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in an image (Pizlo, 2014). However, the top-down process is 
difficult to conduct under the condition where the appear-
ance of the object is vague due to various changing factors. 
Therefore, an intermediate representation is necessary for 
mediating the bottom-up and top-down processes. This not 
only represents the arrangement of fragmented regions for 
the bottom-up process, but also defines possible transforma-
tions of the object for the top-down process (Kimia, 2003).

One of many promising intermediate representations is 
skeletonization, where the skeleton of an object is extracted 
as a one-dimensional line representation, like the red line in 
Figure 9. The skeleton is formed by points that have at least 
two closest points on the object boundary (Cornea, Silver, & 
Min, 2007; Kimia, 2003). Green circles in Figure 9 illustrate 
that these points are centers of circles that are maximally 
inscribed within the boundary. Then, parts of the object are 
defined by skeleton branches, each of which is a line seg-
ment with no branch to multiple directions. Such parts can 
be consistently observed for different appearances of the 
object so they are useful for assembling fragmented regions 
in the bottom-up process. In addition, different configura-
tions of parts represent various appearances of the object, 
and support the top-down process. Kimia (2003) presented 
the validity of skeletons from the psychophysical and neu-
rophysiological perspectives. Also, researchers are exploring 
methods that recognize objects by appropriately matching 
parts of their skeletons (Bai & Latecki, 2008; Feinen, Yang, 
Tiebe, & Grzegorzek, 2014). Furthermore, these methods 
are being extended to realistic images with cluttered back-
grounds, where an object is detected by applying contours of 
its parts to edges extracted for an image (Bai, Wang, Latecki, 
Liu, & Tu, 2009).

Traditional features are “hand-crafted” or “human-
crafted” in the sense that their representations are specified 
in advance (Bengio, 2009). For instance, a SIFT feature is 
described as a 128-dimensional vector where each dimen-
sion represents the frequency of a certain edge orientation 
in a local region. However, such a hand-crafted feature is 

insufficient for representing diverse object appearances. 
This is because all of these appearances cannot be assumed 
in advance and cannot be appropriately represented by the 
feature. In the human brain, objects are recognized in a hier-
archical fashion, where simple cells are gradually combined 
into more abstract, complex cells (Kruger et al., 2013). This 
hierarchical brain functionality is recently implemented as 
deep learning that constructs a feature hierarchy with higher-
level features formed by the composition of lower-level fea-
tures (Bengio, 2009; Bengio, Courville, & Vincent, 2013). 
Such a feature hierarchy is represented as a multilayer neural 
network. In every layer, each of the artificial neurons com-
poses a more abstract feature based on outputs of neurons at 
the previous layer.

Figure 10 shows a conceptual comparison between a tra-
ditional machine learning approach using a hand-crafted 
feature and a deep learning approach. The former, in Figure 
10 (a), uses a “shallow architecture” consisting of two layers, 
where the first layer transforms an example into a feature rep-
resented by a high-dimensional vector, and the second layer 
aggregates values of this feature into a detection result of a 
meaning. On the other hand, the deep learning in Figure 10 
(b) first projects an example into the most primitive features 
at the bottom layer, and then these features are projected into 
more abstract ones at the second layer. This abstraction of 
features is iterated to obtain a detection result of a mean-
ing. For examples, features at the bottom and second layers 
correspond to typical edges and their combinations, respec-
tively. Moreover, features at an upper layer represent parts 
of a car, and the ones at the top layer indicate the whole car. 
Like this, the workflow from processing pixels to recogniz-
ing a meaning is unified into a deep architecture, which is 
extracted from large-scale data. One of the biggest advan-
tages of this deep architecture is its discrimination power 
compared to the shallow one in the traditional machine 
learning approach. The latter requires )(NO  parameters to 
distinguish )(NO  examples, while the former can represent 
up to )2( NO  examples using only )(NO  parameters (Ben-
gio et al., 2013). Intuitively, a huge first layer is required for 
the traditional approach to discriminate diverse examples. In 
contrast, the discrimination power of the deep architecture 
is exponentially increased based on the combination of fea-
tures at two consecutive layers.

For a long time, building such a deep architecture with a 
satisfying performance was difficult, but Hinton, Osindero, 
and Teh (2006) have developed an algorithm for reasonably 
solving this problem. The algorithm greedily builds one layer 
at a time so that outputs of the previous layer can be recon-
structed with the minimal error rate. Using this as initializa-
tion, the deep architecture is finely tuned with training exam-
ples. In several worldwide competitions on image, video, 
and audio classification, the performance of deep learning Figure 9. An illustration of skeletonization.
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methods has been proven to be much higher than traditional 
machine learning methods (Krizhevsky, Sutskever, & Hin-
ton, 2012; Lee, Pham, Largman, & Ng, 2009). Furthermore, 
in the field of neuroscience, it is well known that neurons 
encode sensory information using only 1–4% of active neu-
rons (Bengio, 2009; Bengio et al., 2013). This idea is imple-
mented as sparse coding and incorporated into deep learn-
ing by penalizing the output of each neuron.

Selective attention is the brain’s mechanism that deter-
mines which part of sensory data is currently of most inter-
est (Frintrop, Rome, & Christensen, 2010; Borji & Itti, 2013). 
This enables humans to conduct real-time decision-making 
by closely analyzing selected parts in a large amount of sen-
sory data, such as sights and sounds captured by eyes and 
ears. Visual attention (also called focus of attention) imple-
ments selective attention on images and videos, that is, it 
detects salient regions that are likely to attract users (Frintrop 
et al., 2010; Borji & Itti, 2013). A detection result of such a 
salient region is usually represented as a saliency map, which 
represents the saliency of each pixel in an example. Figure 11 
shows two examples of saliency maps where pixels associated 
with higher saliencies are depicted as brighter. It can be seen 
that the examples in Figure 11 (a) and (b) are appropriately 
associated with salient regions where a car and a person are 
shown, respectively. Since non-salient regions can be consid-
ered as irrelevant and redundant for interpreting semantic 

meanings, visual attention is useful for not only improving 
the retrieval performance, but also reducing the computa-
tional cost.

In addition, visual attention facilitates analyzing the 
subjective property of examples. There is a big discrepancy 
between the goal of object recognition and that of retrieval. 
The former aims to recognize objects irrespective of various 
changing factors, such as directions, rotations, sizes, light-
ing conditions, and occlusion. However, this goal does not 

Figure 10. A conceptual comparison between traditional machine learning and deep learning approaches.

Figure 11. Examples of saliency maps.
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fit user needs in retrieval. Let us consider a user retrieving 
examples where cars are shown. Clearly, he/she is not inter-
ested in an example where a car moves in a small background 
region (i.e., non-salient region), like the example in Figure 11 
(b) in which the region of the car is marked by the red rect-
angle. Instead, an example where a car is shown in a salient 
region like the example in Figure 11 (a) should interest the 
user. Hence, visual attention is useful for evaluating the sub-
jective property of each retrieved example and achieving 
meaningful retrieval for humans.

Most of the visual attention methods are based on the psy-
chological theory called “feature integration theory,” where 
different features (e.g., brightness, color contrast, and cur-
vature) extracted for each pixel in an example are processed 
in parallel and fused into a saliency map (Borji & Itti, 2013; 
Frintrop et al., 2010). Typically, pixels which are irregular 
compared to surrounding ones are regarded as salient. How-
ever, this kind of bottom-up approaches relying only on fea-
tures do not work well. Hence, researchers are exploring how 
to incorporate top-down approaches using prior knowledge 
into visual attention. For example, Li, Tian, Huang, and Gao 
(2010) proposed a method based on “contextual cueing,” 
meaning that a human can easily find a target object when 
the visual context (i.e., spatial layout of objects) is similar 
to the past. This suggests that visual attention is guided by 
scenes that the human saw in the past. To implement con-
textual cueing, the method in Li et al. (2010) uses training 
examples where salient regions are labeled in advance. It 
detects salient regions in a test example by referring to the 
training example that has the most similar spatial layout.

Future Directions. Existing cognitive methods described 
above only utilize a small amount of knowledge ascertained 
in cognitive science. Below, we discuss further utilization of 
this knowledge in LSMR. One of the groundbreaking ideas 
that have emerged from the research on human categoriza-
tion is the prototype theory (Lakoff, 1987; Mervis & Rosch, 
1981; Rosch, 1975, 1978; Tversky, 1977). According to this 
theory, humans organize their concepts and categories into 
a radial structure centered around a prototype, with items 
closer to the prototype being deemed more central than 
those farther off. For instance, a pigeon is considered a more 
prototypical bird than a penguin. We can add to this the 
notion of “family resemblance” proposed by Wittgenstein 
(2009). The idea here is that members of a category have 
overlapping attributes, but there may be nothing that they 
all have in common.

Incorporating these features in an LSMR system requires 
that we are able to automatically cluster and label huge sets of 
images with large feature sets. This is an active area of research 
(Reed, Bifet, Holmes, Pfahringer, 2011; Spyromitros-Xioufis, 
Spiliopoulou, tsoumakas, & Vlahavas, 2011; Tsoumakas & 
Katakis, 2007), but we need to configure these techniques to 

produce structured clusters with different underlying simi-
larity metrics, and design tools to explore and retrieve mul-
timodal data from these clusters. (See, for instance, Koduri, 
Gali, and Indurkhya (2010) and Mala and Geetha (2009)).

Taking a different point of departure, Dastani and Indur-
khya (1997) used Structural Information Theory and its 
notion of information load to introduce the measures of 
descriptor complexity and member complexity that drive 
categorization in opposite directions. They proposed a sim-
ple additive function to find an optimum balance between 
these two, and used it to model similarity and categorization. 
However, further research needs to be done to explore how 
these ideas scale up to huge databases.

As a pioneering work on automatic clustering/labeling 
of Internet scale data, Chen, Shrivastava, and Gupta (2013) 
developed NEIL (Never Ending Image Learner), which con-
tinuously explores those data to extract knowledge (positive 
images and relations for visual categories like objects, scenes, 
and attributes). First, for each category, seed images are col-
lected through Google Image Search to build the initial classi-
fier. Second, relations among categories are extracted by com-
puting co-occurrences based on classifiers’ outputs. Third, 
NEIL selects additional positive images, each of which has 
large outputs of both the classifier for a category and classi-
fiers for its related categories. Then, NEIL updates classifiers 
with additional positive images and continuously repeats the 
second and third processes. As a result of running NEIL for 
2.5 months, it could discover 400,000 positive examples and 
1,700 relations for 2,237 categories. It seems possible to extend 
NEIL by adopting the prototype and structural information 
theories described above, so that more structured knowledge 
can be continuously extracted from Internet scale data.

Similarity, which is at the heart of LSMR, has been studied 
extensively from a cognitive science point of view (Goldstone 
& Son, 2005; Hahn, Chater, & Richardson, 2003; Rodriguez 
& Egenhofer, 2003; Schwering, 2008; Tversky, 1977). Thus, it 
would be useful to take advantage of some of these insights 
in designing LSMR systems. We cannot review here all the 
numerous cognitive studies on similarity, but we would like 
to make one comment on how they can help in LSMR. If 
we look at most of the existing formulations of similarity in 
LSMR systems, they are essentially feature based. In other 
words, certain features of the images are extracted, and then 
some similarity metric is applied on them. These features 
can be low-level perceptual features, or high-level semantic 
features. Needless to say, humans also use such features, but 
one distinguishing cognitive aspect of similarity is that it is 
highly dynamic and contextual. Moreover, depending on the 
context and the goal of the agent, new features can be created 
or discovered in an image that were not obvious or relevant 
before (Indurkhya, 1998; Indurkhya & Ojha, 2013). There 
has been some previous work in modeling these dynamic 
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processes (Hofstadter, 1995; O’Hara & Indurkhya, 1994), but 
we need to scale up these techniques, or come up with new 
techniques, so that they can be applied to huge databases.

In this regard, it would be useful to incorporate insights 
from the study of biological visual systems. Kruger et al. (2013), 
based on a thorough review of the existing literature on the 
primate visual system, have proposed three key mechanisms 
that need to be incorporated in computer vision systems:

1.	 Hierarchical processing: Features need to be grouped 
and organized in hierarchies. Moreover, these hierar-
chies need to be dynamic in the sense that they incor-
porate learning (with respect to both grouping and 
hierarchical structure), and are capable of evolving 
based on ongoing interactions with the environment.

2.	 Separate information channels depending on different 
needs for different behaviors or different requirements.

3.	 Feedback and feedforward: There should be both 
top-down and bottom-up mechanisms so that 
higher-level features can affect grouping of lower-
level ones, and also lower-level features can evoke 
different higher-level ones.

Considering these key mechanisms, the current deep learn-
ing approach only implements the hierarchical processing 
of features. We expect that one important future direction 
for deep learning is to develop a mechanism that adapts (or 
projects) the feature hierarchy depending on images, so that 
high-level (semantic) features are consistently obtained in 
different situations (e.g., bright, dark, and foggy) where low-
level perceptual features are dissimilar.

Also, the above kind of hierarchical architecture would 
be similar to the one proposed some years ago for model-
ing creativity in legal reasoning (Indurkhya, 1997). There is 
also more recent work on how perceptual and conceptual 
similarities interact together, and how perceptual similarities 
can give rise to new (hitherto unseen) conceptual similarities 

(Indurkhya & Ojha, 2013; Ojha & Indurkhya, 2009), which 
can be modeled with such an architecture.

Ontological Approaches

Existing Approaches. An ontology is a machine-readable 
representation of knowledge to explicitly specify concepts, 
properties of concepts, and relations among concepts in a 
given domain (Horridge, Knublauch, Rector, Stevens, & 
Roe, 2004; Staab & Struder, 2009). Concepts in multimedia 
data are defined as textual descriptions of semantic mean-
ings that can be recognized by humans, such as objects like 
Person and Car, actions like Walking and Airplane_Flying, 
events like Car_Crash and Explosion_Fire, and scenes like 
Beach and Desert. Below, concept names are written in ital-
ics to distinguish them from the other terms. Ontological 
(also called concept-based) approaches have been developed 
where examples relevant to a query are retrieved based on 
detection results of concepts (Snoek & Worring, 2009).

Figure 12 illustrates an overview of an ontological 
approach based on the QBE framework in Figure 5. First of 
all, for each concept, a detector is built to detect its presence 
in an example. The detector associates the example with a 
detection score that represents a scoring value between 0 and 
1. Large and small detection scores highlight the concept’s 
presence and absence, respectively. For example, in Figure 
12, the detector for Person provides the upper positive (user-
provided) example with the score 0.9, meaning that a person 
probably appears in this example. On the other hand, the 
score 0.1, obtained by the detector for Outdoor, indicates that 
the upper positive example is unlikely to show an outdoor 
scene. By aggregating such detection scores for various con-
cepts, an example is represented as a multidimensional vec-
tor and projected into the multidimensional space, as shown 
in the middle of Figure 12.

Given positive examples for a query (its text description 
can also be used as described in the classifier construction 
task below), a classifier is constructed in the multidimen-
sional space of concept detection scores. Since the detector 

      Figure 12. An overview of an ontological approach.
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for each concept is built using a large amount of training 
examples, the concept can be robustly detected regardless of 
its sizes, positions, and directions on the screen. This enables 
us to collectively retrieve examples where concepts related to 
the query are present with diverse appearances. For example, 
positive examples in Figure 12 only show frontal views of 
Computers. But, as shown in the bottom right of Figure 12, the 
example showing the side view of Computers can be retrieved 
because the detector based on many training examples can 
assign high detection scores to examples showing different 
views of Computers. Please see Figure 5 where positive exam-
ples showing frontal views of Computers lead to only retrieve 
examples showing the same or very similar views. Like this, 
compared to the multidimensional space of features where 
each dimension just represents a physical characteristic of an 
example, ontological approaches take advantage of the space 
where each dimension represents the presence of a seman-
tically meaningful concept. This facilitates retrieving exam-
ples that have dissimilar visual appearances, but show simi-
lar semantic meanings. This kind of ontological approaches 
achieve state-of-the-art retrieval performance (Li, Wang, Li, 
& Zhang, 2007; Natsev, Haubold, Těsić, Xie, & Yan, 2007; 
Ngo et al., 2009; Snoek et al., 2009; Wei, Jiang, & Ngo, 2011).

The following three tasks are crucial for ontological 
approaches. The first task is the question of how to define a 
vocabulary of concepts. Since a query is characterized by a 
set of concepts, a concept vocabulary should be sufficiently 
rich for covering various queries. One of the most popular 
ontologies is Large-Scale Concept Ontology for Multimedia 
(LSCOM), which defines a standardized set of 1,000 concepts 
in the broadcast news video domain (Naphade et al., 2006). 
These concepts are selected based on their “utility” for clas-
sifying content in videos, their “coverage” for responding to a 
variety of queries, their “feasibility” for automatic detection, 
and the “availability” (observability) of large-scale training 
data. It is estimated that if the number of concepts in LSCOM 
reaches an amount of 3,000, granting the quality of the new 
concepts remains similar to the existing ones, the retrieval 
performance approaches that of one of the best web search 
engines in text information retrieval (Hauptmann, Yan, Lin, 
Christel, & Wactlar, 2007). Apart from LSCOM, ImageNet, a 
large-scale ontology for images, is being developed (Deng et 
al., 2009). It is an extension to its predecessor, WordNet, which 
is a large lexical ontology where concepts (called synonym 
sets or synsets) are interlinked based on their meanings (Fell-
baum, 1998). ImageNet aims to assign an average of 500 to 
1,000 images to each WordNet concept. In Deng et al. (2009), 
3.2 million images are associated with 5,247 concepts through 
Amazon’s Mechanical Turk, where the assignment of images 
has been outsourced to web users (see the Manual Annota-
tion Approaches section). The developers of ImageNet plan to 
assign 50 million images to 80,000 concepts in the near future.

The second task is figuring out how to accurately detect 
the presence of a concept in examples. It should be noted 
that concepts themselves are just linguistic terms. To utilize 
them in LSMR, we need to examine whether each concept 
is contained in the audiovisual form of an example. Hence, 
detectors serve as mediators between linguistic concepts and 
their audiovisual forms. As described in the Machine Learn-
ing Approaches section, much research effort has been made 
on developing accurate concept detectors (object recogniz-
ers) by mainly taking advantage of a large number of train-
ing examples and features exhaustively sampled in both the 
spatial and temporal dimensions. Concept detectors can be 
further improved by exploiting knowledge about the human 
visual system based on cognitive methods described in the 
previous section.

The last task concerns the utilization of detection scores 
to construct an accurate classifier for a query. This classifier 
fuses detection scores for multiple concepts into a single “rel-
evance score,” which indicates the relevance of an example 
to the query. Existing methods are roughly classified into 
four categories: linear combination, discriminative, similar-
ity-based, or probabilistic. Linear combination computes the 
relevance score of an example by weighting detection scores 
for multiple concepts. One popular method is to use concept 
detection scores in positive examples. If the average detection 
score for a concept in positive examples is large, this con-
cept is regarded as related to the query and associated with 
a large weight (Natsev et al., 2007; Wei et al., 2011). Another 
popular method is text-based weighting, where a concept is 
associated with a large weight if its name is lexically similar 
to a term in the text description of the query (Natsev et al., 
2007; Wei et al., 2011). The lexical similarity between a con-
cept name and a term can be measured using a lexical ontol-
ogy like WordNet. Discriminative methods construct a clas-
sifier (typically, SVM) using positive examples (Natsev et al., 
2007; Ngo et al., 2009) (see Figure 12). The relevance score of 
an example is obtained as the classifier’s output. Similarity-
based methods compute the relevance score of an example 
as the similarity between positive examples and the example 
in terms of concept detection scores. Li et al. (2007) use the 
cosine similarity and a modified entropy as similarity mea-
sures. Probabilistic methods estimate a probabilistic distri-
bution of concepts using detection scores in positive exam-
ples, and use it to compute the relevance score of an example. 
Rasiwasia, Moreno, and Vasconcelos (2007) compute the 
relevance score of an example as the similarity between the 
multinomial distribution of concepts estimated from posi-
tive examples and the one estimated from the example.

Future Directions. Ontological approaches described 
above lack reasoning to precisely infer higher-level semantic 
meanings based on properties of concepts and their relations. 
Even though some works consider hierarchical relations 
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among concepts, they only use is-a (generalization/special-
ization) connections among concepts (Deng, Berg, & Fei-Fei, 
2011; Zhu, Wei, & Ngo, 2013). Reasoning based on concept 
properties and relations is necessary because concept detec-
tion itself has the following two limitations. First, concepts are 
too general to identify examples that users want to retrieve. 
Secondly, most of the existing methods use concepts in isola-
tion. For example, various semantic meanings are displayed 
in examples where the concepts Person, Hand, and Ball are 
present. In other words, examples that users really want can-
not be identified by independently examining presences of 
Person, Hand, and Ball. Instead, if we consider that the Hand 
of a Person is moving and the Ball is separating from the Per-
son, the higher-level meaning “throwing” can be derived.

Note that reasoning was explored in classical manual 
annotation approaches described in the Manual Annotation 
section. However, in LSMR, it has received little research 
attention due to the poor performance of concept detec-
tion in the past. Considering its recent improvement, we 
argue that reasoning should be addressed in LSMR. For this, 
Chen, Zhou, and Prasanna (2012) developed an interest-
ing approach that optimally specializes detected concepts 
and their relations, so that they are the most probable and 
ontologically consistent. This approach, which formulates 
reasoning as an optimization problem based on constraints 
defined by the ontology, can be considered as a promising 
future direction of LSMR.

Reasoning requires overcoming the crucial problem of 
how to manage “uncertainties” in concept detection. Tradi-
tional ontology formalisms do not account for uncertainties, 
where an ontology itself is not uncertain. In other words, it 
is a presentation of prior knowledge that has been accepted 
to be true. Compared to this, even using the most effective 
detectors, it is still difficult to accurately detect various kinds 
of concepts. For example, our method, which performed the 
best at the concept detection competition in TRECVID 2012 
(Shirahama & Uehara, 2012), can achieve high performances 
for concepts such as Male_Person and Walking_Running 
(with average precisions greater than 0.7). On the other hand, 
the detection of concepts like Bicycling and Sitting_down was 
difficult (with average precisions less than 0.1). In addition, 
real-world examples are “unconstrained” in the sense that 
they can be taken by arbitrary camera techniques and in 
arbitrary shooting environments (Jiang et al., 2013). Hence, 
even in the future, it cannot be expected to detect concepts 
with 100% accuracy. If one relies on uncertain concept detec-
tion results, detection errors for some concepts damage the 
whole reasoning process.

We have developed a method that can handle uncertain-
ties based on Dempster-Shafer Theory (DST) (Shirahama, 
Kumabuchi, Grzegorzek, & Uehara, 2015). DST is a general-
ization of Bayesian theory where a probability is not assigned 

to a variable, but instead to a subset of variables (Denoeux, 
2013). Given a set of concepts, C, and S, a subset of C, we 
define a “mass function” m(S) over an example to indicate the 
probability that one concept in S is present in the example. 
For instance, m({Person,Car}) represents the probability that 
either Person or Car could be present in an example. In the 
extreme case, m(C) represents the probability that every con-
cept could be present, that is, it is unknown which concept 
is present. Using such a mass function, DST can represent 
uncertainties in concept detection much more powerfully 
than Bayesian theory, because the latter can only represent 
uncertainties by assigning 0.5 to the probability of a concept’s 
presence. However, the derivation of a mass function is quite 
intractable, because it is very subjective or impossible to pre-
pare training examples by annotating them from the per-
spective that one of a set of concepts could be present. Thus, 
based on the set-theoretic operation in DST, we have proved 
that a probabilistic classifier using a mass function can be 
transformed into the one using “plausibilities.” A plausibility 
is an upper bound probability that a concept could possibly 
be present in an example. By modeling these plausibilities 
based on the distribution of positive and negative examples 
for each concept, a classifier is constructed in the framework 
of maximum likelihood estimation. We have shown that 
this classifier yields about 19% performance improvement 
compared to a classifier that uses concept detection scores 
without considering uncertainties. One useful future direc-
tion might be to incorporate a reasoning mechanism into 
the above-mentioned classifier, where concept properties 
and relations are used as constraints in maximum likelihood 
estimation.

Furthermore, a large repository of concept properties and 
relations is required to reason various semantic meanings. In 
the text processing field, researchers are exploring Informa-
tion Extraction (IE), which is the process of extracting rela-
tions between entities from natural language text (Alfonseca, 
Filippova, Delort, & Garrido, 2012). For example, the relation 
triples Founding_location(University of Siegen, Germany) and 
Founding_year(University of Siegen, 1972) are extracted from 
the sentence “University of Siegen in Germany was founded 
in 1972.” By applying such an IE to multimedia data, we could 
create a large repository of concept properties and relations 
with or without a small amount of user intervention. We call 
this Multimedia Information Extraction (MIE) and consider 
it as a very important future direction. MIE can be consid-
ered as a “second generation” of video data mining described 
in the Heuristic Approaches section. Because of the poor per-
formance of past concept detectors, video data mining could 
only analyze features (Shirahama et al., 2006). As a result, it 
failed to extract patterns characterizing high-level semantic 
meanings. MIE offers an opportunity to rethink video data 
mining by utilizing recent concept detectors that are much 
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more accurate than old ones. We have implemented a pre-
liminary MIE system in which detection results for 351 con-
cepts are probabilistically analyzed to extract higher-level 
meanings (Shirahama, Grzegorzek, & Uehara, 2015). We 
demonstrated that the high-level meaning Birthday_Party 
is appropriately characterized by concepts like Moonlight, 
Nighttime, Entertainment, Singing, and Dancing.

While our preliminary MIE system used concept detec-
tors that merely identify the presence or absence of a concept, 
several detectors that can localize their regions are currently 
available (Felzenszwalb, Girshick, Mcallester, & Ramanan, 
2010; Simonyan & Zisserman, 2014). Thus, we hope that 
MIE is further extended to consider spatio-temporal rela-
tions among concepts. For this, an example only displays the 
original 3D space, which is projected onto a 2D image plane. 
In other words, it does not hold the depth information in the 
original 3D space. For example, a 2D image or video frame 
may show that the regions of a Person and a Table are over-
lapping, even though the former stands in front of the latter. 
In addition, a Ball kicked hard and far by a Football_Player 
may still overlap with the player’s 2D region. Compared 
to this, humans can easily interpret the depth information 
in 2D examples. This has inspired researchers to develop 
depth estimation methods, which estimate depths from 2D 
examples (Karsch, Liu, & Kang, 2012; Saxena, Chung, & Ng, 
2008). Roughly speaking, some features are useful for pre-
dicting depths in an example: a grass field viewed at a short 
distance has fine textures, while such textures are blurred 
when it is viewed at a large distance. Furthermore, parallel 
lines have larger variations in edge orientations, as they are 
viewed from a more distant position. Based on such features, 
a classifier is built using training examples where the depth 
of each pixel is annotated (recorded) with a depth sensor like 
Microsoft Kinect. Intuitively, the classifier estimates depths 
in a test example by referring to those in visually similar 
training examples. We expect that depth estimation is nec-
essary for MIE to analyze meaningful spatio-temporal rela-
tions among concepts.

Adaptive Approaches

Existing Approaches. One way that a human gets to solve 
diverse problems is the repetition of the following process: 
Given a new problem, the human first monitors his/her per-
formance, recognizes a deficiency, and uses knowledge that 
he/she already has to overcome the deficiency. By repeat-
ing this, the human can accumulate knowledge for solving 
diverse problems. In this context, metacognition is a disci-
pline to explore the process of how a human addresses a 
problem (Anderson & Oates, 2007). Assuming a cognitive 
system that simulates a functionality of human mind, meta-
cognition aims to monitor, model, and control the behav-
ior of that system to effectively solve a problem. We define 

adaptive approaches as applications of metacognition to 
LSMR. The development of an LSMR system requires vari-
ous decision-making capabilities, such as choosing a set of 
features, selecting a classifier, setting parameters, collecting 
training examples, selecting a performance evaluation mea-
sure, and so on. Adaptive approaches automate or optimize 
one or more decision-making tasks based on user feedback. 
This is an extension of Relevance Feedback (RF), described 
in the Interactive Approaches section.

The traditional RF relies on the very restrictive commu-
nication between a classifier and a user, where the user only 
informs the classifier whether an example is relevant to a cer-
tain semantic meaning or not. In the real world, a teacher 
makes much more complex communication with a learner. 
In particular, if the learner makes a mistake, the teacher tells 
him/her the reason for it. Based on this idea, Parkash and 
Parikh (2012) developed an Attribute-based Feedback (AF), 
which realizes the complex communication between a user 
and a classifier. Here, attributes are semantically meaning-
ful descriptions, such as parts (e.g., “propeller”), shapes (e.g., 
“round”), textures (e.g., “stripe”), rough scene categories 
(e.g., “natural”), and nonverbal properties (e.g., “properties 
that dogs have but cats do not”) (Farhadi, Endres, Hoiem, 
& Forsyth, 2009; Lampert, Nickisch, & Harmeling, 2009). 
Similar to concept detection, a detector for each attribute 
is built to identify its presence in an example. As a result, 
the example is represented as a vector, where each dimen-
sion represents the output of the detector for one attribute. 
For example, in Figure 13, the example (a) is associated with 
the large output value 0.6 for the attribute “natural” because 
trees and the grass are displayed in a large region. Note that 
the example representation based on attributes is similar to 
the one based on concepts (see Figure 12). But the attributes 

Figure 13. An overview of Attribute Feedback (AF).
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represent lower-level semantic meanings, and are therefore 
relatively easier to detect automatically (Zhang et al., 2013).

AF uses attributes as a language between a classifier and a 
user to implement their complex communication (Parkash 
& Parikh, 2012). Specifically, if an example that the classifier 
regards as relevant to a meaning is judged to be irrelevant by 
a user, he/she can explain the reason for this misclassifica-
tion. Let us consider Figure 13, where examples are repre-
sented as points in the multidimensional space defined by 
the detector outputs for different attributes. For simple visu-
alization, only two dimensions are shown in Figure 13, where 
the horizontal dimension represents detector outputs for the 
attribute “natural.” Assume that for the query “street scene,” 
a classifier (SVM) with the boundary depicted by the dashed 
line is built using three positive and four negative examples, 
which are marked by blue circles and red triangles, respec-
tively. Test examples are represented by white circles. Based 
on the criteria of RF, the user is asked to give feedback to the 
test example (a) because it is the closest to the classification 
boundary. Under this setting, the user can not only annotate 
the test example (a) as negative in terms of the query, but also 
explain “this example is too natural as a street scene.” This 
implies that test examples that have higher detector outputs 
for the attribute “natural” than the test example (a) should 
be also negative. In Figure 13, these test examples like (c) 
and (d) are located in the red rectangle. Like this, based on 
the attribute explained in a reason, the annotation for one 
example can be propagated to other examples. That is, mul-
tiple examples are annotated through one feedback, so that 
the performance of a classifier can be effectively improved.

Furthermore, attributes, which are used as features of the 
classifier, can be refined based on user feedback (Biswas & 
Parikh, 2013). In Figure 13, the above exemplified explana-
tion has another implication that the detector for the attri-
bute “natural” should output lower values for positive exam-
ples than the one for the test example (a). Using this as a 
constraint, the detector is refined so that the positive exam-
ple in the red rectangle is associated with a lower value than 
the one for the test example (a). This way, both the classifier 
and attributes (features) are refined by AF.

Future Directions. Adaptive approaches have plenty of 
room to explore. First, the current AF only targets the efficient 
refinement of classifiers for object-level meanings (concepts) 
based on attributes, but we expect that AF can be flexibly 
used for various levels of semantic meanings. Here, classi-
fiers for a certain level of meanings are efficiently refined by 
regarding one lower level of meanings as attributes. In partic-
ular, AF seems to be useful for ontological approaches where 
concepts are considered as attributes, and accurate classifiers 
for high-level meanings can be built with reduced manual 
annotation effort. This is equivalent to effective knowledge 
extraction of MIE (see the Ontological Approaches section), 

because concept relations characterizing high-level meanings 
can be obtained by analyzing the built classifiers. Further-
more, by viewing these high-level meanings as attributes, AF 
may succeed in effortlessly extracting their causal relations, 
which were used in classical manual annotation approaches 
with huge manual labor.

Apart from AF, one important future direction for gaining 
the benefit from metacognition is to design metalevel features 
that are used to select an effective strategy for improving the 
retrieval performance. For example, Bensusan, Giraud-Car-
rier, and Kennedy (2000) suggested that the performance of a 
decision tree can be evaluated based on the number of nodes, 
depth, shape, and so on. Thus, using these as metalevel features, 
the decision tree that yields the best performance on given 
data can be estimated. In addition, Kumar, Packer, and Koller 
(2010) proposed “self-paced learning,” which is inspired by the 
fact that children start with learning easier concepts, and then 
build up more complex ones. To implement this, the research-
ers developed a metalevel feature to assess the difficulty level 
of examples based on how easily their labels are predicted by 
the current classifier. From this, an accurate classifier can be 
constructed by gradually introducing training examples from 
easier to harder. We expect that various types of metalevel fea-
tures are needed to characterize the usefulness of features, clas-
sifiers, and parameters in the LSMR processing pipeline.

Another major insight from metacognition is that humans 
conceptualize things in divergent ways. For example, while 
a frying pan is typically used for frying, it can also be used 
for hammering, fighting, or playing musical instruments. 
This kind of adaptive conceptualization in the human mind 
has been investigated as gestalt projection (Indurkhya, 2006; 
Koffka, 1935; Kubovy & Gepshtein, 2000). Gestalts are top-
down structures that are used for modeling expectation-
based approaches to how context affects the conceptualization 
of low-level sensory data. More specifically, we define gestalt 
projection as an extension of ontological approaches, and rep-
resent a gestalt as a structured set of concepts that are interre-
lated based on their postural, spatial, and temporal relations.

Let us consider that for the query “a person hammering,” 
a user provides a positive example that shows “a person ham-
mering a nail with a frying pan” (Guerin, Ferreira, & Indur-
khya, 2014). In this case, the ontological approach in Figure 
12 would retrieve examples having high detection scores for 
Person and Frying_Pan. However, this leads to retrieve many 
undesirable examples where a Frying_Pan is being used for 
cooking, is being washed, is being advertised, and so on. 
Thus, for accurate retrieval, we need to adaptively estimate 
that Frying_Pan in this positive example is being used for 
hammering. This “hammering” gestalt is evoked in the fol-
lowing way: For the positive example, the regions of Person 
and Frying_Pan are identified with the relational concept 
Holding (i.e., the former holds the latter). In addition, the 
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pose of Person suggests the action concept Hitting (which is 
not observed in most examples showing Frying_Pan). The 
above pattern of concepts and their interrelationships trig-
ger the “hammering” gestalt. In this way, gestalt projection 
dynamically organizes the concepts detected in an example 
to yield the imaginative and playful conceptualization.

The following two tasks are the key to implementing 
the mechanism of gestalt projection. The first is to build 
a large-scale knowledge base about gestalts. This is exactly 
the task of Multimedia Information Extraction (MIE), dis-
cussed in the previous section. Furthermore, the computer 
vision community has started to develop methods that can 
identify group actions derived from the contextual rela-
tionships among multiple objects (Lan, Wang, Yang, Robi-
novitch, & Mori, 2012), expected social roles and actions of 
persons (Lan, Sigal, & Mori, 2012), and functionalities of 
objects (Zhu, Fathi, & Fei-Fei, 2014). These research efforts 
are beneficial to efficiently building a large-scale gestalt 
knowledge base.

The second task is to develop a method for applying 
an evoked gestalt to candidate examples. We feel that this 
does not require creating new technology, but rather to 
configure existing tools and mechanisms in new ways to 
bridge the semantic gap. One such platform might be the 
Blackboard System, which allows an interaction of bottom-
up and top-down processes in a competition-cooperation 
paradigm to arrive at an interpretation of given percep-
tual data (Corkill, Lesser, & Hudlicka, 1982; Hayes-Roth, 
1985). The blackboard architecture was originally proposed 
for speech understanding (Erman, Hayes-Roth, Lesser, & 
Reddy, 1980), but since then has been successfully applied 
in diverse domains (Corkill, 1991). This architecture may 
be visualized by the metaphor of a group of independent 
experts with diverse knowledge who are sharing a com-
mon workspace, namely the blackboard. They work on the 
solution together and each of them adds some contribu-
tion to the blackboard, whenever possible, until the prob-
lem is solved. The blackboard model provides an efficient 
platform for problems that require many diverse sources 
of knowledge. It allows a range of different experts repre-
sented as diverse computational agents and provides an 
integration framework for them. It enables an incremental 
progress toward a solution, and a flexible control for prob-
lem-solving. Integrating these two tasks in current LSMR 
technology would allow us to retrieve relevant examples to 
queries in an intuitive and humanlike way.

Conclusion

In this paper, we reviewed existing LSMR methods, includ-
ing those that we have developed. By tracing the history 
of machine-based and human-based LSMR methods, we 

argued that due to prioritizing the generality of methods 
and the scalability for large-scale data, current methods lack 
knowledge about human interpretation, which was used in 
classical methods. We then discussed human-machine coop-
eration methods by classifying them into cognitive methods 
using knowledge about the human visual system, ontologi-
cal methods using knowledge about human inference, and 
adaptive methods using knowledge about human learning. 
The future direction that we finally suggest is the develop-
ment of a framework to unify cognitive, ontological, and 
adaptive methods into a single LSMR system by considering 
their relationships as shown in Figure 8. In this system, every 
process is based on knowledge about human interpretation 
of semantic meanings. We hope that this paper will be a trig-
ger to disseminate the LSMR problem to other research fields 
and solve it in an interdisciplinary approach.
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