
Purdue University
Purdue e-Pubs

ECE Technical Reports Electrical and Computer Engineering

1-1-1994

Storing Logical Form in a Shared-Packed. Forest
Mary P. Harper
Purdue University School of Electrical Engineering

Follow this and additional works at: http://docs.lib.purdue.edu/ecetr

This document has been made available through Purdue e-Pubs, a service of the Purdue University Libraries. Please contact epubs@purdue.edu for
additional information.

Harper, Mary P., "Storing Logical Form in a Shared-Packed. Forest" (1994). ECE Technical Reports. Paper 175.
http://docs.lib.purdue.edu/ecetr/175

http://docs.lib.purdue.edu?utm_source=docs.lib.purdue.edu%2Fecetr%2F175&utm_medium=PDF&utm_campaign=PDFCoverPages
http://docs.lib.purdue.edu/ecetr?utm_source=docs.lib.purdue.edu%2Fecetr%2F175&utm_medium=PDF&utm_campaign=PDFCoverPages
http://docs.lib.purdue.edu/ece?utm_source=docs.lib.purdue.edu%2Fecetr%2F175&utm_medium=PDF&utm_campaign=PDFCoverPages
http://docs.lib.purdue.edu/ecetr?utm_source=docs.lib.purdue.edu%2Fecetr%2F175&utm_medium=PDF&utm_campaign=PDFCoverPages

TR-EE 94-6
JANUARY 1994

Storing Logical Form in a Shared-Packed. Forest

Mary P. Harper

School of Electrical Engineering

1285 Electrical Engineering Building

Purdue University

West Lafayette, IN 47907-1285

harper@ecn.purdue. edu

January 31, 1994

Abstract

To co~npactly represent sentences containing syntactic ambiguity until the necessary

inform.ation has been processed t o refine the meaning, we have modified an all-path

context-free grammar parser t o generate a shared-packed parse forest annotated with

logical form. An annotated shared-packed forest cannot contain every representation of

a highly ambiguous sentence without using an intractable amount of space. Hence, our

progra,m stores procedure calls for creating all possible logical forms for a c.onstituent

in the forest. The resulting forest contains the same number of nodes and is not much

bigger than the original forest. Furthermore, the stored procedural information can be

used by a program to construct representations for any of the constituents in. the forest

for subsequent testing against a world model. After performing each test, the program

can incrementally prune the forest of ambiguity.

Key Words: natural language processing, parse forest, logical form

1 Introduction

A goal of natural language research is to provide a computer model for understanding En-

glish sente:nces. One approach to building this model is to require the generation of an

unambiguous internal representation for each sentence before attempting t'o represent sub-

sequent sentences. The problem with this approach is that, in order to make the inferences

necessary t,o resolve the ambiguities, some internal representation is needed for both the

current sen.tence as well as subsequent sentences. A more powerful approa.ch is to build a

representation for a sentence without resolving the ambiguity and wait until the necessary

informatiori has been processed. [lo, 11, 11 to update the meaning for that sentence.

There a.re several types of ambiguity in natural languages including lexical ambiguity,

syntactic (or structural) ambiguity, quantifier scope ambiguity, and anapho'ra or ambiguity

of reference. Lexical ambiguity results from the fact that most words have several different

(though often related) uses. For example, the word pen can have at least two different

meanings: it can be a writing instrument or an enclosure for animals or small children.

Syntactic ambiguity occurs when a sentence has more than one possible structural analysis.

Fred saw the bird with the binoculars is an example with two structural analyses, each of

which maps to a different meaning: either the bird has the binoculars, or Fred is using

the binocuilars to see the bird. Quantifier scope ambiguity arises when sentences contain

several noun phrases with determiners corresponding to different quantifiers. For example,

the sentence Every dog loves a human has two different meanings: either every dog loves the

same person or each dog loves a potentially different person. Finally, anaphora [12] occurs

when sentences contain expressions like pronouns, definite noun phrases, o:r ellipses, which

either have linguistic antecedents or depend on salient individuals in the environment of the

speaker or hearer. For example, the sentence he did is ambiguous because it contains a

pronoun and verb phrase ellipsis.

Ambiguities of the types described above are very common in natural language, and each

type must 'be resolved for a natural language understanding program to be effective. Since

syntax limits the possible meanings of a sentence (and the words in the sentence), natural

language pjrocessing programs often analyze the structure of a sentence before attempting

to determine its meaning. For example, lexical ambiguity can often be resolved as the

sentence is parsed (e.g., the word ran in I ran the computer program cannot take on the

meanings a.ssociated with the intransitive form of that verb), but if it is not, additional

information may be required (e.g., to determine the intended meaning of pen in I spilled

some paint on the pen requires more information). Syntactic ambiguity by definition cannot

be resolved by parsing; some additional knowledge is needed to select the intended meaning.

Ambiguity of reference and quantifier scope ambiguity can often be reduced by using simple

type restrictions and syntactic constraints, but again, additional information is required in

many cases. Therefore, in general, to refine the meaning of an ambiguous sentence, additional

knowledge sources must be used, including selectional restrictions, world knowledge, and

contextual information.

The ust: of world knowledge and contextual information often requires inference, and

hence, access to the representations of the sentence and possibly its components. But at

the same time, because of ambiguity, a program might not be able to enumerate all of the

possible representations for a sentence and its components since just listing all possible struc-

tural analyses for syntactically ambiguous sentences can be intractable, and each structural

analysis of a sentence produces at least one additional meaning. In this paper, we will focus

on the prolblem of efficiently maintaining syntactic ambiguity while deterinining the logi-

cal represelltation for a sentence. In particular, we describe an approach which combines

shared-packed parse forests with semantic construction routines. This approach allows a

program attempting to eliminate ambiguity from a sentence to apply higher level knowledge

sources to the logical representations of desired constituents in the parse forest (e.g., it could

eliminate alternative parses for a noun phrase whose representation does not match objects

in a world model).

2 Shared-Packed Packed Parse Forests: A Compact

Representation for Syntactically Ambiguous Sen-

tences

Tree structures, called parse trees, are used to represent the structural properties of the

sentence. Because language is often syntactically ambiguous, it is common for a particular

sentence to have more than one parse tree. For example:

Every man s.aw the boy with h i s binoculars.

Figure 1: Parse Trees for Every man saw the boy with his binocuburs.

This sentence has two potential parses, as shown in Figure 1. In the first parse tree (Figure

1A) the prepositional phrase with his binoculars is attached to the verb phrase. However, in

the other (Figure lB), it is attached to the object noun phrase. These two structures give

rise to very different meanings for the sentence. In the first case, every man is using the

binoculars to see the boy; whereas, in the second, the boy has the binoculars.

One way to enable a natural language program to process the meanings of syntactically

ambiguous sentences is to incorporate semantic construction routines into a parser that

produces each of structural analysis for a sentence, one parse tree at a time, ,and maps each

tree to a separate logical representation. The program must then attempt to determine

which meaning for the sentence is the intended one. One problem with this approach is

that the nurnber of parse trees produced for some ambiguous sentences is quite large. For

example, a parser analyzing sentences with multiple prepositional phrases (PP) can produce

an intractable number of possible parses for the sentence. Our example has two different

parse trees, each with a distinct representation, a very manageable number. However, as

the number of prepositional phrases in a sentence increases, the number of possible parse

trees and their corresponding representations grows as the Catalan numbers [S], where C, =

(2)k . For sentences with one object and one P P following the verb (i.e., n = 2), there

are 2 parses; for one object and 2 post-object PPs (i.e., n = 3), there are 5 parses; and for

one object plus four post-object PPs, there are 42 parses. Since the number of parses for

a sentence with multiple PPs grows so quickly (i.e., faster than exponential [15]), the time

to list out id1 the possible meanings for each tree can be prohibitive. A one-parse-tree-at-a-

time appro,ach which uses no mechanism for storing subresults from a parse (e.g., a chart or

parse forest) is also inefficient because it is unable to reuse the results of the semantic and

contextual tests made on a subtree of a rejected parse during the evaluation of an alternative

parse tree. The need for efficiency dictates the need for another approach to manage the

ambiguity of a sentence.

The effiiciency of the first approach can be improved by requiring that eadh indeterminacy

in the parse be resolved as soon as it arises [5] to prevent backtracking. To do so, however,

requires that enough information be available at that point in the parse to select among

the alternatives. This assumption is unjustified in many cases; words occurring later in the

sentence or possibly subsequent sentences may be needed to resolve the a,mbiguity. This

approach has been used in a translation system which uses Alshawi's quasi logical form

[3]. A slightly different alternative is to work with the highest preference choice only [6, 21.

Though this approach is efficient, it provides the most likely parse for a sentence (usually

independently of context), not necessarily the correct parse.

An alternative scheme'for coping with syntactic ambiguity is to change the grammar

rules so that they provide a single parse tree for a syntactically ambiguous sentence and

then wait for the semantic routines to determine what is possible. The tra,ditional way to

write a rule for an NP with noun modifiers is as follows:

BP + DET B1
B1 + HOUB
B1 + HI IY1

This grammar generates a very large number of possible structures for noun phrases like

the pretty little girl school; however, it also eliminates from consideration impossible noun

modifier structures by not allowing crossover between modifiers. For example, the grammar

would never allow a structure such that pretty modifies girl which modifies .school, and little

modifies school. On the other hand, an alternative rule can be used to generate a single

structural analysis for the sentence, as shown below:

NP --r DET NOUN* NOUN

This rule ignores the structure of noun modifiers of a head noun, placing them all at the

same level in the parse tree. However, without a structure to limit the possible modifier

relationships, a semantic routine might incorrectly allow a noun modifier to modify any of

the nouns that follow it. To work correctly, the semantic routines would have to encode

information already contained in the first set of rules in order to prevent impossible modifi-

cations frorn being tested and/or accepted. Another possibility is to use a least commitment

grammar which provides only one of the possible modifier structures for an NP:

NP --r DET N 1 NOUN
N 1 --r NOUN
N 1 --r N 1 N i

To allow a11 interpretation based on one of the other possible syntactic structures, the se-

mantic rout.ines operating on the output of a least commitment parser must be able to adapt

the tree for other interpretations. Pollack and Pereira [17] use a parser that produces a single

least-commitment parse tree in a system for handling semantic and pragmatic: interpretation.

A fourtln approach is to combine an all-path parsing algorithm [9, 14, 7, 21, 191 with

routines for generating logical representations in order to create a shared-packed parse forest

annotated vvith the logical representations for the constituents in the forest (i.le., an annotated

shared-pached parse forest). Before discussing the benefits of this approach, we will first

describe the properties of a shared-packed parse forest [19, 20, 211.

A shared-packed parse forest is a data structure which stores all parses of a sentence in a

compact form. Consider the packed parse forest produced by an implementation of Tomita's

parser [2:1.] for the sentence Every man saw the boy with his binoculars shown in Figure 2,

along with a picture of the forest shown in Figure 3. The forest stores both terminal and

non-terminid nodes. Non-terminal nodes contain lists of node numbers of the children that

make up a parse of that constituent. The start symbol for the grammar is S-MAJ, which in

the above example consists of a non-terminal node for an S and a final punctuation terminal

24 ((S-MAJ16 S-MAJ) (DOWN (21 23)))
23 ((.8 FINALPUNC .) (DOWN T))
22 ((NP14 NP) (DOWN (7 8 19)))
21 ((S13 S) (DOWN (3 20)))
20 ((VP12 VP) (DOWN (6 9 19) (6 22)))
19 ((PP+11 PP+ NIL) (DOWN (18)))
18 ((PP10 PP NIL) (DOWN (12 17)))
17 ((NP9 NP) (DOWN (16 15)))
16 ((POSS8 POSS) (DOWN (13)))
15 ({POSS-NOM7 POSS-NOM) (DOWN (14)))
14 ((BINOCULARS7 NOUN BINOCULARS) (DOWN T))
13 ((HIS6 PRONOUN HIS) (DOWN T))
12 ((WITH5 PREP WITH) (DOWN T))
11 ((S6 S) (DOWN (3 10)))
10 ((VP5 VP) (DOWN (6 9)))
9 ((NP4 NP) (DOWN (7 8)))
8 ((BOY4 NOUN BOY) (DOWN T))
7 ((THE3 DET THE) (DOWN T))
6 ((VERBS3 VERBS) (DOWN (5)))
5 ((TENSED-MAIN2 TENSED-MAIN) (DOWN (4)))
4 ((SAW2 VERB SEE) (DOWN T))
3 ((NP1 NP) (DOWN (1 2)))
2 ((MAN1 NOUN MAN) (DOWN T))
1 ((EVERY0 DET EVERY) (DOWN T))

Figure 2: The shared-packed parse forest for Every man saw the boy with his binoculars.

I

VP VP

DET NOUN
mn

-
I
I

I I

VERB
blnoculan

Figure 3: A picture of the shared-packed parse forest from Figure 2.

node. Because a non-terminal node may have descendents with multiple parses, there can be

more than one parse tree for the constituent. This results from the fact that the parser packs

forest nodes together when they share a common state vertex and have the same features.

These packed nodes contain alternative parses for a non-terminal constituent of the parse

tree. For example, in Figure 2, the VP with the index of 20 has two parses, one consisting

of nodes with indices 6, 9, and 19:and the other with indices 6 and 22. Early in the parse,

node 20 had only one.set of children, as shown below:

Later, after node 22 was created, the parser added (6.22) to the list of children for the

VP node. This node packing occurs when the parser is preparing to reduce the phrase con-

sisting of the subtrees 6 and 22 with a VP rule. Since it has the same state vertex on its left

and right in the parse stack as the item already stored in the forest, the alternative parse is

added to the list of possible children for the already stored constituent. Nodes can appear in

the forest that never participate in a sentence parse (e.g., nodes 10 and 11). These useless

nodes can ~lasily be pruned after parsing is complete by marking all nodes {;hat participate

in a parse beginning with the start symbol, S-MAJ, and freeing those that a~re unmarked.

Seo and Simmons [19] have introduced syntactic graphs, which are ~o~nstructed from

shared-pack:ed parse forests, to represent ambiguous parses for a sentence. The syntactic

graph encodes the modifier links between a head word and its modifiers. An advantage

of this approach is that 'words which participate in multiple parses, by modifying different

words in diiferent ways, have multiple arcs entering the node. For example, if a preposition

(as head of a PP) can modify either a noun or a verb, there would be two arcs entering

the node foir the preposition, one from the noun and one from the verb. Hence, the point of

ambiguity can be pinpointed to the attachment decision. They claim that a parse forest does

not give the! same direct access to internal ambiguity; the ambiguous points in a parse forest

can be detected only by traversing the forest. Certainly, by examining the forest shown in

Figure 2, oine cannot immediately detect that the ambiguity for the sentence resides with

the PP attachment. However, by adding links between each of the nodes i n the forest and

its parent node and then pruning the nodes that do not participate in a legal parse for the

sentence, the forest does give a better view of this ambiguity (see Figure 4). Nodes with

22 ((S-MAJ16 S-MAJ) (DOWN (19 21)) (UP T))
21 ((.8 FINALPUNC .) (DOWN T) (UP 22))
20 ((NP14 NP) (DOWN (7 8 17)) (UP 18))
19 ((Sl3 S) (DOWN (3 18)) (UP 22))
18 ((VP12 VP) (DOWN (6 9 17) (6 20)) (UP 19))
17 ((PP+11 PP+ NIL) (DOWN (16)) (UP 18 20)) ; attatch to an NP lor VP
16 ((PP10 PP NIL) (DOWN (10 15)) (UP 17))
15 ((NP9 NP) (DOWN (14 13)) (UP 16))
14 ((POSS8 POSS) (DOWN (11)) (UP 15))
13 ((POSS-NOM7 POSS-NOM) (DOWN (12)) (UP 15))
12 ((BINOCULARS7 NOUN BINOCULARS) (DOWN T) (UP 13))
11 ((HIS6 PRONOUN HIS) (DOWN T) (UP 14))
10 ((WITH5 PREP WITH) (DOWN T) (UP 16))
9 ((NP4 NP) (DOWN (7 8)) (UP 18))
8 ((BOY4 NOUN BOY) (DOWN T) (UP 9 20)) ; in two different NI's
7 ((THE3 DET THE) (DOWN T) (UP 9 20)) ; in two different NPs
6 ((VERBS3 VERBS) (DOWN (5)) (UP 18))
5 ((TENSED-MAIN2 TENSED-MAIN) (DOWN (4)) (UP 6))
4 ((SAW2 VERB SEE) (DOWN T) (UP 5))
3 ((NP1 NP) (DOWN '(1 2)) (UP 19))
2 ((MAN1 NOUN MAN) (DOWN T) (UP 3))
1 ((EVERY0 DET EVERY) (DOWN T) (UP 3))

Figure 4: The pruned shared-packed parse forest for Every man saw the boy with his binoc-
ulars with pointers to parent nodes.

more than one parent participate in multiple parses for a sentence. In the example forest

of Figure 4:, there are two different NPs that contain the and boy, and the F'P+ constituent

in node 17 is a member of either an NP or a VP. Though this is not quite as compact as a

syntactic graph for the same sentence, it does provide some very useful information on the

sources of ambiguity in the sentence. For example, if a noun phrase containing the word

boy in Figure 4 can either have a PP+ attached to it (as in node 20) or not (as in node 9),

and the wo:rld model does not support the attachment, then the forest can be easily pruned

of that possibility by deleting all references to the noun phrase at node 20. The deletion

process removes node 20 from the up pointers of node 20's children (i.e., nocles 7, 8, and 17)

and deletes parses containing node 20 from node 20's parent node, 18. Onc~e the deletion is

complete, the forest is no longer ambiguous, as shown in Figure 5.

Hence, rather than transforming the parse forest to a parse graph to represent the syn-

tactic structure for ambiguous sentences, we prefer to store pointers to parent nodes and

utilize the shared-packed parse forest to store logical representations. Use of an annotated

shared-packed parse forest has the following benefits:

22 ((S-MAJ16 S-MAJ) (DOWN (19 21)) (UP T))
21 ((.8 FINALPUNC .) (DOWN T) (UP 22))
20 ((NP14 NP) (DOWN (7 8 17)) (UP 18)) ; can delete node
19 ((Sl3 S) (DOWN (3 18)) (UP 22))
18 ((VP12 VP) (DOWN (6 9 17)) (UP 19))
17 ((PP+11 PP+ NIL) (DOWN (16)) (UP 18)) ; attatch to a VP
16 ((PP10 P P NIL) (DOWN (10 15)) (UP 17))
15 ((NP9 NP) (DOWN (14 13)) (UP 16))
14 ((POSS8 POSS) (DOWN (11)) (UP 15))
13 ((POSS-NOM7 POSS-NOM) (DOWN (12)) (UP 15))
12 ((BINOCULARS7 NOUN BINOCULARS) (DOWN T) (UP 13))
11 ((HIS6 PRONOUN HIS) (DOWN T) (UP 14))
10 ((WITH5 PREP WITH) (DOWN T) (UP 16))
9 ((NP4 NP) (DOWN (7 8)) (UP 18))
8 ((BOY4 NOUN BOY) (DOWN T) (UP 9))
7 ((THE3 DET THE) (DOWN T) (UP 9))
6 ((VERBS3 VERBS) (DOWN (5)) (UP 18))
5 ((TENSED-MAIN2 TENSED-MAIN) (DOWN (4)) (UP 6))
4 ((SAW2 VERB SEE) (DOWN T) (UP 5))
3 ((NP1 NP) (DOWN (1 2)) (UP 19))
2 ((MAN1 NOUN MAN) (DOWN T) (UP 3))
1 ((EVERY0 DET EVERY) (DOWN T) (UP 3))

Figure 5: An unambiguous parse for Every man saw the boy with his binoculars given a
certain wor1.d model.

1. It provides a space savings by' packing duplicated nodes into a single entry in the

forest [9, 21, 191, thus reducing the overhead when it is necessary to keep all parses for

a sentsence around until it is possible to make an informed choice among; the alternative

meanings.

2. It provides a direct method for focusing on the points of ambiguity in a~ sentence when

parent links are included for each node.

3. It is able to reuse the semantic decisions made for a subtree of a rejelcted parse tree.

When a node in the forest is limited to a single parse, it is limited for all parses of the

sentence containing that node.

Because of these benefits, we have designed a program to generate a shared-packed parse

forest annotated with the logical form developed by Harper [lo, 111, by augmenting a Tomita-

style LR parser with the necessary routines for constructing the logical form representation.

Tomita7s pa,rser is a bottom-up LR(k)-based parser which constructs a forest of all possible

parses of the given input while using a graph-structured stack and breadth-first search to

handle non-determinism in the parse of a sentence. In the next section, we describe three

methods fo:r interfacing our logical form routines with Tomita's parser. Despite the fact that

we utilized Tomita's parser to construct a specific logical form representation., the conclusions

we draw can also be applied to the more efficient parsers [18, 91 that produce other logical

representations (e.g., [4, 22, 131) in even more compact forests 1161.

Coinbining Logical Form with Forests: A Case study

Previously, our logical form routines were interfaced with a-single-parse-tree-at-a-time, top-

down ATN parser [lo, 111. This made it relatively easy to create compositional logical form

routines anld to interface them with the parser. These routines were developed to construct

and store tlhe logical forms for each major type of constituent. Some routines created logi-

cal representations for the basic constituents like nouns and verbs, while routines for more

complex constituents, like verb phrases, noun phrases, and sentences, combined the logical

representat~ons of several constituents into a larger representation. Function calls for con-

structing the logical forms were then added to the arcs in the grammar networks and were

executed whenever the arc was successfully traversed (after constituent and feature tests

succeeded). Since one parse tree was built at a time, the logical form for each tree was

constructed and stored before another tree was produced by the parser's search mechanism;

hence, none of the complex logical form routines had to combine more than a single repre-

sentation far each of its constituents. The logical representations were easy to create in this

approach, but unfortunately the parser was intractable because it generatetd a single parse

tree at a t i~ne.

In the 'l?omita parser, the grammar rules consist of production rules containing a left-

hand side, it. right-hand side, and a set of actions. These actions include feature tests, which

must succeed for the reduce operation to proceed, and routines for storing feature values

and for con:jtructing and storing the logical form with a node in the forest. For example, the

following rule is used to parse a sentence consisting of an NP and a VP:

(S -> (BP VI?)
((== b$BP (get-the person of #$VP)) ; Subject-verb agreement tes t
(=! #$PHRASE 'statement) ; Set the HOOD of thls sentence
(1og:ical-form 'sentence :np #$NP :vp #$VP))) ; Create the logical form

The left-hand side of this rule is S, and the right-hand side is a list consisting of an NP

and a VP. For the rule to succeed during parsing, the right-hand side of the rule must

match, ancl the subject-verb agreement test must return true. If it does, a parse node is

created with a list of children consisting of #$NP and #$VP, the node numbers of the two

constituents that make up the S. Additionally, the feature information and logical form for

the constitilent are stored in the node created for the forest1.

Unlike the ATN parser used by Harper [lo, 111, the Tomita parser is a bottom-up, all-

path parsing algorithm which creates a parse forest by packing parse nodes together to save

space and lime. Because nodes with two alternative parses must also produce two different

semantic representations, our logical form construction routines must be able to store and

retrieve multiple logical forms for ambiguous constituents in the forest. This requirement

introduces two problems to solve. First, packed nodes in a forest represent multiple parses,

which produce multiple representations; hence, our routines for constructing logical forms for

sentences (and other complex constituents) may have to combine multiple representations

for each of their constituents. Second, the annotated shared-packed parse forest cannot store

every representation of a highly ambiguous sentence without using an intractable amount

of space. Any approach which uses a parse forest to store logical represe:ntations for the

constituents of a sentence will have to address these problems. We will describe three meth-

ods for interfacing the LR parser with logical form routines, and illustratc: the differences

between these approaches by using the parse of the sentence Fred saw frogs in cars with Bill.

The first and simplest method is to prevent two nodes from being packed together (except

for the start symbol), if they have different logical forms (see the parse forest below). This

approach is: similar to the method employed by the ATN to generate the logical forms for a

sentence, and is equivalent to mapping individual parse trees to a logical relpresentation.

36 ((SMAJ62 S-MAJ) (DOWN (20 35) (24 35) (26 35) (32 35) (34 35)) (UP T))
; Store 5 representations for the S-MAJ by combining the single representationls of
; each of the node pairs.

35 ((.7 FINALPUNC .) (DOWN T) (UP 36))
34 ((!%I S) (DOWN (2 33)) (UP 36))

; Store an S representation by combining the representations in nodes 2 and 33.
33 ((VP60 VP) (DOWN (5 7 29)) (UP 34))

; Store a VP representation by combining the representations in nodes 5, 7, anld 29.
32 (($55 S) (DOWN (2 31)) (UP 36))

; Sttore an S representation by combining the representations in nodes 2 and 31.
31 ((VP54 VP) (DOWN (5 30)) (UP 32))
; Store a VP representation by combining the representations in nodes 5 and 30.

30 ((NP51 NP) (DOWN (6 29)) (UP 31))
; Store 1 representation for an NP by combining the representations in nodes 6 and 29.

'In examples, we omit the feature information stored on nodes and simply indicate the number of logical
forms stored for a node, not the actual representation, to simplify the forest.

29 ((I3P+48 PP+) (DOWN (28)) (UP 30 33))
; Sl.ore 1 representation for a PP+ given the representation in node 28.

28 ((l'P47 PP) (DOWN (8 27)) (UP 29))
; Sl.ore 1 representation for the P P by combining the representations in nodes B and 27.

27 ((lVP46 NP) (DOWN (9 18)) (UP 28))
; Sl,ore 1 representation for an NP by combining the representations in nodes 9 and 18.

26 ((!$45 S) (DOWN (2 25)) (UP 36))
; Sl.ore an S representation by combining the representations in nodes 2 and 25.

25 ((VP44 VP) (DOWN (5 7 21)) (UP 26))
; Store a VP representation by combining the representations in nodes 5, 7, ancl 21.

24 ((!$39 S) (DOWN (2 23)) (UP 36))
; Si.ore an S representation by combining the representations in nodes 2 and 23.

23 ((VP38 VP) (DOWN (5 22)) (UP 24))
; Sl.ore a VP representation by combining the representations in nodes 5 and 22.

22 ((NP35 NP) (DOWN (6 21)) (UP 23))
; Store 1 representation for an NP by combining the representations in nodes el and 21.

21 ((I3P+32 PP+) (DOWN (11 18)) (UP 22 25))
; Sl.ore 1 representation for a PP+ given the representation in nodes 11 and 18.

20 ((S31 S) (DOWN (2 19)) (UP 36))
; S180re an S representation by combining the representations in nodes 2 and 19.

19 ((VP30 VP) (DOWN (5 13 18)) (UP 20))
; Store a VP representation by combining the representations in nodes 5, 13, and 18.

18 ((I3P+27 PP+) (DOWN (17)) (UP 19 21 27))
; Sbore 1 representation for a PP+ given the representation in node 17.

17 ((l'P26 PP) (DOWN (14 16)) (UP 18))
; St,ore 1 representation for the P P by combining the representations in nodes 14 and 16.

16 ((NP25 NP) (DOWN (15)) (UP 17))
; St,ore 1 representation for an NP given the head noun in node 15.

15 ((FRED6 PROPERNOUN FRED) (DOWN T) (UP 16))
14 ((WITH5 PREP WITH) (DOWN T) (UP 17))
13 ((NP20 NP) (DOWN (6 12)) (UP 19))

; Shore 1 representation for an NP given the representations in nodes 6 and 12
12 ((I3P+11 PP+) (DOWN (11)) (UP 13))

; Stsore 1 representation for a PP+ given the representation in node 11.
11 ((PP10 PP) (DOWN (8 10)) (UP 12 21))

; Sl,ore 1 representation for the P P by combining the representations in nodes 8 and 10.
10 ((1'4P9 NP) (DOWN (9)) (UP 11))

; St,ore 1 representation for an NP given the head noun in node 9.
9 ((CARS4 NOUN CAR) (DOWN T) (UP 10 27))
8 ((IN3 PREP IN) (DOWN T) (UP 11 28))
7 ((NP4 NP) (DOWN (6)) (UP 25 33))

; St#ore 1 representation for an NP given the head noun in node 6.
6 ((FROGS2 NOUN FROG) (DOWN T) (UP 7 13 22 30))
5 ((VERBS3 VERBS) (DOWN (4)) (UP 19 23 25 31 33))

; Sbore 1 representation given node 4.
4 ((TENSED-MAIN2 TENSED-MAIN) (DOWN (3)) (UP 5))

; Store 1 representation for the verb in 3.
3 ((SAW1 VERB SEE) (DOWN T) (UP 4))
2 ((PIP1 NP) (DOWN (1)) (UP 20 24 26 32 34))

; St,ore 1 representation for an NP given the head noun in node 1.
1 ((FRED0 PROPERNOUN FRED) (DOWN T) (UP 2))

This method is easy to implement, but it. does not take advantage of the shared-packed parse

forest for compactly storing the logical forms. And because different struct;ural variations

typically map to different logical representations, the number of nodes in the forest can be

exponential (or worse) for some ambiguities.

The second approach is to store the logical representation directly in the! shared-packed

parse forest:, as shown below:

26 ((S-MA.Jl96 S-MAJ) (DOWN (20'25)) (UP T))
25 ((.7 FIIVALPUNC .) (DOWN T) (UP 26))
24 ((PP174 PP) (DOWN (8 23)) (UP 21))

; Store 11 representation for the PP by combining the representations in nodes 8 ancl 23.
23 ((NP165 NP) (DOWN (9 18)) (UP 24))

; Store I representation for an NP by combining the representations in nodes 9 and 18.
22 ((NP130 NP) (DOWN (6 21)) (UP 19))

; Store :! representations for an NP by combining the representations in nodes 6 and 21.
21 ((PP+l13 PP+) (DOWN (11 18) (24)) (UP 22 19))

; Store :! representations of PP+ by combining the representations of nodes 11 and 18,
; and using the representation of node 24.

20 ((Sl06 S) (DOWN (2 19)) (UP 26))
; Store t i representations of S by combining the representation of node 2 with the
; 5 representations of node 19.

19 ((VP95.VP) (DOWN (5 13 18) (5 22) (5 7 21)) (UP 20))
; Store 5 representations for the VP, one by combining the representations
; in nodes 5, 13, and 18, two by combining the representation in node 5
; with tlie two representations in node 22, and one by combining the representation
; of node 5 with the representation of node 7 and the two representations of node 21.

18 ((PP+84 PP+) (DOWN (17)) (UP 19 21 23))
; Store 1. representation for a PP+ given the representation in node 17.

17 ((PP79 PP) (DOWN (14 16)) (UP 18))
; Store 1 representation for a PP given the representations in node 14 and 16.

16 ((NP76 NP) (DOWN (15)) (UP 17))
; Store I. representation for an NP given the head noun in node 15.

15 ((BILL15 PROPERNOUN BILL) (DOWN T) (UP 16))
14 ((WIT115 PREP WITH) (DOWN T) (UP 17))
13 ((NP56 NP) (DOWN (6 12)) (UP 19))

; Store I. representation for an NP by combining the representations in nodes 6 and 12.
12 ((PP+:Il PP+) (DOWN (11)) (UP 13))

; Store 1 representation for a PP+ given the representation in node 11.
11 ((PP26 PP) (DOWN (8 10)) (UP 12 21))

; Store 1 representation for the PP by combining the representations in nodes 8 and 10.
10 ((NP23 NP) (DOWN (9)) (UP 11))

; Store 1 representation for an NP given the head noun in node 9.
9 ((CARS4 NOUN CAR) (DOWN T) (UP 10 23))
8 ((IN3 PREP IN) (DOWN T) (UP 11 24))
7 ((NP10 NP) (DOWN (6)) (UP 19))

; Store 1 representation for an NP given the head noun in node 6.
6 ((FROGS2 NOUN) (DOWN T) (UP 7 13 22))
5 ((VEREiS7 VERBS) (DOWN (4)) (UP 19))

; Store I representation given node 4.
4 ((TENSED-MAIN4 TENSED-MAIN) (DOWN (3)) (UP 5))

; Store I representation for the verb in 3.

3 ((SAW1 VERB SEE) (DOWN T) (UP 4))
2 ((NP1 NP) (DOWN (1)) (UP 20))

; Store 1 representation for an NP given the head noun in node 1.
1 ((FRED0 PROPERNOUN) (DOWN T) (UP 2))

The syntacltic ambiguity in the structure of a child node must be reflected in the logical

representation of the ancestor nodes. If a parent node consists of two constituents, one with

three logical forms and another with two, the construction routines must be able to store

the six 1ogical.forms for that constituent. This requires that the logical farm routines be

constructed to combine the logical forms for constituents with more than a single representa-

tion. Node packing provides another challenge. When a new node is packed with an already

existing nocle in the forest, the logical representation for the new structure must be stored

for that constituent. Also, all of the ancestors of a newly packed node must update their

lists of logical representations to reflect the addition of the new parse since packing of a node

can occur after many of its ancestors are already members of the forest. In our example,

when the second parse is added to node 21, a second logical form would have to be added to

logical form list for that node and to the logical form lists of each of its ancestors that are

already stored (i.e., 19, 20, and 22) for the forest to be complete.

In contrast to the first approach, this method does not increase the numlber of nodes in

the parse forest; however, an exponential number of logical representations can be created

for sentences in some ambiguous grammars. Some space savings can be achieved by using

pointers to the representations of a child node when creating the representations for a parent

node, because many of the nodes (and corresponding logical forms) in a parse forest are

shared by rrlultiple parses. However, for multiple logical representations to share the logical

representation of a child node, that representation cannot be affected by the process of

constructing the logical form for the parent node. This assumption does nlot always hold;

in some logical representations (e.g., [lo, ll]), a constituent's representatioin is affected by

the parse tree containing it. In such a case, the logical form of a shared node would require

copying and modification before being used in the logical representation of a parent node. If

all logical representations are copied and modified as they are combined int'o higher logical

representations, the parse forest could grow quite large. However, even if the elements of

a logical representation do not require copying, the number of representatioils created for a

sentence using the second approach is precisely the number of parses for the sentence, which

can be exponential in number.

A third a.pproach is to store a procedure call for creating the logical form of a constituent

in the forest and to put off the creation of the logical form, as shown below:

26 ((S-MAJ196 S-MAJ) (DOWN (20 25)) (UP T) (CREATGSMAJ-LF :S 20 :PUNC 25))
25 ((.7 FIPTALPUNC .) (DOWN T) (UP 26))
24 ((PP174 PP) (DOWN (8 23)) (UP 21) (CREATGPP-LF :PREP 8 :OBJ 23))
23 ((NP165 NP) (DOWN (9 18)) (UP 24) (CREATE-NP-LF :NOUN 9 :POSTNOUN-MODS 18))
22 ((NP13lD NP) (DOWN (6 21)) (UP 19) (CREATGNP-LF :NOUN 6 :POSTNOUN-MODS 21))
21 ((PP+113 PP+) (DOWN (11 18) (24)) (UP 22 19)

(CREA'TGPP+-LF :PP 11 :PP+ 18) (CREATGPP+-LF :PP 24))
20 ((Sl06 l5) (DOWN (2 19)) (UP 26) (CREATES-LF :NP 2 :VP 19))
19 ((VP95 VP) (DOWN (5 13 18) (5 22) (5 7 21)) (UP 20) .

(CREA'TGVP-LF :VERB 5 :OBJl 13 :PP+ 18 :SUBCAT 'TRANS)
(CREA'TGVP-LF :VERB 5 :OBJl 22 :SUBCAT 'TRANS)
(CREA'TGVP-LF :VERB 5 :OBJl 7 :PP+ 21 :SUBCAT 'TRANS))

18 ((PP+84 PP+) (DOWN (17)) (UP 19 21 23) (CREATGPP+-LF :PP 17))
17 ((~ ~ 7 9 PP) (DOWN (14 16)) (UP ia) (CREATGPP-LF :PREP 14 :OBJ 16))
16 ((NP76 NP) (DOWN (15)) (UP 17) (CREATGPROPERNOUN-LF :PROPERNOUN 15))
15 ((BILLS PROPERNOUN BILL) (DOWN T) (UP 16))
14 ((WITH5 PREP WITH) (DOWN T) (UP 17))
13 ((NP56 NP) (DOWN (6 12)) (UP 19) (CREATGNP-LF :NOUN 6 :POSTNOUN-MODS 12))
12 ((PP+31 PP+) (DOWN (11)) (UP 13) (CREATE-PP+-LF :PP 11))
11 ((PP26 PP) (DOWN (8 10)) (UP 12 21) (CREATGPP-LF :PREP 8 :OBJ 10))
10 ((NP23 NP) (DOWN (9)) (UP 11) (CREATGNP-LF :NOUN 9))
9 ((CARS4 NOUN CAR) (DOWN T) (UP 10 23))
8 ((IN3 PREP IN) (DOWN T) (UP 11 24))
7 ((NP10 NP) (DOWN (6)) (UP 19) (CREATGNP-LF :NOUN 6))
6 ((FROGS2 NOUN) (DOWN T) (UP 7 13 22))
5 ((VERBS7 VERBS) (DOWN (4)) (UP 19) (CREATGVERBS-LF :VERBS 4))
4 ((TENSED-MAIN4 TENSED-MAIN) (DOWN (3)) (UP 5) (CREATGVERB-ONLY-LF :VERB 3))
3 ((SAW1 VERB SEE) (DOWN T) (UP 4))
2 ((NPI NP) (DOWN (1)) (UP 20) (CREATE-PROPERNOUN-LF :PROPERNOUN 1))
1 ((FRED0 PROPERNOUN) (DOWN T) (UP 2))

Once the parse forest is complete, the logical form for any node can be created by evaluating

the stored procedure call. If the node has multiple parses, then multiple 1ogica.l forms will be

created by. the routines automatically. Hence, the logical form routines used in. this approach

must be able to properly combine the multiple logical forms for its constituelnts (just as in

the second approach). All of the logical forms for the sentence can be producecl by evaluating

the logical form routine stored with the S-MAJ, resulting in a potentially 1a.rge number of

representations. However, since, the procedure calls stored with any of the nodes in the

forest can be evaluated as needed, the program is able to generate and exa.mine only the

representations of the constituents associated with points of ambiguity. This feature can be

used by a se:mantic processing module to determine which of the NPs in the forest make

sense given the world model. For example, the head nouns in nodes 6 and 9 have pointers

Number
of PPs

0
1
2
3
4
5

Forest Size.
for Method 1

3,450 (11)
9,971 (21)

32,043 (42)
108,291 (93)
389,499 (233)

1,477,644 (651)

-
Number
of Parses -

1
2
5
14
42

- 132

Forest Size
for Method 2

3,450 (11)
9,748 (19)
30,704 (30)

107,716 (44)
388,671 (61)

1,475,418 (81)

Forest Size
for No LF
1,184 (11)
1,803 (19)
2,660 (30)
3,703 (44)
5,003 (61)
6,526 (81)

Forest Size
for Mtethod 3

1,353 (11)
2,200 (19)
3,370 (30)
5,043 (44)
7,114 (61)
9,658 (81)

Figure '6: A. comparison of the size of the parse forest in bytes arid number of nodes given
the method. of constructing the logical representation.

to 5 different NPs, whose logical forms can be created and tested against thle model.

The previously described methods for generating logical form were each implemented and

evaluated. Figure 6 compares the memory size of the forests in bytes along with the number

of nodes generated in the forest (shown in parentheses) for each of the three methods.

As a baseline, we also include the number of nodes and the size of the forest when no

logical representation is constructed. The third.method is superior to the other two methods

because: the forest contains the same number of nodes as the original forest without logical

form; the size of the forest augmented with logical form is much closer to the size of the

original forest; and the logical forms for any of the nodes in the forest can still be accessed

by executing the function call(s) stored in that node, providing a flexible tool for higher level

processing.

To compactly represent sentences containing syntactic ambiguity until the iiecessary infor-

mation has been processed to refine the meaning, we have modified an all-path context-free

grammar parser to generate a shared-packed parse forest annotated with function calls to

create the llogical representations for the constituents of the forest. The forest augmented

with procedure calls to construct logical representations is a compact data structure con-

taining multiple sentence parses' and access to their corresponding logical ~*epresentations.

Hence,'a program using this data structure can store the representation in memory for more

extensive processing. Once constructed, this annotated shared-packed forest can be utilized

by a higher-level module to provide logical representations for pieces of the sentence or for

the entire sentence. Points of ambiguity are easy to detect in the annotated forest because of

the of multiple parent links. In case of ambiguity, representations :€or the ambigu-

ous constituents of the sentence can be constructed and tested for validity against a world

model, and -the annotated forest can then be pruned incrementally.

[I] J. Allen. Natural language, knowledge representation, and logical form. Technical

Report 367, University of Rochester, Computer Science, Rochester, NI', 1991.

[2] H. Alshawi. Resolving quasi logical forms. Computational Linguistics, 16:133-144, 1990.

[3] H. Alrihawi, D. Carter, M. Rayner, and B. Gamback. Translation by quasi logical

form transfer. In The Proceedings of the 29th Annual Meeting of the Association for

Comp.ixtationa1 Linguistics, 1991.

[4] H. Alshawi and R. Crouch. Monotonic semantic interpretation. In The Proceedings of

the 30th Annual Meeting of the Association for Computational Linguistics, 1992.

[5] E. Bri:jcoe. Modelling Human Speech Comprehension: A Computational Approach. Ellis

Horwood and Wiley, 1987.

[6] T . Briscoe and J. Carroll. Generalized probabilistic LR parsing of n.atura1 language

(corpora) with unification-based grammars. Computational Linguistics: 19:25-59, 1993.

[7] D. Chester. A parsing algorithm that extends phrases. American Journal of Computa-

tional Linguistics, 6:87-96, 1980.

[8] K. Church and R. Patil. Coping with syntactic ambiguity or how t o :put the block in

the box on the table. Computational Linguistics, 8:139-149, 1982.

[9] J. Early. An efficient context-free parsing algorithm. Communications of the ACM,

13:94-102, 1970.

[lo] M.P. Harper. The representation of noun phrases in logical form. PhD thesis, Brown

Univei:sity, 1990.

[ll] M.P. Harper. Ambiguous noun phrases in logical form. Computational Linguistics,

18:419-465, 1992.

[12] G. Hirst. Anaphora in Natural Language Understanding: A Survey. Springer-Verlag,

New I'ork, 1981.

[13] G. Hirst. Semantic Interpretation and the Resolution of Ambiguity. Carribridge Univer-

sity Press, Cambridge, England, 1987.

[14] M. Kay. Algorithm schemata and data structures in syntactic processing. Technical

Report CSL-80-12, Xerox Corporation, Palo Alto, CA, 1980.

[15] D. E. K:nuth. The Art of Computer Programming, volume I. Addison-Wesley, Reading,

MA, 1975.

[16] M.J. Nlederhof. Generalized left-corner parsing. In Sixth Conference of the European

Chapte:r of the Association for Computational Linguistics, Proceedings of the Confer-

ence, pages 305-314, Utrecht, The Netherlands, April 1993.

[17] M. E. F'ollack and F.C.N Pereira. An integrated framework for semantic and pragmatic

interpretation. In The Proceedings of the 26th Annual Meeting of the .Association for

Computational Linguistics, pages 75-86, 1988.

[18] Y. Schitbes. Polynomial time and space shift-reduce parsing of arbitra.ry context-free

grammars. In The Proceedings of the 29th Annual Meeting of the Association for Com-

putatio,nal Linguistics, 1991.

[19] J. Seo and R. F. Simmons. Syntactic graphs: A representation for t'he union of all

ambiguous parse trees. Computational Linguistics, 15:19-32, 1989.

1201 M. Tonnita. An efficient context-free parsing algorithm for natural languages. In Pro-

ceedings of the 9th International Joint Conference,on Artificial Intelligence, 1985.

[21] M. Tornita. Eficient Parsing for Natural Language. Kluwer Academic Publishers,

Boston, MA, 1985.

[22] R. Weischedel. A hybrid approach to representation in the JANUS natural language

processor. In The Proceedings of the 27th Annual Meeting of the Association for Com-

putational Linguistics, pages 193-202, 1989.

	Purdue University
	Purdue e-Pubs
	1-1-1994

	Storing Logical Form in a Shared-Packed. Forest
	Mary P. Harper

