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Abstract 

The paper investigates how to extend, in a general way, compilation al-

gorithms for subsets of the programming language Lucid, so as to handle 

a substantially enlarged class of programs. In particular, given an al-

gorithm 0 which compiles correctly simple programs satisfying the syntac-

tic restriction we show how to extend a and % to compile programs 

which use a nesting construct. The technique does not depend on the par-

ticulars of 01 and ft, although the size of the larger class depends on 

It constitutes an example of a compiler structuring which admits a 

modular correctness proof of the compiler. 
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1. Introduction 

Proving a compiler correct is an important and non-trivial problem. 

Since most programs are written in a higher level language which has to 

be compiled, a correct compiler is a necessary part for obtaining correct 

results independent of a proof of the source program. The problem is 

amplified by the fact that very large programs, and compilers are often 

just that, may contain subtle mistakes which remain undetected for a long 

time. 

The proof of a compiler requires a formal model of the semantics of 

the scu-je and the object language which has to be suited both for proof 

purposes and for good implementation strategies. Without such models, a 

proof will be awkward and difficult. Perhaps for these reasons previous 

work on compiler correctness has dealt with languages which permit an 

elegant mathematical model C7, 93, or for small languages isolating a few 

of the constructs present in imperative languages C-5, 8, 103. 

We illustrate in this paper an approach to compiler correctness 

which reduces the complexity of the task by modularizing the proof. Morris 

[103 seems to have been the first to suggest this idea. Since analogous 

approaches to programming have been accepted principles of software design 

for quite some time now, it is perhaps not surprising that proof modula-

rization appears to be an attractive method. 

The source language under consideration is Lucid 2, 3Jt a proof-

oriented programming language. We define the basic language and isolate 

the subset of simple programs. Assuming the existence of an algorithm 
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01 which correctly compiles those simple programs which satisfy a syntac-

tic restriction R, we show how 01 may be extended to compile the larger 

language by incorporating language constructs not allowed in simple pro-

grams. 

Existence of such algorithms may be assumed because of L6J. As only 

general assumptions are made about & and R, , however, our results can be 

used to extend any conceivable algorithm 01 which works correctly for a 

formulated syntactic restriction R. In fact, the results also apply to 

interpreters such as, for example, the one reported in [Al. 

This degree of generality can be accomplished, because the added 

language constructs admit the decomposition of the source program into a 

collection of simple programs, related by known properties of the con-

structs. The decomposition result is proved first, and from it the exten-

sion strategy is derived. 

The paper assumes some familiarity with the language, tl, 2, 3] are 

all good sources for studying Lucid, and C6J gives a specific instance of 

the extension technique presented here. 
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2. Lucid Programs and Proper Restrictions 

Assuming the notation and definitions of [2], we fix in the following 

a particular Lucid system by choosing, without loss of generality, a stan-

dard alphabet H, a standard X structure S whose Comp(S) structure is C, 

and a set V of variables, and note that the results of this paper are 

valid in any Lucid system. As in [2], Ug denotes the range of S, i.e. a 

set of values. 

G is the set of operation symbols in T. , F = \first, next, fby, asa, 

, -Latesr /WwV latest, latest } the set of Lucid functions, E the set of (X^F) terms 

without quantifiers and the synbol =, E^ the subset of (l«F) terms with-

out quantifiers, = , latest, and latest \ N denotes the set of natural 

numbers, N^ the set of infinite sequences over N. 

Up is the set of all functions from N^ into U^. Recall the definition 

of Comp(S): 

Definition If S is a standard X. structure, then Comp(S) is the 
jjfJ . 

unique (21 uF) structure C which extends (S ) to the larger alphabet 

as follows: 

For t = t^tg... in N11, <x, fi, ... in Uc 

(1) ( <*, (i, ..)>£ = ...) for all ^ in G 

(2> < K ) ) t = ^ O t L . . . 
(3) (next- (ot))r -•vvwO t 

1 2 

" V 1 * l V • • 
r<X0 t^... if tQ = 0 

PtQ-l t^t^.•• otherwise 
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if there exists a unique s such that 

(5) (« as^ ^ 
A , . is true and ft , . ist-t„.. * rt^t 
•e _ ^ _ . J- ' for ail r <s; 

rt,t. 
4. 

is false 

undefined otherwise \ 

(6) (latest- («0)-

(7) (latest-^, = cx.( 0 t„t,t 0 1 2 " " 

Definition A Lucid program P is a set of (I»F) terms of the form 

v = 4>v where v is in V and is in E, and such that every variable v in 

P is defined in this way at most once, and the variable input is not de-

The solution of a program P is the minimal Cleast defined) C - inter-

pretation <r which, for a fixed interpretation otof input, satisfies P. 

Every Lucid program has a unique solution [2j-

In order to enhance the clarity of Lucid as a programming language, 

certain syntactic constructs for structuring programs have been introduced 

in C 3J•> We intend to study the nature of one of these constructs, the 

compute clause, defined by a syntactic transformation which changes pro-

grams using compute clauses into programs of the form defined above. The 

clause has the following syntax 

and is considered a definition of the variable following the word compute, 

called the subj ect of the clause. The variables in the (variable list) 

fined. 

If, furthermore, every term ^ is in E , then P is a simple program. 

compute -(variable) using <variable list) 
<set of definitions) 

end 
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are the global variables, the <set of definitions> is the body of the 

clause. All variables which occur in the body of the clause and are not 

global variables, are local variables of the clause. The special variable 

'result' is always a local variable and refers to the subject of the clause. 

A compute clause is equivalent to the set of terms v = obtained 

by (l) Renaming all local variables except result with new names not 

occurring elsewhere in the program, 

(2) Replacing every global variable X by latest X in the body, 

( 3 ) Replacing "result = ^" by "Y = latest-1( 4 )", ukt<Y ii K* subject, 

and deleting the compute Variable) using ^variable list> and end. 

Example The following is a compute clause 

compute D using M, N 
L = M fby L+M 

/VvV 

result = L ea N asg. L ge N 
end 

and is equivalent to 

L = lates£ M fbjr L + latest M 
D = latest L eg latest II asa L ge latest N) 

It defines D to be the predicate "M divides N." 

We can now redefine the syntax of programs. A basic assertion is a 

term of the form v = <l> where 4> is in E_. Then 
Tv 1 v 0 

{program> ::= compute output <globals><clause body> 
<globals> ::= <empty> 

| using <variable list> 
(plause body> ::= end 

| <assertion) <clause body> 
<yariable list> ::= <variable> 

| <variable list> , ̂ variable> 
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(assertion) ::= <basic assertion) 
| (clause> 

(clause> ::= compute (variably <globals> <clause body)" 

where, in addition, the <globals)of output is either empty or "using 

input", every variable is defined at most once, either by a clause or a 

basic assertion, and the expression in each result definition is quies-

cent (see t2], Sec. 'f.l), i.e. behaves as a constant. 

A simple program is a (program) without any nested clause. 

Let J?, be a set of syntactic constraints on simple programs. IS 

a proper restriction if it is decidable whether or not a simple program 

satisfies and if there exists an algorithm Oi which correctly com-

piles simple programs satisfying 

tfe study how to extend Ol and to programs containing nested com-

pute clauses, after deriving certain properties of variables defined by 

compute clauses. 
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3- Properties of Compute Clauses 

In a compute clause all global variables referenced are quiescent, 

i.e. satisfy fj^st G = G, because of the latest implicitly applied to 

each global variable G. Therefore, only the current component values of 

global variables need to be known throughout the evaluation of the clause. 

Hence the global environment is 'frozen' inside a clause. 

Assume that the compute clause is nested within another compute 
clause B^. We prove that within B^ the subject variable of B^ may be con-
sidered to be defined by a point-wise operation f with arguments ... 
(r) 

G which are precisely the global variables of B^. 

Theorem 3»1 Let R be the subject of the compute clause B^ nested 

in B^ with global variables G ^ ... Then, in the clause B ^ 

R = f( G(l), ... GCr)) 

first R = ••» G ^ ) 

next R = f (next G ^ , .., next G ^ ) 

for some function f of r arguments. 

Proof By induction on the nesting structure of clauses. 

Basis Assume that B^ does not contain any nested clauses. Let 

be those global variables of B^ which are local to B ^ and ... G ^ those which are global to B^ as well. In removing the clause structure 

atest applied 
00 M 

(k) from the program, there are i^ many latest applied to the G in expressions 

in the body of B^, transforming the G into G , i.e. 

= latest k (G^k)), k £r, i, > 0. 

The interpretation [H( of every expression H in Bg may ke considered a 

function ffl of the [g^/. 
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Let t = ^Q^l^S" be In N^, then 

C|H|)? = (fH)- ( (lG(l)|)-, .., (]G(r)|)? ) 

Since latest and latest 1 are the only operations manipulating the t^t^.. 
(k) 

all of which are applied to the G , f^ does not depend on the t-̂ t̂ ... 

and varies with tQ only: 
(fH>t = <fH)t0 

In particular, because of its quiescence, for the result expression E we 

have (fE)- = ( f ^ = f £ 

Therefore, in 

(|R[). . = ([latest"1 Cf_ ( GCl), .., G(r)))|)+ . 

... 5 ( r ))|) o t i V.. 

. ^ ( (IG^I) ... < | B W D J 

Let = latest TT"", then 

(|R|).t = f ( (1GC1)1). , ... (|SCl°l). . .) 
* • • 12" * 12" * 

(k) Observe now that in removing the clause structure, the variables G 

have i^-1 many latest applied in expressions in the body of hence 
^(k) 

are transformed into the G . From this the theorem follows. 

Induction Step Follows from the induction basis after all nested clauses 

have been replaced by the corresponding pointwise equations. 
B 

Corollary 3»2 Let B be a compute clause all of whose global vari-

ables are quiescent. Then the subject variable of B is quiescent in the 

containing block. 

Proof Straight-forward. 
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We state the corollary because it can be used to define an optimizing 

transformation which reduces the nesting level of such clauses. This cor-

responds to a well-known compiler optimization technique known from con-

ventional languages as moving invariant computations out of loops. 

Note also, that because global variables of B^ which are not local 

to the containing clause B1 are quiescent in B^, the function f defining 

the subject of B^ depends in B^ only on those global variables of B^ which 

are local to Bn. 
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b. Extension of Compilation Algorithms 

'.Ve investigate now how to modify a given proper restriction TL and 

the associated compiling algorithm so as to compile programs with nes-

ted compute clauses. 

Definition The evaluation of is unsafe if potentially 

is undefined, i.e. may correspond to a ncn-terminating computation. If 

f is a pointwise operation and if (|f (X, Y, )- is potentially unde-

fined when each of the ( l X | ( [ Y | )- ... are not, then f is unsafe. 

Note that nested compute clauses usually correspond to unsafe point-

wise computations. However, even in the case of simple programs, the 

interaction of non-strict and unsafe evaluations already gives rise to the 

'delayed evaluation rule' for Lucid (the term is due to Vuillerain [l2]), 

as demonstrated by the following example. In essence, delayed evaluation 

means that (Jx|)r 

is not to be evaluated, unless the particular value con-

figuration requires this value. Example Consider the following simple program: 
output = X asa Y £t first input 

R = 1 asa input eq next innut 
A v v * * ,wvv 

P = input ecj 1 
X = 0 fb£ (if P then X+R else Y) 
Y = 1 fby 2*Y 

Because of the non-strict computation of next X in conjunction with the 

unsafe evaluation of R, and because only a specific t component of X is 

needed to compute output, the evaluation of both X and R should be delayed 

until demanded for specific t values. 
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Either & severely curtails the interplay of non-strict and unsafe 

evaluations, or the algorithm (X is sophisticated enough to handle such 

situations. In either case, the extension of 01 to the larger class of 

programs will be seen to require fairly standard methods in addition to 

the techniques of 01. 

A proper restriction R analyzes syntactically a set of terms of the 

form v = 4>v, where is in E^. Given a program P , we associate with 

every compute clause B. in P a set P^ of terms of the above form: 

Replace every compute clause B. with subject X and global variables i) 
Ĝ 1"̂  which is directly nested in B^ (i.e. such that X is a local 

variable of B.) by the term X = fv where f^ represents 

a non-strict and unsafe pointwise operation. No other assumptions about 

fY are made unless derivable syntactically by R from the final set P. of A X 

terms. Also, replace every reference to a global variable G of B^ by a 

symbolic constant. The set P^ is now the transformed body of B^ which is 

evidently of the desired form, and is called the simple program associated 
with B.. 1 

If every simple program associated with each clause of P satisfies 

then V satisfies R , the proper restriction derived from 

It is 

easy to see that the class of programs satisfying JR.' properly includes 

all simple programs satisfying R. 

Consider the algorithm Oi associated with R. Observe that OL is 

either capable of implementing the delayed evaluation rule to the degree 

required by R , thus can generate code evaluating a variable on demand 

for a particular t in or deals with programs in which delayed eval-
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uation is required only for variables with safe evaluations. Define an 

algorithm 0i\ the extension of 01, as follows. 

Ul' compiles each compute clause B^ in the source program V into a 

procedure B^ which is to return the value of the result expression for 
N 

a particular t in N when called. Because of Theorem 3*1 this is always 

possible. The body of B^ is compiled by Oi! in exactly the same way in 

which Ul compiles P^ with the following exceptions. 

A reference to a variable G global to B^ is compiled into a call of 

a parameter procedure p which is to evaluate the latest value of G in the 

environment of its definitipn (usually the calling environment). Further-

more, since G is quiescent in B^, more efficiency can be gained by compiling 

code which calls p at most once during each activation of B^. Methods for 

this are routine. 

A clause B. with subject X and global variables G ^ ... G ^ which 
(k) is directly nested in B^ is compiled in stages. For every one of the G 

a parameter procedure p^ is compiled. Depending on the properties of the 
(k) 

G and the capabilities of W-, the following cases arise: 
(k) (1) G is global to B. as well. The code for p, is the code for refe-X K 

rencing a global variable of B^ as described above, i.e. a call to 

another parameter procedure compiled in the clause containing B^. 

(2) G is local to B. and has a safe evaluation. a may have elected (k) (k) to evaluate G always (making f^ depend on G strictly); then 
p. references that value. Otherwise a can implement a delayed e-

(k) valuation of G . I n that case p^ will contain code evaluating 
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(3) G ^ is unsafe. Since P satisfies R, Ul can coinpile a delayed 
(k) evaluation of G . This evaluation is the procedure p^. 

Finally, the code for evaluating (|x))r is a call of B.. t J 
In this way, OL compiles P into a set of procedures. A standard 

driving program is added which calls the procedure for the outermost clause 

requesting the evaluation of output. See L6J for a specific example of 

this extension technique. 

Lemma Let R be a proper restriction, ft the proper restric-

tion derived from fL. Then R is decidable. 

Proof Evident from the construction of Jt. 

Let ty be the solution of the program P ejid fXf̂- the interpretation, 

of X in P according to Assume that !P satisfies ftf. The code ir com-

piled by Ul! for JP consists of procedures B^ compiled from the clauses B^ 

of JP , and parameter procedures p., evaluating <|G(k)|o->t f o r variables (k) Gv ' global to B±. 

Lemma ^.2 Let tr be the code compiled by 01! for the program P 
/ 

which satisfies R . If every parameter procedure p., correctly returns 
(k) 

i t h e n t 1̂3 procedure B. compiled for clause B. with subject X 

correctly evaluates (Ix^)- . 
v 

Proof (Induction on the nesting structure of clauses) 

Basis Assume that B^ contains no nested clauses. Since the parameter 

procedures called by B^ correctly evaluate ([g^)- by assumption, correct-

ness follows from Theorem 3.1 and the correctness of OL. 

Step Equally straight-forward. I 
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Consequently, the correctness of a can be established by showing 

the correctness of the parameter procedures. Since no specific proper-

ties of OL and R can be assumed, this must be proved by a reduction to 

the correctness of 

Theorem k.3 Let tt be the program compiled by algorithm Oi' for 

the source program P satisfying R. Given a clause EL in 1°, the pro-

cedure is correct provided the parameter procedures p^ ... pg of 

variables global to B^ are correct. 

Proof (By induction on the nesting structure of clauses) 

Basis B. does not contain any nested clauses* Since the p, ... p are i 1 s 
the only parameter procedures called by B^, the theorem follows from 

Lemma 

Step Assume the theorem is true for all clauses B. not containing 

other clauses nested beyond depth d. Let B^ be a clause which does not 

contain other clauses nested beyond depth d+1. We have to show that the 

correctness of p^ ... pg implies the correctness of the parameter pro-

cedures q^ ... qr compiled to evaluate variables global to clauses direct-

ly nested in B^. 

The correctness of the p^ ... pg directly implies the correctness of 

those q^ which are to evaluate variables which are global to B^ as well. 

The correctness of the remaining procedures q^ evaluating local variables 

is seen by considering the associated simple program P^. 

Recall that every clause with subject Y local to B^ is defined in P^ 

by Y = fy (G(l), G(2), .. ) 

P. satisfies R because P satisfies R'. By Lemma k.2 and the induction 
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hypothesis, B. correctly implements the operation f„. Correctness of all J 1 

sequence evaluations in P^ now follows from"the correctness of and 

from it the correctness of the procedures 
• 

Corollary The code T compiled for V satisfying R' correctly 

evaluates ] output) ̂  . 

Proof Since input is the only global variable a program may have, 

it suffices to show that the parameter procedure to evaluate it is correct. 

This is true since input is also global to simple programs, hence follows 

from the correctness of (fU. 

I 
This establishes the correctness of OC as extension of Oi . The re-

sult originates from the fact that V can be decomposed into the simple 

programsP^ and that the individual procedures generated are coordinated 

by the same techniques which 01 employs to coordinate the evaluation of 

non-strict and unsafe computations. "R' ensures that is not overtaxed 

in this. Note, however, that the class of programs satisfying Vf depends 

in size on R ; for less restrictive conditions R the class is larger. 

This is, of course, intuitive. 
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5. Conclusions 

We have shown how to extend algorithms compiling simple programs to 

handle nested compute clauses. As the techniques for this were derived 

from language properties rather than particular aspects of the algorithms 

or their scope, our results are applicable to any compilation strategy. 

Of course, the 'size' of the new class of programs compilable by the ex-

tended algorithm depends on the restrictiveness of R, i.e. on the degree 

of sophistication of the algorithm 01. 

Of the other language constructs proposed in £3], a good candidate 

for a similar extension theorem would be the mapping clause , which is a 

generalization of the compute clause, and can be handled in essentially 

the same manner. For other clauses, however, it is not clear how to de-

compose them into simpler concepts successfully. In particular, the full 

generality of the transform clause is a deep challenge to compiler writers, 

if at all compilable. 

Intuitively, we suspect that the 'orthogonality' (cf. [11]) of a con-

struct allows the formulation of extension theorems. Since the global en-

vironment is frozen inside a compute clause, the construct serves to sub-

stitute programs for expressions in the definition of variables. There-

fore, it is of advantage to structure a compiler accordingly, both from 

the design aspect as well as from the point of view of proving its correct-

ness. 

It should be the case, that the modularization of a program and of 

its proof serves to reduce the effort invested in the development of both. 

Research of proof strategies aiming at exploiting this should be very 

fruitful. 
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