
Purdue University Purdue University

Purdue e-Pubs Purdue e-Pubs

Department of Computer Science Technical
Reports Department of Computer Science

1977

A Compiler Extension Theorem for Lucid A Compiler Extension Theorem for Lucid

Christoph M. Hoffmann
Purdue University, cmh@cs.purdue.edu

Report Number:
77-222

Hoffmann, Christoph M., "A Compiler Extension Theorem for Lucid" (1977). Department of Computer
Science Technical Reports. Paper 162.
https://docs.lib.purdue.edu/cstech/162

This document has been made available through Purdue e-Pubs, a service of the Purdue University Libraries.
Please contact epubs@purdue.edu for additional information.

https://docs.lib.purdue.edu/
https://docs.lib.purdue.edu/cstech
https://docs.lib.purdue.edu/cstech
https://docs.lib.purdue.edu/comp_sci

A COMPILER EXTENSION THEOREM FOR LUCID

by

Christoph M. Hoffmann
Computer Science Department

Purdue University
West Lafayette, Ind. 47907

CSD-TR 222

February 1977

A Compiler Extension Theorem for Lucid

by

Cbristoph M. Hoffmann

Computer Science Department
Purdue University-

West Lafayette, Ind. V?907

Abstract

The paper investigates how to extend, in a general way, compilation al-

gorithms for subsets of the programming language Lucid, so as to handle

a substantially enlarged class of programs. In particular, given an al-

gorithm 0 which compiles correctly simple programs satisfying the syntac-

tic restriction we show how to extend a and % to compile programs

which use a nesting construct. The technique does not depend on the par-

ticulars of 01 and ft, although the size of the larger class depends on

It constitutes an example of a compiler structuring which admits a

modular correctness proof of the compiler.

- 1 -

1. Introduction

Proving a compiler correct is an important and non-trivial problem.

Since most programs are written in a higher level language which has to

be compiled, a correct compiler is a necessary part for obtaining correct

results independent of a proof of the source program. The problem is

amplified by the fact that very large programs, and compilers are often

just that, may contain subtle mistakes which remain undetected for a long

time.

The proof of a compiler requires a formal model of the semantics of

the scu-je and the object language which has to be suited both for proof

purposes and for good implementation strategies. Without such models, a

proof will be awkward and difficult. Perhaps for these reasons previous

work on compiler correctness has dealt with languages which permit an

elegant mathematical model C7, 93, or for small languages isolating a few

of the constructs present in imperative languages C-5, 8, 103.

We illustrate in this paper an approach to compiler correctness

which reduces the complexity of the task by modularizing the proof. Morris

[103 seems to have been the first to suggest this idea. Since analogous

approaches to programming have been accepted principles of software design

for quite some time now, it is perhaps not surprising that proof modula-

rization appears to be an attractive method.

The source language under consideration is Lucid 2, 3Jt a proof-

oriented programming language. We define the basic language and isolate

the subset of simple programs. Assuming the existence of an algorithm

- 2 -

01 which correctly compiles those simple programs which satisfy a syntac-

tic restriction R, we show how 01 may be extended to compile the larger

language by incorporating language constructs not allowed in simple pro-

grams.

Existence of such algorithms may be assumed because of L6J. As only

general assumptions are made about & and R, , however, our results can be

used to extend any conceivable algorithm 01 which works correctly for a

formulated syntactic restriction R. In fact, the results also apply to

interpreters such as, for example, the one reported in [Al.

This degree of generality can be accomplished, because the added

language constructs admit the decomposition of the source program into a

collection of simple programs, related by known properties of the con-

structs. The decomposition result is proved first, and from it the exten-

sion strategy is derived.

The paper assumes some familiarity with the language, tl, 2, 3] are

all good sources for studying Lucid, and C6J gives a specific instance of

the extension technique presented here.

- 3 -

2. Lucid Programs and Proper Restrictions

Assuming the notation and definitions of [2], we fix in the following

a particular Lucid system by choosing, without loss of generality, a stan-

dard alphabet H, a standard X structure S whose Comp(S) structure is C,

and a set V of variables, and note that the results of this paper are

valid in any Lucid system. As in [2], Ug denotes the range of S, i.e. a

set of values.

G is the set of operation symbols in T. , F = \first, next, fby, asa,

, -Latesr /WwV latest, latest } the set of Lucid functions, E the set of (X^F) terms

without quantifiers and the synbol =, E^ the subset of (l«F) terms with-

out quantifiers, = , latest, and latest \ N denotes the set of natural

numbers, N^ the set of infinite sequences over N.

Up is the set of all functions from N^ into U^. Recall the definition

of Comp(S):

Definition If S is a standard X. structure, then Comp(S) is the
jjfJ .

unique (21 uF) structure C which extends (S) to the larger alphabet

as follows:

For t = t^tg... in N11, <x, fi, ... in Uc

(1) (<*, (i, ..)>£ = ...) for all ^ in G

(2> < K)) t = ^ O t L . . .
(3) (next- (ot))r -•vvwO t

1 2

" V 1 * l V • •
r<X0 t^... if tQ = 0

PtQ-l t^t^.•• otherwise

- k -

if there exists a unique s such that

(5) (« as^ ^
A , . is true and ft , . ist-t„.. * rt^t
•e _ ^ _ . J- ' for ail r <s;

rt,t.
4.

is false

undefined otherwise \

(6) (latest- («0)-

(7) (latest-^, = cx.(0 t„t,t 0 1 2 " "

Definition A Lucid program P is a set of (I»F) terms of the form

v = 4>v where v is in V and is in E, and such that every variable v in

P is defined in this way at most once, and the variable input is not de-

The solution of a program P is the minimal Cleast defined) C - inter-

pretation <r which, for a fixed interpretation otof input, satisfies P.

Every Lucid program has a unique solution [2j-

In order to enhance the clarity of Lucid as a programming language,

certain syntactic constructs for structuring programs have been introduced

in C 3J•> We intend to study the nature of one of these constructs, the

compute clause, defined by a syntactic transformation which changes pro-

grams using compute clauses into programs of the form defined above. The

clause has the following syntax

and is considered a definition of the variable following the word compute,

called the subj ect of the clause. The variables in the (variable list)

fined.

If, furthermore, every term ^ is in E , then P is a simple program.

compute -(variable) using <variable list)
<set of definitions)

end

- 5 -

are the global variables, the <set of definitions> is the body of the

clause. All variables which occur in the body of the clause and are not

global variables, are local variables of the clause. The special variable

'result' is always a local variable and refers to the subject of the clause.

A compute clause is equivalent to the set of terms v = obtained

by (l) Renaming all local variables except result with new names not

occurring elsewhere in the program,

(2) Replacing every global variable X by latest X in the body,

(3) Replacing "result = ^" by "Y = latest-1(4)", ukt<Y ii K* subject,

and deleting the compute Variable) using ^variable list> and end.

Example The following is a compute clause

compute D using M, N
L = M fby L+M

/VvV

result = L ea N asg. L ge N
end

and is equivalent to

L = lates£ M fbjr L + latest M
D = latest L eg latest II asa L ge latest N)

It defines D to be the predicate "M divides N."

We can now redefine the syntax of programs. A basic assertion is a

term of the form v = <l> where 4> is in E_. Then
Tv 1 v 0

{program> ::= compute output <globals><clause body>
<globals> ::= <empty>

| using <variable list>
(plause body> ::= end

| <assertion) <clause body>
<yariable list> ::= <variable>

| <variable list> , ̂ variable>

- 6 -

(assertion) ::= <basic assertion)
| (clause>

(clause> ::= compute (variably <globals> <clause body)"

where, in addition, the <globals)of output is either empty or "using

input", every variable is defined at most once, either by a clause or a

basic assertion, and the expression in each result definition is quies-

cent (see t2], Sec. 'f.l), i.e. behaves as a constant.

A simple program is a (program) without any nested clause.

Let J?, be a set of syntactic constraints on simple programs. IS

a proper restriction if it is decidable whether or not a simple program

satisfies and if there exists an algorithm Oi which correctly com-

piles simple programs satisfying

tfe study how to extend Ol and to programs containing nested com-

pute clauses, after deriving certain properties of variables defined by

compute clauses.

- 7 -

3- Properties of Compute Clauses

In a compute clause all global variables referenced are quiescent,

i.e. satisfy fj^st G = G, because of the latest implicitly applied to

each global variable G. Therefore, only the current component values of

global variables need to be known throughout the evaluation of the clause.

Hence the global environment is 'frozen' inside a clause.

Assume that the compute clause is nested within another compute
clause B^. We prove that within B^ the subject variable of B^ may be con-
sidered to be defined by a point-wise operation f with arguments ...
(r)

G which are precisely the global variables of B^.

Theorem 3»1 Let R be the subject of the compute clause B^ nested

in B^ with global variables G ^ ... Then, in the clause B ^

R = f(G(l), ... GCr))

first R = ••» G ^)

next R = f (next G ^ , .., next G ^)

for some function f of r arguments.

Proof By induction on the nesting structure of clauses.

Basis Assume that B^ does not contain any nested clauses. Let

be those global variables of B^ which are local to B ^ and ... G ^ those which are global to B^ as well. In removing the clause structure

atest applied
00 M

(k) from the program, there are i^ many latest applied to the G in expressions

in the body of B^, transforming the G into G , i.e.

= latest k (G^k)), k £r, i, > 0.

The interpretation [H(of every expression H in Bg may ke considered a

function ffl of the [g^/.

- 8 -

Let t = ^Q^l^S" be In N^, then

C|H|)? = (fH)- ((lG(l)|)-, .., (]G(r)|)?)

Since latest and latest 1 are the only operations manipulating the t^t^..
(k)

all of which are applied to the G , f^ does not depend on the t-̂ t̂ ...

and varies with tQ only:
(fH>t = <fH)t0

In particular, because of its quiescence, for the result expression E we

have (fE)- = (f ^ = f £

Therefore, in

(|R[). . = ([latest"1 Cf_ (GCl), .., G(r)))|)+ .

... 5 (r))|) o t i V..

. ^ ((IG^I) ... < | B W D J

Let = latest TT"", then

(|R|).t = f ((1GC1)1). , ... (|SCl°l). . .)
* • • 12" * 12" *

(k) Observe now that in removing the clause structure, the variables G

have i^-1 many latest applied in expressions in the body of hence
^(k)

are transformed into the G . From this the theorem follows.

Induction Step Follows from the induction basis after all nested clauses

have been replaced by the corresponding pointwise equations.
B

Corollary 3»2 Let B be a compute clause all of whose global vari-

ables are quiescent. Then the subject variable of B is quiescent in the

containing block.

Proof Straight-forward.

- 9 -

We state the corollary because it can be used to define an optimizing

transformation which reduces the nesting level of such clauses. This cor-

responds to a well-known compiler optimization technique known from con-

ventional languages as moving invariant computations out of loops.

Note also, that because global variables of B^ which are not local

to the containing clause B1 are quiescent in B^, the function f defining

the subject of B^ depends in B^ only on those global variables of B^ which

are local to Bn.

- 10 -

b. Extension of Compilation Algorithms

'.Ve investigate now how to modify a given proper restriction TL and

the associated compiling algorithm so as to compile programs with nes-

ted compute clauses.

Definition The evaluation of is unsafe if potentially

is undefined, i.e. may correspond to a ncn-terminating computation. If

f is a pointwise operation and if (|f (X, Y,)- is potentially unde-

fined when each of the (l X | ([Y |)- ... are not, then f is unsafe.

Note that nested compute clauses usually correspond to unsafe point-

wise computations. However, even in the case of simple programs, the

interaction of non-strict and unsafe evaluations already gives rise to the

'delayed evaluation rule' for Lucid (the term is due to Vuillerain [l2]),

as demonstrated by the following example. In essence, delayed evaluation

means that (Jx|)r

is not to be evaluated, unless the particular value con-

figuration requires this value. Example Consider the following simple program:
output = X asa Y £t first input

R = 1 asa input eq next innut
A v v * * ,wvv

P = input ecj 1
X = 0 fb£ (if P then X+R else Y)
Y = 1 fby 2*Y

Because of the non-strict computation of next X in conjunction with the

unsafe evaluation of R, and because only a specific t component of X is

needed to compute output, the evaluation of both X and R should be delayed

until demanded for specific t values.

- 11 -

Either & severely curtails the interplay of non-strict and unsafe

evaluations, or the algorithm (X is sophisticated enough to handle such

situations. In either case, the extension of 01 to the larger class of

programs will be seen to require fairly standard methods in addition to

the techniques of 01.

A proper restriction R analyzes syntactically a set of terms of the

form v = 4>v, where is in E^. Given a program P , we associate with

every compute clause B. in P a set P^ of terms of the above form:

Replace every compute clause B. with subject X and global variables i)
Ĝ 1"̂ which is directly nested in B^ (i.e. such that X is a local

variable of B.) by the term X = fv where f^ represents

a non-strict and unsafe pointwise operation. No other assumptions about

fY are made unless derivable syntactically by R from the final set P. of A X

terms. Also, replace every reference to a global variable G of B^ by a

symbolic constant. The set P^ is now the transformed body of B^ which is

evidently of the desired form, and is called the simple program associated
with B.. 1

If every simple program associated with each clause of P satisfies

then V satisfies R , the proper restriction derived from

It is

easy to see that the class of programs satisfying JR.' properly includes

all simple programs satisfying R.

Consider the algorithm Oi associated with R. Observe that OL is

either capable of implementing the delayed evaluation rule to the degree

required by R , thus can generate code evaluating a variable on demand

for a particular t in or deals with programs in which delayed eval-

- 12 -

uation is required only for variables with safe evaluations. Define an

algorithm 0i\ the extension of 01, as follows.

Ul' compiles each compute clause B^ in the source program V into a

procedure B^ which is to return the value of the result expression for
N

a particular t in N when called. Because of Theorem 3*1 this is always

possible. The body of B^ is compiled by Oi! in exactly the same way in

which Ul compiles P^ with the following exceptions.

A reference to a variable G global to B^ is compiled into a call of

a parameter procedure p which is to evaluate the latest value of G in the

environment of its definitipn (usually the calling environment). Further-

more, since G is quiescent in B^, more efficiency can be gained by compiling

code which calls p at most once during each activation of B^. Methods for

this are routine.

A clause B. with subject X and global variables G ^ ... G ^ which
(k) is directly nested in B^ is compiled in stages. For every one of the G

a parameter procedure p^ is compiled. Depending on the properties of the
(k)

G and the capabilities of W-, the following cases arise:
(k) (1) G is global to B. as well. The code for p, is the code for refe-X K

rencing a global variable of B^ as described above, i.e. a call to

another parameter procedure compiled in the clause containing B^.

(2) G is local to B. and has a safe evaluation. a may have elected (k) (k) to evaluate G always (making f^ depend on G strictly); then
p. references that value. Otherwise a can implement a delayed e-

(k) valuation of G . I n that case p^ will contain code evaluating

- 15 -

(3) G ^ is unsafe. Since P satisfies R, Ul can coinpile a delayed
(k) evaluation of G . This evaluation is the procedure p^.

Finally, the code for evaluating (|x))r is a call of B.. t J
In this way, OL compiles P into a set of procedures. A standard

driving program is added which calls the procedure for the outermost clause

requesting the evaluation of output. See L6J for a specific example of

this extension technique.

Lemma Let R be a proper restriction, ft the proper restric-

tion derived from fL. Then R is decidable.

Proof Evident from the construction of Jt.

Let ty be the solution of the program P ejid fXf̂- the interpretation,

of X in P according to Assume that !P satisfies ftf. The code ir com-

piled by Ul! for JP consists of procedures B^ compiled from the clauses B^

of JP , and parameter procedures p., evaluating <|G(k)|o->t f o r variables (k) Gv ' global to B±.

Lemma ^.2 Let tr be the code compiled by 01! for the program P
/

which satisfies R . If every parameter procedure p., correctly returns
(k)

i t h e n t 1̂3 procedure B. compiled for clause B. with subject X

correctly evaluates (Ix^)- .
v

Proof (Induction on the nesting structure of clauses)

Basis Assume that B^ contains no nested clauses. Since the parameter

procedures called by B^ correctly evaluate ([g^)- by assumption, correct-

ness follows from Theorem 3.1 and the correctness of OL.

Step Equally straight-forward. I

-14 -

Consequently, the correctness of a can be established by showing

the correctness of the parameter procedures. Since no specific proper-

ties of OL and R can be assumed, this must be proved by a reduction to

the correctness of

Theorem k.3 Let tt be the program compiled by algorithm Oi' for

the source program P satisfying R. Given a clause EL in 1°, the pro-

cedure is correct provided the parameter procedures p^ ... pg of

variables global to B^ are correct.

Proof (By induction on the nesting structure of clauses)

Basis B. does not contain any nested clauses* Since the p, ... p are i 1 s
the only parameter procedures called by B^, the theorem follows from

Lemma

Step Assume the theorem is true for all clauses B. not containing

other clauses nested beyond depth d. Let B^ be a clause which does not

contain other clauses nested beyond depth d+1. We have to show that the

correctness of p^ ... pg implies the correctness of the parameter pro-

cedures q^ ... qr compiled to evaluate variables global to clauses direct-

ly nested in B^.

The correctness of the p^ ... pg directly implies the correctness of

those q^ which are to evaluate variables which are global to B^ as well.

The correctness of the remaining procedures q^ evaluating local variables

is seen by considering the associated simple program P^.

Recall that every clause with subject Y local to B^ is defined in P^

by Y = fy (G(l), G(2), ..)

P. satisfies R because P satisfies R'. By Lemma k.2 and the induction

- 15 -

hypothesis, B. correctly implements the operation f„. Correctness of all J 1

sequence evaluations in P^ now follows from"the correctness of and

from it the correctness of the procedures
•

Corollary The code T compiled for V satisfying R' correctly

evaluates] output) ̂ .

Proof Since input is the only global variable a program may have,

it suffices to show that the parameter procedure to evaluate it is correct.

This is true since input is also global to simple programs, hence follows

from the correctness of (fU.

I
This establishes the correctness of OC as extension of Oi . The re-

sult originates from the fact that V can be decomposed into the simple

programsP^ and that the individual procedures generated are coordinated

by the same techniques which 01 employs to coordinate the evaluation of

non-strict and unsafe computations. "R' ensures that is not overtaxed

in this. Note, however, that the class of programs satisfying Vf depends

in size on R ; for less restrictive conditions R the class is larger.

This is, of course, intuitive.

- 16 -

5. Conclusions

We have shown how to extend algorithms compiling simple programs to

handle nested compute clauses. As the techniques for this were derived

from language properties rather than particular aspects of the algorithms

or their scope, our results are applicable to any compilation strategy.

Of course, the 'size' of the new class of programs compilable by the ex-

tended algorithm depends on the restrictiveness of R, i.e. on the degree

of sophistication of the algorithm 01.

Of the other language constructs proposed in £3], a good candidate

for a similar extension theorem would be the mapping clause , which is a

generalization of the compute clause, and can be handled in essentially

the same manner. For other clauses, however, it is not clear how to de-

compose them into simpler concepts successfully. In particular, the full

generality of the transform clause is a deep challenge to compiler writers,

if at all compilable.

Intuitively, we suspect that the 'orthogonality' (cf. [11]) of a con-

struct allows the formulation of extension theorems. Since the global en-

vironment is frozen inside a compute clause, the construct serves to sub-

stitute programs for expressions in the definition of variables. There-

fore, it is of advantage to structure a compiler accordingly, both from

the design aspect as well as from the point of view of proving its correct-

ness.

It should be the case, that the modularization of a program and of

its proof serves to reduce the effort invested in the development of both.

Research of proof strategies aiming at exploiting this should be very

fruitful.

- 17 -

References

1. Ashcroft, E.A., and W. Wadge
Lucid, A Non-Procedural Language With Iteration
forthcoming in Comm. of the ACM

2. Ashcroft, E.A., and W. Wadge
Lucid, A Formal System for Writing and Proving Programs
SIAK Journ. on Computing, 5(76) 336 - 35^

3. Ashcroft, E.A., and W. Wadge
Lucid, Scope Structures and Defined Functions
TR CS-76-22, Comp. Science Dept., Univ. of Waterloo, Nov. 76

4. Cargill, T.A.
Deterministic Operational Semantics for Lucid
TR CS-76-19, Comp. Science Dept., Univ. of Waterloo, June 76

5. Chirica, L.M., and D.F. Martin
An Approach to Compiler Correctness
Intl. Conf. on Reliable Software, p 96 - 103, Loa Angeles, June 76

6. Hoffmann, C.M.
Design and Correctness of a Compiler for Lucid
TR CS-76-20, Comp. Science Dept., Univ. of Waterloo, May 76

7. London, R.L.
Correctness of two Compilers for a LISP Subset
AI Memo 151, Stanford Univ., 1971

8. McCarthy, J., and J,A.Painter
Correctness of a Compiler for Arithmetic Expressions
Math. Aspects of Comp. Sci. Vol 19, Providence, R.I. 67

9. Milner, R., and R. Weyhrauch
Proving Compiler Correctness in a Mechanized Logic
Machine Intell. 7, p 51 - 71, Univ. of Edinburgh, 73

10. Morris, F.L.
Advice on Structuring Compilers and Proving them Correct
ACM Symp. on Princ. of Progr. Lang., p 1^152, Boston 73

11. VanWijngaarden
Orthogonal Design and Description of a Formal Language
MR 7 6 , Mathematisch Centrum, Amsterdam Oct 65

12. Vuillemin, J.
Correct and Optimal Implementation of Recursion in a Simple
Programming Language
5th Annl Symp on Theory of Computing, Austin 73

	A Compiler Extension Theorem for Lucid
	Report Number:
	

	tmp.1307986960.pdf.qdleM

