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SIGNATURE EXTENSION THROUGH THE APPLICATION OF CLUSTER MATCHING 
ALGORITHMS TO DETERMINE APPROPRIATE SIGNATURE TRANSFORMATIONS* 

Peter F. Lambeck and Daniel P. Rice 

Environmental Research Institute of Michigan 
Ann Arbor, Michigan 

ABSTRACT 

Signature extension is a process intended to in
crease the spatial-temporal range over which a set of 
training statistics can be used to classify data 
without significant loss of recognition accuracy. 
The goal of signature extension is to minimize the 
requirements for collecting ground truth and extract
ing training statistics, thus reducing the costs and 
time delays associated with those procedures. Signa
ture extension would then help to provide timely and 
cost-effective classification over extensive land 
areas, including remote areas for which ground truth 
information may not be readily available. 

Many current signature extension techniques are 
based on a transformation of training statistics to 
compensate for changes in sun angle, atmospheric 
conditions, etc., between a training area and a re
cognition area. Although preprocessing techniques 
which minimize or eliminate the need for altering 
training statistics are also potential solutions to 
the problem of signature extension, this presentation 
is principally concerned with those algorithms which 
define signature transformations based on associa
tions between training and recognition area statis
tics. 

ERIH has shown that since causes in nature for 
variations in the measured radiance from a given ma
terial are in all cases multiplicative and/or addi
tive, an appropriate signature transformation would 
be both multiplicative and additive in each data 
channel. In principle, this signature transformation 
should be unique for each material since bidirec
tional reflectance, influenced by such factors as 
sun angle, wind velocity, and soil variations, is a 
unique attribute of each type of ground cover. How
ever, current signature transformation algorithms 
concentrate, with only a few exceptions, on defining 
an average transformation to be applied equally to 
all signatures. A first cluster matching algorithm 
(called MASC, for ~ultiplicative and Additive ~igna
ture ~orrection) was developed at ERIM to test the 
concept of using associations between training and 

recognition area cluster statistics to define an 
average signature transformation. 

A more recent signature extension module, CROP-A 
(fluster ~egression Qrdered on ~rincipal~is), has 
shown evidence of making meaningful associations be
tween training and recognition area cluster statistics, 
with the clusters to be matched being selected auto
matically by the algorithm. These associations have 
led to multiplicative and additive signature correc
tions producing classification results over recogni
tion areas which were significantly improved relative 
to what would have been achieved without the signature 
transformation and without local training. 

The manner in which a signature extension module 
such as CROP-A, is embedded in an overall signature 
extension system has been identified as an important 
consideration in determining its performance and value 
as a signature extension tool. In this regard, re
search is currently underway at ERIM to define an 
optimum signature extension system utilizing the cur
rent state of the art. Improved signature extension 
modules are currently undergoing development, test, 
and evaluation, 

Partitioning (i.e., defining the limits of re
gions over which a signature extension technique can 
reasonably be applied) has been identified as another 
major factor controlling signature extension utility. 
Hence, current research is also concerned with de
fining the necessary factors which limit the extent 
of a partition. 

INTRODUCTION 

Signature extension is a process intended to in
crease the spatial-temporal range over which a set of 
training statistics can be used to classify data with
out significant loss of recognition accuracy. The 
training statistics which are required are extracted 
from multispectral scanner (MSS) data with the aid of 

*This work is presently being performed for the Earth Observations Division of the NASA/Johnson Space Center 
under Contract NAS9-l4l23. 
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training information (ground truth) obtained from 
localized surveys on the ground or from interpreta
tion of aerial photographs or MSS data images by 
trained analyst interpreters (AI's). Either of these 
procedures for acquiring ground truth information be
comes costly and time consuming even for data proces
sing over land areas of moderate size. 

The goal of signature extension is to m1n1m1ze 
the requiremen~s for collecting ground truth and for 
extracting training statistics, thus reducing the 
costs and time delays associated with those procedures. 
Signature extension would then help to provide timely 
and cost-effective classification over extensive land 
areas, including remote areas for which ground truth 
information may not be readily available. This pre
sent signature extension effort has been concerned 
with the problem of performing large area agricultural 
surveys to estimate wheat produc~ion, using MSS data 
from the LANDSAT satellites. 

Many current signature extension techniques are 
based on a transformation of training statistics to 
compensate for changes in sun angle, atmospheric con
ditions, etc., between a training area and a recogni
tion area. Although preprocessing techniques which 
minimize or eliminate the need for altering training 
statistics are also potential solu~ions to the prob
lem of signature extension, the following presenta
tion is principally concerned with those algorithms 
which define signature transformations based on asso
ciations between training and recognition area stat
istics. Specific topics to be discussed below in
clude (1) the underlying theory for the signature 
transformation, (2) the algorithms used to determine 
and to apply this transformation, and (3) improvements 
in signature extension which can be effected through 
procedures which are peripheral ~o the transformation 
itself • 

THEORY 

The general form of the transfer equation repre
senting the recorded.MSS signal level within a specific 
spectral band for a given material a is expressed by 

(1) 

G and 0 represent gain and offset changes, respective
ly, in the response of the multispectral scanner in
strument. E represents the ir~adiance through the 
atmosphere on the material, T represents the trans
mittance of the atmosphere over the path from the 
material to the scanner aperture, and L represents 
the path radiance along this viewing pa£h due to at
mospheric scattering. Pa is the bidirectional ref
lectance of the material a. All these variables are 
directly dependent on the wavelength of the signal 
being recorded, hence, there is no interac~ion be
tween signals at different wavelengths, in principle, 
and each spectral band can be treated separately from 
the others. 

Note that whenever the bidirectional reflectance 
of each material remains constant, the signals re
corded are related to the reflectance of each material 
by a simple multiplicative and additive relationship, 
although to determine these multiplica~ive and additive 

factors by trying to estimate values for each vari
able in the transfer equation is by no means simple. 
If one postulates a reference condition in which the 
above multiplicative factors all equal unity and the 
additive factors all equal zero, and if one realizes 
that the inverse of a multiplicative and additive 
transformation (MAT) is itself mul~iplicative and 
additive and that the concatenation of two ~~T's is 
likewise, overall, multiplicative and additive, one 
can conclude tha~ the data transformation needed t~ 
compensate for any or all of ~he effects above (with 
bidirectional reflectance held constant) will also be 
multiplicative and addi~ive. Furthermore, since ~here 
is no interaction be~ween signals for difrerent wave
lengths, the required transformation may be determined 
separately for each spectral band. 

One should be aware, however, that bidirectional 
reflectance does not, in general, remain constant for 
each material throughout a scene. Rather, reflectance 
is ~o be expected to vary differently for each ma~erial 
according to changes in illumination conditions (sun 
angle, relative intensi~ies of direct and diffuse 
illumination), viewing angle, topography, crop or 
soil conditions (health of crop, density of ground 
cover, soil type, soil moisture content), crop ori
entation (due to wind), and cropping practice (methods 
of planting or harves~ing). These effects, having a 
unique influence on the reflectance of each material, 
and varying sometimes from field to field or other 
times from county to county, cannot be fully compen
sated by a transformation applied indifferently to 
data from any and all materials in a scene. At best, 
one can devise a general transformation or means for 
data manipulation which treats these disparate ef
fects only in an average way, or which takes advan
tage of some salient characteristics of the major 
materials of interest. (An example of the lat~er 
approach would be a classifier which ~akes advantage 
of multitemporal information and a knowledge of the 
characteristic growth cycle of a particular crop, 
e.g., winter wheat.) Variations in bidirectional 
reflectance should be recognized as one of the major 
potential stumbling blocks for signature extension. 
Other potential stumbling blocks are enumerated in 
the discussion below. 

SIGNATURE TRANSFORMATIONS 

Derivation 

Signatures are usually represented by a gaussian 
probability density function of the form 

P 
a 

[ 1 t -1 ] exp- - (x-\.l ) 8 (x-\.l) 2 a a a (2) 

Pa is the probability that a given signal x corres
ponds to the material a, exclusive of any competing 
probability associated with other materials. x is 
the data vector representing the recorded signal 
levels in each spectral band of the MSS for a single 
measurement. \.la is the vector of mean values for 
the signa~ure of material a. 6u is the variance
covariance matrix for the signature of material a. 
All ~he vec~ors have n components and the matrix 
has nxn components, with n being the number of 
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spectral bands used in the signature. 

As a means to compensate for changes in bidirec
tional reflectance in an average way and to compensate 
for the multiplicative and additive effects arising 
from changes in the other variables of the transfer 
equation (1), a signature transformation may be pro
posed which alters signatures derived from one scene 
to match, at least approximately, the conditions 
present within a second scene. If one assumes that 
the difference between observed signal levels in the 
two scenes are purely multiplicative and additive, 
then the signals are related by 

x' = A x + B (3) 

x' represents the observed signal from the second 
scene, while x represents a corresponding signal from 
the first scene. A is a diagonal matrix with nxn com
ponents, representing the multiplicative changes to 
the signals in each spectral band, and B is a vector 
with n components, representing the additive changes. 
The signature transformation corresponding to this 
multiplicative and additive change in signal levels 
is given by 

and 
ll' 

CJ. 

6 ' CJ. 

A llCJ. + B 

A 6 A 
CJ. 

One should note that Eq. (5) applies only for data 
containing purely scenic information. In general, 

(4) 

(5) 

MSS data also contains non-scenic information, i.e., 
measurement noise inherent in the scanner instrument. 
When a signature is extracted from a scene, this mea
surement noise becomes a part of the variance-covari
ance statistics for the signature, changing those 
statistics from their purely scenic values in a 
strictly additive fashion. Ordinarily, signature ex
tension is attempted between scenes recorded with the 
same MSS instrument, hence the measurement noise for 
each scene should be nearly the same, regardless of 
any changes in the variables of Eq. (1). Equation (5) 
should only apply to that portion of the variance
covariance statistics which excludes measurement noise. 
Depending on the source of the measurement noise, some 
other form of transformation mayor may not be approp
riate for the noise statistics. Since the nature of 
the measurement noise for LANDSAT data has not been 
determined, and since transforming the variance
covariance matrix produces little change in the re
sults of signature extension applications, the policy 
at ERIM and at some other research laboratories so 
far has been not to use Eq. (5), leaving the variance
covariance statistics unchanged, and to use only 
Eq. (4) for signature transformations. 

Implementation 

Given that a signature transformation is desired 
to compensate for multiplicative and additive changes 
between two scenes, the task is next to determine the 
appropriate coefficients, A and B, for Eq. (4). In 
general, one needs for this purpose some effective 
way to compare the data from the two scenes. One 
method for accomplishing this is to compare cluster 
statistics for the scenes. Clusters are multivariate 
gaussian probability density functions which, when 
weighted according to the amount of data in a scene 
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which generated the statistics of each cluster, and 
when summed together, closely.approximate the multi
variate histogram distribution for the scene. Clusters 
are generally assumed to be equivalent to signatures 
for more or less unknown but distinct materials, which 
represent modes of the data distribution from which 
the clusters were generated. The extent to which 
clusters actually represent modes of the data distri
bution depends to a great extent on the nature of the 
clustering algorithm which is used, however, whatever 
algorithm is used, the clusters when taken together 
generally do represent adequately the variability to 
be found in the scene. The advantage in using cluster 
statistics for comparing data from scenes recorded 
under different conditions is that distinct materials 
by their presence give rise to representative clusters, 
but do not appreciably alter those clusters (mean 
values, variance, or covariance) according to the 
frequency of occurrence of the material within the 
scene. Hence, a valid comparison of recording condi
tions for two scenes requires only that clusters for 
similar materials be compared, rather than that the 
frequency of occurrence of the materials compared be
tween scenes also be similar. 

Once one has obtained a valid association 
between pairs of clusters from two scenes, a least 
squares estimate may be determined for the coeffi
cients A and B of equation (4) by solving the follow
ing two equations once for each spectral band to be 
used. 

3 
I (ll~ - A - B)2) 0 3A lli 
i 

d 
I (ll ~ - A - B)2) 0 dB 
i 

1. lli 

i is an index for identifying each cluster pair. 
The summations are over all cluster pairs. lli 
represents the mean value for the ith training 

(6) 

(7) 

scene cluster in the spectral band being considered, 
while ll~ represents the mean value for the ith 
recognition scene cluster in the same spectral band. 
These equations lead to a pair of simultaneous 
linear equations which can be solved for the coeffi
cients A and B in each spectral band, yielding 

N ~llill~ - Illi Ill~ 
A 

1. i i 

N h 2
- (Ill

i
) 2 

i i 1. 

(8) 

Ill~ Ill~ - Ill. Ill.ll! 
i 1. i i 1. i 1. 1. 

B 
Ill~ - (~lli)2 N 
• 1. 
1. 1. 

(9) 

N is the total number of cluster pairs used in the 
regression. Again it should be realized that Equa
tions (8) and (9) produce scalar values for A and B 
which are appropriate for the specific spectral band 
chosen. These equations need to be solved again for 
each additional spectral band used, to obtain the 
final A and B coefficient matrix and vector, respec
tively, indicated in equation (4). 



Since the clusters which are paired in the 
regression to calculate A and B must be finite in 
number, there is a practical limit to the accuracy 
with which the A and B coefficients can be deter
mined, even with all cluster pairs being valid. Of 
course the multiplicative and additive transforma
tion sought cannot compensate perfectly for all the 
real physical causes of the change between the 
training scene and the recognition scene anyway, 
however in principle it is best to try to use as 
many valid cluster pairs in the regression as possi
ble. Current signature extension tests at ERIM have 
tended to use between 10 and 20 cluster pairs for 
obtaining the A and B coefficients, out of a maxi
mum of from 15 to 30 cluster pairs which were 
possible. 

A first basic cluster matching algorithm, 
called MASC (for ~u1tip1icative and Additive ~igna
ture ~orrection), was developed at ERIM to test the 
cluster regression approach to determining the A 
and B coefficients. While this algorithm achieved 
some occasional successes at signature extension, 
it did not include a means to adequately select 
only valid cluster pairs, a serious requirement for 
achieving practical results. The task was then to 
automate a procedure for selecting those few valid 
cluster pairs which might exist among the great 
many arbitrary pairs which were possible. 

The difficulty involved in identifying valid 
cluster pairs may perhaps be partly appreciated by 
considering Figure 1, which shows a matrix repre
senting all possible cluster pairs between a set of 
training scene clusters and a set of recognition 
scene clusters. 

Training Scene Clusters 

1 2 3 4 5 6 7 8 9 10 

1 
2 0 
3 0 

l<.ecogni tion 4 0 
Scene 5 0 

·Clusters " t; 

7 0 
G 0 
9 0 

10 0 

Fimlre 1. r.\yriad ?ote!'1tial Cluster Pairs 

For the purpose of better illustrating a point to 
be brought up later, an equal number of training 
clusters and recognition clusters has been assumed, 
although the number of clusters obtained from each 
scene in practice turns out to be equal only occa
sionally. Also, for simplicity, a smaller than 
usual number of clusters has been assumed. The O's 
in the matrix represent a hypothetical set of valid 
cluster pairs for this illustration. By ordering 
the sequence of the training scene and recognition 
scene clusters appropriately, these valid pairs may 
be made to fall close to the diagonal of the matrix, 
about as shown. If one tries to examine all possible 
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sets of 10 cluster pairs to find which is best, 
one finds that there are 10! (3,628,800) sets of 
pairs to be considered, assuming that there are no 
multiple pairings with the same cluster. If one 
happens to guess that there will be only 8 valid 
pairs possible, then the number of sets of pairs 
to be considered increases by a factor of 45 
(10!/8!/2!). 

Obviously there are two basic difficulties to 
be dealt with in finding the valid cluster pairs 
from which to derive the required signature trans
formation. The first is to reduce the number of 
different sets of cluster pairs which need t~ be 
examined, and the second is to determine which 
among those several candidate sets of cluster pairs 
are most likely to be valid. The first attempt at 
ERIM toward solving the first of these two diffi
culties was to sort the training scene and recog
nition scene clusters according to their mean values 
in some designated spectral band, then to consider 
only those sets of cluster pairs which preserved 
that linear ordering. This procedure occasionally 
led to situations such as that shown in Figure 2. 

Training Scene Clusters 

1 2 3 4 5 6 7 8 9 10 

1 X 
2 0 X 
3 X 0 

Recognition 4 0 X 
Scene 5 X 0 

Clusters 6 X 
7 1m 
8 X 0 
9 0 X 

10 1m 

Figure 2. Limited Potential Cluster Pairs 
after Linear. Ordering Constraint (example) 

The XIS indicate the one set of 10 cluster pairs 
that is permitted, subject to the cluster ordering 
constraint, when there is an equal number of train
ing and recognition clusters from which to choose. 
The O's again indicate the hypothetical set of 
valid cluster pairs specified in Figure 1. When 
the number of clusters in the training set differs 
from the number in the recognition set, the linear 
ordering constraint becomes less restrictive, as 
will be shown below. Note that of the 8 valid 
cluster pairs available, only two are within the 
candidate match indicated in Figure 2. 

An improved cluster matching algorithm, called 
CROP-A (for fluster ~egression Qrdered on ~rincipa1~ 
~is), was developed at ERIM and has evolved to 
include a partial remedy for the l~near ordering 
constraint difficulty indicated in Figure 2. The 
name for this algorithm comes from its choice of 
the principal eigenvector of the covariance of the 
training signature means as the linear direction for 
the cluster ordering constraint. Cluster positions 
along this ordering axis are determined from an 
apparent mean value for each cluster, given by a 



dot product between the cluster mean vector and a 
unit vector aligned with the principal eigenvector. 
Improvements in signature extension performance due 
to using this cluster ordering direction instead of 
using a particular spectral band appear to be mostly 
inconsequential, however the other new features 
contained in the algorithm appear to reap substan
tial benefits. In particular, the algorithm con
tains a provision to force a difference to occur 
in the number of training clusters and recognition 
clusters which are to be paired. For this purpose 
the algorithm keeps track of the number of data 
values used to generate each cluster. First, 
clusters generated from less than 1% of the data 
used to generate all clusters in the same set are 
excluded from being paired at all. This eliminates 
some of the "false alarm" clusters derived from 
minority constituents of a scene, which may be less 
likely to have counterparts in another scene. The 
percentage threshold for excluding clusters is then 
increased above 1% for one of the two sets of 
clusters (whichever requires the least number of 
additional exclusions) until a desired difference 
in the number of clusters remaining in the two sets 
is reached. Ordinarily the increased threshold is 
less than 2% when this condition is obtained. For 
cluster sets of between 15 and 30 clusters, a forced 
difference of 4 in the number of clusters is cur
rently used, producing between 1000 and 30,000 
candidate sets of cluster pairs. This situation is 
simulated in miniature in Figure 3. 

Training Scene Clusters 

1 2 3 4 5 6 7 8 9 10 

IE 
2 1m X X X 

3 X X X 1m 
Recognition 4E 0 

Scene 5 X X X 1m 
Clusters 6E 

7 X X X 11 
8 X X X X 0 
9 X X 1m X 

10 X X X l1li 

Figure 3. Less Limited Potential Cluster Pairs 
after CROP-A Forced Difference 

Recognition clusters eliminated by the requirement 
for a forced difference of 3 in the number of 
clusters in the two sets are designated (hypotheti
cally) by the letter "E". The candidate cluster 
matches available from Figure 3, subject to the 
cluster ordering constrain.t, consist of sets of 
pairs designated by X's, one from each row, such 
that the chosen X's can be joined in sequence by a 
monotonic broken line segment. This requirement is 
equivalent to matching all possible subsets of 7 
training clusters with the 7 retained recognition 
c~sters, in sequence. In this simple case one 
obtains 120 (10!/7!/3!) candidate sets of 7 cluster 
pairs, rather than the single candidate (with 10 
pairs) indicated in Figure 2. Also, one of the 
available candidates now contains 5 valid cluster 
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pairs, compared to only 2 for the candidate in 
Figure 2. This new candidate is shown in Figure 4. 

Training Scene Clusters 

1 2 3 4 5 6 7 8 9 10 

IE 
2 1m 
3 1m 

Recognition 4E 0 
Scene 5 1m 

Clusters 6E 
7 l1li 
8 X 0 

9 0 X 

10 1m 

Figure 4. Optimum Candidate Cluster Match 
after CROP-A Forced Difference 

Note that the pairing of recognition cluster #9 
with training cluster #8, although potentially 
allowed by the CROP-A forced difference (Figure 3), 
would by its choice in a candidate exclude from 
that candidate, due to the ordering constraint, the 
valid pairings with recognition clusters #3, #5, 
and #7. Hence, at best this alternate candidate 
could only contain 3 valid pairs. This sort of 
limitation is not uncommon when a linear ordering 
constraint is used. The result is that not all of 
the valid cluster pairs can be selected by the 
algorithm at one time. 

As a potential solution to the somewhat severe 
restrictions occasionally impos.ed by the CROP-A 
linear ordering constraint, another cluster matching 
algorithm, called CROWN (for £luster !egression 
Ordered With N channels), is currently undergoing 
development a~d testing at ERIM. This algorithm 
uses a matrix of merit figures, one figure for each 
possible cluster pair, to allow apparent optimum 
cluster associations to be chosen one by one until 
a specified number of candidate sets of a fixed 
number of cluster pairs become available. The merit 
figures for the matrix are determined on th~ ~asis 
of similarities in the location of each tra1n1ng 
and recognition cluster within its respective over
all cluster distribution. This technique appears 
to be satisfactory for reducing the complexity of 
the cluster matching problem without excluding any 
significant number of valid pairs from consideration. 

Having devised a means to select a practical 
number of candidate cluster matches, one next needs 
to find the best candidate among those chosen and 
to determine which of the cluster pairs from that 
candidate are most likely to be valid. Both CROP-A 
and CROWN use the regression procedure itself to 
perform this selection. Presuming that invalid 
cluster pairs will tend not to match as closely as 
the valid pairs, these algorithms delete from the 
regressions performed for each candidate match those 
cluster pairs which appear to match the most poorly. 
This is accomplished by comparing the transformed 
training cluster mean values to the untransformed 
recognition cluster mean values for each cluster 



pair. The mean values are first compared within 
the individual spectral bands as each separate 
regression is performed (equations (8) and (9)), 
since this is computationally the earliest oppor
tunity to delete a cluster pair from the subsequent 
calculations. The cluster pair deleted after each 
iteration through the regression is the one among 
those with a difference in mean values in excess 
of a specified threshold, which has the largest 
difference in mean values. This iterative pro
cedure continues until a stable situation is 
reached, with the regression in each spectral band 
updated to reflect deletions caused by the thres
holding in any of the spectral bands. The RMS dis
tance between the remaining cluster mean values is 
then tested, using an average over all spectral 
bands. If the greatest RMS distance is more than 
a second threshold, all cluster pairs with RMS 
distances greater than the average of the greatest 
RMS distance with this second threshold are deleted. 
The regressions are then updated accordingly and 
the test is repeated until once again the situation 
becomes stable. If at this point any of the deleted 
pairs now matches with an RMS distance less than a 
third threshold, the pair is restored and the 
regressions are updated just once more. This pro
cedure has seemed to be quite effective. Candidate 
matches, with poorly matching cluster pairs deleted, 
are then compared to select the final result. The 
final result selected is that which has the minimum 
RMS mismatch between clusters, comparing averages 
over a specific fixed number of the "best" pairs 
from each candidate. Typically for CROP-A, this 
final selection is based on the best 67% of the 
cluster pairs in each match (whether deleted or 
not), while for CROWN it is based on the best 90%. 
Note, however, that the CROWN algorithm contains a 
provision to automatically select the number of 
cluster pairs which are reasonable to constitute a 
candidate, and that this number may sometimes be 
less than the number of pairs required for a CROP-A 
candidate, although the CROWN algorithm generally 
retains numerically more cluster pairs in its final 
result than does CROP-A. 

Although the above candidate selection pro
cedures and the subsequent iterated regressions 
with step by step deletions of poorly matched 
cluster pairs have seemed to be quite effective, 
it has for some time been apparent that the per
formance of cluster matching algorithms is limited 
by a fundamental difficulty somewhat allied with 
the problems caused by variations in bidirectional 
reflectance, mentioned earlier. This limitation 
occurs when there are an insufficient number of 
valid cluster pairs to be found, as happens when 
scenes contain dissimilar major constituents. 
Such major differences between scenes may arise 
simply from differences in crop varieties grown 
(different rates of growth), or from differences 
in crop treatment (fertilization or irrigation), 
as well as from more fundamental differences 
(different crops). Major differences between 
scenes constitute another potential stumbling block 
for signature extension. A method (partitioning) 
for partially alleviating this problem will be 
briefly discussed later. 
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PERIPHERAL PROCEDURES 

The manner in which a signature extension 
module, such as CROP-A or CROWN, is embedded in an 
overall signature extension system has been identi
fied as an important consideration in determining 
its performance and value as a signature extensio~ 
tool. In this regard research is currently under
way at ERIM to define an optimum signature extension 
system, utilizing the current state of the ar~. 
Some particular techniques being tested are dis
cussed below. 

Since cluster matching algorithms in general 1 
use cluster statistics as their sole input, OIle , 
might surmise that the manner in which cluster sta- -
tis tics are prepared may be an important considera- J 
tion. Such is indeed the case. Since LANDSAT data 
is made up of many digitized data elements (commonly 
called pixels), each covering an area on the ground 
approximately 260 feet square, these pixels often 
contain a mixture of signals from more than one 
material. In fact, for scenes in Kansas which have 
many large fields one finds that 50% or more of the 
LANDSAT pixels straddle field boundaries and hence 
contain mixed signals. For cluster matching it is 
desirable to have cluster statistics which represent, 
pure materials. Within a training scene, where the : 
training field boundaries are known, one can cluster. 
over pixels which are clearly within the field 
boundaries and thus obtain some relatively clean 
statistics, but within a recognition scene one is 
assumed not to have information on field boundaries, 
otherwise one could train locally and not need sig
nature extension procedures. However, there are 
techniques for locating probable field boundaries 
in data for which there is no ground information. 
One of these techniques, which together with the 
subsequent clustering operation is called gradient 
filtered clustering, uses differences in the values 
of the 8 pixel neighbors to each pixel to compute a 
gradient value, indicating the amount of nonuni
formity in the data adjacent to that pixel. A self 
adjusting threshold on the gradient value is then 
used to exclude a specified percentage (typically 
75%) of the pixels, judged to be probable or possi
ble mixtures, from clustering. While the remaining 
25% of the pixels which are accepted may not repre
sent all of the pure pixels which could be used, 
they generally represent a sufficient number of pure 
pixels for clustering and quite effectively exclude 
the mixtures. This technique permits the cluster 
matching algorithms to compare clusters for pure 
materials, increasing the validity of the good 
cluster pairs which can be found. 

Still more improvement in signature extension 
performance might be expected to result from opti
mizing the way in which the transformed and untrans
formed clusters are used. With this in mind, ERIM 
has developed a technique called reverse transform 
labeling. This technique, rather than transforming 
training scene clusters to match the recognition 
scene, transforms the recognition scene clusters to 
match the training scene. The known training fields 
and the classification of the training scene by the 
transformed recognition clusters, together generate 
votes for labeling the recognition clusters. The 
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untransformed recognition clusters, with these 
labels, can then be used to classify the recogni
tion scene. Since the recognition scene clusters 
(if gradient filtered) can be made to represent 
mostly pure materials, this technique only depends 
on obtaining a signature transformation accurate 
enough to obtain proper recognition cluster labels 
from the training scene information. 

A third potential improvement in signature 
extension performance can be derived from developing 
the wisdom to know when and when not to try to use 
signature extension techniques. Earlier, the prob
lem of training and recognition scenes with dis
similar major constituents was mentioned. The per
haps obvious solution to this problem is to use only 
training and recognition scenes which are suffi
ciently similar. The region of space 'and time over 
which one can successfully extend classification 
from a training scene, using signature extension 
techniques, is commonly called a stratum. The 
technique of estimating the number of strata and 
their boundaries in an area to be classified is 
called partitioning. The region of space and time 
which one uses to approximate a stratum is called 
a partition. Partitions may be static (if based 
on only general knowledge of an area, such as soil 
types and climate) or dynamic (if based on recent 
short term effects, such as the date of the last 
rainfall). The partitioning problem at present is 
highly complex and of course can vary substantially, 
depending on the signature extension techniques 
which are to be employed. Research is currently 
underway to determine to what extent the signature 
extension algorithms themselves can help to identify 
the boundaries of a partition. 

CONCLUSIONS 

The preceding discussion has more or less 
followed the historical development of cluster 
matching techniques for signature extension at ERIM. 
An attempt has been made to indicate the theoreti
cal boundaries which circumscribe signature exten
sion efforts, and to indicate the step by step pro
gress which has been achieved in cluster matching 
algorithms and in their use toward realizing the 
potential for timely, lower cost surveys over large 
areas, which the theory seems to offer. At this 
stage of its development, signature extension 
through the use of cluster matching algorithms 
appears to be a practical technique for economical 
and timely wheat surveys, using LANDSAT data, and 
certainly for other uses as well, provided that the 
reasonable limits to its use (partitions) can be 
adequately determined. All aspects of the signature 
extension problem are of course continually under
going examination, testing, and development toward 
the goal of attaining a practical and fully opera
tional implementation of a signature extension 
capability. 
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