








RESULTS – LIMP LAYER
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• Spatial Velocity Level (dB)

Limp porous layer
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RESULTS – COMPARISON
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• Spatial Velocity Level (dB)

Force

𝑥 = 0
Limp porous layer

Force

Half-space air

Half-space air

VS.

𝑥 = 0

10 Hz

56 Hz

316 Hz

1778 Hz

10000 Hz
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RESULTS – COMPARISON
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• Spatial Velocity Level (dB) 
Ø Difference between two cases for a 3 mm thick aluminum
Ø Significant attenuation in subsonic region below critical frequency
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RESULTS – COMPARISON
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• Spatial Velocity Level (dB) 
Ø Difference between two cases for a 1.5 mm thick aluminum
Ø Compare to 3 mm panel: higher critical frequency and stronger attenuation
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RESULTS – COMPARISON
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• Spatial Velocity Level (dB) 
Ø Difference between two cases for a 6 mm thick aluminum
Ø Compare to 3 mm panel: lower critical frequency and smaller attenuation
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RESULTS – BARE PANEL
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• Power Distribution

𝑷𝒊𝒏: Power input by the driving force

𝑷𝒔: Power staying in the panel

𝑷𝟏 = 𝑷𝟐: Power radiating into the air

Power 
input

Power radiating 
to the air

Power 
staying 
in the 
panel

Force

Half-space air
𝑥 = 0
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RESULTS – LIMP LAYER
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• Power Distribution

𝑷𝒊𝒏: Power input by the driving force

𝑷𝒔: Power staying in the panel

𝑷𝟏: Power radiating into the layer

𝑷𝒅: Power dissipation within the layer

𝑷𝟐: Power radiating into the air

Power 
input

Power radiating 
to the layer

Power radiating 
to the air

Power 
staying 
in the 
panel

Power 
dissipation

Ø Subsonic region attenuation due to 
power dissipation within the layer 

Limp porous layer
𝑥 = 0

Half-space air

Force
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RESULTS – ELASTIC LAYER
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• Power Distribution

𝑷𝒊𝒏: Power input by the driving force

𝑷𝒔: Power staying in the panel

𝑷𝟏: Power radiating into the layer

𝑷𝒅: Power dissipation within the layer

𝑷𝟐: Power radiating into the air

Power 
input

Power radiating 
to the layer

Power radiating 
to the air

Power 
staying 
in the 
panel

Power 
dissipation

Ø Stronger attenuation achieved by adding 
macroscopic stiffness to the layer 

Poro-elastic layer

Force
𝑥 = 0

Half-space air
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RESULTS
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• Airflow Resistivity Effect on Power Dissipation
Ø Optimal damping and corresponding optimal AFRs at different frequencies

Frequency range
of interest
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RESULTS – FIBER DESIGN
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• Finding Optimal Fiber Size for Optimal Damping – least square fitting 𝝈’s
Ø Aluminum panel thickness = 3 mm; Loss factor = 0.003; Air loss factor = 0.0005
Ø Polymer fibrous layer thickness = 3 cm; Bulk density= 10 kg/m^3; Tortuosity = 1.2; Porosity = 99%
Ø Fiber inputs: 𝝆𝟏 = 𝟗𝟏𝟎	𝐤𝐠/𝐦𝟑; 𝝆𝟐 = 𝟏𝟑𝟖𝟎	𝐤𝐠/𝐦𝟑; 𝑿𝟏 = 𝑿𝟐 = 𝟓𝟎%; 𝒓𝟐 = 𝟏𝟑	𝛍𝐦; 𝒓𝟏 à design target
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RESULTS – FIBER DESIGN
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• Finding Optimal Fiber Size for Optimal Damping – translating into optimal fiber sizes
Ø Aluminum panel thickness = 3 mm; Loss factor = 0.003; Air loss factor = 0.0005
Ø Polymer fibrous layer thickness = 3 cm; Bulk density= 10 kg/m^3; Tortuosity = 1.2; Porosity = 99%
Ø Fiber inputs: 𝝆𝟏 = 𝟗𝟏𝟎	𝐤𝐠/𝐦𝟑; 𝝆𝟐 = 𝟏𝟑𝟖𝟎	𝐤𝐠/𝐦𝟑; 𝑿𝟏 = 𝑿𝟐 = 𝟓𝟎%; 𝒓𝟐 = 𝟏𝟑	𝛍𝐦; 𝒓𝟏 à design target
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CONCLUSIONS
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• An optimal airflow resistivity can be found to provide optimal damping (power
dissipation within the fibrous layer) at each frequency based on ACM / TMM and NFD

• Corresponding to the optimal airflow resistivity, an optimal fiber size then can be
found at each frequency based on AFR and numerical optimization method

• Fibrous dampers are effective at reducing subsonic panel vibrations while absorbing
the radiating sound from the panel at the supersonic region

• Fibrous dampers are more effective on thinner structures

• Adding macroscopic stiffness to the fibers helps to improve damping performance

• Relatively large fibers are effective at damping low frequency vibration
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Limp porous layer

Half-space air

Force
Panel

Limp porous layer
Panel

Perforated skin Half-space air

Force

Visco-elastic layer modeled as elastic solid

Half-space air

ForcePanel
Bonded
Bonded

Metal skin

Poro-elastic layer

Half-space air

ForcePanel
Bonded
Bonded

Metal skin

Poro-elastic layer

Half-space air

ForcePanel
Bonded

Poro-elastic layer

Half-space air

ForcePanel
BondedAdhesives modeled as elastic solid Bonded

• Developed cases for the “TMM + NFD + AFR” structural damping model

constraint constraint
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EXTENSION
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• Inter-Noise 2018 at Chicago, IL
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e.g., a layer of
sparse, coarse
glass fibers

e.g., a layer of 
dense, fine
polymeric fibers

fc
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