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ABSTRACT 

Bsrdie, Mona. MSEE Purdue University, May 1995. A Multistage Approach to the 
Hopfield Model for Bi-level Image Restoration. 
Miajor Professor: O.K. Ersoy 

It was shown in previous published work that the neural networks Hopfield model 
cam be an efficient tool in grey level image restoration by reganding the problem 
as a minimization of a two part cost measure, in which one component measures 
roughness, and the other measures distance from the original image. In this 
thesis, a multistage approach to  the Hopfield network to restore bi-level images 
degraded by noise is considered where the problem of error minimization is 
addressed locally within each partition while the other partition is frozen. The 
natural choice for partitioning was into two stages, minimizing t.he odd data first 
followed by the even. A natural extension followed, which is splitting into four 
stages. Simulations were carried for different levels of noise, and different 
values of the regularization constant and the regularization matrices. The 
Multistage technique, in general, was proven successful in pushirig the error 
function to a deeper minima than the one reached by the classical single stage 
Hopfield model. 





CHAPTER I 

INTRODUCTION 

The issue of image restoration is a problem of combinatorial optimization. A 

combinatorial optimization problem is either a minimization or a maximization 

problem specified by the pair (S,c), where S represents the soluti,on space, a finite 

b ~ i t  exponentially large se t  of possible solutions, and c is the cost function. 

For a minimization problem, we seek x E S such that  opt 

The solution x is called the globally optimal solution or optimum and c(xopt) is 
opt 

the optimal cost. 

It has been shown that  several theoretical and practical combinatorial optimization 

problems belong to the class of NP-complete ( Non-deterministic Polynomial Time) 

problems. This suggests that optimal solutions cannot be attained in reasonable 

amounts of computation time. Further, this necessitates consideration of the trade- 

off between optimality and rapidly obtainable solutions. A c1,ass of algorithms 

called optimization algorithms seeks the former goal while the class of 

approximation algorithms pursue the latter. 



A combinatorial optimization with constraints is known as a constrained 

combinat.oria1 problem, while one without any constraints is an unconstrained 

combinat:orial optimization problem. In some cases, a constrained optimization 

problems can be  approximated by an unconstrained optimization problem by the  

penalty  neth hod.[ 11 

I. 1 CURliENT OPTIMIZATION STRATEGIES 

Traditional approaches to  seeking minima include the  steepest descent, 

conjugate descent, res ta r t  and simulated annealing algorithms. A brief 

discussion of each case is presented below. 

I. 1.1 Descent Algorithms 

Presuming tha t  t h e  objective function possesses a bounded r a t e  of change, 

s teepest  descent is successful for most problems but displays slow 

convergence properties. For a gradient function which is linear with respect 

t o  t he  variables, as in, 

tlne r a t e  of convergence, which is controlled by 



where A,,, and Amin are, respectively, the largest and smallest eigen values 

of A, can approach unity. Further, the local minimum may not even be 

accurately attained owing to  round-off errors. By incorporating the descent 

information from a previous iteration, the conjugate gradient descent 

algorithm overcomes the pitfalls of the steepest descent scheme and, for a 

quadratic objective function attains a local minimum in a t  most n steps, 

where n is the number of parameters in the objective function. Thus, the 

iteration is expressed as xk+l = xk + ak dk 

where, for steepest descent, 

and for conjugate gradient descent, 



and ak  is chosen t o  minimize the  objective function, F(xk -1- ak  dk) . a s  a 

function of a k .  

Conjugate gradient descent owes its name to  the f a c t  t ha t  dk is A-orthogonal 

to  all previous descent directions, di, i=O,l,..,k-1. This ensures quadratic 

convergence in n steps. 

For the  more general non-quadratic nonlinear objective function, the  above 

strategies regard the  behavior as quadratic-dominant near each point. The 

factor  p is chosen appropriately to  exploit the  orthogonality piroperty s tated 

above. One such choice 

using Euclidean vector norms is improved upon using, 



The latter expression forces the search directions close to  the direction of 

steepest descent while the former selection can stagnate when gk and dk 

approach orthogonality. 

I. 1.2 Restart Algorithms 

Although stability and convergence have been proven for clescent strategies, 

tracking down deeper local minima is largely governed by being in their 

vicinity. Restart procedures have been formulated to improve both the 

accuracy and efficiency of the descent methods. The use of an augmented 

descent direction , say for iterations k>t, 

such that  d,, r=t, t+l,t+2, ... are mutually conjugate ant1 dt is the restart 

direction. The selection of P k  is made to force dk to be orthogonal to  all 

past directions and that of y k  to  ensure the orthogonality of y k  d to dk. 

Restart procedures perform more effectively when the second derivative 

information is considered. The restart based on steepest descent can lead to 

an increase in the objective function since i t  does nor; account for the 



previous descent directions. An essential requirement for t he  success of 

T res ta r t  procedures is tha t  the  new direction, dk for k > t  satisfy, d k  gk<O. 

It has been established,that the conjugate gradient descent algorithm applied 

a f te r  res ta r t  will proceed to  termination whence either t he  above condition 

is m e t  or gk=O. However, unless t he  transformation is appropriately chosen, 

the convergence could be t o  a point other than the  t rue  minimum. This could 

occzur since restar ts  made using projected gradients, gk do not force 

T 
s k  gk+l ( 9 )  

Us, Il2 

t o  zero but ra ther  a similar expression in gk which, in turn, takes  gk t o  a 

non-zero limiting value. A suitable criterion for res ta r t  is provided by 

ob.serving the  behavior of (91.. A nonzero trend implies that: gradient 

or1:hogonality is failing and suggests the  initiation of res tar t .  

There also exist  algorithms based on coordinate descent schemes wherein the  

optimization process is conducted on subsets of parameters a t  a time, while 

holding the  others constant. Such technique do not require gradient 

information but display slower convergence features. Further, objective 

fuinctions which depend on a very large number of uncoupled parameters a r e  



better suited for cyclic coordinate descent searches. Cyclic coordinate 

descent is useful where the line search along a coordinate direction can be 

performed efficiently acd effectively. 

I. 1.3 Simulated Annealing Algorithms 

Multivariate optimization involving the minimization of a function depending 

on many parameters finds close ties to  a thermodynamical system exhibiting 

several degrees of freedom which exist in thermal equilibrium a t  a specific 

finite temperature. The characteristics of large scale optimization of 

complex systems are likened to the temperature-sensiitive behavior of 

materials. The annealing process in solids is an effort to  attain the lowest 

energy configuration of its atomic states through macrosc:opic temperature 

variations. However, such a procedure requires careful control of these 

fluctuations in order to avoid creating structural defects in crystallinity. 

This notion has been found applicable to optimization problems. The 

simulated annealing process is a stochastic search algorithm with the 

following requirements: 

(i) A well-defined notion of a system configuration 

(ii) A stochastic rearrangement of the e1eme:nts within a 

configuration 



(iii) A quantitative objective measure of the  trade-offs. 

(iv) A detailed "annealing" schedule identifying the  temperature 

variation and duration of t he  system evolution a t  a specific 

temperature. 

A rnechanism for overcoming the  entrapment of a system a t  local minima 

should be there. This allows for increases in the  energy level as  a means t o  

reconfigure the  system into a possibly lower energy s t a t e  ( the  annealing 

action). The convergence to  the  lowest energy state is likely to  be very slow 

since t h e  search procedure must exhaust the  likelihood of deeper minima. 

Through probabilistic s t a t e  changes, the  temperature deviation is reduced or  

increased based on the  trend displayed by t h e  energy function. The use of an 

iterative simulated annealing procedure t o  avoid a local "freeze" employs the  

study of the  energy function a t  each of a sequence of diminishing 

temperature settings. 

1.2 N E U R !  NETWORKS AS AN OPTIMIZATION STRATEGY 

Artificial Neural Networks (ANN), with their parallel computing capabilities, 

arle a n  a t t r a c t i v e  t o o l  f o r  o p t i m i z a t i o n  p r o b l e m s .  

8 



The Hopfield network has been used t o  solve a diverse range of optimization 

tasks, e.g, the  travelling salesman problem (TSP) [ I l l  ant1 the four color 

problem [I 21. 

There have been particular interest in the hardware implennentation of the 

neural networks. It  was shown that highly interconnected networks of simple 

analog processors can collectively compute good solutions to  difficult 

optimization problems [24]. The dynamics of such networks, generated by the 

analog response, high interconnectivity, and the existence of feedback 

connections, produce a path through the space of independent variables that  

tends t o  minimize the objective function value. Eventually, a stable steady- 

s ta te  configuration is reached, which corresponds to  a local minimum of the 

objective function.[l3] For example, a network was designed to provide 

solutions to  the  travelling salesman problem and the netwo:rk could provide 

good solutions during an elapsed time of only a few chairacteristic time 

constants of the circuit. Other less complicated problems which are not of 

NP-complete class, such as linear programming problems c:an be solved by 

networks of analog processors. 



In some cases, more than one optimization technique is combined. A.lthough 

simul.ated annealing is a powerful method for optimization, i t  is essentially 

sequential. This means tha t  for problems with a large da ta  set, t he  

computation t ime required is quite high. With t he  emergence of neural 

networks and their offering of parallel computation, simulated annealing and 

neural networks were united t o  exploit t he  power of both these tools. 

Boltxmann machines a r e  Hopfield networks with a probabilistic transition of 

s ta tes  of neurons instead of deterministic transitions. The probabilistic 

transition is based on simulated annealing. This effect ive union has been 

utilixed successfully in a number of optimization problems [2]. 

The linear Hopfield network is primarily applied t o  t he  solution of 

combinatorially complex decision problems. Jeffrey and Rossner (141 

extended the  Hopfield technique to  the  nonlinear unconstrained optirnization 

problem. Kennedy and Chua (151 presented an analog implementation of 

a network solving a nonlinear optimization problem. 

In this thesis, we rephrase the  engineering issue of image restoration as  a 

problem of combinatorial optimization. 

The energy function relates t o  the  original problem as t he  mean square 

reconstruction error function whose minimization is being sought for  the  

10 



purpose of signal recovery from noisy received image. 





CHAPTERII 

IPw'AGE WwWLIh'G, QUANTIZATICN AND IQALFTONXNG 

The most basic requirement for computer processing of images is that  the  images 

be available in digital form, that  is, as arrays of finite length binary words. For 

digitization, the  given image is sampled on a discrete grid and each sample or pixel 

is quantized using a finite number of bits. The digitized iniage can then be 

p~rocessed by the  computer. To display a digital image, i t  is first converted to  an 

analog signal, which is scanned onto a display. 

11.1 IMAGE SCANNING 

A common method of image sampling is t o  scan the image row by row and 

sample each row. An example is the television camera with vidicon camera 

tube or an image dissector tube. An object, film, o:r transparency is 

continuously illuminated t o  form an electron image on a ph~otosensitive plate 

called the target. A finite-aperture electron beam scains the  target and 

generates current which is proportional to  the light intensity falling on the 

target.[ 161 



11. 2 IMAGE SAMPLING 

The digitization process for images can be understood by modeling them as 

bandlimited signals. Although real-world images are rarely bandlirnited, they 

can be approximated by bandlimited functions. 

A function f(x,y) is called bandlimited if its Fourier transform F(e , e2) is 

zero outside a bounded region in the frequency plane, for instance, 

The quantities ex, and eyo are called the x and y bandwidth of the image. 

The Fourier transform of an arbitrary sampled function is a scaled, periodic 

r1:plication of the Fourier transform of the original function. 

From the uniqueness of the Fourier transform, we know that  if thee spectrum 

of the original image could be recovered somehow from the  spectrum of the 



sampled image, then we would have the interpolated continuous image from 

the sampled image. If the x, y sampling frequencies a re  greater than twice 

the bandwidth, 

then F(r  ,r2) can be recovered by a low pass filter. The lower bounds on the 

sampling rates, that  is, 

are called the Nyquist rates or the Nyquist frequencies. Th~e sampling theory 

states that  a bandlimited image sampled above its x and y Nyquist rates can 

be recovered without error by low-pass filtering the sampled image. 

However, if the sampling frequencies are below the Nyqu:ist frequencies, 



e x s < 2 e x o  r y , < 2 e y o  (13) 

then the  periodic replications of F(E , e2) will overlap, resulting in distorted 

spectrum F,(el , e2) from which F (e l  , e2) is irrevocably lost. The 

fi:equencies above half the sampling frequencies a r e  called t he  foldover 

frequencies. This overlapping of successive periods of t he  specllrum causes 

tlne foldover frequencies in the  original image t o  appear as  frequencies 

ex , /2 ,~  12 in t he  sampled image. This phenomenon is called a.liasing. 
YS 

A,liasing errors cannot be  removed by subsequent filtering. Aliasing can be  

avoided by low-pass filtering the  image first  so t ha t  i ts  bandwidth is less than 

on-half of t he  sampling frequency. 

11.3 IMA.GE QUANTIZATION 

The s tep  subsequent t o  sampling in image digitization is quantization. A 

quantizer maps a continuous variable u into a discrete variable u', which 

takes values from a finite set (r l ,  ... rL} of numbers. This mapping is 

generally a staircase function and the  quantization rule  is as follows: Define 

{tk, k= l ,  ...., L+1} as  a set of increasing transition or decision levels with t l  

and tL+l as  t he  minimum and maximum values, respectively, of u. If u lies 

in interval [tk, tk+l), then i t  is mapped to  rk the  kth reconstruction level. 



11.4. MAGE SEGMENTATION AND BINALIZATION 

Storing gray level images requires a lot of memory because of the image 

depth. An image scanned in 256 grey levels requires 10 bits per pixel. 

Simplifying an image while retaining information regarding shapes and 

geometric structures is necessary in many image analysis and pattern 

recognition problems. Reducing the number of grey levels ( possibly t o  two 

as in the  case of bi-level images ) could be an advantageoils tradeoff. 

Recently, image processing devices such as facsimiles, copiers, and scanners 

a re  used everywhere and the display devices which are  able to reproduce 

halftone images in addition t o  text  and figure images im high quality is 

required. 

Generally, document images contain the  text, the figure, and the 

photographic area. Because of their different characteristics, adaptive 

processing of such areas are needed when the  documr:nt images are 

displayed, stored, edited and transmitted.[ l7:1[ 181[ 191. 

A t  first, a document image which is scanned in 256 grey levels is divided into 

M x M pixel block. The first is the ratio of the number of pixels which have 

17 



greater  density than a predetermined threshold value within a block. The 

second is t he  distribution of the  maximum value in the  differe~ntial ones t o  

t h e  density of 8-neighbor pixels. The first  feature  is called t he  black density 

,and the  second one the  density difference hereafter.  Generally, continuous- 

,tone areas  have high black density and low density difference. On t h e  other 

'hand, t ex t  areas have low black density and high density difference. Then, 

an at t r ibute  of a block, which is photo, text ,  or vacant, is decided by using 

the above two features, where label "photo" means continc~us -tone or 

screened halftone block, " text" s ta tes  t ex t  o r  figure and I' vacant " 

:represents tha t  t he  block is background. Finally, t he  at t r ibute  is corrected 

in comparison to  the  attributes of neighbor blocks. 

I t  is sometimes difficult t o  decide t he  attributes of blocks precisely from the  

local information within a block. For example, few blocks in a t ex t  area may 

have t h e  same features as photo and may be  mislabeled as photo blocks and 

vice versa. So the  correction of attributes is necessary t o  ge t  precise 

.segmentation of documents. The correction process is conducted by 

comparing an at t r ibute  of a block t o  i ts  neighbors. More concretely, an 

attribute of a block which was incorrectly decided as  t ex t  mighlt be  changed 

to photo if t h e  attributes of the  nearest neighbor blocks were ]photo and so 

on. 



An appropriate binalization method is then used. For the phcotographic areas, 

the systematic dither is suggested ( but will not be discussied in this thesis, 

being out of the scope of our work). 

For text areas, several bi-level quantization methods could be used.[20] 

A method based on the discriminant and least squares criter:ia(DLSCM) is one 

of them. 

II.4.1 DLSCM Method 

If two categories such as characters and background exist in. a block, DLSCM 

gives the threshold level which minimizes the variance in each category and 

maximizes the variance between two categories. But all blocks do not 

always include two categories because each block is an 

M x M pixels sub-part of the original image. Then the following two 

limitations could be applied in the implementation of DLSCM to the text 

images. 

(1) If the threshold value calculated by DLSCM is very low because of 

too few number of pixels belonging to the characters in a block, the 

lower limit, THl, is set in the threshold value. 



(2) If a threshold value calculated by DLSCM is less than TH1, t he  

threshold value of a neighbor block which has already been 1)rocessed 

is used in order t o  maintain t he  continuity of t he  threshold value. 

Furthermore, DLSCM gives an appropriate threshold value for bi-level 

' quantizing, when the  number of pixels belonging t o  each category is 

approximately same. But the  threshold value is generally shifted t o  t he  

background level, because t ex t  images have very few number of pixels 

belonging t o  t he  characters  compared t o  the  existing number of background 

pixels. 

It uras found tha t  the  DLSCM does not always give the  appropriate threshold 

value for binalizing the  t ex t  images. An improvement of t he  DLSCM is 

sug,gested in [21]. If the  number of all pixels in a block is A, t he  number 

of pixels which have lower density than the  value calculated by DL,SCM is B, 

t h e  given maximum offset value is Z, then the  variable offset  V is 

represented as  Z*B/A, where Z is constant. The value calculated by the  

DLSCM plus the  offset  value V was used as a slice level for binaliization of 



tex t  images. This method does not require extra calculation because the 

value B was already calculated in the process of DLSCM. 

11.5 NOISE CLEANING 

An image may be subject to  noise and interference frorn several sources 

including electrical sensor noise, photographic grain noise, and channel 

errors. The noise effects can be minimized by classical filtering techniques 

summarized below. 

Image noise arising from a noisy sensor or channel transmis:sion errors usually 

appears as discrete isolated pixel variations that are not spatially correlated. 

Pixels that  are in error often appear markedly different fro:m their neighbors. 

This observation is the basis of many noise-cleaning algorithms. [22] 

proposes a simple I' out-range" noise cleaning method. With this technique, 

each pixel is sequentially examined, and if the magnitude of a pixel is greater 

than the average brightness of its immediate neighbors by some threshold 

level, i t  is replaced by the average value. 



11.5.11 Low-Pass masks 

Noise in an image generally has a higher spatial frequency spectrum than the 

normal image components because of i t s  spatial decorrelatedness. Hence, 

simple low-pass filtering can be effective for noise smoothing. An output N 

x N image array Q is formed by discrete convolution of the input N x N 

image array F with the L x L convolution array H according t o  the  relation, 

For noise smoothing, H should be  a low-pass form with all positive 

components. Several convolution arrays of low-pass form are  suggested, 

Maslcl : 



These arrays, which a r e  often called noise-cleaning masks, a r e  normalized to  

unit weighting so  tha t  the  noise-cleaning does not introduce a brightness bias 

in t h e  processed image. 

For binary images, t he  linear filtering operation should be  followed by some 

kind of clipping, which usually results in a distortion of many important 

image characteristics. 



11.5.2 Median Fi l t e r s  

Media.n filtering is a nonlinear signal processing technique developed by 

Tukey. [23] t h a t  is useful for  noise suppression in images. In one- 

dimer~sional form the  median fi l ter  consists of a sliding window encompassing 

an  odd number of pixels. The cen te r  pixel in t h e  window is replaced by t h e  

median of t h e  pixels within t h e  window. The  median of a d iscre te  sequence 

a l , a2 ,  ....., a, fo r  N odd is t h a t  member  of t h e  sequence fo r  which I:N-1112 

e lements  a r e  smal ler  o r  equal in value, and (N-1112 e lements  a r e  lairger o r  

equal in value. For  example, if t h e  values of t h e  pixels within a window a r e  

80,90,200,110,120, t h e  cen te r  pixel would be replaced by t h e  value 1 10, which 

is t h e  median value of t h e  sorted sequence 80,90,110,120,200. In this 

example, if t h e  value 200 were  a noise spike in a monotonically incireasing 

sequence,  t h e  median f i l ter  would result  in considerable improvememt. On 

t h e  o ther  hand, the  value 200 might represent a valid signal pulse for  ia wide- 

bandwidth sensor, and t h e  resultant  image would suffer  some lloss of 

resolution. Thus in some cases the  median f i l ter  will provide: noise 

supprr.ssion, and in o ther  cases i t  will cause  signal suppression. ( versus our 

method shown la te r  where a weight is given t o  the  distance between t h e  

res tored and t h e  received images t o  prevent this case  from happening). 

Opera~tion of t h e  median f i l ter  can be  analyzed t o  a limited extent.  I t  can 

be  shown t h a t  t h e  median of t h e  product of a constant K and a sequence f(j) 



med { Kf(j) )=K rned { f(j) 1 

Furthermore, 

med{ K + f(j) = K + med {f(j)) 

However, for two arbitrary sequences f(j) and g(j) i t  does noit follow that  the 

median of the sum of the sequences is equal to the sum of their medians. 

That is in general, 

med { f(j) + g(j) ) z med{ f (  j) ) + med{ g(j) 1 

The sequence 80,90,100,110,120 and 80,90,100,90,80 are examples for which 

the additive linearity property does not hold. 

There are various strategies for application of the median filter for noise 

suppression. One method would be to  try a median filter with a window of 

2 5 



length three. If there  is no significant signal loss, the  window length could 

be increased to  five for median filtering of the  original. The process would 

be  terminated when the  median fi l ter begins t o  do more harm than good. I t  

is a1.so possible t o  perform cascaded median filtering on a signal using a fixed 

or variable length window. In general, regions t ha t  a r e  unchanged b;y a single 

pass of the fi l ter will remain unchanged in subsequent passes. Regions in 

which the  signal period is lower than one half the  window widtlh will be 

cont:inually altered by each successive pass. Usually, the  process will 

con1:inue until t he  resultant period is greater  than one-half the  window width, 

but i t  can be shown that  some sequences will never converge. The concept 

of t he  median fi l ter can be easily extended to  two dimensions by utilizing a 

two-dimensional window of some desired shape such as a rectangle. I t  is 

obv:ious t ha t  a two-dimensional L x L median fi l ter will provide i3 greater  

degree of noise suppression that  sequential horizontal and vertical p.rocessing 

with L x 1 median filters, but two-dimensional processing also r*esults in 

greater  signal suppression. In general, the  median fi l ter is very effect ive in 

reducing 'salt & pepper' noise, and will be used in our simulations for 

corr~parison with other methods. 



CHAPTER 111 

NEURAL NETWORKS 

Anyone can see that  the  human brain is superior to  a digital computer a t  

many tasks. A good example is the processing of visual in.formation , a one 

year old baby is much better and faster a t  recognizing objects and faces than 

even the most advanced A1 system running on the fastai t  supercomputer. 

The brain has many other features that  would be desirable in artificial 

systems[241, 

* I t  is robust and fault tolerant. Nerve cells in the brain die every day 

without affecting its performance significantly. 

* I t  is flexible. It  can easily adjust to  a new environment by "learning". 

It  does not have to be programmed in C or Pascal. 

* I t  can deal with information that  is fuzzy, probabilistic, noisy or 

inconsistent. 

* It  is highly parallel. 



* I t  is small, compact, and dissipates l i t t le power. 

Only in tasks based primarily on simple arithmetic does the  computer 

0ut;perform the brain! 

Thi:; was the  real motivation for studying neural computation.It is an 

alternative computational paradigm to the usual one ( based on a programmed 

inst;ruction sequence), which was introduced by von Neumann and has been 

used as the basic of almost all machine computation to  date.  I t  i:; inspired 

by knowledge from neuroscience, though i t  does not try t o  be biologically 

realistic in detail. The science of neural computation was originally aimed 

more towards modelling networks of real neurons in the  brain. The models 

a re  extremely simplified when seen from a neurophysiological point of view, 

though we believe tha t  they are  still valuable for gaining insight of the 

separate  principles of biological "computation". 

III.:l.l The Human Brain 

The human brain is composed of about lo1 '  neurons or nerve cells of many 

different types. Tree-like networks of nerve fiber called dend.rites a r e  

coc~nected to  the cell body or soma, where the cell nucleus is located. 

Ext:ending from the cell body is a single long fiber called the  axon, which 
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eventually branches or arborizes into strands and substrands. At the ends of 

these are the transmitting ends of the synaptic junctions, or synapses to  

other neurons. The receiving ends of these junctions on other cells can be 

found both on the dendrites and on the cell bodies themse:lves. The axon of 

a typical neuron makes a few thousand synapses with other neurons. The 

transmission of a signal from one cell to  another a t  a synapse is a complex 

chemical process in which specific transmitter substances are  released from 

the  sending side of the junction. The effect is to  rai:se or lower the 

electrical potential inside the body of the receiving cell. If this potential 

reaches a threshold, a pulse or action potential of fixed strength and duration 

is sent down the axon. W e  then say that  the cell has "fired". The pulse 

branches out through the axonal arborization t o  synaptic Junctions to  other 

cells. After firing, the cell has to  wait for a time called the  refractory 

period before i t  can fire again. 

III.1.2 The McCulloch and Pitts model 

McCulloch and Pitts(1943) proposed a simple model of a neuron as a binary 

threshold unit. Specifically, the model neuron computes a1 weighted sum of 

its inputs from other units, and outputs a one or a zero according to  whether 

this sum is above or below a certain threshold 



In this  equation,  ni is e i the r  1 o r  0, and represents  t h e  s t a t e  of neuron i a s  

firing o r  not  firing respectively. T ime  t is taken a s  d iscre te ,  with one t i m e  

unit elapsing pe r  processing s tep .  8(x)  is t h e  unit s t e p  function, o r  Heaviside 

function 

1 if x r 0 ;  (16) ' (x) ={  0 otherwise 

The  weight w. represents  t h e  s t r eng th  of t h e  synapse connecting neuron j t o  
lj 

neuron i. I t  can  b e  positive or  negat ive  corresponding t o  a n  e x c i t ~ ~ t o r y  o r  

inhibitory synapse respectively. I t  is zero  if the re  is no synapse between i 

and j. The  pa ramete r  pi is t h e  threshold value f o r  unit  i. The  weighted sum 

of inputs mus t  r each  o r  exceed t h e  threshold f o r  t h e  neuron t o  fire. Though 

simplle, a McCulloch-Pitts neuron is computationally a powerful device. 

McCulloch and P i t t s  proved t h a t  a synchronous assembly of such neiurons is 

capable  in principle of universal computat ion for  suitably chosen weights 
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w.. This means that  i t  can perform any computation that  an ordinary digital 
'J' 

computer can, though not necessarily so rapidly or conveiniently . 

Real neurons involve may complications omitted from this simple description, 

* Real neurons are often not even approximately ithreshold devices. 

Instead they respond t o  their input in a continuous way. This is 

referred t o  as a graded response. 

* Many real cells also perform a nonlinear summation of their inputs, 

which takes us a bit further from the McCulloch-F'itts picture. 

* A real neuron produces a sequence of pulses, noit a simple output 

level. Representing the  firing ra t e  by a single number like n;, even if 

continuous, ignores much information that might be carried by such 

a pulse sequence. 

* Neurons do not all have the same fixed delay (t-->t+l). Nor are they 

updated synchronously by a central clock. We will in f ac t  use 

asynchronous update in this thesis. 

The amount of transmitter substance released a t  a synapse may vary 

3 1 



unpredictably. This sort  of e f fec t  can be modelled, by a sitochastic 

generalization of the McCulloch-Pitts dynamics. 

A simple generalization of the McCulloch-Pitts equation which includes some 

of these features is, 

The number ni is now continuous-valued and is called the s t a t e  or activation 

of unit i. The threshold function 8(x) of (15) has been replaced by a more 

general nonlinear function g(x) called the activation function, gain function, 

transfer function or  squashing function. Rather than writing the tirrie t or  t + l  

explicitly as we did in (IS), we now simply give a rule for updating ni 

whenever that  occurs or asynchronously. 

111.1.3 Parallel Processing 

In computer science terms, we can describe the brain as a parallel .system of 

about lo1 processors. Using the simplified model (17) above, each processor 

has a very simple program: i t  computes a weighted sum of the input data 
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from other processors and then outputs a single number, a nonlinear function 

of this weighted sum. This output is then sent t o  other proc:essors, which are 

continually doing the same kind of calculation. 

The high connectivity of the network means tha t  errors in a few terms will 

probably be inconsequential. This tells us tha t  such a system can be expected 

to  be robust and its performance will degrade gracefully i:n the  presence of 

noise or errors.The contrast between this kind of processing and the 

conventional von Neumann kind is very strong. Here we have very many 

processors, each executing a very simple program, instead of the 

conventional situation where one or a t  most a few processors execute very 

complicated programs. And in contrast to  the robust~less of a neural 

network, an ordinary sequential computation may easily be ruined by a single 

bit error. 

Massive parallelism in computational networks is extrem.ely attractive in 

principle. But in practice there are many issues to be decided before a 

successful implementation can be achieved for a given problem: 

* What is the best architecture. 

* What sort of activation function g(x) should be used. 

* What type of updating should be used: synchronous or asynchronous. 
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* How can  a network be programmed? Can it  learn a task or must 

i t  be predesigned. 

* What can the various types of network do. How robust a r e  they to  

missing information or  incorrect data.  Can they generalize to  

unknown examples. 

* How can a network be built in hardware. 

111.1 ..4 Programming 

A very important question is: how do we choose the  connection weights so 

the  network can do a specific task? 

In solme examples, the weighs can b e  chosen a priori. This embeds some 

information into the  network by design (This will be done in this thesis as 

shown later).  In other cases, we can often teach the network t o  perform the 

desired computation by i terat ive adjustments of t he  w. strengths. This may 
1 j 

be done in two main ways: 

* Supervised learning. Here t he  learning is done on the  basis of direct 
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comparison of the  output of the  network with known ,correct answers. 

* Unsupervised learning. Sometimes the learning goal is not defined 

a t  all in terms of specific correct examples. The only available 

information is in the  correlations of the input data or signals. The 

network is expected t o  create categories from these correlations, and 

t o  produce output signals corresponding t o  the input category. 





CHAPTER IV 

THE HOPFIELD NETWORK 

Anlong the various neural networks architectures, the Hopfield neural network is 

veiy popular in real-world applications. 

The Hopfield type networks can be used to implement ACAMS (Associative Content 

Ad.dressable Memory). A Hopfield ACAM can be used as an image storage device 

in which stored images can be retrieved by their incomplete and/or distorted 

versions or as a part of an image classifier. The other important application of 

Hopfield networks is function optimization, which in image processing, can be used 

foir the restoration of images from blurred and noisy versions. In [25],  Hopfield 

describes how several optimization problems can be rapidly :solved by highly 

interconnected networks of simple analog processors. The processing elements are 

modeled as amplifiers having a sigrnoid monotonic input-output relation. 

N.1 HARDWARE REPRESENTATION OF THE HOPFIELD NETW'ORK 

The function V = g.(u.) which characterizes this input--output relation 
j J J 

describes the output voltage V. of amplifier j due to an input voltage u. the 
J J 

time constants of the amplifiers are assumed negligible . However, each 

amplifier has an input resistor leading to a reference grc~und and an input 
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capacitor. These components partially define the t ime  constants of the 

network and provide for integrative analog summation of input currents a r e  

provided through resistors of conductance T. connected between tlne output 
1.i 

and amplifier j and the  input of amplifier i. In order t o  provide flor output 

curl-ents of both signs from the  same processor, each amplifier is given two 

outl?uts, a normal output, and an inverted output. The minimum and 

ma:cimum outputs of the normal amplifier a re  taken as  0 and 1, while the  

inverted output has corresponding values of 0 and -1. A connection between 

two1 processors is defined by a conductance T. .  which connects one of t he  two 
'1 

outputs of amplifier j t o  the  input of amplifier i. This connectioin is made 

with a resistor of value Rij=l/(T.-1 ' J 

I f  Ti j  > 0, this resistor is connected to  the normal output of amplifier j. If 

TijcO, it is connected to the inverted output of amplifier j. the  rnatrix T - -  
11 

defines the  connectivity among the  processors. The ne t  input current to  any 

processor( and hence the  input voltage ui) is the sum of t he  curren.ts flowing 

through the  s e t  of resistors connecting its input to  the outputs of the other 

processors. Also, externally supplied input currents (Ii)  a r e  also p:resent for 
.-. 

each processor. In the  circuits discussed here, these external inputs can be  

constant biases which effectively shift the input-output relation along the  ui 

axis and/or problem specific input currents which correspond to  da ta  in the 

problem. 

38 



Using the  network parameters,i.e., states, interconnectior~ and biases, one 

can define the energy of a HopfieId network. Under certain 

conditions,discussed below, the energy function always decreases upon the 

s t a t e  update of any neuron. This enables us to  develop a Hopfield network 

capable of processing the signal and evolving toward a minilnum of its energy 

function. 

IV.2 THE HOPFIELD ENERGY FUNCTION 

Hopfield defined the  energy function of the  neural network with 

interconnection wii and bias 8 to  each neuron to  be 



in vector form. 

In hiis model, t he  neurons have no self feedback, i.e., the  autoconnec:tions wii, 

i=1,2, ... M a r e  zero and each neuron updates i ts  s tage randomly in t ime 

( asynchronously) according t o  the  hard limit non linearity rule: 

where binary s ta tes  a r e  assumed. 

Hopfield showed tha t  i f  wii  = 0 and the  interconnections a r e  syimmetric ( 

w..=w..), then the energy change due to  the s t a t e  update of any neuron is 
1.I J'  

always zero or negative. This is the  so called energy reduction property. 

However, the  condition of zero autoconnections is usually too res1:rictive in 
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applications. 

The relationship between stable states and energy local minima can be 

summarized [261: 

Fact  1: 

Fact 2: 

Fact 3: 

If w.. = w- and w;; >= 0 , then any neuron-state update 
1 J  J I  

according to  the update rule (20) will monotonically decrease 

the energy of the system. Therefore local1 minima of the 

energy function are stable states. But if t.here is some wii 

strictly positive, then stable states may not all occur a t  local 

minima. 

If w.. = w.. and wii <= 0, then all stable states are local 
'J J l  

minima. But if there is some wii strictly nlegative, then the 

energy reduction property does not always hold if neurons are 

updated according to (20); therefore there may be local minima 

which do not correspond to  stable states. :Furthermore, the 

system may not always be able to reach a stable state. 

If w.. = w-. and wii = 0, then stable states and local minima are 
'J J' 

identical, and the energy reduction property holds. 



In our image restoration application, t he  diagonal t e rms  wii a r e  all negative. 

Since t he  autoconnections a r e  negative, we  have two potential  probllems: 

(i) Stable  s t a t e s  of t he  network may occur a t  only some of th.e local 

minima and 

(ii) t h e  network may not be able t o  reach  to  a s tab le  s t a t e  a t  al'l. Both 

of these  problems a r e  induced by t h e  fac t  t h a t  t he  energy reduction 

property may not hold with negative autoconnections ( f a c t  1:). 

Many approaches have been suggested to  overcome t h e  problem of negative 

autoconnections. The EHE approach ( Eliminating Highest e r ro r  cri terion ) 

[271 suggests t ha t  a t  every update  s tep  t h e  neurons, which have t h e  

highest percentage of back projection errors  ( where H(k)= WX(k)- 0 is t h e  

projection error  ), a r e  updated f i r s t  if t h e  connection mat r ix  W is satisfied 

with 

Another approach would be a s tochast ic  decision rule [283,1291, where 

a Boltzmann distribution is defined by 
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- eE 
Pnew = e  T ( 2 2 )  - 
Pold 

where P,,, and POld are the probabilities of the new and old global state, 

respectively, delta E is the energy change and T is the para.meter which acts 

like temperature. A s ta te  v,,,(i,k) is taken if 

pnew - pnew > 1  or if- s l b u t  5' > E ( 2 3 )  
Pol d Pold Pol d 

where epsilon is a random number uniformly distributed in the interval [0,1]. 

In this thesis, we use the more classical approach of enforcing the energy 

reduction property by modifying the update rule. The simplest way to achieve 

this is to update the s t a te  of a neuron according to (20), only if the update 

will decrease the energy, that is, if 



then t h e  update  is executed but if de l t a  E > 0 then  t h e  update  is no t  

executed.  In o ther  words, t h e  neural network has t o  have a n  inner 

miechanism t o  monitor t h e  ' trial '  energy change. 



CHAPTERV 

SINGLE STAGE VS. MULTISTAGE 

V.:L. THE SINGLE STAGE HOPFIELD NETWORK 

Much work has been done on the restoration of degraded gray level images. 

In this thesis, we will consider bi-level (black and white) images degraded by 

speckle (salt and pepper) noise. 

The error, as suggested in [30], representing a cost energy function E, is 

expressed as : 

where A is a number that  parametrizes the desired trade-off between 

roughness and discrepancy for the smoothed image .. 

For D we can take either the L1 or the L2 distance betweten K and M, 

K being our received degraded image, and M its estimate. L1 and L2 are 



equivalent  fo r  bi-level images since, fo r  any values of K and M in (0,1), one  

has rrivially IK-M(=(K-MI*. Thus w e  can choose 

For  R, t h e  simplest  choice  proposed in [31] (The Digital Laplacian) results  

in: 

N N N N  

In th is  way, t h e  problem of  finding M is well defined, and cc~nsists  of 

minimizing E given by (25) for  given K and 1, with D and R defined a s  in (26) 

and (27). 

We re fo rmula te  t h e  problem in t e rms  of  a bi-level image with values (-1, l)  

instead of (0, l) .  Thus we de f ine  



and 

Since K and M can only take the values 0 and 1 ,  Y and Z cor:respondingly take 

the values -1 and + l .  We need to express D and R in terms of these new 

variables. 

We first write the following identities, which can be easi1:y verified: 



Using these identities, we  get the following new expressions for D 

and R: 



N N N N  N N N N  

R = C C C C C i l j l i a j a  
( 35  1  

i l= l  j l = l  ia=l j a = l  
- ' C C C C Ci l j l i a . j a  z i l j l  ziaja 

i l=l  j l = l  ia-I  J ~ = I  

The first term in R is simply half the number of neighbor :pairs and equals 

N2 (N2 - 1) Thus, 

N N N N  

R = N 2  (N2-I) - C C C C Cil j l ia j ,  z i j ,  2 iaja (36 1  
2 i1=l j l - i  ia=l  j2=1 

Expression (1) now becomes: 

1 
N N N N  A N N 

E=--C C C C C i l j l i a j a Z i l j l Z i a j a  - C C Y i j Z i j  (j7) 
2 i 1=1  j l = l  ia=l ja=1 i - 1  j=1 

where we dropped the constant terms which do not depend on 2. We can do 

that  because addition of a term independent of Z does not change the point 

where E reaches its minimum. 

Using Lexicographic notation, we change our image matrix into a vector, and 
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accordingly, our weight matrix is changed into a two dimensional matrix. 

while the Hopfield model, as mentioned earlier in (17) takes the form, 

Mapping to  the Hopfield error function, we get: 



V.2. PARTITIONING OF THE HOPFIELD NETWORK 

The objective of partitioning the Hopfield network is to  ad.dress the problem 

of error minimization locally within each partition while the  other partition 

is frozen. The partitioning scheme actually resembles the iterative 

interlacing approach for the synthesis of co:mputer-generated 

holograms[32]. By local minimization of s ta te  variables,, while the other 
-. 

partition is frozen, the network is able to  reach a deeper minima. 

V.2.1 Literature on Multistage approach 

Various Divide and Conquer Algorithms in Neural Networks have been 

developped with different goals. In [331, the  authors describe a DCN 

which creates a feedforward neural network architecture during training, 

based upon the training examples. The first cell introduced on any layer is 

trained on all examples. Further cells on a layer are trained primarily on 

examples not already correctly classified. The algorithm is designed to 

dynamically create a network architecture based upon the  domain examples 

presented. This architecture enables learning to  be effectively done, and 

does not require any preconceived guess or domain-specific knowledge and 

analysis. Training is done on the weights of the input links t o  one cell a t  any 
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given time. Hence, back propagation of error through hidden cells is never 

required. 

In [34], the Hopfield network multistage approach was discussecl for the 

restoration of gray level images blurred and degraded by uniform gaussian 

noise, for the purpose of ease of implementation in large scale plroblems. 

The authors also had problems with convergence, since the  image vector was 

1 2 8 ~  X 1. (It is 128* X 1 for the bilevel images case.) 

V.2..2 Two Stage Decomposition 

In this study, we split our pixels into odd pixels (2,) and even pixels (2,) 



( cT = C , since C is symmetrical) 



By. mapping our error function to  the Hopfield error function again, we ge t  

Th.e two partitions algorithm can be summarized as follows: 

(a)  Perform energy descent with respect to  Even pixels t o  a 

minimum while Odd a re  frozen. 



(b) Switch to Odd and repeat (a) with Even and !Odd interchanged. 

(c) Repeat steps (a) and (b) until there is no further descent in 

error energy. 

V.2.3 Four Stage Decomposition 

In this case we split our pixels into four groups ( Z1, Z2, Z3 and Z4 ) 



to  find E l  we neglect the terms tha t  do not include zl , which a r e  constant in this 

case. 

back to  vector notation 

1 T  1 T  1 
--2, Cz,--z, Cz, --Yz, 

2 2 2 
1 T  

(53) 
I T T  T 1  T T  T  1 T T  T  

= - - 2, CZ, - - (z2 C 2,) - - (2, C z,) - -(z4 C zl) 
2 2 2 2 
1 T  1 T 1 T  1 --z2 czl - -Z3 Cz1 - -Z4 Czl - - Yz1 
2 2 2 2 



C being symetrical, cT = C 

The transpose of a number is the same as the number, 



I r T T A 
E, = - - 2- Cz, - ((z, + 2: + 4 ) C-+ - YY)q (57) 

2 2 

by mapping El t o  the  hopfield energy fuction we get '  



CHAPTER VI 

OPERATING CONDITIONS 

W.1 The Matlab Software 

In previous work, the problem of convergence was faced by researchers because of 

th,e large size of the images. This problem of convergence was not faced in our 

case, since a very powerful tool of the Matlab software was used, the block 

processing function. With this function, the image matrix is partitioned into blocks, 

which size is chosen by the user. 

Since the blocks chosen were of reasonable size, [20x20] in our case, 

convergence to  a minima was never a problem. 

Besides helping with the convergence problem, the block processing function 

made i t  possible to  process large images (128 X 128) on a 486 personal 

computer, which otherwise would have been impossible because of memory 

limitations. 

The Matlab software, together with the image processin,g toolbox, proved 

themselves t o  be a very powerful tool for image processing applications. 



Because i f  was designed for this kind of applications, this softurare offers a 

lot of convenient features, 

* Vectorizing the  operations saves on computational speed especially in those 

cases where the amount of data processed is very large. 

* Block processing the  images saves on speed and memory and makes t he  

processing of any size image possible on a personal computer. 

* Filtering functions are  readily available and easy to  use. 

* Functions t o  show the processed images on the screen or send. them to the 

printer. 

* Ease of programming 



VI.2 Regularization Matrices 

Two different regularization matrices were used in the: simulations. The 

digital Laplacian operator that  takes the form, 

( where 4 neighboring pixels' effect is taken into account ) 

and the second-difference approximation of the  Laplace o:perator that  takes 

the form, 

( where 8 neighboring pixels' effect is taken into account:). 

The weights matrix, consisting of the Laplacian operator is block circulant 
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of the form: 

where in the case of the digital Laplacian Do and D l  take the form, 



and in the case of the second-difference approximation of ,the Laplacian, Do 

and Dl  take the form, 

VI.4. The Noise Level 

In our simulations, 'Salt & Pepper ' noise was used. Each pixel was changed 

from 0 to 1 with probability r, r taking the values 0.3, 0.4., and 0.5. 
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In each of our images, the average value of y is r in originally wlhite areas, 

1-r in originally black areas. The difference between the two average values 

is 1-2r. The standard deviation of y in both the  originally white and 

originally black areas is given by (sqrt r(1-r) 1. Thus we can define a signal 

t o  noise ra t io  as  the ratio of the difference between the  two average values 

and the standard deviation given by 

This gives signal-to-noise ratios of 0.87, 0.41 ,. ... 

VI.5 The Weighting factor  I, 

Different values of the weighting factor  I, were chosen, ranging fi-om 0.5 to  

3.5. 



CHAPTER W 

RESULTS AND PERFORMANCE EVALUATION 

W e  confine our experiments to a 120 x 120 bi-level image. Each plixel intensity can 

take a value of 0 ( black ) or 1 ( white 1. The image restoration problem is 

considered for four diferent signal to noise ratios, a variety of regularization 

constants ranging from 0.5 to 3.5 ( only the results for 1=1  and ;k=3 are discussed 

below to  avoid redundancy ), and two different regularization matrices ( four pixels 

neighborhood and eight pixels neighborhood ). 

A comparison was made among the following configurations: 

(1) A single stage Hopfield network which addresses the total error 

(2) A two stage Hopfield network using even numbered neur'ons first followed 

by the odd numbered neurons. 

(3) A four stage Hopfield network using the pixels number 1,5,9,13,etc.. first, 

followed by pixels number 2,6,10,14,etc.. and so on 

(4) A hybrid structure using a single stage approach followed by a two stage. 

( 5 )  A hybrid structure using a single stage approach followed by a four stage. 

For all cases the direct methods start  with the degraded image as the initial 

estimate, while the hybrid methods s tar t  with an image attained when the energy 
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descent for the  single s tage slows down. 

All  result:^ mentioned were obtained by averaging over a total  of ten si~mulations. 

Case I: A=l; 4 pixels neighborhood Laplacian regularization matrix 

The table on p.69 and the  graph on p.70 show that  the  nnulti-stage 

approaches, whether direct or hybrid yield t o  a deeper minima than the  one 

obtained by the  single stage. The two s tage and four s tage approaches yield 

very comparable results. The results also suggest that  the  lower the  signal 

to  noise ratio ( or the higher the noise density ), the  wider the gap between 

the  single and multi-stage approaches. 

Case 11: ;1=3; 4 pixels neighborhood Laplacian regularization matrix 

The table on p.69 and the  graph on p.71 show again that  the multi-stages 

approaches yield to  bet ter  results than the single stage. For this value of the 

regularization constant, the  gap between the single s tage  and multi-stage 

energy functions doesn't increase with the  increment of the noise density. 

Case  111: A=l; 8 pixels neighborhood Laplacian regularization matrix 

The table on p.69 and the graph on p.72 show one more t ime the  lower 
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energy function obtained by the multi-stage approach. 

I t  is noticed that the values of the energy functions obtained in this case are 

lower than the ones obtained previously for the same value of the 

regularization constant, despite the fac t  that in both cases .we start with the 

same image having the same initial energy function. This is due to the 

different nature of the Laplacian regularization matrix. 

Another interesting issue was to find the optimal regularization constant for 

our processed image. To be able to compare the performance a t  different 

value of A without introducing a bias, a 'cost discrepancy' measure is 

introduced [35] 

= (E, - E,) /IE,( 

Such a measure eliminates dependence on the choice of the parameters and 

the lower the cost discrepancy is, the better is the minimization of E ( while 

a negative value implies that the restoration method has obtained a solution 

of lower cost than the original image). 

E, was taken to be the energy function resulting from the double stage 

approach. The values of E, and E, were averaged over the different values 
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o'f r to  prevent any bias introduced by the value of r. 

I t  was found tha t  1=3 was the optimal regularization constant foir our image. 

I t  is understood that this is an experimental result and is dependent, amongst 

other factors, on the type of image used. We do not address this problem 

nnathematically in this thesis but allude to it as an important future 

objective. 



CHAPTERvm 

CONCLUSIONS AND FUTURE CONSIDERATIOhlS 

The problem of image restoration has been rephrased as a problerrl in combinatorial 

optimization using a partitioned Hopfield network. The results obtained show that  

th~e  partitioning techniques developed are effective in reaching a deeper minima 

th.an the  one obtained with single stage approaches. The tradeoff' is that  complete 

parallelism is sacrificed since there is one active partition a t  each time instant 

while the other partitions are frozen. This tradeoff can be advantageous in 

applications !n which optical processing is too fast with respect to  the environment. 

Th.e above strategies should be tested on larger images. The im~~lementat ions are  

computationally intensive and an effort to  adopt parallel machines to  accelerate the 

convergence should be investigated. 

The choice of the regularization factor I was arbitrary, and many different values 

were experimented, leading to  different results as was shown im the  figures and 

. .~ graphs showq in the previous chapter. Some research has been done[26] on using 

a neural network to  learn the optimal value of I, this could be incorporated in 

f u ~ u r e  research. 

The idea of splitting a network into more than one stage was proven successful, and 
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a1thoug:h t h e  odd-even spli t t ing is a most  natural  choice, natura l  extensions would 

include: 

- Splitt.ing t h e  network into n subnetworks in order t o  adapt  t h e  reception of t h e  

image t o  t h e  speed of t h e  machine. 

- Sp1itt:ing t h e  network into n=2m networks and a t t e m p t  a recursive ( binary tree ) 

approach t o  t h e  computation where each level of t h e  computation is itself spli t  into 

odd-eve.n dat .  The  depth  of t h e  tree is then controlled by issues of availability of 

d a t a  and communication between processors. 

- Alte rna te  archi tectures  could be developed t o  exploit t h e  capabilities of each 

subnet. 



TABLE 1 
LAMBDA = '1 ; 4 PIXELS NEIBORHOOD 

TABLE 2 
LAMBDA = :3 ; 4 PIXELS NElBORHOOD 

TABLE 3 
LAMBDA = '1 ; 8 PIXELS NElBORHOOD 

A DOUBLE 1 + 2  FOUR 
STAGE STAGE 





LAMBDA = 3 ; 4 PIXLES NEIBORHOOD 
COMPARISON 

SINGLE STAGE DOUBLE STAGE 1 + 2 

m F O U R S T A G E  1 + 4  



LAMBDA = 1 ; 8 PIXLES NEIBORHOOD 
COMPARISON 

SINGLE STAGE DOUBLE STAGE 1 + 2 



Figure (a) 

Figure (c )  

Figure (b) 

I I 

Figure (dl 



L I I I 

Figure (e) Figure (f)  

Case I::), = I  ; 4-pixels neighborhood regularization matrix;r= 0.3 

Figure(a): Noisy Image 

Figure(b): Siagle Stage Restoration 

Figure(c): Double Stage Restoration 

Figure(d): Single followed by Double Stage Restoration 

Figure(e): Four Stage Restoration 

Figure(f): Single followed by Four Stage Restoration 



L I I I 

Figure (a) Figure (b) 

Figure (c)  Figure (d) 



- 

Figure (e) 

Case 1 : l  =1;4-pixel neighborhood regularization matrix; r=4 

Figure(a): Noisy image 

Figure(b): Single Stage Restoration 

Figure(c): Double Stage Restoration 

Figure(d): Single followed by Double Stage Restoration 

Figure(e): Median filter ( 3x3 window) restoration 

78 



j~igure (a) Figure (b) 

Figure (c)  Figure (d) 



Figure (e) 

Case 1;4-pixel neighborhood regularization matrix;l = 1 r=0.5 

Filgure(a): Noisy Image 

Filyre(b): Single Stage Recovery 

Figure(c): Double Stage Recovery 

Firgure(d): Single followed by Double Stage Recovery 

Fi/yre(e): Median filter(3x3 window) recovery 



L I I I 

Figure (a) Figure (b) 

Figure (c) 
L- Figure (d) 



Figure (el Figure (f) 

Case 2:A = 3;4-pixel neighborhood regularization matrix; r = 0.3 

Figure(a): Noisy Image 

Figpre(b): Single Stage Recovery 

Fig;ure(c): Double Stage Recovery 

Figure(d): Single followed by Double Stage Recovery 

Figure(e): Four Stage Recovery 

Figure(f1: Single followed by Four Stage Recovery 



L I 

Figure (a) 

Figure (c) 

Figure (b) 

L A  Figure (d) 



Figure (e) Figure (f) 

Case2:l = 3;4-pixel neighborhood regularization matrix; r = 0.4 

Figure(a): Noisy Image 

Figure(b): Single Stage Recovery 

Figure(c): Double Stage Recovery 

Fi,gure(d): Single followed by Double Stage Recovery 

. . Fi,gure(e): Four Stage Recovery 

Fi,gxe(f): Single follcq:ied by Four Stage Recovery 



Figure (a) 

- 
Figure (c)  

LA Figure (b) 

Figure (d) 



Figure (el Figure (f) 

C,aseZ:A = 3 ;Cpixel neighborhood regularization matrix; r = 0.5 

Figure(a): Noisy Image 

Figure(b): Single Stage Recovery 

Figure(c): Double Stage Recovery 

Figure(d): Single followed by Double Stage Recovery 

Figure(e): Four Stage Recovery 

Figure(f): Single followed by Four Stage Recovery 
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Figure ( f )  

Case 3: A=1;8-pixel neighborhood regularization matrix;r=0.3 

Figure(a): Noisy Image 

Figure(b): Single Stage Recovery 

Figure(c): Double Stage Recovery 

Figure(d): Single followed by Double Stage Recovery 

Figure(e): Four Stage Recovery 

Figure(f): Single followed by Four Stage Recovery 



L 1 

Figure (a) 

Figure (c) 

Figure (b) 

Figure (d) 



Figure (el Figure (f )  

Case 3: l=1;8-pixel neighborhood regularization matrix;r=0.4 

~ i g w e ( a ) :  Noisy Image 

Figure(b): Single Stage Recovery 

Filyre(c1: Double Stage Recovery 

Fijyre(d): Single followed by Double Stage Recovery 

Figure(e): Four Stage Recovery 

Fig,we(f): Single followed by Four Stage Recovery 





Figure (el Figure ( f )  

Case 3: A=1;8-pixel neighborhood regularization matrix;r=0.5 

Figure(a): Noisy Image 

Figure(b): Single Stage Recovery 

Figure(c): Double Stage Recovery 

Figure(d): Single followed by Double Stage Recovery 

Fi gure(e): Four Stage Recovery 

Figure(f): Single followed by Four Stage Recovery 
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