Purdue University

Purdue e-Pubs

ECE Technical Reports Electrical and Computer Engineering

9-1-1995

AMULTISTAGE APPROACH TO THE
HOPFIELD MODEL FOR BI-LEVEL IMAGE
RESTORATION

Mona S. Badie
Purdue University School of Electrical and Computer Engineering

Okan K. Ersoy
Purdue University School of Electrical and Computer Engineering

Follow this and additional works at: http://docs.lib.purdue.edu/ecetr

Badie, Mona S. and Ersoy, Okan K., "A MULTISTAGE APPROACH TO THE HOPFIELD MODEL FOR BI-LEVEL IMAGE
RESTORATION" (1995). ECE Technical Reports. Paper 143.
http://docs.lib.purdue.edu/ecetr/143

This document has been made available through Purdue e-Pubs, a service of the Purdue University Libraries. Please contact epubs@purdue.edu for

additional information.


http://docs.lib.purdue.edu?utm_source=docs.lib.purdue.edu%2Fecetr%2F143&utm_medium=PDF&utm_campaign=PDFCoverPages
http://docs.lib.purdue.edu/ecetr?utm_source=docs.lib.purdue.edu%2Fecetr%2F143&utm_medium=PDF&utm_campaign=PDFCoverPages
http://docs.lib.purdue.edu/ece?utm_source=docs.lib.purdue.edu%2Fecetr%2F143&utm_medium=PDF&utm_campaign=PDFCoverPages
http://docs.lib.purdue.edu/ecetr?utm_source=docs.lib.purdue.edu%2Fecetr%2F143&utm_medium=PDF&utm_campaign=PDFCoverPages

A MULTISTAGE APPROACH TO THE
HorrieL.D MODEL FOR BI-LEVEL
IMAGE RESTORATION

MoONA S. BADIE
OkAN K. Ersoy

TR-ECE 95-22
SEPTEMBER1995

<

o)
3 AN

€ &y,
.. SCHOOL OF ELECTRICAL

[

3 AND COMPUTER ENGINEERING

¢  PURDUE UNIVERSITY

WEST LAFAYETTE, INDIANA 47907-1285

>




A MULTISTAGE APPROACH TO THE HOPFIELD MODEL
FOR BI-LEVEL IMAGE RESTORATION

MonaS. Badie and Okan K. Ersoy

School o Electrical and Computer Engineering
1285 Electrica Engineering Building
Purdue University
West Lafayette, IN 47907-1285






ABSTRACT
CHAPTERI

CHAPTERIL

CHAPTERIII

CHAPTERIV

CHAPTER V

CHAPTER VI

CHAPTER VII
CHAPTER VIl
TABLIES
GRAPHS
IMAGES

TABLE OF CONTENTS

................................................................................. v
INTRODUCTION ....cuiiitiitiiiiiiii e 1
Current Optimization Srat@gieS........uuueeeerrereereerrerennnnnns 2
Neural Networksas an Optimization Strategy .........cvvevevnernanenn. 8
IMAGE SAMPLING. QUANTIZATION AND HALTONING.....13
IMage SCaANNING......ccouviiiiieii e 13
IMageSaMPliNg .. ..vvveeeei 14
IMage QUANtIZALION. . .....vve e 16
Image Segmentationand Binalization.......................coo 17
IMagECIEANING. ... e et 21
NEURAL NETWORKS ....cie e 27
Artificial vs. Biological Networks...........ccoooviieiiiiiiiiinninnneen 27
THE HOPFIELD NETWORK ..ot ee e 37
Hardware Representation of the Hopfield Net.......................... 37
The Hopfield Energy FUNCHION .......civveiiiiiiiiiieieeeeees 39
SINGLE STAGE VS. MULTI-STAGE.......cocccciiiiiiiiiiiea, 45
The SingleStage Hopfield Network..........ccovveiniiiiiieiannnnn. 45
Partitioning of the Hopfield Network.....................ooooeoii, 51
OPERATING CONDITIONS. ..ottt 59
TheMatlab SOftWare.........vviiii e 59
Regularization MatriCes. ..........oiviiiiiiie 61
TheNoiseLevE ..., 63
TheWeightingFactor. ....... ..o 64
RESULTS AND PERFORMANCE EVALUATION........c.cueun 65
CONCLUSIONS AND FUTURE CONSIDERATIONS............. 69
................................................................................ 71
................................................................................ 72
................................................................................ 75







ABSTRACT

Badie, Mona. MSEE Purdue University, May 1995. A Multistage Approach to the
Hopfield Model for Bi-level Image Restoration.
Major Professor: O.K. Ersoy

It was shown in previous published work that the neural networks Hopfield model
can be an efficient tool in grey level image restoration by regarding the problem
as a minimization of a two part cost measure, in which one component measures
roughness, and the other measures distance from the original image. In this
thesis, a multistage approach to the Hopfield network to restore bi-level images
degraded by noise is considered where the problem of error minimization is
acddressed locally within each partition while the other partition is frozen. The
natural choice for partitioning was into two stages, minimizing the odd data first
followed by the even. A natural extension followed, which is splitting into four
stages. Simulations were carried for different levels of noise, and different
values of the regularization constant and the regularization matrices. The
Multistage technique, in general, was proven successful in pushing the error
function to a deeper minima than the one reached by the classical single stage
Hopfield model.







CHAPTER |

| NTRCDUCTI ON

The issue of image restoration is a problem of combinatorial optimization. A
combinatorial optimization problem is either a minimization or a maximization
problem specified by the pair (S,c), where S represents the solution space, a finite
but exponentially large set of possible solutions, and c is the cost function.

For a minimization problem, we seek Xopt € Ssuch that

cl{x,,.) <sc(x) x€S

opt

The solution Xopt is called the globally optimal solution or optimum and c(xopt) is

the optimal cost.

It has been shown that several theoretical and practical combinatorial optimization
problems belong to the class of NP-complete { Non-deterministic Polynomial Time)
problems. This suggests that optimal solutions cannot be attained in reasonable
arnounts of computation time. Further, this necessitates consideration of the trade-
off between optimality and rapidly obtainable solutions. A class of agorithms
called optimization algorithms seeks the former goal while the class of

approximation algorithms pursue the latter.




A combinatorial optimization with constraints is known as a constrained
combinatorial problem, while one without any constraints is an unconstrained
combinatorial optimization problem. In some cases, a constrained optimization
problems can be approximated by an unconstrained optimization problem by the

penalty method.[1]

|.1 CURRENT OPTIMIZATION STRATEGIES

Traditional approaches to seeking minima include the steepest descent,

conjugate descent, restart and simulated annealing algorithms. A brief

discussion of each case is presented below.

[.11 Descent Algorithms

Presuming that the objective function possesses a bounded rate of change,

steepest descent is successful for most problems but displays slow

convergence properties. For a gradient function which islinear with respect

to the variables, asin,

g(x)=vE(x) =Ax-b (2)

the rate of convergence, which is controlled by




Apay — A

max min (3)

A'ma.x + A'min

where A and A, are, respectively, thelargest and smallest eigen values
of A, can approach unity. Further, the local minimum may not even be
accurately attained owing to round-off errors. By incorporating the descent
information from a previous iteration, the conjugate gradient descent
algorithm overcomes the pitfalls of the steepest descent scheme and, for a
guadratic objective function attains a local minimum in at most n steps,
where n is the number of parameters in the objective function. Thus, the

iteration is expressed as Xy, = X + @) dy

where, for steepest descent,

de=-9g(x,) =-g, (4)

and for conjugate gradient descent,




dy=~gp+ Brdyy (5)

and a« is chosen to minimize the objective function, F(x, + a, d;). as a

function of «,.

Conjugate gradient descent owes its name to thefact that d, is A-orthogonal
to all previous descent directions, d;, i=0,1,..,k-1. This ensures quadratic

convergence in n steps.

For the more general non-quadratic nonlinear objective function, the above
strategies regard the behavior as quadratic-dominant near each point. The
factor B ischosen appropriately to exploit theorthogonality property stated

above. One such choice

2
EA .

pk=
“gk-l 12

using Euclidean vector norms is improved upon using,

T -
po= T 18] (g
||9'k_1||




The latter expression forces the search directions close to the direction of
steepest descent while the former selection can stagnate when g, and dy

approach orthogonality.

.12 Restart Algorithms

Although stability and convergence have been proven for clescent strategies,
tracking down deeper local minima is largely governed by being in their
vicinity. Restart procedures have been formulated to improve both the
accuracy and efficiency of the descent methods. The use of an augmented

descent direction , say for iterations k>t,

dp= =g+ B +¥,d, (8)

such that d, r=t, t+1,t+2,... are mutually conjugate and d, is the restart
direction. The selection of B, is made to force dy to be orthogonal to all

past directions and that of yy to ensure the orthogonality of yy d to dy.

Restart procedures perform more effectively when the second derivative
information is considered. Therestart based on steepest descent can lead to

an increase in the objective function since it does not account for the




previous descent directions. An essential requirement for the success of

restart procedures is that the new direction, dy for k>t satisfy, dkT gy <0.

It has been established,that the conjugate gradient descent algorithm applied
after restart will proceed to termination whence either the above condition
ismet or g,=0. However, unless the transformation is appropriately chosen,
the convergence could be to a point other than the true minimum. Thiscould

occur since restarts made using projected gradients, g, do not force

-
Ik xnr (9)

g

to zero but rather a similar expression in g, which, in turn, takes g, to a
non-zero limiting value. A suitable criterion for restart is provided by
observing the behavior of (9).. A nonzero trend implies that gradient

orthogonality is failing and suggests the initiation of restart.

There also exist algorithms based on coordinate descent schemes wherein the
optimization process is conducted on subsets of parameters at a time, while
holding the others constant. Such technique do not require gradient
information but display slower convergence features. Further, objective

functions which depend on a very large number of uncoupled parameters are

6



better suited for cyclic coordinate descent searches. Cyclic coordinate
descent is useful where the line search along a coordinate direction can be

performed efficiently acd effectively.

.13 Simulated Annealing Algorithms

Multivariateoptimization involving the minimization of afunction depending
on many parameters finds close ties to a thermodynamical system exhibiting
several degrees of freedom which exist in thermal equilibrium at a specific
finite temperature. The characteristics of large scale optimization of
complex systems are likened to the temperature-sensiitive behavior of
materials. The annealing process in solids is an effort to attain the lowest
energy configuration of its atomic states through macroscopic temperature
variations. However, such a procedure requires careful control of these
fluctuations in order to avoid creating structural defects in crystallinity.
This notion has been found applicable to optimization problems. The
simulated annealing process is a stochastic search algorithm with the

following requirements:

(i) A well-defined notion of a system configuration
(ii) A stochastic rearrangement of the elements within a

configuration




(iii) A quantitative objective measure of the trade-offs.
(iv) A detailed "annealing” schedule identifying thetemperature
variation and duration of the system evolution at a specific

temperature.

A mechanism for overcoming the entrapment of a system at local minima
should be there. This allows for increases in the energy level as a meansto
reconfigure the system into a possibly lower energy state { the annealing
action). Theconvergenceto the lowest energy stateislikely to bevery slow
since the search procedure must exhaust the likelihood of deeper minima.
Through probabilistic state changes, the temperature deviation is reduced or
increased based on the trend displayed by theenergy function. The use of an
iterativesimulated annealing procedure to avoid alocal " freeze" employs the
study of the energy function at each of a sequence of diminishing

temperature setti ngs.

1.2 NEURAL NETWORKSAS AN OPTIMIZATION STRATEGY

Artificial Neural Networks (ANN),with their parallel computing capabilities,

are an attractive tool for optimization problems.



[21,[31,[4],[5],[61,[7],[8],[9],[10]

The Hopfield network has been used to solve a diverse range of optimization
tasks, e.g, the travelling salesman problem (TSP) [11] and the four color

problem [12].

There have been particular interest in the hardware implennentation of the
neural networks. It wasshown that highly interconnected networks of simple
analog processors can collectively compute good solutions to difficult
optimization problems [24]. Thedynamicsof such networks, generated by the
analog response, high interconnectivity, and the existence of feedback
connections, produce a path through the space of independent variables that
tends to minimize the objectivefunction value. Eventually, a stablesteady-
state configuration is reached, which corresponds to a local minimum of the
objective function.[13] For example, a network was designed to provide
solutions to the travelling salesman problem and the network could provide
good solutions during an elapsed time of only a few characteristic time
constants of the circuit. Other less complicated problems which are not of
NP-complete class, such as linear programming problems can be solved by

networks of analog processors.




In some cases, more than one optimization technique is combined. Although
simulated annealing is a powerful method for optimization, it is essentially
sequential. This means that for problems with a large data set, the
computation time required is quite high. With the emergence of neural
networks and their offering of parallel computation, simulated annealing and
neural networks were united to exploit the power of both these tools.
Boltzmann machines are Hopfield networks with a probabilistic transition of
states of neurons instead of deterministic transitions. The probabilistic
transition is based on simulated annealing. This effective union has been

utilized successfully in a number of optimization problems [2].

The linear Hopfield network is primarily applied to the solution of
combinatorially complex decision problems. Jeffrey and Rossner [14]
extended the Hopfield technique to the nonlinear unconstrained optirnization
problem. Kennedy and Chua [15] presented an analog implementation of

a network solving a nonlinear optimization problem.

In this thesis, we rephrase the engineering issue of image restoration as a

problem of combinatorial optimization.

The energy function relates to the original problem as the mean square

reconstruction error function whose minimization is being sought for the

10



purpose of signal recovery from noisy received image.
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CHAPTER II

IMAGE SAMPLING, QUANTIZATICN AND HALFTONING

The most basic requirement for computer processing of images is that the images
be available in digital form, that is, as arrays of finite length binary words. For
digitization, the given image is sampled on a discrete grid and each sample or pixel
iIs quantized using a finite number of bits. The digitized image can then be
processed by the computer. To display a digital image, it isfirst converted to an

analog signal, which is scanned onto a display.

I.1 IMAGE SCANNING

A common method of image sampling is to scan the image row by row and
sample each row. An example isthe television camera with vidicon camera
tube or an image dissector tube. An object, film, or transparency is
continuously illuminated to form an electron image on a photosensitive plate
called the target. A finite-aperture electron beam scans the target and
generates current which is proportional to the light intensity falling on the

target.[ 16]

13




II. 2 IMAGE SAMPLING
The digitization process for images can be understood by modeling them as
bandlimited signals. Although real-world images arerarely bandlimited, they

can be approximated by bandlimited functions.

A function f(x,y) is called bandlimited if its Fourier transform Fle ; , e,) is

zero outside a bounded region in the frequency plane, for instance,

F(81,€2)=0 |81|>€'xo' |62|>e}'0 (10)

The quantities ¢, and Eyo are called the x and y bandwidth of the image.

The Fourier transform of an arbitrary sampled function is a scaled, periodic

replication of the Fourier transform of the original function.

From the uniqueness of the Fourier transform, we know that if theespectrum

of theoriginal image could be recovered somehow from the spectrum of the

14



sampled image, then we would have the interpolated continuous image from
the sampled image. If the x, y sampling frequencies are greater than twice

the bandwidth,

xs” 2840 + Ey522¢,, (11)

then F(e, ,e,) can berecovered by alow pass filter. The lower bounds on the

sampling rates, that is,

2 . 28, (12)

X0

arecalled the Nyquist rates or the Nyquist frequencies. The sampling theory
states that a bandlimited image sampled aboveits x and y Nyquist rates can
be recovered without error by low-pass filtering the sampled image.

However, if the sampling frequencies are below the Nyquist frequencies,

15




Exs <28, £,.<2¢, (13)

then the periodicreplications of F(e , e5) will overlap, resulting in distorted
spectrum Fg(e; , €3) from which F(e; , e;) is irrevocably lost. The
frequencies above half the sampling frequencies are called the foldover
frequencies. This overlapping of successive periods of the spectrum causes
the foldover frequencies in the original image to appear as frequencies

exs/2,eys/2 in the sampled image. This phenomenon is called aliasing.

Aliasing errors cannot be removed by subsequent filtering. Aliasing can be
avoided by low-pass filtering the image first so that itsbandwidth isless than

on-half of the sampling frequency.

1.3 IMAGE QUANTIZATION

The step subsequent to sampling in image digitization is quantization. A
guantizer maps a continuous variable u into a discrete variable u’, which
takes values from a finite set {ry,... rp} of numbers. This mapping is
generally a staircase function and the quantization rule is as follows: Define
(tk, k=1,....,L+1} as a set of increasing transition or decision levels with ty
and ty , as the minimum and maximum values, respectively, of u. If ulies

in interval [ty, ty,;), then it is mapped to ry the k! reconstruction level.

16



II.4. IMAGE SEGMENTATION AND BINALIZATION

Storing gray level images requires a lot of memory because of the image
depth. An image scanned in 256 grey levels requires 10 bits per pixel.
Simplifying an image while retaining information regarding shapes and
geometric structures is necessary in many image analysis and pattern
recognition problems. Reducing the number of grey levels( possibly to two

as in the case of bi-level images) could be an advantageous tradeoff.

Recently, image processing devices such as facsimiles, copiers, and scanners
are used everywhere and the display devices which are able to reproduce
halftone images in addition to text and figure images in high quality is

required.

Generally, document images contain the text, the figure, and the
photographic area. Because of their different characteristics, adaptive
processing of such areas are needed when the document images are

displayed, stored, edited and transmitted.[17][18][19].

At first, adocument image which is scanned in 256 grey levels isdivided into

M x M pixel block. Thefirstistheratio of the number of pixelswhich have

17



greater density than a predetermined threshold value within a block. The

second is the distribution of the maximum value in the differential ones to
the density of 8-neighbor pixels. Thefirst featureiscalled the black density
and the second one the density difference hereafter. Generally, continuous-
tone areas have high black density and low density difference. On the other
'hand, text areas have low black density and high density difference. Then,
an attribute of a block, which is photo, text, or vacant, is decided by using
the above two features, where label "photo” means contincus -tone or
screened halftone block, " text" states text or figure and " vacant "
:represents that the block is background. Finally, the attribute is corrected

in comparison to the attributes of neighbor blocks.

It issometimes difficult to decide the attributes of blocks precisely from the
local information within a block. For example, few blocksin a text areamay
have the same features as photo and may be mislabeled as photo blocks and
vice versa. So the correction of attributes is necessary to get precise
.segmentation of documents. The correction process is conducted by
comparing an attribute of a block to its neighbors. More concretely, an
attribute of a block which wasincorrectly decided as text might be changed
to photo if the attributes of the nearest neighbor blocks were photo and so

on.

18



An appropriate binalization method isthen used. For the photographic areas,
the systematic dither is suggested ( but will not be discussed in this thesis,

being out of the scope of our work).

For text areas, several bi-level quantization methods could be used.[20]
A method based on the discriminant and least squares criteria(DLSCM) isone

of them.

[1.41 DLSCM Method

If two categoriessuch ascharacters and background exist in.a block, DLSCM
gives the threshold level which minimizes the variance in each category and
maximizes the variance between two categories. But all blocks do not
always include two categories because each block is an

M x M pixels sub-part of the origina image. Then the following two
l[imitations could be applied in the implementation of DLSCM to the text

images.

(1) If the threshold value calculated by DLSCM is very low because of
too few number of pixels belonging to the charactersin a block, the

lower limit, THI1, is set in the threshold value.

19




(2) If a threshold value calculated by DLSCM is less than THI1, the
threshold value of a neighbor block which has already been processed

is used in order to maintain the continuity of the threshold value.

Furthermore, DLSCM gives an appropriate threshold value for bi-level
“quantizing, when the number of pixels belonging to each category is
approximately same. But the threshold value is generally shifted to the
background level, because text images have very few number of pixels
belonging to the characters compared to the existing number of background

pixels.

11.4.2 Improved DLSCM

It uras found that the DLSCM does not always give the appropriate threshold
value for binalizing the text images. An improvement of the DLSCM is
suggested in [21]. If the number of all pixels in a block is A, the number
of pixels which have lower density than the value calculated by DLSCM is B,
the given maximum offset value is Z, then the variable offset V is
represented as Z*B/A, where Z is constant. The value calculated by the

DLSCM plus the offset value V was used as a slice level for binaliization of

20



text images. This method does not require extra calculation because the

value B was already calculated in the process of DLSCM

II.5 NOISE CLEANING

An image may be subject to noise and interference frorn several sources
including electrical sensor noise, photographic grain noise, and channel
errors. The noise effects can be minimized by classical filtering techniques

summarized below.

Image noise arising from a noisy sensor or channel transmission errorsusually
appears as discrete isolated pixel variationsthat are not spatially correlated.
Pixelsthat are inerror often appear markedly different from their neighbors.
This observation is the basis of many noise-cleaning algorithms. [22]
proposes a simple " out-range" noise cleaning method. With this technique,
each pixel issequentially examined, and if the magnitude of a pixel isgreater
than the average brightness of its immediate neighbors by some threshold

level, it is replaced by the average value.

21



11.5.1 Low-Pass masks

Noise in an image generally has a higher spatial frequency spectrum than the
normal image components because of its spatial decorrelatedness. Hence,
simple low-pass filtering can be effective for noise smoothing. An output N
x N image array Q is formed by discrete convolution of the input N x N

image array F with the L x L convolution array H according to therelation,

o(my,m) =33 F(n, m)H(m-n +1,m-n,+1) (14)

n, n;

For noise smoothing, H should be a low-pass form with all positive

components. Several convolution arrays of low-pass form are suggested,
Mask!1:
111

H=1/9 111

111

22
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Mask2:

111
H= 1/10 121

111
Mask3:

121

H= 1/16 242

121

Thesearrays, which are often called noise-cleaning masks, are normalized to
unit weighting so that the noise-cleaning does not introduce a brightness bias
in the processed image.

For binary images, the linear filtering operation should be followed by some
kind of clipping, which usually results in a distortion of many important

image characteristics.

23




I1.5.2 Median Filters

Median filtering is a nonlinear signal processing technique developed by
Tukey [23] that is useful for noise suppression in images. In one-
dimernsional form themedian filter consistsof asliding window encompassing
an odd number of pixels. The center pixel in the window is replaced by the
median of the pixelswithin the window. The median of a discrete sequence
aj,a,.....,a for N odd is that member of the sequence for which (N-1)/2
elements are smaller or equal in value, and (N-1)/2 elements are larger or
equal in value. For example, if the values of the pixels within a window are
80,90,200,110,120, thecenter pixel would bereplaced by thevalue 110, which
is the median value of the sorted sequence 80,90,110,120,200. In this
example, if the value 200 were a noise spike in a monotonically increasing
sequence, the median filter would result in considerable improvement. On
the other hand, the value 200 might represent avalid signal pulse for a wide-
bandwidth sensor, and the resultant image would suffer some loss of
resolution. Thus in some cases the median filter will provide: noise
suppression, and in other cases it will cause signal suppression. ( versus our
method shown later where a weight is given to the distance between the

restored and the received images to prevent this case from happening).

Operation of the median filter can be analyzed to a limited extent. It can

be shown that the median of the product of a constant K and a sequence f(j)

24



is

med { Kf(j) }=K rned { f(j) }

Furthermore,

med{ K + £(j) } = K + med {£(j)}

However, for two arbitrary sequences £(j) and g(j) it does not follow that the
median of the sum of the sequences is equal to the sum of their medians.

That is in general,

med { f(j) + g(j) } » med{ £(j) } + med{ g(;) }

The sequence 80,90,100,110,120 and 80,90,100,90,80 are examples for which

the additive linearity property does not hold.

There are various strategies for application of the median filter for noise

suppression. One method would be to try a median filter with a window of

25



length three. If there is no significant signal loss, the window length could
be increased to five for median filtering of the original. The process would
be terminated when the median filter begins to do more harm than good. |t
is also possible to perform cascaded median filtering on a signal using a fixed
or variable length window. In general, regionsthat are unchanged by asingle
pass of the filter will remain unchanged in subsequent passes. Regions in
which the signal period is lower than one half the window width will be
continually altered by each successive pass. Usually, the process will
continue until theresultant period isgreater than one-half the window width,
but it can be shown that some sequences will never converge. The concept
of the median filter can be easily extended to two dimensions by utilizing a
two-dimensional window of some desired shape such as a rectangle. It is
obvious that a two-dimensional L x L median filter will provide a greater
degree of noisesuppression that sequential horizontal and vertical processing
with L x 1 median filters, but two-dimensional processing also results in
greater signal suppression. In general, the median filter is very effectivein
reducing 'salt & pepper' noise, and will be used in our simulations for

comparison with other methods.

26



CHAPTER I
NEURAL NETWORKS

.1 ARTIFICIAL VS. BIOLOGICAL NETWORKS

Anyone can see that the human brain is superior to a digital computer at
many tasks. A good example isthe processing of visual information , a one
year old baby is much better and faster at recognizing objects and facesthan
even the most advanced Al system running on the fastest supercomputer.
The brain has many other features that would be desirable in artificial

systems(24],

* It isrobust and fault tolerant. Nerve cellsin the brain die every day

without affecting its performance significantly.

* It isflexible. Itcan easily adjust to a new environment by "learning™.

It does not have to be programmed in C or Pascal.

* It can deal with information that is fuzzy, probabilistic, noisy or
inconsistent.
* It is highly parallel.
27




* It issmall, compact, and dissipates little power.

Only in tasks based primarily on simple arithmetic does the computer

outperform the brain!

This was the real motivation for studying neural computation.It is an
alternative computational paradigm to theusual one( based on a programmed
instruction sequence), which was introduced by von Neumann and has been
used as the basic of almost all machine computation to date. It is inspired
by knowledge from neuroscience, though it does not try to be biologically
realistic in detail. The science of neural computation was originally aimed
more towards modelling networks of real neurons in the brain. The models
are extremely simplified when seen from a neurophysiological point of view,
though we believe that they are still valuable for gaining insight of the

separate principles of biological "computation”.

II.1.1 The Human Brain

The human brain is composed of about 10!1 neurons or nerve cells of many
different types. Tree-like networks of nerve fiber called dendrites are
connected to the cell body or soma, where the cell nucleus is located.

Extending from the cell body is a single long fiber called the axon, which

28




eventually branches or arborizes into strands and substrands. At the ends of
these are the transmitting ends of the synaptic junctions, or synapses to
other neurons. The receiving ends of these junctions on other cells can be
found both on the dendrites and on the cell bodies themselves. The axon of
a typical neuron makes a few thousand synapses with other neurons. The
transmission of a signal from one cell to another at a synapse is a complex
chemical process in which specific transmitter substances are released from
the sending side of the junction. The effect is to raise or lower the
electrical potential inside the body of the receiving cell. If this potential
reaches a threshold, a pulse or action potential of fixed strength and duration
is sent down the axon. We then say that the cell has "fired". The pulse
branches out through the axonal arborization to synaptic Junctionsto other
cells. After firing, the cell has to wait for a time called the refractory

period before it can fire again.

I11.1.2 The McCulloch and Pitts model

McCulloch and Pitts(1943) proposed a simple model of a neuron as a binary

threshold unit. Specifically, the model neuron computes a weighted sum of

its inputs from other units, and outputs aoneor a zero according to whether

this sum is above or below a certain threshold

29




n,(e+1) =8(Y wn; (£) -uy) (15)

13777

In this equation, n; is either 1 or O, and represents the state of neuron i as
firing or not firing respectively. Time t is taken as discrete, with one time
unit elapsing per processing step. 8(x) isthe unit step function, or Heaviside

function

The weight Wi represents thestrength of the synapse connecting neuron jto
neuron i. |t can be positive or negative corresponding to an excitatory or
inhibitory synapse respectively. It is zero if there is no synapse between i
and j. The parameter y; is the threshold value for unit i. The weighted sum
of inputs must reach or exceed the threshold for the neuron to fire. Though
simple, a McCulloch-Pitts neuron is computationally a powerful device.
McCulloch and Pitts proved that a synchronous assembly of such neurons is

capable in principle of universal computation for suitably chosen weights
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Wije Thismeansthat it can perform any computation that an ordinary digital

computer can, though not necessarily so rapidly or conveniently.

Real neuronsinvolve may complicationsomitted from thissimpledescription,

* Real neurons are often not even approximately ithreshold devices.
Instead they respond to their input in a continuous way. This is

referred to as a graded response.

* Many real cells also perform a nonlinear summation of their inputs,

which takes us a bit further from the McCulloch-Pitts picture.

* A real neuron produces a sequence of pulses, not a simple output
level. Representing thefiring rate by asingle number like n;, even if
continuous, ignores much information that might be carried by such

a pulse sequence.

* Neurons do not all have the same fixed delay (t-->t+1). Nor are they
updated synchronously by a central clock. We will in fact use

asynchronous update in this thesis.

* The amount of transmitter substance released at a synapse may vary
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unpredictably. This sort of effect can be modelled, by a stochastic

generalization of the McCulloch-Pitts dynamics.

A simple generalization of the McCulloch-Pitts equation which includes some

of these features is,

n;=g () wiyn; -1y (17)
J

The number n; is now continuous-valued and is called the state or activation
of unit i. The threshold function 8(x) of (15) has been replaced by a more
general nonlinear function g(x) called the activation function, gain function,
transfer function or squashing function. Rather than writing the time t or t+1
explicitly as we did in (15), we now simply give a rule for updating n;

whenever that occurs or asynchronously.

I11.1.3 Parallel Processing

In computer science terms, we can describe the brain as a parallel .system of
about 1011 processors. Using thesimplified model (17) above, each processor

has a very simple program: it computes a weighted sum of the input data
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from other processors and then outputsa single number, a nonlinear function
of this weighted sum. This output isthen sent to other processors, which are

continually doing the same kind of calculation.

The high connectivity of the network means that errorsin a few terms will
probably beinconsequential. Thistellsusthat such asystem can be expected
to be robust and its performance will degrade gracefully in the presence of
noise or errors.The contrast between this kind of processing and the
conventional von Neumann kind is very strong. Here we have very many
processors, each executing a very simple program, instead of the
conventional situation where one or at most a few processors execute very
complicated programs. And in contrast to the robustness of a neural
network, an ordinary sequential computation may easily beruined by asingle

bit error.

Massive parallelism in computational networks is extremely attractive in
principle. But in practice there are many issues to be decided before a

successful implementation can be achieved for a given problem:

* What is the best architecture.
* What sort of activation function g{x) should be used.

* What typeof updating should be used: synchronous or asynchronous.
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* How can a network be programmed? Can it learn a task or must

it be predesigned.

* What can the various types of network do. How robust are they to
missing information or incorrect data. Can they generalize to

unknown  examples.

* How can a network be built in hardware.

I11.1.4 Programming

A very important question is how do we choose the connection weights so

the network can do a specific task?

In some examples, the weighs can be chosen a priori. This embeds some
information into the network by design (This will be done in this thesis as
shown later). In other cases, we can often teach the network to perform the
desired computation by iterative adjustments of the Wij strengths. Thismay

be done in two main ways:

x Supervised learning. Herethelearning isdone on the basis of direct
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comparison of theoutput of the network with known correct answers.

x Unsupervised learning. Sometimes the learning goal is not defined
at all in terms of specific correct examples. The only available
information is in the correlations of the input data or signals. The
network isexpected to create categoriesfrom these correlations, and

to produce output signals corresponding to the input category.
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CHAPTER IV

THE HOPFIELD NETWORK

Among the various neural networks architectures, the Hopfield neural network is

very popular in real-world applications.

The Hopfield type networks can be used to implement ACAMS (Associative Content
Addressable Memory). A Hopfield ACAM can be used as an image storage device
in which stored images can be retrieved by their incomplete and/or distorted
versions or as a part of an image classifier. The other important application of
Hopfield networks is function optimization, which in image processing, can be used
for the restoration of images from blurred and noisy versions. In [25], Hopfield
describes how several optimization problems can be rapidly solved by highly
interconnected networks of simple analog processors. The processing elements are

modeled as amplifiers having a sigmoid monotonic input-output relation.

Iv.1 HARDWARE REPRESENTATION OF THE HOPFIELD NETWORK

The function VJ- = gj(uj) which characterizes this input-output relation
describes the output voltage VJ- of amplifier j due to an input voltage u; the
time constants of the amplifiers are assumed negligible . However, each

amplifier has an input resistor leading to a reference ground and an input
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capacitor. These components partially define the time constants of the
network and provide for integrative analog summation of input currents are
provided through resistors of conductance Tij connected between the output
and amplifier j and the input of amplifier i. In order to provide for output
currents of both signs from the same processor, each amplifier is given two
outputs, a normal output, and an inverted output. The minimum and
maximum outputs of the normal amplifier are taken as 0 and 1, while the
inverted output has corresponding values of 0 and -1. A connection between
two processors isdefined by a conductanceT;; which connects one of the two
outputs of amplifier j to the input of amplifier i. This connection is made
with a resistor of value Rj;=1/(T

ijl

| f Tij > 0, this resistor is connected to the normal output of amplifier j. If
T;;<0, it is connected to the inverted output of amplifier j. the rnatrix T;;
defines the connectivity among the processors. The net input current to any
processor( and hence the input voltage ;) is the sum of the currents flowing
through the set of resistors connecting its input to the outputs of the other
processors. Also, externally supplied input currents (I;) are also present for
each processor. In the circuits discussed here, these external inputs can be
constant biases which effectively shift the input-output relation along the y;

axis and/or problem specific input currents which correspond to data in the

problem.
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Using the network parameters,i.e., states, interconnections and biases, one
can define the energy of a Hopfield network. Under certain
conditions,discussed below, the energy function always decreases upon the
state update of any neuron. This enables us to develop a Hopfield network

capable of processing thesignal and evolving toward a minimum of itsenergy

function.
I\VV\2 THE HOPFIELD ENERGY FUNCTION

Hopfield defined the energy function of the neural network with

interconnection w;; and bias 8 to each neuron to be

1 N N N
i=13=1 i=1
or

E=-% ZTWZ-8TZ (19)

39




in vector form.

In his model, the neurons have no self feedback, i.e., the autoconnections w;;,
i=1,2,... M are zero and each neuron updates its stage randomly in time
{ asynchronously) according to the hard limit non linearity rule:

N

Z w;;2;+8; 20 z/¥ =1 (20)
J=1

N
Y w,z;+0;,<0  z[™=0 (20)
=

where binary states are assumed.

Hopfield showed that if w;; = 0 and the interconnections are symmetric (
w”:wji), then the energy change due to the state update of any neuron is
always zero or negative. This is the so called energy reduction property.

However, the condition of zero autoconnections is usually too restrictive in
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applications.

The relationship between stable states and energy local minima can be

summarized [26]:

Fact 1 If wi; = wy; and wy; >= 0, then any neuron-state update
according to the update rule (20) will monotonically decrease
the energy of the system. Therefore local minima of the
energy function are stable states. But if there is some wii
strictly positive, then stable states may not all occur at local
minima.

Fact 2 If w;; = wy; and wy; <= 0, then al stable states are local
minima. But if there is some w;; strictly negative, then the
energy reduction property does not always hold if neurons are
updated according to {(20); therefore there may belocal minima

which do not correspond to stable states. :Furthermore, the

system may not always be able to reach a stable state.

Fact 3 If w;; = w;; and wy; = 0, then stable states and local minima are

identical, and the energy reduction property holds.
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In our image restoration application, the diagonal terms w;; are all negative.

Since the autoconnections are negative, we have two potential probllems:

(i) Stable states of the network may occur at only some of the local

minima and

(ii) the network may not be able to reach to a stable state at a'l. Both
of these problems are induced by the fact that the energy reduction

property may not hold with negative autoconnections (fact 1).

Many approaches have been suggested to overcome the problem of negative
autoconnections. The EHE approach ( Eliminating Highest error criterion )
[27] suggests that at every update step the neurons, which have the
highest percentage of back projection errors ( where H(k)= WX(k)- 8 is the
projection error ), are updated first if the connection matrix W is satisfied

with

Another approach would be a stochastic decision rule [28],[29], where

a Boltzmann distribution is defined by
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where P, and P, 4 are the probabilities of the new and old global state,
respectively, delta E is the energy change and T is the parameter which acts

like temperature. A statev_,.(i,k) is taken if

new

P .. P P
—E¥ 5100 if—=""<1but B¥>5e(23)
Pol d old Pold

where epsilon is a random number uniformly distributed in the interval [0,1].

In this thesis, we use the more classical approach of enforcing the energy
reduction property by modifying theupdaterule. Thesimplest way to achieve
this is to update the state of a neuron according to (20), only if the update

will decrease the energy, that is, if
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N
AE; =-(az;) [Z wijzj+6i] —%wﬁ (az;)%2s0 (24)
J=1

then the update is executed but if delta E > 0 then the update is not
executed. In other words, the neural network has to have an inner

mechanism to monitor the 'trial' energy change.

by
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CHAPTER V

SINGLE STAGE VS MULTISTAGE
V.1. THE SINGLE STAGE HOPFIELD NETWORK
Much work has been done on the restoration of degraded gray level images.
In this thesis, we will consider bi-level (black and white) images degraded by

speckle (salt and pepper) noise.

The error, as suggested in [30], representing a cost energy function E, is

expressed as :

E=R+AD (25)

where A is a number that parametrizes the desired trade-off between

roughness and discrepancy for the smoothed image ..

For D we can take either the L! or the L? distance between K and M,

K being our received degraded image, and M its estimate. L! and L? are

45




equivalent for bi-level images since, for any values of K and M in (0,1), one

has rrivially |K—M|=(K—M)2. Thus we can choose

(26)

N N
D=3 Y (kyy-my)?

For R, the simplest choice proposed in [31] (The Digital Laplacian) results

in:

N N N
R=3 3 3 Y Cigay, My~ My )2 (27)

In this way, the problem of finding M is well defined, and consists of
minimizing E given by (25) for given K and A, with D and R defined as in (26)

and (27).

We reformulate the problem in terms of a bi-level image with values (-1,1)
instead of (0,1). Thus we define
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and

SinceK and M can only takethevalues0 and 1, Y and Z correspondingly take
the values -1 and +1. We need to express D and R in terms of these new

variables.

We first write the following identities, which can be easily verified:

yiif=1 (30)
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z;2=1 (31)

1-Y:32;:5 (32)
2

2 1- ziiji zizjz 33
) — (33)

iijl - mizjz

Using these identities, we get the following new expressions for D

and R:

Yij 2ij (34)

V!

N
VYIS

%

i
njR
M=

~
L]
-
L%
U
ey
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N N N N

=1 35)
R '51; J; 122_:1 2 11111212‘— E E ) E Ciydyindy Zirdy Ziydy (

1,21 7 =1 1;=1 Jo=1
Thefirst term in R issimply half the number of neighbor :pairsand equals

N2 (N2 - 1) Thus,

N N

N
Y

11=1 1 lz 1 2

= N2 ( A2— __1_ 36
R=N (N 1) 2 CJ.1J1.J.sz -7-11:1‘12'12 ( )

Expression (1) now becomes:

1N N N N A.N N

1,7.1 Z; Z; ¥
R e e R e 1J1127, 171 aJa H =

where we dropped the constant terms which do not depend on Z. We can do
that because addition of a term independent of Z does not change the point

where E reaches its minimum.

Using L exicographic notation, we change our image matrix into avector, and
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accordingly, our weight matrix is changed into a two dimensional matrix.

while the Hopfield model, as mentioned earlier in (17) takes the form,

Mapping to the Hopfield error function, we get:

W=C (26)




V.2. PARTITIONING OF THE HOPFIELD NETWORK

The objective of partitioning the Hopfield network is to address the problem
of error minimization locally within each partition while the other partition
is frozen. The partitioning scheme actually resembles the iterative
interlacing approach for the synthesis of computer-generated
holograms[32]. By local minimization of state variables,, while the other

partition is frozen, the network is able to reach a deeper minima.

V21 Literature on Multistage approach

Various Divide and Conquer Algorithms in Neural Networks have been
developped with different goals. In [33], the authors describe a DCN
which creates a feedforward neural network architecture during training,
based upon the training examples. The first cell introduced on any layer is
trained on all examples. Further cells on a layer are trained primarily on
examples not already correctly classified. The algorithm is designed to
dynamically create a network architecture based upon the domain examples
presented. This architecture enables learning to be effectively done, and
does not require any preconceived guess or domain-specific knowledge and

analysis. Training is done on the weights of the input linksto one cell at any
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given time. Hence, back propagation of error through hidden cells is never

required.

In [34], the Hopfield network multistage approach was discussecl for the
restoration of gray level images blurred and degraded by uniform gaussian
noise, for the purpose of ease of implementation in large scale problems.
The authors also had problems with convergence, since the image vector was
1283 X 1. (Itis 1282 X 1 for the bilevel images case.)

V.2.2 Two Stage Decomposition

In this study, we split our pixels into odd pixels (Z,) and even pixels (Z,)

(41)

N>
M=

N N
1
E=——§Ezcij(zoi+zei) (Zoj+zej)— yi(zoi+zavi)

.
[]
ey
.,
[]
-
-
H
-
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N N N
-_1 A
E——-Z-Z:Z:Cij(z | Zoj ¥ Zo1 Zoj zaizoj+zoizej)—3§ Vi (Zg5 + Zg,

1=1 j=1 i=1
(42)
1 N N 1 N N 1 N N
odd '2"2 E Cz’j zoizoj_—z' E E Cijzoizej—az E CJ.JZGJ.ZOJ E YiZ,
i=1 j=1 i=1 j=1 i=1 j=1 2=
(43)

=-1 zyCz -% z. C ze-%zfc zo—% Y z, (44)

1 1

1 T A
=-—2-ZOTC ZO—E (ZeTCTZO)T-EZe Czo_—z':' YZO (45)
=—% dCZ,-=(2z5Cz,)T Lz7cez ——;'-Yz (46)

(cT =cC, since C is symmetrical)
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=%ZOTC z,-2z4C zo——';-}’z0 (47)

0.y

Cz,-(zgC+ £ Y) z, (48)

By mapping our error function to the Hopfield error function again, we get

W=C ; 0=+(z¢TC+%Y) (49)

The two partitions algorithm can be summarized as follows:

(a) Perform energy descent with respect to Even pixels to a

minimum while Odd are frozen.
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(b) Switch to Odd and repeat (a) with Even and Odd interchanged.
(c) Repeat steps (a) and (b) until there is no further descent in

error energy.
V23 Four Stage Decomposition

In this case we split our pixels into four groups ( Zy, Z,, Z3 and Z, )

N N
== Gyl +2y 425 +2,) (2 + 2
i=1 j=1 (50)

L_; z41 E Yi (Zli +z2.1 +Z’31 +Z4‘)

i=]

NI'—-

N N

E=- —2_2 E Cx}\zlle] lezfz; +zltzﬂj +lez41 ”1:21; +LLIZ')4
i=1 j=1

12+ 12y +zs,z1, 2,2 Ty Dy * Lyt Ly (O1)

242y * 2y ) E YilZy + 2+ 2+ 24)
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to find E; we neglect the terms that do not include z; , which are constant in this

case.

N N
1
E =- _2—2 2 G2z 2ty * 2y * 12y
i=1 j=1 (52)

N
A
* 2,20+ 42y + 24 2y) T EE Yizy;

i=1

back to vector notation

1 7 1 1 1 1 7 1
vt Ei=-suCy-gziey- Eleng 4z EZZTCZ-I

1.7 1.7 A

-=23 Cz,-=z4 Cz, - Yz
f C %14 b2 11 1 (53)

T T T
- -22/CZ, -~ (57 CTZ) -~ (27 CTz)" - 2(z]CT2)

2 2 2 2
17 1.7 1T A

—Ezz CZ - 5% Cz, TS Cz, ——2—Yzl
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C being symetrical, cT=c

1 r 1, r T 1, 71 T 1, r T
E=-—=2zCz-—(2,Cz) -=(z3 Cz)) - = (2, Cz
1 2 1 1 2(2 1) 2(3 1) 2(:4 1) (54)

1 r 17 1 r A

-522 Cz B Cz —524 Cz, 3 Yz,

The transpose of a number is the same as the number,
1 r 1 r 17 1 r
E =--2,Cz,-—=2,Cz,-=-2, Cz,-—2z, Cz
1 2 1 1 2 2 1 23 1 2 4 1 (55)

1 1 1 r 1 r A
-Ezz Czl-az3 Cz,—Ez:4 Czl—EYzl

E =- %erczl _ZZTCZI —z3TCzl _szZl ) % Yz (56)
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4
I
Q

1 71 T T A
E -- —2—21- CZrT((zz- +z}T+z¢')C_+ 2 Y}zl (7

by mapping E; to the hopfield energy fuction we get'

W=C ; 6=(12T+z3T+z4T)C+%—Y(58)
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CHAPTER VI

OPERATING CONDITIONS

V1.1 The Matlab Software

In previous work, the problem of convergence was faced by researchers because of
the large size of the images. This problem of convergence was not faced in our
case, since a very powerful tool of the Matlab software was used, the block
processing function. With thisfunction, the image matrix is partitioned into blocks,

which size is chosen by the user.

Since the blocks chosen were of reasonable size, [20x20] in our case,

convergence to a minima was never a problem.

Besides helping with the convergence problem, the block processing function
made it possible to process large images (128 X 128) on a 486 personal
computer, which otherwise would have been impossible because of memory

[imitations.

The Matlab software, together with the image processing toolbox, proved

themselves to be a very powerful tool for image processing applications.
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Because if was designed for this kind of applications, this software offers a

lot of convenient features,

* Vectorizing the operations saves on computational speed especially in those

cases where the amount of data processed is very large.

* Block processing the images saves on speed and memory and makes the

processing of any size image possible on a personal computer.

x Filtering functions are readily available and easy to use.

* Functions to show the processed images on the screen or send. them to the

printer.

* .
Ease of programming
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V1.2 Regularization Matrices

Two different regularization matrices were used in the: simulations. The

digital Laplacian operator that takes the form,

( where 4 neighboring pixels' effect is taken into account )

and the second-difference approximation of the Laplace operator that takes

the form,

1 41
d= 4-204

1 41

( where 8 neighboring pixels' effect is taken into account:).

The weights matrix, consisting of the Laplacian operator is block circulant
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of the form:

DoDl 0 0 O...... D1 D1

D1 Do D1 0 O ......... Dl

0 D1 Do D1 0 ...........

0 0 D1 Do DI ...........
Wt= . 0 0D1 Do DI ........

D1

DI D1 O .eveverennnnnns Do

where in the case of the digital Laplacian Do and D1 take the form,

-4 100...
Do= 1-410...

01-41...
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1000...
DiI= 0100...

0010...

and in the case of the second-difference approximation of the Laplacian, Do

and D1 take the form,

-20 4 00 ..

Do 4-20 4 0 ..

0 4-204..

4100..
Dl= 1410..

01 41..

V1.4. The Noise Level

In our simulations, 'Salt & Pepper ' noise was used. Each pixel was changed

from 0 to 1 with probability r, r taking the values 0.3, 0.4, and 0.5.
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In each of our images, the average value of y isr in originally white areas,
1-rinoriginally black areas. Thedifference between the two average values
is 1-2r. The standard deviation of y in both the originally white and
originally black areas isgiven by (sqrtr(1-r) ). Thus we can define a signal
to noise ratio astheratio of the difference between the two average values

and the standard deviation given by

(1-2n
vr(l -r)

This gives signal-to-noise ratios of 0.87, 0.41,....

V1.5 The Weighting factor I,

Different values of the weighting factor I, were chosen, ranging from 0.5 to

3.5,
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CHAPTER vII
RESULTS AND PERFORMANCE EVALUATI ON

W e confine our experiments to a 120 x 120 bi-level image. Each pixel intensity can
take a value of 0 ( black ) or 1 { white ). The image restoration problem is
considered for four diferent signal to noise ratios, a variety of regularization
constants ranging from 0.5 to 3.5 ( only the results for A=1 and A=3 are discussed
below to avoid redundancy ), and two different regularization matrices{ four pixels
neighborhood and eight pixels neighborhood ).

A comparison was made among the following configurations:

(1) A single stage Hopfield network which addresses the total error

(2) A two stage Hopfield network using even numbered neurons first followed
by the odd numbered neurons.

(3) A four stage Hopfield network using the pixels number 1,5,9,13,etc.. first,
followed by pixels number 2,6,10,14,etc.. and so on

(4) A hybrid structure using asinglestage approach followed by a two stage.

(5) A hybrid structure using asingle stage approach followed by a four stage.

For all cases the direct methods start with the degraded image as the initial

estimate, while the hybrid methods start with an image attained when the energy
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descent for the single stage slows down.

All results mentioned were obtained by averaging over a total of ten simulations.

Case I: A=1; 4 pixels neighborhood Laplacian regularization matrix

The table on p.69 and the graph on p.70 show that the nnulti-stage
approaches, whether direct or hybrid yield to a deeper minima than the one
obtained by thesingle stage. The two stage and four stage approaches yield
very comparable results. The results also suggest that the lower the signal
to noise ratio ( or the higher the noise density ), the wider the gap between

the single and multi-stage approaches.

Case II: 1=3; 4 pixels neighborhood Laplacian regularization matrix
The table on p.69 and the graph on p.71 show again that the multi-stages
approachesyield to better results than thesingle stage. For thisvalueof the
regularization constant, the gap between the single stage and multi-stage
energy functions doesn't increase with the increment of the noise density.

Case III: A=1; 8 pixels neighborhood Laplacian regularization matrix

The table on p.69 and the graph on p.72 show one more time the lower
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energy function obtained by the multi-stage approach.

[t is noticed that the values of the energy functions obtained in this case are
lower than the ones obtained previously for the same value of the
regularization constant, despite the fact that in both cases we start with the
same image having the same initial energy function. This is due to the

different nature of the Laplacian regularization matrix.

Another interesting issue was to find the optimal regularization constant for
our processed image. To be able to compare the performance at different
value of A without introducing a bias, a 'cost discrepancy’ measure is
introduced {35]

= (B, - E) /lEol

Such a measure eliminates dependence on the choice of the parameters and
the lower the cost discrepancy is, the better isthe minimization of E ( while
a negative value implies that the restoration method has obtained a solution

of lower cost than the original image).

E. was taken to be the energy function resulting from the double stage

approach. Thevalues of E; and E, were averaged over the different values
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of r to prevent any bias introduced by the value of r.

I't was found that A=3 was the optimal regularization constant for our image.
I't is understood that thisis an experimental result and is dependent, amongst
other factors, on the type of image used. We do not address this problem
nnathematically in this thesis but allude to it as an important future

objective.
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CHAPTER VIII

CONCLUSIONS AND FUTURE CONSIDERATIONS

The problem of image restoration has been rephrased as a problem in combinatorial
optimization using a partitioned Hopfield network. The results obtained show that
the partitioning techniques developed are effective in reaching a deeper minima
than the one obtained with single stage approaches. The tradeoff’ is that complete
parallelism is sacrificed since there is one active partition at each time instant
while the other partitions are frozen. This tradeoff can be advantageous in

applications in which optical processing istoo fast with respect to theenvironment.

The above strategies should be tested on larger images. The implementations are
computationally intensive and an effort to adopt parallel machinesto accelerate the

convergence should be investigated.

The choice of theregularization factor | was arbitrary, and many different values

were experimented, leading to different results as was shown in the figures and

graphs shown in the previous chapter. Some research has been done[26] on using

a neural network to learn the optimal value of I, this could be incorporated in

future research.

The idea of splitting a network into more than one stage was proven successful, and
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although the odd-even splitting is a most natural choice, natural extensions would
include:

- Splitting the network into n subnetworks in order to adapt the reception of the
image to the speed of the machine.

- Splitting the network into n=2™ networks and attempt a recursive ( binary tree)
approach to the computation where each level of the computation is itself split into
odd-even dat. The depth of the tree is then controlled by issues of availability of
data and communication between processors.

- Alternate architectures could be developed to exploit the capabilities of each

subnet.
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TABLE 1

LAMBDA = 1 ; 4 PIXELS NEIBORHOOD
r SINGLE DOUBLE 1+2 FOUR 1+4
STAGE STAGE STAGE
0.3 -0.30902 -0.32753 -0.33160 -0.32890 -0.33170
0.4 -0.25470 -0.27300 -0.27950 -0.27850 -0.27890
0.5 -0.16200 -0.18350 -0.19670 -0.19600 -0.19750
TABLE 2
LAMBDA = 3; 4 PIXELS NEIBORHOOD
r SINGLE DOUBLE 1+2 FOUR 1+4
STAGE STAGE STAGE
0.3 -0.91120 -0.92110 -0.925390 -0.92340 -0.92560
0.4 -0.81590 -0.82820 -0.83490 -0.83160 -0.83470
0.5 -0.72510 -0.73620 -0.74760 -0.73800 -0.74750
TABLE 3
LAMBDA = '1; 8 PIXELS NEIBORHOOD
r DOUBLE 1+2 FOUR 1+ 4
STAGE STAGE
0.3 -0.33890 -0.34400 -0.34710 -0.34420 -0.34710
0.4 -0.28940 -0.29250 -0.30100 -0.29370 -0.30100
0.5 -0.23460 -0.23950 -0.24930 -0.24020 -0.24880
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Figure(a) Fi gure (b)

Figure (c) Figure (d)
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Figure (e) Figure (f)

Case 1:1 =1 ; 4-pixels neighborhood regularization matrix;r= 0.3
Figure(a): Noisy Image

Figure(b): Siagle Stage Restoration

Figure(c): Double Stage Restoration

Figure(d): Single followed by Double Stage Restoration
Figure(e): Four Stage Restoration

Figure(f): Single followed by Four Stage Restoration
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Fi gure (b)

Figure (a)

Figure (d)

Figure (c)
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Figure (e)

Case 1:A =1;4-pixel neighborhood regularization matrix; r=4
Figure(a): Noisy image

Figure(b): Single Stage Restoration

Figure(c): Double Stage Restoration

Figure(d): Single followed by Double Stage Restoration
Figure(e): Median filter ( 3x3 window) restoration
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Fgure (c) F gure (d)
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Figure (e)

Case 1;4-pixel neighborhood regularization matrix;A = 1 r=0.5

Figure(a): Noisy Image

Figure(b): Single Stage Recovery

Figure(c): Double Stage Recovery

Figure(d): Single followed by Double Stage Recovery

Figure(e): Median filter(3x3 window) recovery
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Figure(a) Fi gure (b)

Figure {d)
Fi gure (c)
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Figure (e) Figure (f)

Case 2:1 = 3;4-pixel neighborhood regularization matrix; r = 0.3
Figure(a): Noisy |mage

Figure(b): Single Stage Recovery

Figure(c): Double Stage Recovery

Figure(d): Single followed by Double Stage Recovery

Figure(e): Four Stage Recovery

Figure(f): Single followed by Four Stage Recovery
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Figure (e) Figure (f)

Case2:A = 3;4-pixel neighborhood regularization matrix; r = 0.4
Figure(a): Noisy Image

Figure(b): Single Stage Recovery

Figure(c): Double Stage Recovery

Figure(d): Single followed by Double Stage Recovery

Figure(e): Four Stage Recovery

Figure(f): Single followed by Four Stage Recovery
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Figure ()

Figure {(c)
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Figure (b)

Figure (d)




Figure (e) | | Figure (f)

Case2:A = 3 ;4-pixel neighborhood regularization matrix; r = 0.5
Figure(a): Noisy Image

Figure(b): Single Stage Recovery

Figure(c): Double Stage Recovery

Figure(d): Single followed by Double Stage Recovery

Figure(e): Four Stage Recovery

Figure(f): Single followed by Four Stage Recovery
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Figure (e) Figure (f)

Case 3: A=1;8-pixel neighborhood regularization matrix;r=0.3
Figure(a): Noisy Image

Figure(b): Single Stage Recovery

Figure(c): Double Stage Recovery

Figure(d): Single followed by Double Stage Recovery
Figure(e): Four Stage Recovery

Figure(f): Single followed by Four Stage Recovery
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Figure (e) Figure (f)

Case 3. A=1;8-pixel neighborhood regularization matrix;r=0.4
Figure(a): Noisy Image

Figure(b): Single Stage Recovery

Figure(c): Double Stage Recovery

Figure(d): Single followed by Double Stage Recovery
Figure(e): Four Stage Recovery

Figure(f): Single followed by Four Stage Recovery
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Figure (e) Figure (f)

Case 3. A=1;8-pixel neighborhood regularization matrix;r=0.5
Figure(a): Noisy Image

Figure(b): Single Stage Recovery

Figure(c): Double Stage Recovery

Figure(d): Single followed by Double Stage Recovery
Figure(e): Four Stage Recovery

Figure(f): Single followed by Four Stage Recovery
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