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a b s t r a c t

DNA guanine (G)-quadruplexes (G4s) are unique secondary structures formed by two or more stacked G-
tetrads in G-rich DNA sequences. These structures have been found to play a crucial role in highly tran-
scribed genes, especially in cancer-related oncogenes, making them attractive targets for cancer thera-
peutics. Significantly, targeting oncogene promoter G4 structures has emerged as a promising strategy
to address the challenge of undruggable and drug-resistant proteins, such as MYC, BCL2, KRAS, and
EGFR. Natural products have long been an important source of drug discovery, particularly in the fields
of cancer and infectious diseases. Noteworthy progress has recently been made in the discovery of nat-
urally occurring DNA G4-targeting drugs. Numerous DNA G4s, such as MYC-G4, BCL2-G4, KRAS-G4,
PDGFR-b-G4, VEGF-G4, and telomeric-G4, have been identified as potential targets of natural products,
including berberine, telomestatin, quindoline, sanguinarine, isaindigotone, and many others. Herein,
we summarize and evaluate recent advancements in natural and nature-derived DNA G4 binders, focus-
ing on understanding the structural recognition of DNA G4s by small molecules derived from nature. We
also discuss the challenges and opportunities associated with developing drugs that target DNA G4s.

� 2024 THE AUTHORS. Published by Elsevier LTD on behalf of Chinese Academy of Engineering and
Higher Education Press Limited Company. This is an open access article under the CC BY-NC-ND license

(http://creativecommons.org/licenses/by-nc-nd/4.0/).

1. Introduction

The concept that DNA guanine (G)-quadruplexes (G4s) are a
novel class of biomolecular targets for cancer drug discovery origi-
nated in the late 1980s [1,2], although the ability of guanine deriva-
tives to self-assemble into four-stranded structures has been
recognized since 1962 [3]. Telomeric-G4, formed in the single-
strand telomeric guanine-rich DNA sequences in eukaryotic chro-
mosomes under near-physiological conditions, was the first exam-
ple of G4 formation in organisms [1,4,5]. In 1997, human
telomerase was found to be inhibited by telomeric-G4-interactive
small molecules [6]. Subsequently, the formation of G4 in the pro-
moter region of the human oncogene MYC (MYC-G4) was reported
in 2002, which provided initial evidence for the biological signifi-
cance of DNA G4 in oncogene expression and demonstrated that
their stabilization by G4-interactive small molecules can cause the
downregulation of oncogenes [7]. This study sparked interest in

non-telomeric -G4s and established the targeting of oncogene pro-
moter G4s as an alternative strategy for cancer therapy, with MYC-
G4 as a model system. Subsequently, a large number of oncogene
promoter G4s have been discovered, including KRAS-, PDGFR-b-,
BCL-2-, c-KIT-, VEGF-, and EGFR-G4s [8–15]. The 2009 Nobel Prize
in Physiology or Medicine was awarded to Elizabeth Blackburn,
Carol Greider, and Jack Szostak for the discovery of telomeres and
telomerase. Since then, G4s have garnered significant attention as
promising anticancer drug targets. In addition to their association
with cancers, G4s are linked to various other diseases, including
neurodegenerative diseases [16,17] and viral and parasitic infec-
tions [18,19]. The expansion of massive GGGGCC repeats has been
implicated in frontotemporal dementia (FTD) and amyotrophic lat-
eral sclerosis (ALS) [17]. Helicase defects can lead to the accumula-
tion of G4s in both the transcriptome and genome, resulting inmany
severe congenital diseases, such as Fanconi anemia (FANCJ-
deficient), primordial dwarfism (BLM-deficient), Werner syndrome
(WRN-deficient), and so forth [17,20]. The strong correlation
between G4 disruption/formation and disease onset—including
sporadic Alzheimer’s disease, severe familiar coagulopathy, atopic
dermatitis, myocardial infarction, and deafness—has also been
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2095-8099/� 2024 THE AUTHORS. Published by Elsevier LTD on behalf of Chinese Academy of Engineering and Higher Education Press Limited Company.
This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

⇑ Corresponding authors.
E-mail addresses: kbwang@cpu.edu.cn (K.-B. Wang), yangdz@purdue.edu

(D. Yang).

Engineering 38 (2024) 39–51

Contents lists available at ScienceDirect

Engineering

journal homepage: www.elsevier .com/ locate/eng

http://crossmark.crossref.org/dialog/?doi=10.1016/j.eng.2024.03.015&domain=pdf
http://creativecommons.org/licenses/by-nc-nd/4.0/
https://doi.org/10.1016/j.eng.2024.03.015
http://creativecommons.org/licenses/by-nc-nd/4.0/
mailto:kbwang@cpu.edu.cn
mailto:yangdz@purdue.edu
https://doi.org/10.1016/j.eng.2024.03.015
http://www.sciencedirect.com/science/journal/20958099
http://www.elsevier.com/locate/eng


reported recently [21]. Therefore, it is of great significance to com-
prehend G4 structures, unravel the biological functions of G4s,
and explore novel G4-targeting compounds for disease treatment.

DNA G4s are secondary structures of nucleic acid consisting of
two or more stacked G-tetrads, which are formed by four guanines
in G-rich sequences arranged in a circular manner and connected
via Hoogsteen hydrogen bonds. The stable stacking of G-tetrads
also requires the coordination of monovalent cations, such as K+

or Na+, with the guanine O6 (Fig. 1(a)) [22,23]. Although G4s can
form intermolecularly or intramolecularly, most biologically rele-
vant G4s are intramolecular and consist of a core comprising three
tetrads [24]. Interestingly, G4s are characterized by high structural
diversity, in contrast to the rather uniform duplex structures
(Fig. 1(b)) [24], as they can vary in terms of the directionality of
G-tracts, loop type, loop length, or loop sequences. Moreover,

G4s exhibit diversity in the capping structures that cover the
external tetrads. For example, MYC-G4 and VEGF-G4 are canonical
right-handed parallel-strand G4s, adhering to the well-established
rules for G4 formation with a consensus sequence of
G�3(N1�7G�3)�3 (Fig. 1(c)) [24]. Telomeric (Tel) hybrid-1 and
hybrid-2 G4s are hybrid structures consisting of three parallel-
oriented G-tracts and one antiparallel-oriented G-tract, arranged
in different order (Fig. 1(c)) [24]. In contrast, KRAS-G4, PDGFR-b-
G4, and EGFR-G4 represent bulged G4, fill-in vacancy G4, and
snap-back G4 topologies, respectively, which deviate from the
canonical G4 structures (Fig. 1(c)) [15,24]. Moreover, hTERT-G4 is
a distinctive tertiary DNA G4 structure consisting of an end-to-
end stacked pair of G4s with a 26-base long loop, making it the first
reported instance of such a configuration (Fig. 1(c)) [25]. These dis-
tinct G4 structures are proposed to interact with various proteins

Fig. 1. The secondary DNA G4 structures. (a) G-rich sequences form G-tetrads that make up the core of DNA G4s. The four guanine bases in the G-tetrad are connected by
Hoogsteen hydrogen bonds. The stacked tetrads are stabilized by the coordination of K+ or Na+ (black ball). Xm: different numbers (m) of loop residues (X); R: (deoxy)ribose-
phosphate backbones; M: metal cations. (b) Schematic representation of parallel, antiparallel, and hybrid unimolecular DNA G4 structures. The different types of loops are
marked. (c) Schematic representation of several human genome G4s with distinct topologies. Tel: telomeric; dGMP: deoxyguanosine-50-monophosphate.
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to perform specific biological functions [26]. The unique diversity
of G4s among DNA secondary structures presents opportunities
for the development of specific drugs that target individual G4s.

By using G4-specific antibodies and chemical probes, DNA G4s
have been mapped in the human genome and visualized in living
human cells [27–31]. Under G4-inducing conditions, the human
genome has the potential to form over 70 000 G4s [32]. However,
only around 10 000 G4 structures have been identified in human
chromatin and living cells [30,31]. These findings suggest that
DNA G4 formation is a dynamic process that is highly associated
with specific chromosome structures, genomic features, and cell
status. Furthermore, G4-forming sequences are highly enriched
in key human gene regulatory regions, such as 50-untranslated
regions, oncogene promoters, and telomeres [30,31]. The biological
function of DNA G4s, which can be seen as epigenetic modulators,
involves the regulation of different cellular processes, including
gene transcription, translation, and replication; genome stability;
and telomere maintenance [26,27,33]. The presence of DNA G4s
is substantially associated with highly transcribed genes involved
in cancer and neurodegenerative disorders [27,34]. The formation
of DNA G4 structures in human cancer cells is prominent in specific
cell cycles and occurs in a dynamic equilibrium between folded
and unfolded states. This equilibrium can be shifted toward a
folded state by using G4-stabilizing compounds, which then sup-
press oncogene expression by interfering with the interaction
between G4s and transcriptional factors or functional proteins,
ultimately leading to cancer cell death [31]. Moreover, the forma-
tion of DNA G4 structures is associated with increased heterogene-
ity in breast cancers, thereby facilitating stratification and enabling
the discovery of personalized cancer treatment strategies [35].
Taken together, DNA G4s have been recognized as distinct targets
for cancer treatment, particularly in targeting ‘‘undruggable” and

drug-resistant proteins such as MYC, EGFR, KRAS, and PDGFR-b
[36,37].

Natural products and their derivatives have historically played
an important role in the discovery of drugs, particularly for cancer
and infectious diseases [38,39]. In fact, more than 60% of approved
anticancer drugs are derived from natural sources, including the
famous antitumor drugs paclitaxel, teniposide, camptothecin, and
vincristine [39]. Natural products have intrinsic advantages in
structural complexity and functional diversity [38]. Notably, many
natural and nature-derived compounds, including telomestatin,
quindoline i, berberine, coptisine, epiberberine, and sanguinarine,
have been found to bind DNA G4 structures with potent affinity
and anti-cancer activity (Fig. 2) [37,40–44], while the compounds
listed above are just one tip of the iceberg for natural products to
be excavated of their DNA G4-targeting activities.

In this review, we summarize and evaluate the recent progress
related to natural and nature-derived DNA G4 binders, with an
emphasis on structural studies of DNA G4s in complex with natural
small molecules. We then discuss the challenges and opportunities
met in the development of DNA G4-targeting drugs based on nat-
ural products.

2. Telomestatin and its derivatives are potent telomeric-G-
quadruplex stabilizers

Human telomeres are typically made up of 5–8 kilobases (kb)
d(TTAGGG)n G-rich DNA repeats with a single-stranded 30-end
chromosomal overhang of 150–200 nucleotides [45–47]. In
general, 50–200 bases of telomeres are lost per round of replica-
tion, and the cell ultimately undergoes senescence and apoptosis
when the telomeric DNA reaches a critical length [46,48]. However,
the telomerase enzyme, which is selectively activated in most

Fig. 2. Chemical structures of reported important natural and nature-derived small molecules that target DNA G4s.
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tumor cells, maintains the telomere length through its reverse
transcriptase activity and thus has a critical role in cellular trans-
formation and immortalization [48,49]. G-rich human telomeres
can form two distinct types of DNA G4s—namely, hybrid-1 and
hybrid-2—in physiologically relevant solution conditions. The sta-
bilization of telomeric G4s by small molecules could hinder telom-
ere extensionmediated by telomerase or alternative lengthening of
telomeres (ALT), leading to the shortening of the telomeric DNA
and finally causing cancer cell death [24,50,51]. Therefore, devel-
oping telomeric-G4 stabilizers has emerged as an effective anti-
cancer strategy and has been supported by extensive studies
[24,52–58].

Telomestatin, a natural macrocyclic compound isolated from
Streptomyces annulus 3533-SV4, consists of seven oxazole rings
and a thiazoline ring. It exhibits potent inhibitory activity against
telomerase (Fig. 2) [59]. This compound has been found to specif-
ically inhibit telomerase activity by stabilizing telomeric-G4s with
an a half maximal inhibitory concentration value with telomerase
repeat amplification protocol (IC50-TRAP) of 5 nmol�L�1—much
more potent than any other reported G4-interactive molecules
[42,59]. In addition, telomestatin exhibits antitumor activity
against a number of cancer cells, while displaying negligible toxic-
ity to normal cells. Therefore, telomestatin has been considered as
a promising anticancer drug candidate and has attracted great
research attention [57,60]. However, its low water solubility,
together with the difficulty of obtaining large amounts of telomes-
tatin, limits further clinical evaluation [61,62].

Notably, a number of telomestatin derivatives with improved
physicochemical and biological properties have been reported
[57,63–69]. Among them, one compound called L2H2-6M(2)OTD
(L2H) (Fig. 2) containing six oxazole rings and two alkyl amine side
chains showed comparable bioactivity to telomestatin (IC50-TRAP =
20 nmol�L�1) [57]. The alkyl amine side chains are positively
charged under physiological conditions, which facilitates

electrostatic interaction with the negatively charged phosphate
backbone of telomeric-G4 and improves water solubility. Impor-
tantly, the nuclear magnetic resonance (NMR) solution structure
of Tel-hybrid-1 G4 in complex with L2H has been resolved by
Chung et al. [60] (Fig. 3). The determined complex structure
showed that L2H disrupts the original T–A base pair in the 50-end
capping structure of the Tel-hybrid-1 G4. Instead, L2H is stacked
on the 50-end outer G-tetrad for extensive p-stacking interactions.
The proximity of the two alkyl amine side chains to the phosphate
groups of nucleotides facilitates electrostatic interactions, which
play a critical role in establishing strong binding affinity. Collec-
tively, this solution structure is the only available complex struc-
ture of a human telomeric-G4 bound to a telomestatin derivative,
which provides valuable insight into the design of telomeric-G4-
targeting drugs. Hence, many L2H derivatives with various func-
tional groups have been synthesized [63,66–68,70].

3. Quindoline and its derivatives as MYC G-quadruplex
stabilizers

Aside from telomeric DNA G4s, oncogene promoter G4s have
attracted great attention, especially the MYC oncogene promoter
G4 [22]. Stabilizing oncogene promoter G4 structures to modulate
downstream gene expression has emerged as an alternative thera-
peutic strategy for cancer treatment [8,22]. Pioneering work from
the Hurley group reported that a DNA G4 formed in the MYC
proximal-promoter region (MYC-G4) [7]; it works as a gene tran-
scription repressor and can be stabilized by G4-targeting small
molecules for MYC transcription inhibition. This work established
a paradigm for subsequent promoter G4 studies for genes such
as KRAS, PDGFR-b, BCL-2, c-KIT, VEGF, and many others [8–14].

MYC, a validated ‘‘driver” oncogene, is highly deregulated in
human cells and exhibits overexpression in more than 80% of
human cancers [71–73]. The MYC oncoprotein plays pivotal roles
in tumor cell proliferation, differentiation, metastases, and drug
resistance and is considered an attractive cancer therapeutic target
[71–73]. However, it is well-known to be ‘‘undruggable” due to its
flat surface, which lacks a compound binding pocket [72–74]. Sig-
nificantly, the binding and stabilization of small molecules toMYC-
G4 can effectively reduceMYC expression, ultimately leading to the
death of cancer cells [7]. Therefore, MYC-G4 represents an alterna-
tive target for MYC-signaling downregulation and has been attract-
ing great attention from the cancer community.

The major free MYC-G4 structure was determined by our lab in
2005 [75]. However, finding a small molecule that binds toMYC-G4
with sufficient affinity and specificity for structure determination
has been challenging [24]. Although we have been extensively
working on finding a specific MYC-G4 stabilizer, it took six more
years before we determined the first high-resolution NMR solution
structure of theMYC-G4 in complex with two molecules of quindo-
line i (a quindoline derivative). This is also the first complex struc-
ture of a biologically relevant promoter G4 recognized by small
molecules (Fig. 3(b)) [76]. Quindoline i is a derivative of the natu-
rally occurring indoloquinoline alkaloid cryptolepine [77]. Cryp-
tolepine was isolated from Cryptolepis triangularis N.E.Br. It has a
variety of bioactivities, including antimicrobial, antibacterial,
anti-inflammatory, and anticancer activities [77,78]. Moreover,
cryptolepine has been used as an antimalarial drug in Central
andWestern African nations [41,78]. In the year 2000, cryptolepine
and its derivatives were shown to have antitumor activity, which
may be connected with their DNA G4 interactions [79]. Since then,
a number of cryptolepine derivatives have been synthesized, some
of which have shown a potent MYC-G4 stabilization effect, includ-
ing quindoline i [41,80,81].

The NMR titration data of quindoline i to MYC-G4 exhibited a
high spectral quality that was suitable for structure determination

Fig. 3. (a) NMR-based solution structure of a telomestatin derivative (L2H, yellow)
in complex with the Tel-hybrid 1 G4. L2H covers the entire 50-end outer G-tetrad
core for extensive p-stacking interactions. (b) NMR-based solution structure of
quindoline i (yellow) in complex with the human MYC oncogene promoter G4.
Quindoline i recruits the flanking residues A6 and T23 to form a ligand–base co-
plane that stacks on the outer G-tetrads for adaptive binding pocket formation.
PDB: protein data bank.
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[76]. Therefore, the 2:1 quindoline i–MYC-G4 complex structure
was determined and showed several unexpected features, such
as the rearrangement of the flanking residues induced by quindo-
line i to form a binding pocket (Fig. 3(b)) [76]. At each end, quindo-
line i recruits the adjacent flanking residue A6 or T23 to form a
‘‘quasi-triad plane” that stacks on the outer G-tetrads of the
MYC-G4. The binding of quindoline i involves both electrostatic
and p-stacking interactions. Importantly, the diethylamino func-
tional groups may have electrostatic interactions with the DNA
phosphate backbone. It is notable that this is the first structural
study showing the simultaneous binding of a DNA G4 by two small
molecules. It should be pointed out that the crescent-shaped quin-
doline only covers two guanines of a G-tetrad for p-stacking inter-
actions, which is different from previously described and more
extensive symmetric cyclic ring-fused compounds, including
telomestatin and TMPyP4, that overlap evenly with all four guani-
nes in the external G-tetrad for maximum stacking interactions.

However, compounds with symmetric cyclic fused rings appear
to bind G4s with less specificity, whereas asymmetric compounds
bearing a smaller stacking skeleton—such as quindoline and quar-
floxin—are more likely to bind to a specific G4 in a defined manner.
Therefore, it is of great interest to develop more crescent-shaped
compounds for specific G4-targeting drug discovery. Indeed,
inspired by quindoline, a growing number of compounds that are
specific for a particular G4 have been discovered from both natural
and synthetic compounds in subsequent studies [36,82–90].

4. Berberine and its derivatives as telomeric and promoter G-
quadruplex stabilizers

In general, the selectivity of G4-targeting compounds is unsat-
isfactory, as it is often difficult for such compounds to effectively
differentiate among multiple DNA G4s. A well-known example is
berberine, a natural isoquinoline alkaloid found in many medicinal
plants, including Hydrastis canadensis, Coptis chinensis, and Berberis
aristate [91,92]. Berberine has a broad array of pharmacological
functions implicated in its protein and nucleic acid interactions,
such as anti-cancer, anti-inflammatory, antimicrobial, and antidia-
betic activities, and has been used in traditional Chinese prescrip-
tions for hundreds of years [91,92]. Recently, berberine and its
derivatives were found to be effective G4 stabilizers, uncovering
a new functional mechanism of berberine scaffolds for drug devel-
opment [37,93]. Notably, berberine is non-selective for DNA G4s
and can bind to both the telomeric-G4 and a number of gene pro-
moter G4s.

4.1. Berberine binds to human parallel telomeric-G4 with a 6:2
stoichiometry

The first DNA G4 in complex with berberine was determined by
X-ray crystal diffraction in 2013, when six berberine molecules
were found to bind to a parallel G4 dimer formed by the human
telomere sequence [94]. In the determined crystal structure, two
molecules of berberine match each other and form a co-plane with
their concave sites in the center, which then stack onto the outer
G-tetrad of the parallel telomeric-G4 (Fig. 4). Interestingly, the
A2 and T13 residues from two different DNA monomers are con-
nected by Watson–Crick hydrogen bonds, creating a binding
pocket at the two 50-end sites where the paired berberine is located
[94]. In this way, a drug-stabilized 50-end-to-50-end DNA G4 dimer
is formed with a total of 6:2 berberine–G4 binding stoichiometry
[94]. Notably, the biological significance of this determined crystal
structure is limited due to its potential association with crystal
packing rather than being a unique type of 6:2 berberine–G4 com-
plex in solution. Nevertheless, the dimeric binding mode derived

from the crystal structure has been used in many studies for devel-
oping G4-targeting berberine derivatives [95–97].

4.2. Berberine and coptisine bind to MYC and KRAS promoter G-
quadruplexes

We investigated the binding of berberine with various DNA G4s
using 1H NMR titration experiments. The results showed that ber-
berine preferably binds to parallel DNA G4s, including theMYC and
KRAS promoter G4s. Unlike the crystal complex structure, which
shows a dimeric binding mode, we found that berberine binds to
MYC-G4 (dissociation constant Kd � 9.9 lmol�L�1) in a monomeric
form with a 2:1 berberine–MYC-G4 binding stoichiometry [97].
The mass spectra used in this study clearly show that there are
two major high-affinity binding sites of berberine to MYC-G4,
which differs from the previously reported 6:2 binding mode in
the crystal solid state [94,97]. The determined NMR solution struc-
ture of the 2:1 berberine–MYC-G4 complex shows that berberine
recruits the flanking residue to form a ligand–base co-plane that
stacks on the 50- or 30-external G-tetrad, and the coexistence of
two different berberine orientations can be observed at each bind-
ing site (Figs. 5(a) and (b)). Interestingly, two distinct conforma-
tions of berberine to MYC-G4 at each binding site are clearly
defined and related via rotational symmetry of about 180� (Figs.
5(a) and (b)). The wide binding pocket formed by the outer G-
tetrad and the flanking residues in parallel G4s makes the bound
ligand more flexible and able to adopt different conformations.

KRAS-G4 is another actively studied promoter G4, which is a
transcriptional regulator and amenable for small-molecule target-
ing to downregulate KRAS expression [9]. The KRAS oncogene is one
of the highly mutated genes in the human genome and contributes
to a number of human cancers [37,98]. Although KRAS-G4 was dis-
covered over ten years ago, and a number of KRAS-G4-binding
compounds were reported, no high-resolution KRAS-G4–ligand
complex structure had as yet been solved, which severely impeded
the further development of KRAS-G4-targeting drugs [37]. In 2022,
we determined two NMR solution structures of KRAS-G4 in com-
plex with the natural products berberine (Kd � 0.55 lmol�L�1)
and coptisine (Kd � 0.50 lmol�L�1) [37]. In these two complex
structures, the 2:1 binding stoichiometry and base-recruiting
mechanism can again be observed, and appear to be the key fea-
tures of berberine derivatives bound to parallel G4s in the solution
state (Fig. 6). Notably, the KRAS-G4 contains a unique thymine
bulge, which is base-paired with the flanking residue adenine by
Watson–Crick hydrogen bonds in the ligand-free form. However,

Fig. 4. X-ray structure of berberine (yellow) in complex with a parallel human
telomeric-G4. Two berberine stack onto one outer G-tetrad without any flanking
residue interactions.
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with berberine and coptisine binding, the original A–T base pair is
disrupted to form an adenine–ligand co-plane that stacks on the 30-
end G-tetrad. The bulge base thymine partially covers the bound
ligand and participates in the formation of a 30end binding pocket
(Fig. 6). This unique thymine bulge could serve as a binding moiety
to enhance the ligand selectivity for KRAS-G4. Moreover, the KRAS-
G4–coptisine complex structure is stabilized by an extra H-bond
that forms between the methylenedioxy five-member ring of cop-
tisine and adenine H61. Nevertheless, the 4 nucleotide (nt) loop
residues are not involved in the binding pocket formation, which
may be worth exploring further. In addition, novel berberine
derivatives can be designed by introducing different side chains
at the C1, C12, and C13 positions to achieve higher affinity and
selectivity for KRAS-G4 based on the determined complex
structures.

4.3. Berberine binds to a dGMP-fill-in vacancy G-quadruplex formed in
the PDGFR-b gene promoter

The vacancy G4 (vG4) is a unique type of DNA G4 that is
formed by three G3 tracts and one G2 tract and thus has a G-
vacancy site in an incomplete G-tetrad [99,100]. vG4s are less
stable than the canonical G4s due to the presence of the G-
vacancy site [99]. However, the G-vacancy site can be specifically
filled in by guanine derivatives, such as cyclic guanosine

monophosphate (cGMP) and deoxyguanosine-50-monophosphate
(dGMP), which provides an opportunity for developing selective
vG4-targeting drugs by designing small-molecule-guanine conju-
gates that utilize the G-vacancy site as an anchor point [101,102].
Moreover, the formation of G-fill-in vG4s indicates potential
gene-regulatory mechanisms associated with the guanine
metabolite concentration in cells and implies new opportunities
for novel drug development [101,103–105]. In 2020, we deter-
mined the NMR solution structure of the first dGMP fill-in vG4
from the PDGFR-b gene promoter [101]. We also found the natu-
ral alkaloid berberine as a suitable small molecule that could
specifically bind and stabilize this distinct type of dGMP fill-in
vG4 (Kd � 1.6 lmol�L�1) [93]. The NMR structure of the ternary
berberine–dGMP-vG4 complex in potassium solution was deter-
mined (Fig. 7) [93]. This is the first complex structure of a small
molecule bound to a fill-in vG4. Like the berberine–MYC-G4 com-
plex structure, each berberine recruits the adenine residue from
the two flanking sequences to form a ‘‘quasi-triad plane” that
stacks on the two outer G-tetrads of the fill-in vG4. The binding
involves p-stacking and electrostatic interactions. The coexistence
of a minor ligand conformation in the two binding sites is also
observed in the berberine–dGMP–PDGFR-b-vG4 complex, just like
the berberine–MYC-G4 binary complex (Figs. 5 and 7) [93,97].
This study reveals the interactions of berberine with a biologically
relevant vG4 and contributes structural insight for the design of
vG4-targeting berberine derivatives.

Fig. 5. (a, b) NMR-based solution structures of berberine (yellow) in complex with
the human MYC oncogene promoter G4. Berberine recruits the immediate flanking
adenine at both the 50- and 30-end to form intercalated ligand–base planes, with
two distinct berberine orientations being observed at each binding site.

Fig. 6. NMR-based solution structure of (a) berberine (yellow) and (b) coptisine
(yellow) in complex with the human KRAS oncogene promoter G4. Berberine and
coptisine recruit the immediate flanking adenine at both the 50- and 30-end to form
intercalated ligand–base planes. The bulge base T10 partially covers the bound
ligand and participates in the formation of the 30-end binding pocket. A potential
hydrogen bond is shown as a dashed line in the coptisine-A3 plane.
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4.4. Epiberberine specifically binds to human Tel-hybrid-2 G-
quadruplex

Epiberberine is a berberine derivative that differs in the posi-
tions of the methoxy and methylenedioxy groups (Fig. 2) [106].
Our lab determined the structure of the biologically relevant
human Tel-hybrid-2 G4 (Tel2G4) back in 2007 [51], and it took
almost ten years to find a suitable small molecule that can specif-
ically bind to this unique structure [106]. In 2018, we solved the
solution structure of Tel2G4 in complex with epiberberine (Kd �
0.016 lmol�L�1) using NMR (Fig. 8) [53,106]. Unlike berberine,
which binds to the promoter G4 with a 2:1 binding stoichiometry,
epiberberine specifically binds to the 50-end G-tetrad of the
Tel2G4. This specific binding induces a significant rearrangement
of the flanking residues and the TTA loop at the 50-end site, forming
a well-fitted binding pocket. Epiberberine recruits the flanking
adenine to form an H-bonded ligand–base co-plane that stacks
on top of the 50-end outer G-tetrad. Simultaneously, this region is

covered by a T:T:A triad layer and another T:T base pair through
p-stacking interactions. Such an extensive four-layer binding
pocket has never been described in G4–ligand complexes before.

It is notable that the structurally similar alkaloids berberine (Kd

� 1.99 lmol�L�1), coptisine (Kd � 0.33 lmol�L�1), and palmatine
(Kd � 0.74 lmol�L�1) cannot bind to Tel2G4 well [53], suggesting
that the positions of the methoxy and methylenedioxy groups have
a crucial impact on the specific recognition. Significantly, epiber-
berine exhibits such high specificity toward Tel2G4 that it can con-
vert other telomeric-G4 structures into hybrid-2 under
physiological conditions, making it the first reported example of
this kind. Overall, this study provides structural insight into ligand
interaction with the human telomeric-G4 and contributes a model
system for developing specific Tel2G4-targeting drugs.

5. Many other natural products as DNA G-quadruplex binders

Given the structural diversity and polymorphism of the human
DNA G4s, it is reasonable to look for potent and selective G4 bin-
ders among natural products. Indeed, a growing list of naturally
occurring DNA G4 binders has been reported beyond the above-
discussed G4-binding natural alkaloids, including distamycin A
[107], Fe(III)-protoporphyrin IX (hemin) [108], colchicine [109],
pegaharmine D [84], sanguinarine [40], chelerythrine [40], piper-
ine [110], magnoflorine [111], triptolide [112], jatrorrhizine
[113], fangchinoline [114], evodiamine [114], isaindigotone [58],
quinazoline [115], and schizocommunin derivatives [116].

Distamycin A, a canonical DNA minor groove binder, was found
to bind to the two opposite grooves of an intermolecular parallel
[d(TGGGGT)]4 G4 in 4:1 binding stoichiometry with a binding con-
stant (Kb) value of (4.0 ± 3.0) �106 L�mol�1 [107]. This finding sug-
gests that the design of novel G4-binding compounds can be
achieved by combining G4 ligands with DNA duplex binders,
thereby enhancing both G4 specificity and affinity. Furthermore,
a flexible DNA duplex binder can be used to link two G4-binding
compounds, forming a clamp-like ligand for stable anchoring
inspired by the artificial G4 probe (G4P) protein [31]. Hemin, a
rigid natural macrocycle compound chelated with a metal ion,
can be captured by G4 structures formed in the expanded hexanu-
cleotide repeat RNA (Kd � 3 lmol�L�1) and DNA of the C9orf72
gene. This interaction enhances peroxidase activity and is associ-
ated with the development of neurodegenerative diseases such
as ALS and FTD [117]. The positive ion center and aromatic macro-
cycle skeleton are natural characteristics of G4 binding compounds
that have attracted intense attention from researchers in structural
modification. In general, the cation center and the side chains are
the main modified objects, represented by the pentacationic
manganese(III)–porphyrin complex (association constant (Ka) =
108 L�mol�1 human telomeric-G4) and the porphyrin-bridged
tetranuclear platinum complexes with significant G4-binding
specificity [118–123]. Among the discovered G4-binding natural
products, many have crescent-shaped skeletons with significant
G4-stabilizing activity, such as sanguinarine (Ka � 1.16 � 106

L�mol�1-KRAS-G4) [124], jatrorrhizine (Ka � 0.90 � 106 L�mol�1-
KRAS-G4) [124], and chelerythrine (Kd � 0.25 lmol�L�1-VEGFA-
G4) [125]. The drug potential of sanguinarine and chelerythrine
is restrained due to their toxicity against normal cells [126,127].
However, structural modifications may help to attenuate such side
effects. It is interesting to note that schizocommunin is not a rigid
crescent-shaped compound and has a relatively flexible carbon
skeleton, whereas the intramolecular hydrogen bond contributes
greatly to the compound’s planarity and thus its G4-binding affin-
ity [116,128]. Therefore, it is worth considering the introduction of
H-bond-forming fragments to amplify the planarity of other possi-
ble compounds while ensuring a certain degree of flexibility. The

Fig. 7. NMR-based solution structure of the ternary complex of dGMP–PDGFR-b-
vG4 with berberine (yellow). Berberine recruits the immediate flanking adenine at
both the 5’- and 30-end to form intercalated ligand–base planes, which significantly
stabilizes the 50-end dGMP-fill-in vG4 complex.

Fig. 8. NMR-based solution structure of epiberberine (yellow) in complex with the
human Tel2G4. Epiberberine recruits the A3 residue at the 50-end to form a ligand–
base co-plane. Potential H-bonds are indicated by dashed lines.
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tertiary nitrogen centers could also be quaternized to introduce
positive charges, thereby enhancing the interactions with
electron-rich G4s [129,130]. Many studies have investigated the
structural modifications of crescent-shaped natural products for
higher G4-binding specificity and better pharmacological activity
[131–133]. Given the lack of determined structures for many G4–
ligand complexes, it is crucial to comprehend the molecular recog-
nition of such products for specific G4s and utilize this knowledge
to develop novel nature-derived drugs.

6. Challenges and opportunities for DNA G4-targeting drug
design based on natural products

Structural studies on natural small-molecule-G4 complexes
have provided valuable structural basis and insight into targeting
human promoter G4s and telomeric-G4s. Macrocyclic molecules,
such as telomestatin derivatives, are similar in size to a G-tetrad
and cover the entire four guanines of the outer G-tetrad in the
Tel-hybrid-1 G4 for extensive p-stacking and electrostatic interac-
tions. These large macrocyclic molecules generally have high affin-
ity and low selectivity for the different topologies of DNA G4s,
which is challenging to bind a specific G4. In contrast, small
crescent-shaped pharmacophores with suitable functional groups,
such as berberine, epiberberine, and quindolines, are more likely to
bind to biologically relevant intramolecular G4s in a specific man-
ner. Since crescent-shaped small molecules only cover two guani-
nes, they often recruit one flanking residue to form a ‘‘quasi-triad
plane” that stacks over the outer G-tetrad for specific G4 binding.
Distinct from DNA minor-groove binders, which emphasize skele-
ton length and flexibility for sequence-specific targeting and to
adapt to the helical topology of duplex DNA [134–137], crescent-
shaped G4-binding compounds are characterized by extended aro-
matic ring systems, positively charged centers, and modifiable side
chains. The central positively charged nitrogen in a crescent-
shaped pharmacophore would normally be positioned above the
negatively polarized carbonyl groups of the G-tetrad, resulting in
strong electrostatic interactions. Moreover, the possible hydrogen
bonding interaction between the ligands and the recruited flanking
residues is an important factor that reinforces the specific interac-
tion, as in the cases of quindoline i and berberine to MYC-G4,
epiberberine to telomeric-G4, and coptisine to KRAS-G4. Mean-
while, the modifiable cationic side chains would interact with
the grooves or phosphate backbones of the G4s for steric and elec-
trostatic interactions, contributing additional forces for the specific
recognition of distinct DNA G4s. Collectively, the optimal small
molecules utilize a combination of interactions—including steric
effects, p-stacking, H-bonds, and electrostatic interactions, to rec-
ognize individual G4s specifically—which can only be identified
in NMR solution structure studies.

The main challenge of current G4-targeting drug discovery is
G4 selectivity. Structural studies of the human genomic G4s have
shown that many G4s share the same general features—that is, a
stacked G-tetrad core with several short loops. The reported G4-
targeting compounds stack on the outer G-tetrad for extensive
p-stacking interactions; therefore, it is difficult for these com-
pounds to distinguish among different G4s, especially with similar
G4 topologies. Remarkably, the recently discovered unique G4s,
such as vG4s [101,104,105], bulge-containing G4s [37], and
stem-loop-containing G4s [138–140], may provide opportunities
to develop particular G4-targeting drugs, because these G4s have
features distinct from the canonical G4s that can be utilized for
more selective ligand design. For example, inspired by a dual-
specific targeting approach [141,142], natural G4-binding ligands
could be conjugated with specific DNA duplex binders to target

specific stem-loop G4s or G4s with suitable grooves. Similarly, nat-
ural ligands could be modified with guanine analogs for vG4-
specific binding by partly contributing to the integrity of vG4s
[93,102,104,143]. For G4s with bulges or loops, natural compounds
could be conjugated with complementary base analogs linked by
flexible carbon chains for possible complementary pairing and
hydrogen bonding. Apart from G4s with special structural topolo-
gies or sequence compositions, the unwound single DNA strands
adjacent to G4s could be targeted by ligand–‘‘oligonucleotide”
complexes, such as ligand–peptide nucleic acid (PNA) conjugates,
for individual G4 targeting [144,145]. It was reported that the con-
jugate of the G4 ligand naphthalene diimide (NDI) with PNA,
which can hybridize with G4 flanking sequences, bound specifi-
cally to the G4 within the human immunodeficiency virus (HIV)-
1 long terminal repeat (LTR) region, implying its potential in
acquired immune deficiency syndrome (AIDS) treatment [144].
Notably, the cell membrane permeability should be considered
when designing ligand–PNA conjugates. Platinum halide modifica-
tion could also be utilized to realize covalent binding with flanking
or loop bases and to reduce off-target effects for potent cancer
therapies [146,147]. In addition, carbohydrates could be added to
the ligand for higher selectivity toward cancer cell G4s
[87,148,149]. Since studies of ligand-conjugates have rarely
involved natural products, further experiments should be carried
out to verify the feasibility of the above strategies. On the other
hand, the enantioselectivity of natural and nature-derived com-
pounds could be considered for higher specificity toward targeted
G4s. Many synthetic metal complexes have exhibited enantiose-
lectivity toward specific G4s [150–155]; however, the chirality of
natural and nature-derived compounds associated with G4-
binding activity is less understood. For ligand skeletons with chiral
carbons, the chiral effects should be investigated further. For
example, the derivative (S)-telomestatin was reported to have
much higher telomeric-G4 binding and telomerase-inhibitory
activity than natural (R)-telomestatin [52]. Pegaharmine D, a pair
of racemates, could bind parallel G4s specifically and showed
remarkable inhibitory activity against cancer cells, while the
effects of its chirality on G4 binding and bioactivity have not been
investigated yet [84]. Since many alkaloids are chiral with distinct
pharmacological activity, it would be of great significance to dis-
sect the relationships between ligand enantioselectivity and G4
affinity–selectivity through specific structural analysis. Altogether,
the above strategies could be combined for much more specific G4
targeting as well as higher therapeutic effects.

Another challenge confronted by G4-targeting drug discovery is
the timely circulation and sharing of newly found natural alkaloids
all over the world. Hundreds to thousands of novel alkaloids with
various skeletons have been isolated from terrestrial and marine
organisms, including plants, fungi, and bacteria [156–163]. Many
of them have aromatic planes and positively charged centers. In
particular, many marine alkaloids have natural halogen groups,
which have been found to stabilize p-stacking by withdrawing
electrons [164–166]. Halogen groups could also help improve the
lipo-solubility and bioavailability of ligands [116]. Tajuddeen
et al. [167] reported a versatile new class of axially chiral N,C-
coupled naphthylisoquinoline alkaloids isolated from plants,
which might have the potential to bind G4s. However, the G4-
binding activity screening of these newly discovered natural alka-
loids is hampered by the limitations of their sources, synthesis, and
commercialization. Another reason may be that G4s are newly rec-
ognized targets for small molecules and are not as well-known as
targets such as duplex DNA and proteins. In fact, telomestatin is
the only known G4-binding natural ligand isolated from microor-
ganisms since its discovery in 2001, and it has been derivatized
substantially for better bioactivity [57,59]. Therefore, numerous
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novel natural products remain to be tested and derivatized for
their G4-binding potential, which will advance the field of natural
or nature-derived drug discovery based on G4 interactions.

At present, a momentous argument is whether it is necessary to
target a specific G4 for disease treatment. Cancer and other disease
cells have been found to have more G4s, along with more obvious
genomic instability, than normal cells. Many reported G4-binding
compounds have been found to bind different G4s and exhibit
prominent cancer-inhibitory activities with little or no toxicity
toward normal cells [20,168–170]. Berberine, which was discussed
earlier in this review, has been found to bind the G4s formed in
telomeres and the promoters of MYC, KRAS, and PDGFR-b, and inhi-
bit the proliferation of non-small cell lung cancer (NSCLC) cells.
Thus, it is worth considering the pursuit of multiple G4 targeting
for complex disease treatment. However, for diseases caused by
one or several canonical aberrant genes (e.g., EGFR and KRAS muta-
tions, and C9orf72 hexanucleotide repeats) or those related to syn-
thetic lethality [8,27,117,171], individual G4 targeting would be an
effective therapy with higher safety and thus could still be an
important direction for drug design. The ‘‘oncogene addiction”
hypothesis suggests that some cancers depend on a driver gene
or genes for growth and viability, and define appropriate cancer
targets [172,173]. Therefore, targeting aberrantly expressed genes
by acting on promoter G4s could be a fruitful way for novel drug
development in cancer therapy, especially as an alternative strat-
egy for ‘‘undruggable” and drug-resistant proteins such as MYC,
KRAS, and EGFR. Collectively, more experimental verifications on
the cellular and animal levels are needed to clarify the advantages
and disadvantages of individual-G4 targeting and multiple-G4 tar-
geting strategies.

7. Conclusions

Natural products have clear importance and advantages in drug
design, as they represent a huge inspiring chemical library to be
tested and derivatized. Numerous studies have revealed that G4s
participate in various aberrant biological processes as epigenetic
and regulatory elements in replication, transcription, and transla-
tion. The formation of G4s can inhibit DNA methylation and influ-
ence the nucleosome assembly, which renders G4s as special
epigenetic markers. In addition, G4 formation can cause site muta-
genesis, gene deletion–junction, transposition, rearrangement, and
copy number alterations, which are important sources of genome
instability and disease genesis [174,175]. G4s in the promoter
regions can induce the binding of transcription factors and may
even change the chromatin architecture and regulate gene expres-
sion by promoting long-range interactions including promoter–
enhancer interactions and chromatin looping, mediated by chro-
matin remodeler proteins and long-loop G4 formation [176–180].
The formation and stabilization of R-loops are also closely related
to G4 formation [176,181]. The long-range interactions and R-
loops mediated by G4s, together with regulatory proteins, may
promote liquid–liquid phase separation (LLPS) to ensure efficient
biological processes [26], which are prominent in cancer cells for
rampant proliferation and nutrient depredation. However, the
specific mechanisms still need experimental confirmation. Fur-
thermore, the aberrant formation of G4s in coding regions would
induce replication fork stalling, transcription and translation ter-
mination, like a simple ‘‘roadblock,” thereby affecting cellular
homeostasis and causing pathological lesions. To maintain orderly
vital movements, helicases, and other nucleic acid binding proteins
are frequently needed to unwind G4s in normal cells, which also
involves DNA damage repair pathways [174,182–184]. Once the
balance of G4-formation–unwinding is disrupted and DNA repair
errors occur due to congenital or environmental factors, diseases

such as cancers can happen. Therefore, aside from protein target-
ing, it is judicious to develop G4-targeting drugs by taking advan-
tage of quadruplex-structural features distinct from double-
stranded DNA (dsDNA). Natural drugs that target G4s can compete
with G4-binding proteins and impede gene expression, acting as a
‘‘brake,” thus offering a promising strategy for disease treatment.

Structural analyses of G4–ligand complexes can provide infor-
mation about ligand binding mechanisms and novel drug design.
Based on the determined complex structures, it is evident that nat-
ural small molecules specifically recognize G4s through a combina-
tion of interactions, including p-stacking, H-bonds, electrostatic
interactions, and steric effects. These specific binding modes of
ligand–G4 complexes in pseudo-physiological conditions can be
best studied via NMR solution structure analysis, because crystal-
lization commonly produces artificial ligand–G4 complexes due
to crystal packing, as in the case of the 6:2 berberine–G4 crystal
structure observed under crystalline conditions. Unlike macro-
cyclic molecules, which directly cover the entire G-tetrad for both
p-stacking and electrostatic interactions, small crescent-shaped
pharmacophores can recruit flanking residues to form a ‘‘quasi-
triad plane” that stacks over the outer G-tetrad, facilitating exten-
sive p-stacking and electrostatic interactions. Specific H-bond
interactions are observed in the ‘‘quasi-triad plane,” which pro-
mote higher binding affinity. Specific structural modifications
based on natural products are greatly needed to improve the selec-
tivity and bioactivity of these compounds toward G4s.

The development of various small molecule modification strate-
gies to enhance G4-binding specificity and affinity has made it
more feasible to target individual G4s, while targeting multiple
G4s is emerging as an important strategy for treating complex dis-
eases. Pidnarulex (CX-5461), a first-in-class G4-targeting com-
pound, is in clinical evaluation for treating BRCA1/2 deficient
breast and ovarian cancer patients [169]. Due to the significant cor-
relation between G4 formation and tumor progression, G4-binding
drug development will open up a new window for disease treat-
ments. More novel natural alkaloids—especially those from marine
organisms and endophytic fungi—should be tested for their G4-
binding ability and pharmacological activity; meanwhile, ligand–
G4 complex structure analysis is imperative for instructive drug
derivatization. Since natural products have historically been an
important source of therapeutic drug leads, we believe more natu-
rally occurring G4-targeting drugs will be discovered in the future,
with exceptional G4 selectivity and high efficacy in disease
treatment.
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