Fibrous Material Microstructure Design for Optimal Structural Damping

Yutong Xue
Purdue University, xue46@purdue.edu

J Stuart Bolton
Purdue University, bolton@purdue.edu

Follow this and additional works at: https://docs.lib.purdue.edu/herrick
FIBROUS MATERIAL MICROSTRUCTURE DESIGN FOR OPTIMAL STRUCTURAL DAMPING

Yutong (Tony) Xue, J. Stuart Bolton
Ray W. Herrick Laboratories
Purdue University
West Lafayette, IN, USA

Presentation available at Herrick E-Pubs: http://docs.lib.purdue.edu/herrick/
INTRODUCTION

• Traditional Damping Treatments – Visco-elastic Core with Metal Skins

Traditional Damping Material[1]

Structure of a Traditional Damper[2]

• Fibrous Damping Treatments – Target Material of this Study

Fibrous Damping Material[3]

Test on Fibrous Dampers[4]
INTRODUCTION

• Literature Review
 - Bruer & Bolton, AIAA 1987\(^5\) – Analysis of different waves propagating in the layered damping structures
 - Wahl & Bolton, JASA 1992\(^6\) – Analysis by Inverse Discrete Fourier Transform (IDFT) on the spatial / temporal response of the layered damping system under line driving force
 - Lai & Bolton, Noise-Con 1998\(^7\) – Modeling to prove reasonable structural damping effect from the light fibrous materials through dissipating nearfield energy
 - Gerdes et al., Noise-Con 1998\(^8\) – Numerical modeling of the structural damping effect from the light fibrous materials by evaluating the in-plane direction particle velocity
 - Nadeau et al., Journal of Aircraft 1999\(^9\) – Tests of aircraft fuselage damping treatment by sound-absorbing blankets and related layered structures
 - Gerdes et al., Noise-Con 2001\(^4\) – Numerical modeling of the structural damping effect from three different visco-elastic dampers compared with fibrous dampers
 - Kim et al., Noise-Con 2015\(^10\) – Bulk property (thickness) design for fibrous materials’ structural damping
 - Xue et al., Applied Acoustics 2018\(^11\) – Fibrous material airflow resistivity prediction based on verified microstructure

• Layered Structures Shown in the Literature

 - The panel damping mostly arises because of the viscous interaction of the fibrous medium and the evanescent near-field of the panel associated with subsonic panel motion
INTRODUCTION

• Literature Review
 - Bruer & Bolton, AIAA 1987\cite{5} – Analysis of different waves propagating in the layered damping structures
 - Wahl & Bolton, JASA 1992\cite{6} – Analysis by Inverse Discrete Fourier Transform (IDFT) on the spatial / temporal response of the layered damping system under line driving force
 - Lai & Bolton, Noise-Con 1998\cite{7} – Modeling to prove reasonable structural damping effect from the light fibrous materials through dissipating nearfield energy
 - Gerdes et al., Noise-Con 1998\cite{8} – Numerical modeling of the structural damping effect from the light fibrous materials by evaluating the in-plane direction particle velocity
 - Nadeau et al., Journal of Aircraft 1999\cite{9} – Tests of aircraft fuselage damping treatment by sound-absorbing blankets and related layered structures
 - Gerdes et al., Noise-Con 2001\cite{4} – Numerical modeling of the structural damping effect from three different visco-elastic dampers compared with fibrous dampers
 - Kim et al., Noise-Con 2015\cite{10} – Bulk property (thickness) design for fibrous materials’ structural damping
 - Xue et al., Applied Acoustics 2018\cite{11} – Fibrous material airflow resistivity prediction based on verified microstructure

• Layered Structures Shown in the Literature

Target Structure of this Study
GENERAL APPROACH

• Acoustical / Damping Performance Prediction Process

- Microstructure inputs → Airflow resistivity → Acoustical properties → Damping properties
- Airflow Resistivity Model (AFR) → JCA, Biot’s Theory & B.C.s (ACM / TMM) → Beam Theory & IDFT (NFD)
- **Fibrous Medium Airflow Resistivity Prediction**\[^{11}\]

 SEM of the target fibrous medium

 Fibrous medium micro-CT scanning

 Fiber 1: main AFR contributor, with mean fiber size r_1

 Fiber 2: with mean fiber size r_2

 Micro-CT scanned fiber radii distribution of the fibrous medium
Fibrous Medium Airflow Resistivity Prediction\cite{11}

Inputs
- Fiber mean radii: r_1, r_2, distribution parameters
- Fiber bulk density: ρ_b
- Component weight fractions: X_1, X_2
- Solid material densities: ρ_1, ρ_2

Output
- Airflow Resistivity: $\sigma = \frac{4\pi\eta}{b^2 \left[\frac{0.640 \ln\left(\frac{1}{C}\right)}{C} + C - 0.737 \right]}$

Step 1: C calculation based on $\rho_b, X_1, X_2, \rho_1, \rho_2$

Step 2: b^2 calculation based on r_1, r_2, distribution parameters and C

Step 3: σ calculation based on C and b^2
After having bulk moduli and wavenumbers of elastic fibers\cite{13, 14},

- **ACM / TMM**
 - **ACM**: incorporate B.C.s into equations system and solve for acoustical properties
 - **TMM**: reduce higher order matrices ([6x6] or [4x4]) to [2x2] by SVD + QR + B.C.s, then combine them with other [2x2] element matrices to solve for acoustical properties

Air field waves \((p_1, v_{z1})\):
- Porous media waves
- Waves propagating in the porous layer
- Air field waves \((p_2, v_{z2})\)

Incident wave:
- Boundary Conditions at \(z = 0\)
- Boundary Conditions at \(z = d\)

Input bulk properties (including airflow resistivity), then predict the acoustical properties based on ACM (solving equations system) or TMM (matrix operations).
NFD

• Choice of IDFT sampling rate γ_s and sampling points number $N^{[12]}$

- Target of the NFD model: calculate spatial responses for wide frequency range
- Key point: for each frequency input, choosing proper γ_s and N to ensure accurate IDFT results over a large enough spatial span for observation

• Step 1: evaluate the wave number domain response of the panel
NFD

- Choice of IDFT sampling rate γ_s and sampling points number $N^{[12]}$

- Target of the NFD model: calculate spatial responses for wide frequency range

- Key point: for each frequency input, choosing proper γ_s and N to ensure accurate IDFT results over a large enough spatial span for observation

- Step 2: decide a proper cutoff level to avoid windowing/truncation effect
NFD

- Choice of IDFT sampling rate γ_s and sampling points number N[12]
- Target of the NFD model: calculate spatial responses for wide frequency range
- Key point: for each frequency input, choosing proper γ_s and N to ensure accurate IDFT results over a large enough spatial span for observation

- Step 3: find the proper sampling rate γ_s for each input frequency

N should be large enough to avoid bias
NFD

- Choice of IDFT sampling rate γ_s and sampling points number N\cite{12}
- Target of the NFD model: calculate spatial responses for wide frequency range
- Key point: for each frequency input, choosing proper γ_s and N to ensure accurate IDFT results over a large enough spatial span for observation

- Step 4: identify the critical frequency f_c

ASA May 2018, Minneapolis, MN
GENERAL APPROACH

- **Acoustical / Damping Performance Prediction Process**
 - Input: Microstructure inputs
 - Airflow resistivity
 - Acoustical properties
 - Damping properties

 - **Airflow Resistivity Model (AFR)**
 - JCA, Biot’s Theory & B.C.s (ACM / TMM)
 - Beam Theory & IDFT (NFD)

- **Materials Microstructure Design Process**

 - **Input**
 - Range of airflow resistivity
 - ACM / TMM & NFD

 - **Range of damping properties prediction**

 - **Select peak value**

 - **Optimal damping and corresponding optimal airflow resistivity**

 - **Output**
 - Optimal fiber size

 - **Input**
 - Addition of macroscopic stiffness

- **Objectives of this Study**
 - Identify the airflow resistivity providing optimal damping performance given panel structure and frequency range of interest
 - Translate the optimal airflow resistivity into optimal fiber sizes for fibrous material microstructure design
 - Demonstrate effect of macroscopic stiffness
MODELING

Modeling Process

- **Porous medium:** thickness (d), AFR (σ), bulk density (ρ_b), porosity (ϕ), tortuosity (α_∞), Young’s modulus (E), Poisson’s ratio (ν), loss factor (η)
- **Panel:** basis weight (m_s), flexural stiffness per unit width (D_p)

Power radiation into the porous layer:

$$P_1 = \frac{1}{2\pi} \text{Re} \left\{ \int_{-\infty}^{\infty} p_1 v_{z1}^2 \, dx \right\}$$

Power radiation into the air:

$$P_2 = \frac{1}{2\pi} \text{Re} \left\{ \int_{-\infty}^{\infty} p_2 v_{z2}^2 \, dx \right\}$$

Power dissipation in the porous layer:

$$P_d^{\text{air}} = P_1 - P_2$$

- **Find maximum P_d (optimal damping) and corresponding optimal σ for frequency of interest**
- **AFR Model combined with least square optimization returns optimal porous material microstructure details (e.g. fiber sizes)**

Panel normal velocity response:

$$v_{z1}(k_x, \omega) = F / [Z_{a1}(k_x, \omega) + Z_m(k_x, \omega)]$$

Inverse Fourier Transform (IFT) for spatial response:

$$v_{z1}(x, \omega) = \frac{1}{2\pi} \int_{-\infty}^{\infty} v_{z1}(k_x, \omega) e^{-ik_x x} \, dk_x$$

Use IDFT to approximate the numerical IFT results:

$$v_{z1}(k\Delta x, \omega) = \frac{1}{N\Delta x} \sum_{n=0}^{N-1} v_{z1}(n\Delta k_x, \omega) e^{-i2\pi nt}$$

Panel mechanical impedance:

$$Z_m = i [(D/\omega)k_x^2 - \omega m_s]$$

Near-field acoustic impedance:

$$Z_{a1} = \frac{\tau_{11}Z_{a2} + \tau_{12}}{\tau_{21}Z_{a2} + \tau_{22}}$$

Far-field acoustic impedance:

$$Z_{aF} = (\omega \rho_{air})/k_{zair}$$

Pressure-velocity relation:

$$p_i = Z_{a1}v_{z1} (i = 1, 2)$$

Transfer Matrix Method / Arbitrary Coefficient Method

Governing Equation Fourier Transform (GEFT)

$$D \frac{\partial^4 w(x, t)}{\partial x^4} + m_s \frac{\partial^2 w(x, t)}{\partial t^2} = -p_1(x, t) + f(t)\delta(x)$$

Near-field-far-field relation

$$\begin{bmatrix} P_1 \\ v_{z1} \end{bmatrix}_{z=0} = \begin{bmatrix} T_{11} & T_{12} \\ T_{21} & T_{22} \end{bmatrix} \begin{bmatrix} P_2 \\ v_{z2} \end{bmatrix}_{z=d}$$

Complex wave numbers

For limp or rigid frame, $i = 1$ for limp or rigid frame, $i = 3$ for elastic frame

$$k_{zi} = \sqrt{k_x^2 - k_z^2}$$

Equation system based on propagating waves and B.C.s

ASA May 2018, Minneapolis, MN
RESULTS – BARE PANEL

- Spatial Velocity Level (dB)

Total points N = 16384. Wave# sampling rate $\gamma_s = 66-383\text{rad/m}$. Frequency range = 10-10000Hz

Panel Thickness = 3 mm. Panel Loss Factor = 0.003. Air Loss Factor = 0.0005
RESULTS – LIMP LAYER

- Spatial Velocity Level (dB)

Total points N = 16384. Wave# sampling rate $\gamma_s = 66-383$ rad/m. Frequency range = 10-10000 Hz
Panel Thickness = 3 mm. Panel Loss Factor = 0.003. Air Loss Factor = 0.0005
Porous Layer Thickness = 3 cm. AFR = 20000 Rayls/m. Bulk Density = 10 kg/m3

![Graph showing velocity level vs. frequency and distance]
RESULTS – COMPARISON

- Spatial Velocity Level (dB)

Panel Thickness = 3 mm. Panel Loss Factor = 0.003. Air Loss Factor = 0.0005
Porous Layer Thickness = 3 cm. AFR = 20000 Rayls/m. Bulk Density = 10 kg/m³

Half-space air

Force

x = 0

VS.

Limp porous layer

Force

x = 0

10 Hz

56 Hz

316 Hz

1778 Hz

10000 Hz

ASA May 2018, Minneapolis, MN
RESULTS – COMPARISON

• Spatial Velocity Level (dB)
 - Difference between two cases for a 3 mm thick aluminum
 - Significant attenuation in subsonic region below critical frequency
RESULTS – COMPARISON

- Spatial Velocity Level (dB)
 - Difference between two cases for a 1.5 mm thick aluminum panel
 - Compare to 3 mm panel: higher critical frequency and stronger attenuation
RESULTS – COMPARISON

• Spatial Velocity Level (dB)
 - Difference between two cases for a 6 mm thick aluminum panel
 - Compare to 3 mm panel: lower critical frequency and smaller attenuation
RESULTS – BARE PANEL

• Power Distribution

Half-space air

\[x = 0 \]

\[\text{Force} \]

\[P_{in} : \text{Power input by the driving force} \]

\[P_s : \text{Power staying in the panel} \]

\[P_1 = P_2 : \text{Power radiating into the air} \]

\[f_c \]

\[\times 10^{-3} \text{ Panel Thickness = 3 mm. Panel Loss Factor = 0.003, Air Loss Factor = 0.0005} \]
RESULTS – LIMP LAYER

• Power Distribution

Half-space air
Limp porous layer
\[x = 0 \]

Subsonic region attenuation due to power dissipation within the layer

\[P_i \]: Power input by the driving force
\[P_s \]: Power staying in the panel
\[P_1 \]: Power radiating into the layer
\[P_d \]: Power dissipation within the layer
\[P_2 \]: Power radiating into the air

Panel Thickness = 3 mm. Panel Loss Factor = 0.003. Air Loss Factor = 0.0005
Porous Layer Thickness = 3 cm. AFR = 20000 Rayls/m. Bulk Density = 10 kg/m³
• Power Distribution

Panel Thickness = 3 mm. Panel Loss Factor = 0.003. Air Loss Factor = 0.0005
Porous Layer Thickness = 30 mm. Airflow Resistivity = 20000 Rayls/m. Bulk Density = 10 kg/m³.
Young's Modulus = 10^6 Pa. Poisson's Ratio = 0.3. Loss Factor = 0.3

P_{in}: Power input by the driving force
P_1: Power radiating into the layer
P_d: Power dissipation within the layer
P_s: Power staying in the panel
P_2: Power radiating into the air

Stronger attenuation achieved by adding macroscopic stiffness to the layer
RESULTS

- Airflow Resistivity Effect on Power Dissipation
 - Optimal damping and corresponding optimal AFRs at different frequencies
• Finding Optimal Fiber Size for Optimal Damping – least square fitting σ’s
 - Aluminum panel thickness = 3 mm; Loss factor = 0.003; Air loss factor = 0.0005
 - Polymer fibrous layer thickness = 3 cm; Bulk density = 10 kg/m3; Tortuosity = 1.2; Porosity = 99%
 - Fiber inputs: $\rho_1 = 910$ kg/m3; $\rho_2 = 1380$ kg/m3; $X_1 = X_2 = 50\%$; $r_2 = 13$ μm; $r_1 \rightarrow$ design target
RESULTS – FIBER DESIGN

• Finding Optimal Fiber Size for Optimal Damping – translating into optimal fiber sizes
 - Aluminum panel thickness = 3 mm; Loss factor = 0.003; Air loss factor = 0.0005
 - Polymer fibrous layer thickness = 3 cm; Bulk density= 10 kg/m^3; Tortuosity = 1.2; Porosity = 99%
 - Fiber inputs: \(\rho_1 = 910 \text{ kg/m}^3; \rho_2 = 1380 \text{ kg/m}^3; X_1 = X_2 = 50\%; r_2 = 13 \text{ \mu m}; r_1 \to \text{design target} \)
CONCLUSIONS

• An optimal airflow resistivity can be found to provide optimal damping (power dissipation within the fibrous layer) at each frequency based on ACM / TMM and NFD.

• Corresponding to the optimal airflow resistivity, an optimal fiber size then can be found at each frequency based on AFR and numerical optimization method.

• Fibrous dampers are effective at reducing subsonic panel vibrations while absorbing the radiating sound from the panel at the supersonic region.

• Fibrous dampers are more effective on thinner structures.

• Adding macroscopic stiffness to the fibers helps to improve damping performance.

• Relatively large fibers are effective at damping low frequency vibration.
ACKNOWLEDGEMENTS

We sincerely thank 3M for their financial support, and for the technical support from Jonathan Alexander, Myles Brostrom, Ronald Gerdes, Tom Hanschen, Thomas Herdtle, Seungkyu Lee and Taewook Yoo.
REFERENCES

• Developed cases for the “TMM + NFD + AFR” structural damping model
Fibrous layer thickness = 30 mm, bulk density = 10 kg/m3

- Inter-Noise 2018 at Chicago, IL

- e.g., a layer of sparse, coarse glass fibers
- e.g., a layer of dense, fine polymeric fibers

$\sigma = 50000$ Rayls/m
$\sigma = 20000$ Rayls/m
$\sigma = 10000$ Rayls/m

Convective pressure

Constraint (m_i, J_i)

Half-space air

Fibrous layer

Panel

z
x