A Transfer Matrix Method for Estimating the Dispersion and Attenuation of Plane Waves in a Standing Wave Tube - Presentation

Kang Hou
Purdue University

J Stuart Bolton
Purdue University, bolton@purdue.edu

Follow this and additional works at: https://docs.lib.purdue.edu/herrick

https://docs.lib.purdue.edu/herrick/173

This document has been made available through Purdue e-Pubs, a service of the Purdue University Libraries. Please contact epubs@purdue.edu for additional information.
A transfer matrix approach for estimating the sound speed and attenuation constant of air in a tube

Kang Hou
J. Stuart Bolton
Ray W. Herrick Laboratories
Purdue University
Outline

- Sound propagation in a pipe
 - Traces back to the early period of acoustic research

- Standing wave tube technique
 - 2-microphone standard versus 4-microphone standard

- Estimation of complex wave number
 - Iterative procedure based on four-microphone measurement
Sound propagation in the pipe

- Classical Problem
 Kirchoff, Zwikker, Kosten, Morse and Ingard
- “Wall Effect”
 Viscous, thermal effect
- CFD
 Computational fluid dynamics

3M™ Littmann® Classic II Infant Stethoscope

Plumbing Industry
Standing wave tube techniques

- Standard test method for estimating impedance and absorption coefficients of acoustical materials
 - ISO 10534-2
 - ASTM E 1050

- Sources of errors: tube attenuation

- Two-Microphone absorption measurement
 - Newton-Raphson iteration scheme
Transfer matrix approach

- Four-microphone measurement is in the process of standardization by ASTM

Transfer Matrix:

\[
\begin{bmatrix}
P \\
V
\end{bmatrix}_{x=0} = \begin{bmatrix}
T_{11} & T_{12} \\
T_{21} & T_{22}
\end{bmatrix}
\begin{bmatrix}
P \\
V
\end{bmatrix}_{x=d}
\]

\[
P_{x=0} = (A + B)
\]

\[
V_{x=0} = (A - B)/\rho_0 c
\]

\[
P_{x=d} = (Ce^{-jkd} + De^{jkd})
\]

\[
V_{x=d} = (Ce^{-jkd} - De^{jkd})/\rho_0 c
\]
Estimation of complex wave number

For acoustic materials, typically foam and fiberglass, the complex wave number can be obtained from the transfer matrix

\[
\begin{bmatrix}
T_{11} & T_{12} \\
T_{21} & T_{22}
\end{bmatrix} =
\begin{bmatrix}
\cos k_p d & j \rho_p c_p \sin k_p d \\
 j \sin k_p d / \rho_p c_p & \cos k_p d
\end{bmatrix}
\]

\[
k_p = \frac{1}{d} \cos^{-1} T_{11}
\]

One Load Approach

\[
T_{11} = T_{22}
\]

\[
T_{11} T_{22} - T_{12} T_{21} = 1
\]

Treat empty air column as tested samples

Anechoic termination

Transfer Matrix

Anechoic termination

One Load Approach

Anechoic termination

For acoustic materials, typically foam and fiberglass, the complex wave number can be obtained from the transfer matrix

\[
\begin{bmatrix}
T_{11} & T_{12} \\
T_{21} & T_{22}
\end{bmatrix} =
\begin{bmatrix}
\cos k_p d & j \rho_p c_p \sin k_p d \\
 j \sin k_p d / \rho_p c_p & \cos k_p d
\end{bmatrix}
\]

\[
k_p = \frac{1}{d} \cos^{-1} T_{11}
\]

One Load Approach

\[
T_{11} = T_{22}
\]

\[
T_{11} T_{22} - T_{12} T_{21} = 1
\]

Treat empty air column as tested samples

Anechoic termination

Transfer Matrix
Post-process iterative algorithm

Iterative Algorithm Flow Chart

Experiment
→ Transfer Function
→ Plane Wave Amplitude
→ Transfer Matrix
→ Complex Wave Number

No
→ Convergence Decision

Yes

\[A = \frac{j(P_1e^{jx_2} - P_2e^{jx_1})}{2\sin k(x_1 - x_2)}, \]
\[B = \frac{j(P_2e^{-jx_1} - P_1e^{-jx_2})}{2\sin k(x_1 - x_2)}, \]
\[C = \frac{j(P_3e^{jx_4} - P_4e^{jx_3})}{2\sin k(x_3 - x_4)}, \]
\[D = \frac{j(P_4e^{-jx_3} - P_3e^{-jx_4})}{2\sin k(x_3 - x_4)} \]

\[P_{x=0} = A + B, \quad P_{x=d} = Ce^{-jkd} + De^{jkd}, \]
\[V_{x=0} = \frac{A - B}{\rho_0c}, \quad V_{x=d} = \frac{Ce^{-jkd} - De^{jkd}}{\rho_0c} \]

\[k_p = \frac{1}{d}\cos^{-1}T_{11} \]
Experimental Setup

- Semi-empirical prediction: Temkin formula

\[k = \frac{\omega}{c} + (1 - i)\delta \]

- Experimental estimation: Four-microphone measurement based on the transfer function combined with our iterative algorithm

- B&K 4206 standard small and large transmission loss tube kit
Measurement results - Large Tube

- **Advantage:** Simple, Fast, Flexible
- **Disadvantage:** Half Wave Length Problem
Corrected Temkin Formula

- Temkin formula can match the experimental results well if we modify the measured temperature

![Graph showing corrected interior temperature and measured ambient temperature](image-url)
Measurement results - Small Tube

Sound Speed

Tube Attenuation
Conclusions

- Semi-empirical Temkin formula for complex wave number estimation can be adjusted to match the experimental results very well.

- The iterative algorithm based on four-microphone technique gives a quick and reliable estimation of sound speed and attenuation in the tube.

- The approach has the potential to be used for the accurate measurements of gases properties and duct lining performance.
Thanks You!