Purdue University Purdue e-Pubs

Publications of the Ray W. Herrick Laboratories

School of Mechanical Engineering

8-28-2018

Noise Source Identification in an Under-Determined System by Convex Optimization

Tongyang Shi Purdue University, shi247@purdue.edu

Yangfan Liu
Purdue University, liu278@purdue.edu

J Stuart Bolton

Purdue University, bolton@purdue.edu

Follow this and additional works at: https://docs.lib.purdue.edu/herrick

Shi, Tongyang; Liu, Yangfan; and Bolton, J Stuart, "Noise Source Identification in an Under-Determined System by Convex Optimization" (2018). *Publications of the Ray W. Herrick Laboratories*. Paper 178. https://docs.lib.purdue.edu/herrick/178

This document has been made available through Purdue e-Pubs, a service of the Purdue University Libraries. Please contact epubs@purdue.edu for additional information.

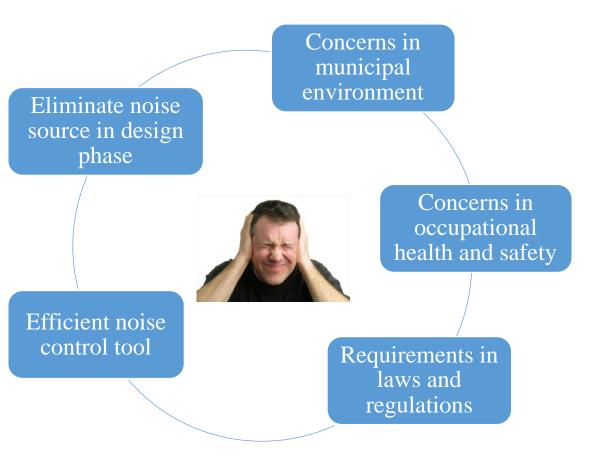
Noise Source Identification in an Under-Determined System by Convex Optimization

Tongyang Shi¹⁾

Yangfan Liu¹⁾

J. Stuart Bolton¹⁾

¹⁾ Ray W. Herrick Laboratories, Purdue University



Sound Source Localization

• Importance of Sound Source Identification

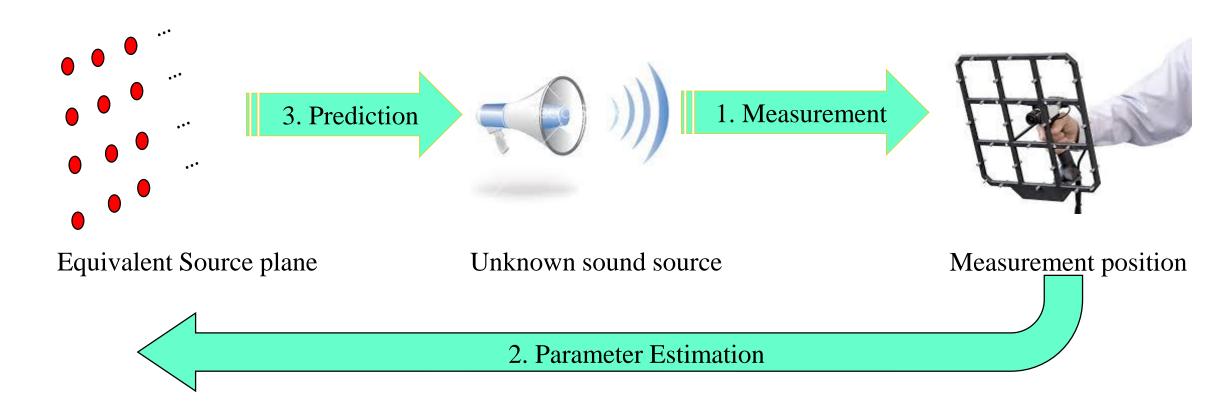
- Near-field Acoustics Holography (NAH)
- Inverse Fourier Method
- Statistically Optimized Near Acoustical Holography (SONAH)
- Inverse Boundary Element Method (IBEM)
- Equivalent Source Method (ESM)
- Inverse Radiation Mode
 - ➤ Jiawei Liu, "Noise source Identification based on an Inverse Radiation Mode Procedure", Noise-Con 16, Providence, Rhode Island.

Motivation of Current Work

- NAH is a powerful tool to identify sound source
 - Measurements can be taken away from the source and sound field can be visualized in three-dimensional space
 - Large number of measurements is required to avoid different measurement errors: e.g., spatial aliasing, windowing errors, etc.
 - > Economically costly, and hard to perform

Motivation

- Using a small number of microphone measurements to accurately identify major sound source locations
- > Encourage wide application of NAH in industry


Figure: LOUD 1020-node microphone array

Monopole Based Equivalent Source Method

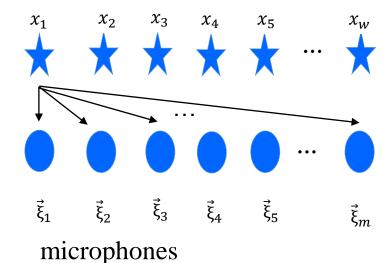
➤ Idea of monopoles at fixed locations

monopoles are used as low order equivalent sources in the present work

Mathematical Formulation

> Expression of a monopole with source strength S

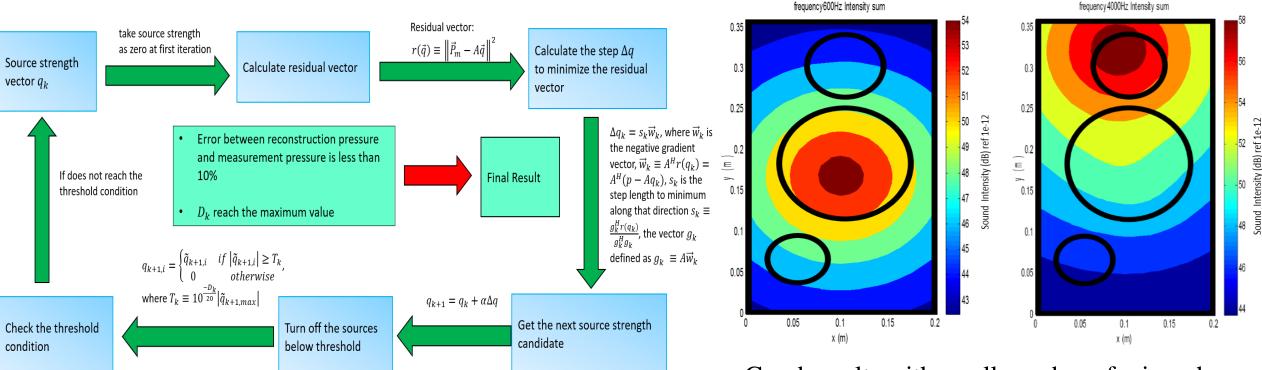
$$P_{S0}\left(\vec{X}\middle|\vec{X_0},\omega\right) = S \cdot P_0\left(\vec{X}\middle|\vec{X_0},\omega\right) = \frac{Se^{-jk\|\vec{X}-\vec{X_0}\|}}{4\pi \|\vec{X}-\vec{X_0}\|},$$


Field point position Monopole location

> The equation of the model-generated acoustic field at all locations can be derived in a matrix form:

To cations can be derived in a matrix form:
$$\begin{bmatrix} P_1(\vec{\xi}_1,\omega) \\ P_2(\vec{\xi}_2,\omega) \\ \vdots \\ P_M(\vec{\xi}_M,\omega) \end{bmatrix} = \begin{bmatrix} g_1(\vec{\xi}_1|\overrightarrow{X}_1,\omega) & g_2(\vec{\xi}_1|\overrightarrow{X}_2,\omega) & \dots & g_W(\vec{\xi}_1|\overrightarrow{X}_W,\omega) \\ g_1(\vec{\xi}_2|\overrightarrow{X}_1,\omega) & g_2(\vec{\xi}_1|\overrightarrow{X}_2,\omega) & \dots & \dots \\ \vdots \\ g_1(\vec{\xi}_M|\overrightarrow{X}_1,\omega) & g_2(\vec{\xi}_1|\overrightarrow{X}_2,\omega) & \dots & g_W(\vec{\xi}_M|\overrightarrow{X}_W,\omega) \end{bmatrix} \begin{bmatrix} S_1(\omega) \\ S_2(\omega) \\ \vdots \\ S_W(\omega) \end{bmatrix}$$

 \triangleright Objective function: $\min \|\vec{P} - A(\vec{X})\vec{S}\|^2$


Equivalent Sources

Previous Study

- Wideband Acoustical Holography (WBH)
 - When there is only one major sound source present, the monopole-based Wideband Acoustical Holography (WBH) can localize the sound source location and reconstruct the sound field when the system is under-determined. (T. Shi, Y. Liu, and J. Stuart Bolton. "The Use of Wideband Acoustical Holography for Noise Source Visualization." In *INTER-NOISE and NOISE-CON Congress and Conference Proceedings*, vol. 252, no. 2, pp. 479-490. Institute of Noise Control Engineering, 2016.)

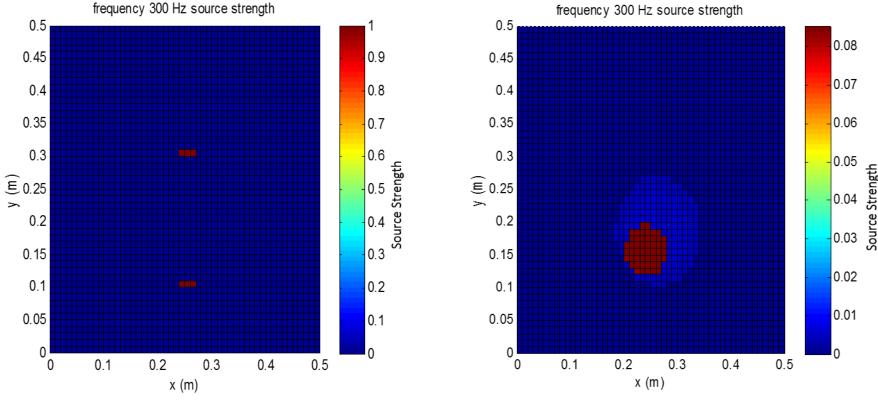

Good results with small number of microphones

Previous Study

RAY W. HERRICK

- Wideband Acoustical Holography (WBH)
 - Combined with Partial Field Decomposition (PFD), WBH can identify complex sound sources with a small number of measurements, e.g., diesel engine. (T. Shi, Y. Liu, J. Stuart Bolton, F. Eberhardt, and W. Frazer. "Diesel Engine Noise Source Visualization with Wideband Acoustical Holography." No. 2017-01-1874. SAE Technical Paper, 2017.)

Experimental setup in Cummins Walesboro Noise and Vibration Lab, Columbus, IN



Crank pulley is the major noise source at these three frequencies

Previous Study

RAY W. HERRICK 26-29 AU CHICAGO,

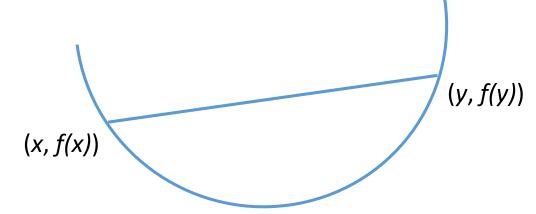
- Wideband Acoustical Holography (WBH)
 - From simulation, it was found that when using WBH method, closely-positioned sources cannot be separated in space and cannot recover appropriate source strength, especially at low frequency. (T. Shi and J. S. Bolton. "Separation of closely-spaced acoustics sources in an under-determined system with convex optimization." *The Journal of the Acoustical Society of America* 143, no. 3 (2018): 1872-1872.)

True source distribution

WBH reconstructed sources

Convex Optimization

- Under-determined system
- Low spatial sampling rate



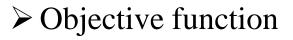
• Compressive Sampling (CS)

$$\min \left\| \vec{P} - A(\vec{X}) \vec{S} \right\|^2$$

- Convex function
- Convex Optimization

➤ Convex function

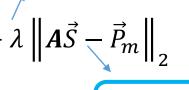
- $f(\theta x + (1 \theta)y) \le \theta f(x) + (1 \theta)f(y)$
- ➤ Convex optimization problem


minimize $f_0(x)$

subject to
$$f_i(x) \le 0$$
, $i = 1, ..., m$

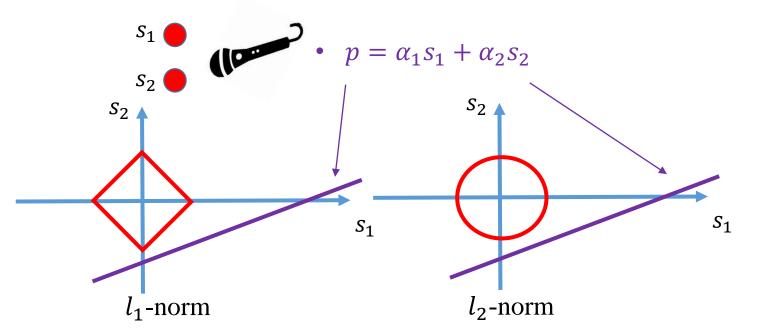
$$h_i(x) = 0, \qquad i = 1, \dots, m$$

Objective Function Formulation



Weighting parameter

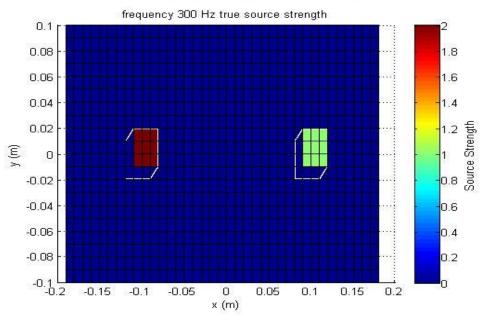
minimize
$$\|\vec{S}\|_1 + \lambda \|A\vec{S} - \vec{P}_m\|_2$$

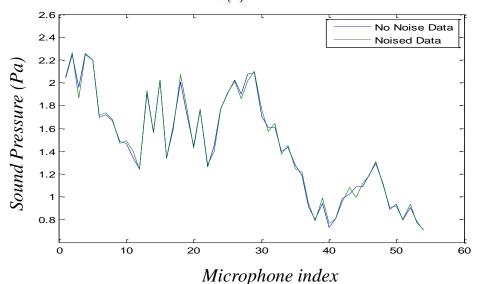

Solution sparsity

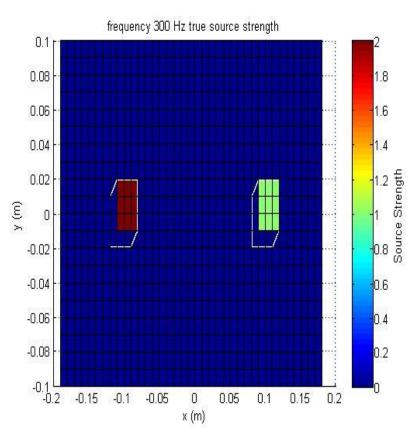
Solution accuracy

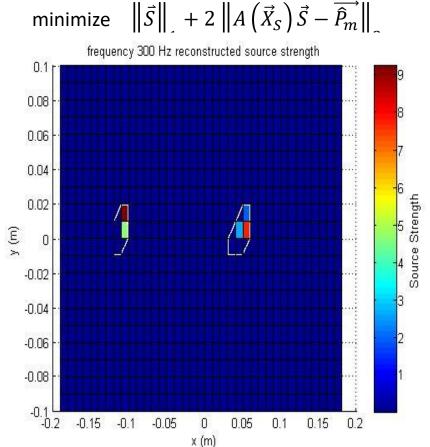
- Careful choosing of the weighting parameter
- l_1 -norm for source strength and l_2 -norm for residual

- M. Grant, S. Boyd, and Y. Ye CVX: software for disciplined convex programming
- $> l_1$ -norm and l_2 -norm
 - l_1 -norm: $\|\vec{S}\|_1 = \sum_{i=1}^m |s_i|$
 - l_2 -norm: $\|\vec{S}\|_2 = \sqrt{s_1^2 + s_1^2 + \dots + s_m^2}$
 - Choice of l_1 -norm ensures solution sparsity




Simulated Closely-Positioned Sources


- ➤ Simulation set up
 - Two simulated sources were placed 0.2 m from each other, source at left was composed of nine monopoles with source strength two, and source at right composed of nine unit source strength monopoles.
 - 54 virtual microphones measurement 0.23 m in front of virtual sources
 - 300Hz, wavelength λ =1.14m; 2000Hz, wavelength λ =0.17m
- > Equivalent source plane
 - -0.19 0.18 m, in *x*-direction
 - -0.1 0.1 m, in *y*-direction
 - 0.01 m spacing in both x- and y-direction, 798 monopoles.
 - 0.02 m in z-direction
- ➤ White Gaussian Random Noise added into the virtual measurement, SNR = 30 dB



Reconstruction on Equivalent Source Plane at 300 Hz

Error < 10%, D_max = 60 frequency 300 Hz reconstructed source strength 0.08 0.06 0.04 0.02 y (m) -0.02-0.04 -0.06 -0.08

True sources distribution Total source strength 27

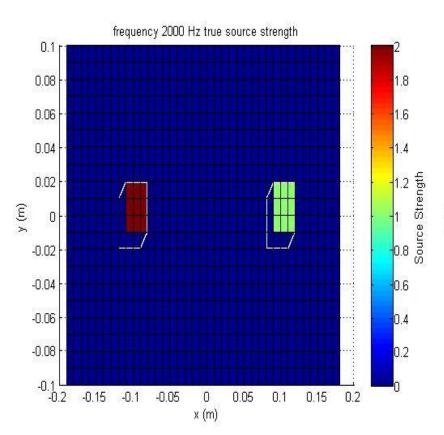
Convex Optimization reconstructed sources Total source strength 25.73

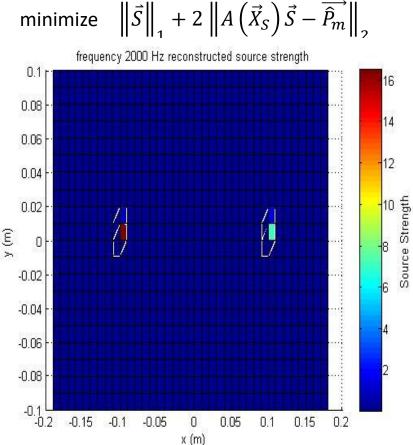
WBH reconstructed sources Total source strength 46.53

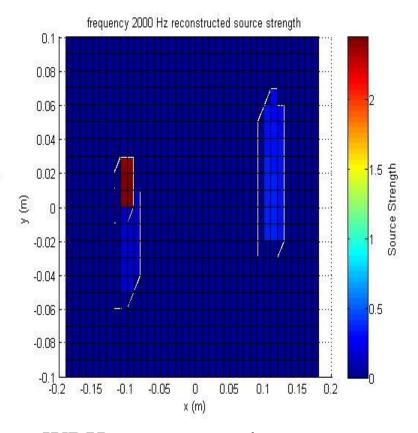
x (m)

0.05

0.1


0.15 0.2


• Two separated sources were identified by Convex Optimization near true source location with nearly-correct source strength, but WBH failed to find either correct source location or source strength.


Reconstruction on Equivalent Source Plane at 2000 Hz

Error < 10%, D_max = 60

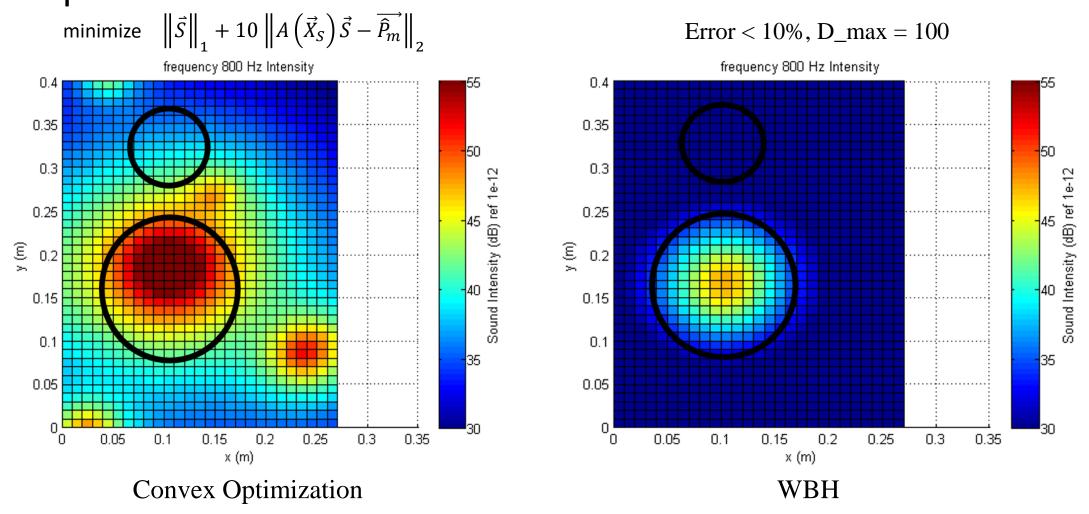
True sources distribution Total source strength 27

Convex Optimization reconstructed sources
Total source strength 26.58

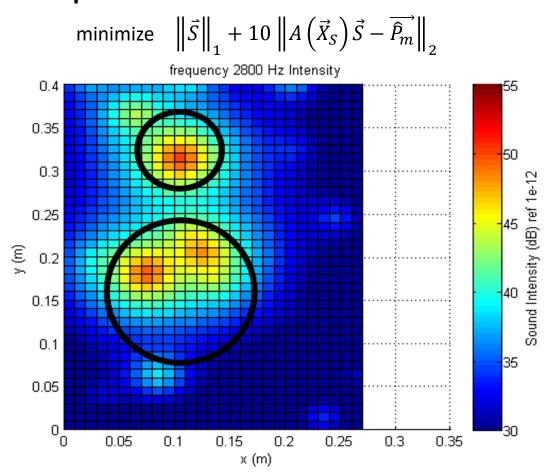
WBH reconstructed sources Total source strength 27.28

• Convex Optimization reconstruction result is more concentrated and location is more accurate than WBH, and WBH underestimates the weaker source.

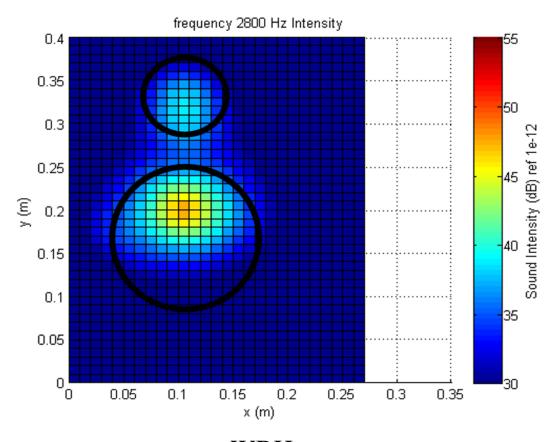
Loudspeaker Test


- > Experimental set up
 - Test with loudspeaker (Infinity Primus P163) as a noise source
 - White noise as input
 - Brule and Kjaer 18 channel irregular array
 - 54 microphones measurement 0.23 m in front of loudspeaker, 10 second measurement duration
- > Equivalent source plane
 - -0.2 0.4 m, in *x*-direction
 - -0.2 0.4 m, in y-direction
 - 0.01 m spacing in both x- and y-direction, 3721 monopoles.
 - 0.02 m in z-direction
 - Sound intensity was reconstructed on loudspeaker front face

Sound Intensity Reconstruction on Loudspeaker Front Face at 800 Hz



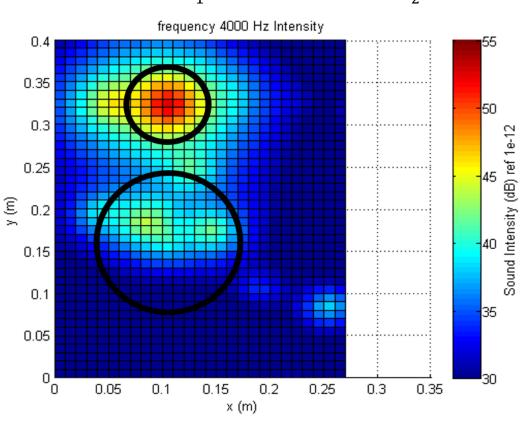
- WBH works well when only a single significant source
- Ghost sources appear in convex optimization case

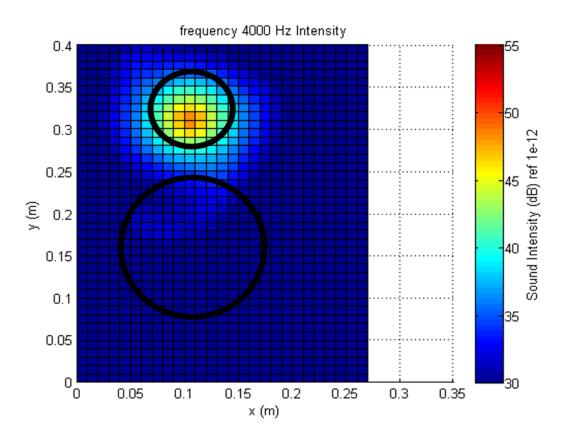

Sound Intensity Reconstruction on Loudspeaker Front Face at 2800 Hz

Error < 10%, D_max = 100

Convex Optimization

- WBH underestimates contribution from tweeter
- Convex optimization gives more balanced result


Sound Intensity Reconstruction on Loudspeaker Front Face at 4000 Hz



minimize
$$\|\vec{S}\|_1 + 10 \|A(\vec{X}_S)\vec{S} - \overrightarrow{\hat{P}_m}\|_2$$

Error < 10%, D_max = 100

Convex Optimization

WBH

WBH underestimates contribution from diaphragm

Difference between WBH and Convex Optimization

> Wideband holography method roughly equivalent to

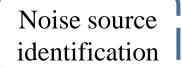
minimize
$$\left\| A\left(\vec{X}_S\right)\vec{S} - \overrightarrow{\hat{P}_m} \right\|_2$$

Steepest gradient method

subject to
$$\mathbf{card}(\vec{S}) \leq \tilde{t}_k$$

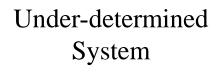
subject to $\operatorname{card}(\vec{S}) \leq \tilde{t}_k$ \circ Adjust \tilde{t}_k at each iteration through T_k

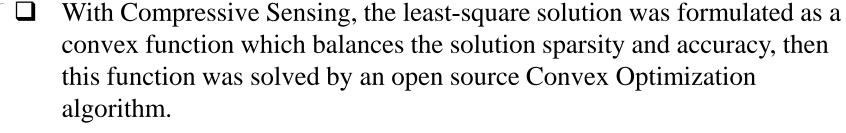
> Convex formulation


minimize
$$\|\vec{S}\|_1 + \lambda \|A(\vec{X}_S)\vec{S} - \overrightarrow{\hat{P}_m}\|_2$$

Different formulation to create the solution sparsity

Conclusions


Near-field Acoustical Holography (NAH)



Fewer microphone measurements

Under-determined System

- From simulation and loudspeaker experiment, it was found that with the proposed solution, the reconstructed source is more accurate than WBH. Closely-positioned sources can be separated in space and recovered with appropriate source strength even at low frequency; at mid and high frequency, convex optimization gives more source details, and a better contour for the weaker source.
- Ghost sources are found in the reconstruction result, due to noise is included in the measurement.
- ☐ Choosing an appropriate weighting parameter is important, since it controls the model tolerance for noise.

Acknowledgement

• The authors are grateful for the funding provided by Cummins Inc., and for helpful discussions with the contract monitor, Frank Eberhardt

