEEE Transactions on
4, December 1975, page

P. Fel lx, "A Method of Program
cI-"S"'M'----=S"-y"s"-t"e"m=s_-"J"o"u"r-=n-"ae.c1, Vo 1ume 16,

[76] Claude E. Walston and Charles
Measurement and Est !mat j on. "
Number 1, 1977, pages 54-73.

[77] Laurence M. Weissman, "A Methodology for Studying the
Psychological Complexity of Computer Programs," Ph.D. Thesis,
Department of Computer Science, University of Toronto, Toronto,
Ontario, Canada, 1974.

[78] Laurence
Programs:
Volume 9,

M. Weissman, "Psychological Complexity of
An Experimental Methodology," ACM SIGPLAN
Number 6, June 1974, pages 25-36.

computer
Notices,

the Programming Language
Engineering, Volume SE-1,

Niklaus Wirth, "An Assessment of
PASCAL," IEEE Transact Ions on Software
Number 2, June 1975, pages 192 198.

[80] Niklaus Wirth, "On the Composition of Well-Structured Programs,"
ACM Computing Surveys, Volume 6, Number 4, December 1974, pages
247 259.

[79]

[81] James M. Yohe, "An Overview of
Computing Surveys, Volume 6, Number
245.

Programm Ing Prac t Ices," ACM
4, December 1974, pages 221-

[82] Edward A. Youngs, "Human Errors in Programming," International
Journal of Man-Machine Studies, Volume 6, Number 3, May 1974,
pages 361 376.

[83] Edward Yourdan ,
Englewood Cl iffs,

Techniques
New Jersey:

of Program Structure and Design,
Prentice Hall, 1975.

[84] Paul M. Zisl Is, "An Experiment In Algorithm
Technical Report 96, Department of Computer
University, West Lafayette, Indiana, June 1973.

Implementation,"
Sciences, Purdue

38

	Measuring Improvements in Program Clarity
	Report Number:
	

	tmp.1307986960.pdf.M9wNK

