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ABSTRACT 

Wdters, Eric A. M.S.E.E., Purdue University, August, 1995. Analysis of the Auxiliary 
Resonant Cornmutated Pole Inverter. Major Professor: Oleg Wasynczuk. 

A study of the Auxiliary Resonant Commutated Pole (ARCP) converter and a compar- 

ison with standard hard-switched inverters is presented. A thorough description of the 

AELCP circuit topology is made with three switching scenarios discussed: commutation 

from a diode, commutation from a switch with low current, and commutation from a 

switch with high current. The efficiency of the ARCP inverter is attributed to the fact that 

switching losses are eliminated by switching under zero voltage or zero current condi- 

tions. To accomplish this task, addition circuitry is introduced which colntributes to addi- 

tional conduction losses. An example H-bridge is presented using both ARCP phase legs 

and hard-switched phase legs. Losses for each case are calculated and a comparison is 

made. From simulations, it is shown that the additional conduction losses introduced by 

the ARCP circuit are small in comparison with the switching losses found in a standard 

hard-switched circuit. A simulation of a three-phase example ARCP inverter is briefly 

discussed. 



1. INTRODUCTION 

The Auxiliary Resonant Cornmutated Pole (ARCP) Circuit was deve.loped by General 

El~ectric Corporation R&D to be used in high-efficiency inverters. By increasing the effi- 

ciency of the inverter, not only is the power loss in the inverter reduced,, but the size and 

weight of the inverter can also be greatly reduced. This fact makes the ARCP technology 

extremely valuable in applications were size constraints are a primary c~oncern. The 

ARCP achieves high efficiency by soft switching, that is by turning on or off the primary 

switches when the switch voltage or current are zero. Therefore, the switching loss, the 

pnxluct of voltage and current, is zero. This is similar to LC snubber circuits; however, in 

snubber circuits, load current constraints determine whether zero voltage or zero current 

switching can be obtained. With the ARCP circuit topology, zero switching losses are 

independent of the load current. In this thesis, both a conventional hard-switched phase 

leg and an ARCP phase leg are discussed, a comparison between the losses in a hard- 

switched H-bridge and an ARCP H-bridge is presented, and an application using the 

AliCP in a current-controlled induction motor is presented. 





2. LOSSES IN HARD-SWITCHED INVERTElRS 

2.11 Introduction 

The ARCP is a soft switching technology which eliminates turn-on and turn-off losses 

as will be discussed in the next chapter. However, prior to examining the elimination of 

these losses, an explanation of the switching losses of a conventional hard-switched phase 

leg is presented herein. The first losses to be discussed in this chapter ir~volve the conduc- 

tion losses associated with the four states of a hard-switched phase leg. 'Then, the analysis 

of two switching senarios will be explored in which the turn-on and turn-off losses associ- 

ated with the transistors will be discussed. 

2.2 Hard-Switched Phase Leg 

The circuit shown in Fig. 2.1 is an example of a hard-switched phase leg. In this circuit, 

bipolar junction transistors (BE'S) are used as switches. Although BE'S are shown in 

this figure, other solid state devices can also be used. Examples of otheir solid state 

devices that are typically used include field effect transistors (FET's), metal oxide serni- 

coinductor FET's (MOSFET's), gate turnoff thyristors (GTO's), and insulated gate transis- 

tors (IGT's). Analysis of the losses associated with each of these device!; can vary greatly; 

however, the concept of switching loss which will be explored herein is universal. 

In the circuit shown in Fig. 2.1, the positive and negative dc rails are labeled as +Vdc 

and -V&, respectively. --The-BJT's are-labelled Q1 and Q2.with their col.lector currents 

denoted as IC1 and IC2, respectively. The base currents associated with the BJT's are 

lateled IB1 and IB2. It will be assumed that the base currents, which arle controlled by 

independent current sources, will determine if the transistors are on or off. If the base cur- 



Fig. 2.1. A hard-switched phase leg using BJT's. 

reint associated with one of the transistors is zero, the associated transistor will not conduct 

and can be omitted from the circuit; therefore, the transistor is considered to be off. The 

dc current gain of each transistor is hFE which is defined as the ratio of the collector cur- 

Ic l rent to the base current, - , in the active region. If the collector current is assumed to be 
' ~ 1  

I,, less in magnitude than I,,, and the base current is set equal to -, thlen the transistor is 
~ F E  

in the saturation region of operation as can be observed from the plot of the collect current 

veasus the collector to emitter voltage, VCE, with a constant base current shown in Fig. 

2.:2 [I]. From the plot shown in Fig. 2.2, it can be seen that if the transistor is supplying a 

load current which is less than I,,,, then the voltage drop across the transistor will be less 

than VCE,sat which is approximately 2 volts (V) for high-voltage BJT'I;. Therefore, the 



I max 

Fig. 2.2. IC versus VCE with a constant ID 

lo(ad voltage will be within 2 V of the potential of the dc rail to which the transistor is con- 

nected. Specifically, 

'load = 'dc - 'CE, sat (2- 1) 

If the source voltage is large compared to VCE,sat, i.e. 

'dc 'CE. .or (2-2) 

then 

'load = 'dc (2-3) 

The previous equations apply only when Q1 is on and the load current is positive. How- 

ever, if the load current is negative and transistor 42  is off, the only pat11 for the current is 

through diode D 1. In this case,. 

'load = 'dc + ' ~ 1  (2-4) 

Typically, VD1 is on the order of 1 V whereupon 



'load " 'dc (2-6) 

It ~zan be seen that the output voltage is approximately equal to Vd, when Q1 is on or 

when 4 2  is off and the load current is negative. 

If transistor 4 2  is on and the load current is negative 

'load= v ~ ~ ,  su - vdc (2-7) 

Hence, 

' load -Vdc (2-8) 

With Q1 off and the load current positive, the load current must flow through diode D2. In 

this case, 

v l ~ a d  = - 'dc- ' ~ 2  (2-9) 

Therefore, 

' load = -'dc (2- 10) 

Ht:nce, when 4 2  is on or when Q1 is off and the load current is positive, the load voltage 

is approximately equal to -V&. 

The hard-switched phase leg has four states: Q1 on and the load cm:nt is positive, 4 2  

off and the load current negative, 4 2  on and the load current is negative:, and Q1 off and 

the load current positive. In each of these states, the load current is flowing through one of 

the four solid state devices composing the phase leg. With the conduction of current 

through these physical devices, there is an associated power loss. This conduction power 

loss can be calculated for each state as the product of the load current ald the voltage 

across the device supplying the current. When Q1 is on and the load current is positive, 

the conduction power loss is 

- 
' ~ 1 ,  con- i ~ a d  ' v ~ ~ ,  art (2- 1 1) 

With 4 2  off and the load current is negative, the load current flow through diode Dl and 

introduces a conduction power loss of 



- 
'D1,con - -ihad ' v ~ l  (2- 12) 

In the third state with Q2 on and a negative load current, the conductio~~ loss is 

- 
'~2, u m  - -ibad 'CE, rat (2- 13) 

When Q1 is off and the load current is positive, the conduction power lc~ss associated with 

D:2 is 

' ~ 2 ,  wn= iload ' ' ~ 2  (2- 14) 

2..3 Transistor nrn-on Losses 

Two examples of switching losses will be explored in this chapter. Both examples 

involve the load voltage being switched from the lower dc rail, -V&, tc~ the upper dc rail, 

+Ti&. In the first example, the load current, ilOad, is assumed to be positive. In the sec- 

ortd case, the load current is assumed to be negative. In both examples, the load is 

assumed to be inductive whereby the load current is essentially constan~t during the 

switching interval. 

It is assumed that, initially, the load is latched to the lower dc rail (eansistor 4 2  is on 

and Q1 is off) and the load current is positive. Although Q2 is gated on, the load current 

flows through the diode D2; whereupon, a small conduction loss, PD2, will be associated 

with D2. The value of diode conduction power loss is the product of th~e load current and 

the forward voltage drop across D 1 (approximately 1 V). The conductjion energy loss for 

D2 can be calculated as the integral of the conduction power loss with respect to time, i.e. 

ED2 = IpD2dt = vD2jilOddt (2- 15) 

With all of the load current flowing through the diode, the transistor Q:! will not have any 

conduction losses. Therefore, the only loss initially associated with this state of the phase 

leg is the-conduction loss in thediode. 

When the commutation process begins, transistor Q2 is turned off, etnd after a brief 

delay, transistor Q1 is turned on. Since transistor Q2 is switched off urrder zero current 

conditions, there is no power loss associated with Q2 in the turn-off pnxess. However, 



when Q1 is turned on, the load current does not immediately commute from diode D2 to 

Qll because the minority carriers in the base region of Q1 must be supplied before conduc- 

tion through Q1 can begin. As the base current, IB1, adds minority carriers to the base of 

Q:1, the collector current starts increasing and displacing the current through D2 as the 

source of the load current. This increase in the collector current can be observed in the 

simplified plots shown in Fig. 2.3. During this interval, both diode D2 i ~ d  transistor Q1 

arc: conducting; however, with D2 conducting, the load voltage is still clamped to the 

lower dc rail. This results in the rail-to-rail voltage being placed across Q1 while current 

is flowing through Q1; thus, a large amount of power is lost in Q1 during this phase of the 

commutation. This increase in the collector current, IC1, and the constant VCEl can be 

oblserved in Fig. 2.3 [1,2]. The resulting power loss in Q1 during this :interval is approx- 

irr~ated as a straight line increasing to P,,, (Fig. 2.3). However, since current is also 

flowing through diode D2 during this interval, there is an additional loss term associated 

with the conduction of some of the load current through D2. 

The second interval of high loss begins when the collector current of (21 displaces all of 

the diode current whereupon the load voltage switches from the lower rail to the upper 

raiil. During this swing, transistor Q1 conducts all of the load current and the load voltage 

is going from the rail-to-rail voltage to VCE,sat (Fig. 2.3). Hence, the product of the tran- 

sistor current and the collector-to-emitter voltage is large during this interval and may be 

approximated as a straight line going from P,, to P,,. 

The energy loss associated with the turning on of transistor Q1 is the: integral of the 

power loss during turn-on. This loss is divided into two parts: the loss in Q1, and the con- 

duction loss in D2 during commutation. The energy loss in Q1 is approlximated as the 

area of the triangle in the power loss diagram (Fig. 2.3) [I]. 

The time required to complete the turn-on process is called the rise time, t ,  The current 

flowing through D2 during the commutation of the load current is 

' ~ 2  = i l o a d - I ~ l  



Fig. 2.3. Simplified turn-on switching waveforms for a typical BJT, 



The diode current can be approximated as a straight line going from a value of iload to 

1 zero in a time of -tr . Therefore, the energy loss associated with the corlduction of current 
2 

through D2 during the commutation of the load current can be expresse:d as 

Thus, the total turn-on energy loss is 

When the load voltage reaches the upper rail, the switching sequence is complete. The 

only loss during this phase is the conduction loss in transistor Q1. This loss is small 

be~ause the transistor is in the saturation region where the collector-to-emitter voltage is 

vCE,sat . The conduction energy loss for Q1 is 

E Q  1, con = I'condt - VCE, satjiloaiidt 

2.4 Transistor 'I'urn-off Losses 

In this analysis, it is assumed that the load current is initially negativle and the load volt- 

age is to be switched from the lower rail to the upper rail. With a negative load current 

arid the load voltage initially latched to the lower rail, transistor 4 2  supplies the load cur- 

rent. Initially, the only loss associated with this phase leg is the conduction loss in transis- 

tor 42. The conduction energy loss for 4 2  is 

EQ2, con = IpQZdt = - V ~ ~ ,  sat l i loddt  

Illne energy loss has a negative sign in the third term because the load current is negative 

in thisexampleand theenergy-loss is always considered to be positive. The collector cur- 

rent, IC2, the collector-to-emitter voltage, VCE2, and the conduction power loss for 4 2  

cetn be observed in Fig. 2.4 [1,2]. 



Fig. 2.4. Simplified turn-off switching waveform for a typical BJT. 



In order to switch the output voltage, transistor 4 2  is switched off and after a brief 

delay transistor Q1 is gated on. However, due to the fact that minority c;aniers are still in 

the base of transistor 42, the collector current remains constant initially. As the minority 

carriers are collected, the minority carrier concentration in the base will lxgin to diminish. 

Consequently, the collector-to-emitter voltage for 42, VCE2, will start to increase. As a 

result of the inductive nature of the load, the collector current will remain constant until 

VpE2 reaches a value of 2Vh. Therefore, during this period of the switching, there is sig- 

ni:Ficant power being dissipated in transistor 4 2  because the load current is flowing 

th~rough 4 2  and the voltage across 4 2  is reaching 2Vh. This increase in VCE2 during 

which IC2 is constant can be observed in Fig. 2.3 along with the increasing power loss 

associated with this interval. 

Once VCEQ reaches a value of 2Vh, diode Dl  becomes forward bias and begins to 

assume part of the load current. This commutation of the load current from 4 2  to Dl 

causes IC2 to decrease. During this decrease, there is still large amounts of power being 

dilssipated in transistor 42. In addition, there is also a power loss associiated with the con- 

duction of current through diode Dl. 

The energy loss associated with the turn-off process of transistor 4 2  is expressed as the 

sum of the energy loss in 4 2  and the conduction energy loss in Dl  duri~ng the commuta- 

tion of the load current from 4 2  to Dl. The energy loss in 4 2  can be approximated as the 

area of the triangle in the power loss diagram for 4 2  (2-22) where t, is called the commu- 

tation time [I]. 

1 1 
E ~ 2 ,  turnoff = 5 (Pm ' tc) = -5 (2Vhibd) t, 

D~lring the commutation of the load current, the diode current, ID1, can be expressed as 

' ~ 1  = ' ~ l - ~ l o a d  (2-23) 

With a negative load current and TC1 going from a value of -iload to ze~ro, the diode cur- 

re:nt can be approximated as a straight line going from zero to iload. Th~erefore, the con- 

duction energy loss associated with the commutation of the load currenit can be 

approximated as the product of the average diode current, the forward diode voltage drop, 



1 and the time of the commutation, ?t, .  

The total turn-off energy loss is 

When all the load current is conducting through Dl, the commutation of the load cur- 

rent from Q2 to Dl  is complete. The only power loss in this final state of the switching 

sequence is the commutation loss associated with diode Dl. The conduction energy loss 

for D l  is 





3. ANALYSIS OF ARCP PHASE LEG 

3.1 Introduction 

An analysis of an ARCP phase leg is presented in this Chapter. Thi:s analysis begins 

with a description of the ARCP circuit. The switching of the load voltage from the lower 

rail to the upper rail is then explored for three seperate cases: commut~~tion from a diode, 

commutation from a transistor with low load current, and commutation. from a transistor 

with high load current. The elimation of the switching losses is discu~!ied in each case. 

3.2 ARCP Circuit Description 

A circuit diagram of the ARCP phase leg is illustrated in Fig. 3.1 [3$ The ARCP con- 

tains snubber capacitors C, between the load and the dc rails. The snu'bber capacitors 

serve the purpose of holding the voltage across the switches constant during turn-off. This 

enables the switch being turned-off to have zero voltage across it during turn-off; thus, 

eliminating switching losses. The ARCP also includes an auxiliary circuit connected 

&,tween the dc neutral and phase connection. The auxiliary circuit helps enable the load 

to be swung to the opposite rail to insure zero turn-on voltage. If the auxiliary circuit is 

not included, then there is a load current constraint to insure zero turn-on voltage. 

3.3 Low-to-High-Commutation-From Diode 

An example of an ARCP single phase leg commutation will now be examined in the 

case were the load will be switched from the lower rail to the upper rail with the diode D2 

initially conducting. Initially, the load is connected to the lower dc rail and switch S2 is 



+ 

-- 
Auxiliary Circuit D2 Zx Cdc 

7 - 

Fig. 3.1. The Auxiliary Resonant Commutated Pole (A,RCP). 

on as illustrated in Fig. 3.2 (state 1). With the lower switch gated on, the capacitor Cl has 

a tic voltage across it. Therefore, the capacitor voltage, Vcl, will be co~~stant and the gov- 

erning differential equation for this state is shown in (3-1). Since the auxiliary circuit is 

ga.ted off, the auxiliary current, i, is zero. The differential equation describing the auxil- 

iary current in state 1 is shown in (3-2). 

pVc1 = 0 (3-1) 

pi, = 0 (3-2) 

Fig. 3.2. Circuit diagram of ARCP in state 1. 



Upon request to switch to the upper rail, the load current is checked. Since the diode is 

assumed to be conducting in this example, the auxiliary switch A2 is gaited on. When A2 

is gated on, the auxiliary circuit's inductance does not allow the auxiliairy current, i ,  to 

change instantaneously; hence, the current through A2 remains zero wh.ile the gate is 

being turned on which eliminates losses associated with the turning on (of A2. With A2 

ga.ted on, the auxiliary circuit is introduced to the circuit as illustrated in Fig. 3.3 (state 2). 

In state 2, L, has a dc voltage across it resulting in the auxiliary current ramping up lin- 

early as described by (3-4). The voltage Vd, remains across the capacitor C1 in this state; 

thus, the governing differential equation for the capacitor voltage is given by (3-3). 

Fig. 3.3. Circuit diagram of ARCP in state 2. 

This increase in i ,  displaces the diode current causing the load current to flow through the 

auxiliary circuit. When i, exceeds the load current, the excess current flows through 

switch S2, i ,  - iload. When the auxiliary current exceeds the load current plus a boost cur- 

rent, iload + iboost the switch S2 is gated off. The boost current acts to give the auxiliary 



circuit additional energy to help insure that the load will swing completely to the upper 

raiil; thereby, achieving zem voltage turn-on. 

Although S2 is gated off, the current through S2 will not immediatel!y go to zero; there- 

fare, if the voltage across S2 is allowed to immediately swing to the upper rail, there will 

be power loss in the switch because the power loss is the product of the current through 

the switch and the voltage across the switch. The capacitors are used tc~ eliminate this 

loss. Since the voltage across a capacitor cannot change instantaneousl,y, the capacitors 

hold the voltage across S2 at zero until the current in S2 goes to zero; therefore, the prod- 

uct of voltage times current for the switch is zero. 

With both switches off and the auxiliary circuit on, the ARCP circuit enters state 3 (Fig. 

3.4). Since the load is inductive, the load current is assumed to be constant during a 

switch; therefore, the excess auxiliary current flows into the snubber calpacitors. This 

places positive charge on the upper plate of the lower capacitor and on the lower plate of 

the upper capacitor. This charge causes the load voltage to begin to incirease. The auxil- 

i a y  current will continue to increase until the load voltage exceeds the ~dc neutral voltage 

then causing the auxiliary current to decrease. When the load voltage reaches the upper 

raiil dc voltage, the diode Dl will become forward biased and switch S1 is gated on; hence, 

the load is latched to the upper rail. 

1 

Fig. 3.4. Circuit diagram of ARCP in state 3. 



The differential equation for VC1 in state 3 can be derived by writing Kirchoff's Cur- 

rent Law (KCL) at the load node (3-5) and Kirchoff's Voltage Law (KVL) around the 

capacitors and the dc voltage sources (3-6). 

i ,+C,  (pVcl) -C,(pVc2) -i,o, = 0 (3-5) 

1 + '(22 = 'dc (3-6) 

A relationship between pVcl and pVc2 can be established (3-7,3-8) by taking the 

derivative of both sides of (3-6). 

p(Vcl  +Vc2) = pVdC = 0 (3-7) 

pVc1 = -pVc2 (3-8) 

Substituting (3-8) into (3-5) and simplifying yields the differential equation for VC1 

shown in (3-10). The differential equation describing i, in state 3 can be derived by sim- 

plifying the KVL equation around the loop including the auxiliary circuit, C1, and the 

upper dc voltage source (3-9,3-11). 

'dc 
' c i - ~  

pi, = 
r 

When diode D 1 is forward biased and switch S 1 is gated on, the snubber capacitors 

insure that the voltage across S 1 remains zero; thereby, eliminating any turn-on loss in 

switch S 1. With the load latched to the upper rail, the auxiliary circuit has a negative volt- 

age across it. Therefore, the auxiliary current will linearly ramp down ias described by 

equation (3~13).-With switch S1--gated on,the capacitor voltage VC1 is held at zero; thus, 

the derivative of the capacitor voltage will also be zero (3-12). 

pVc1 = 0 (3- 12) 



Fig. 3.5. Circuit diagram of ARCP in state 4. 

When the auxiliary current reaches zero, switch A2 is gated off. Sinlce the current 

thlmugh A2 is zero when switch A2 is gated off, there is no switching losses associated 

with A2. 

Fig. 3.6. Circuit diagram of ARCP in state 5. 



When A2 is gated off, the auxiliary circuit is taken out off the circuit: and the final state 

is reached with the load being latched to the upper rail. With the auxiliary circuit 

removed, the auxiliary current is zero; hence, the derivative of the auxiliary current will 

aliso be zero (3-15). Since switch S 1 is still latched on, the derivative of the capacitor volt- 

age will remain zero (3-14). 

pi, = 0 (3- 15) 

A computer simulated plot of the upper capacitor voltage VC1 and the auxiliary current 

i, is shown in Fig. 3.7 for a switch from low to high with the diode initially conducting. 

The ARCP parameter values used in the simulation were derived from [3] and are listed in 

Appendix A. The computer code used in the simulation was written in Advanced Contin- 

uous Simulation Language (ACSL) and is shown in Appendix B. Fronn the graph, the 

individual switching states can be observed along with the transition points between 

states. Initially, the circuit is latched to the lower rail and the auxiliary circuit is off (state 

1). When the auxiliary circuit is gated on, the auxiliary current begins to increase; thus, 

representing the transition into state 2. When the auxiliary current exce:eds the sum of the 

load current and the boost current, state 3 is entered. In state 3, the load voltage, 

bc - Vcl , is swung from the lower rail to the upper rail. Upon the load voltage reach- 

ing the upper rail (Vcl = 0), the circuit passes into state 4. In state 4,, the auxiliary cur- 

rent decreases linearly. When the auxiliary current equals zero, state 5 is reached. The 

celpacitor voltage, VC1, is not constant during states 2 and 4 as discussed earlier because 

in the simulation the diodes and switches were not modeled as ideal; thus, a small devia- 

tion was introduced. 

3.4 Low-to-High Commutation From Switch, Low Current 

In the second example of an ARCP single leg commutation, it is assumed that the load 

voltage is to be switched from the lower to upper rail with switch S2 initially conducting a 



state 1 I state 2 I state 3 
I I I I 

9.75 9.76 9.77 9.78 9.79 9.8 

x 1 oe4 
Time (s) 

Fig. 3.7. ARCP commutation low-tehigh from dicde. 

sn~all current. The governing differential equations describing each state are the same as 

in the previous example. 

Initially, the load is latched to the lower rail (state 1). When the ARCP phase leg is 

cc~mmanded to switch to the upper rail, the load current is checked. Since the load current 

is assumed to be flowing through the switch, the magnitude of the curre:nt is compared 

with a threshold value. In this case, it is assumed that the current is less than the threshold 

vailue; therefore, the load does not contain enough energy to overcome :Losses to drive the 

load to the opposite rail without the introduction of the auxiliary circuit. Thus, the auxil- 

iary circuit is turned on by gating switch A2 on. 



With the auxiliary circuit gated on, the circuit is in state 2. The auxi.liary current will 

ra:mp up due to the dc voltage placed across it. When the auxiliary current reaches the 

value of the boost current plus the load current, the auxiliary circuit has substantial energy 

to drive the load to the opposite rail. Therefore, the lower switch, S2, is gated off. The 

snubber capacitors prevent switching losses in S2 because the capacitoi:~ hold the voltage 

across the switch to zero while the switch current diminishes. 

State 3 is entered after turning off switch S2. The load current and the auxiliary current 

wiill charge the snubber capacitors; hence, driving the load voltage to thc: upper rail. When 

th'e load voltage reaches the upper rail, the diode Dl will become forward biased and will 

stop further charging of the capacitors by conducting the excess current. When the diode 

becomes forward biased, the switch S 1 is gated on with zero volts across the switch; 

thereby, preventing any turn-on losses in S1. 

When the load voltage is equal to the upper rail, state 4 is obtained. The auxiliary cir- 

cuit has a negative voltage across it. Therefore, the auxiliary current will ramp down. 

%%en the auxiliary current reaches zero, switch A2 is gated off to disconnect the auxiliary 

circuit. With zero current through A2 during turn-off, switching losses iissociated with A2 

are avoided. The load is now latched to the upper rail and the auxiliary circuit is removed; 

therefore, the commutation is completed and the final state, state 5, is reached. 

The upper capacitor voltage, VC1, and the auxiliary circuit, i, are plotted in Fig. 3.8 for 

commutation from the switch in the low-current case. Commutation from the switch at 

low current levels is similar to commutation from the diode except that: the auxiliary cur- 

rent does not have to become as large in the switch example. This is because the load cur- 

rent aids the commutation process when the switch is initially conducting and hinders 

commutation when the diode is initially conducting. 

3.5 Low-to-High Commutation From Switch, High Current 

The final case to be explored involves switching of the load from the lower to upper rail 

with the switch initially conducting a current larger than the threshold current. Initially, 

th.e load is latched to the lower rail and the circuit is in state 1 (Fig. 3.2). For a switch 
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Fig. 3.8. ARCP commutation low-to-high from switch (low current). 
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from the lower rail to the upper rail when switch S2 is conducting a cment larger than the 

threshold value, the auxiliary circuit does not need to be included in the switching 

sequence. This is a result of the load inductor have sufficient energy to overcome any 

switching losses and drive the load voltage to the opposite rail. In this case, the ARCP 

acts exactly like a snubber circuit, because switch S2 is gated off without introducing the 

auxiliary circuit. 

Once. S2.is.gated off, state 6.is entered. -In state 6, the load .current ch~arges the snubber 

capacitors and drives the load to the upper rail. When the load voltage reaches the upper 

rail, diode Dl is forward biased and switch S 1 is gated on under zero voltage conditions. 



Fig. 3.9. Circuit diagram of ARCP in state 6. 

The differential equation characterizing VC1 in state 6 can be derivedl exactly as in state 

3 with the auxiliary current neglected (3-16). Since the auxiliary circuit is not gated on in 

state 6, the derivative of the auxiliary current is zero (3-17). 

- load 
pVc1 - C, + C, 

pi, = 0 (3-17) 

With the load gated to the upper rail, the switching transition is com~pleted. and the cir- 

cuit is in state 5 (Fig. 3.6). 

A plot of the capacitor voltage, VC1, is displayed in Fig. 3.10. Since the load is 

assumed to be inductive, the load current is assumed to be constant over a switching cycle. 

Tlherefore, during state 6 the capacitor voltage decrease linearly until the diode Dl is for- 

ward bias and conducts the load current. 

3.6 Simulation of ARCP Phase Leg 

The equations describing the ARCP phase leg have been implemenlted digitally using 

the Advanced Continuous Simulation Language (ACSL). The ACSL source code is given 

in. Appendix B. The ARCP phase leg switch command is given by the ACSL variable 

S W1. When Swl = 5, the output voltage is connected to the upper rail (state 5) or is 



-50 iload 
I I I I 

9.75 9.76 9.77 9.78 9.79 9.8 
T~me (s) x lo4 

Fig. 3.10. ARCP commutation low-to-high from switch (high current). 

switching to the upper rail. Likewise, when S W ~  = 1, the output voltage is connected to 

the lower rail (state 1) or is switching to the lower rail. The derivatives of the state vari- 

ables are dependent upon the present state of the phase leg. The present state is given by 

the variables t a t  e 1. Logic is used to detect a change from one state into the next state, 

at which a flag is set. This flag calls a discrete block which changestilt e l  to its new 

vidue, calls a data file to log the present value of all the prepare variable, and resets the 

vidue of the flag. Discrete blocks were used for changes in state because this allowed the 

state equations to be changed at discrete instances in time. With a switching frequency of 

20 kilohertz, 1.36 seconds of central processor time on a Sun Sparcstation 5 were required 

tab run the computer simulation for 5 milliseconds. Computer studies involving the ARCP 

phase leg are described in subsequent chapters. 



4. ANALYSIS OF ARCP H-BRIDGE 

4.1 Introduction 

A comparison of losses is made between an H-bridge circuit using conventional hard- 

switched phase legs and an H-bridge circuit using ARCP phase legs. Prior to discussing 

the losses, an H-bridge circuit is discribed along with the pulse-width-modulation control 

used in this study. Analysis of the ARCP H-bridge is also presented herein. 

4.2 Circuit Description and Pulse-Width Modulation 

An H-bridge circuit is a load connected between two phase legs. Ain example of an H- 

bridge using ARCP phase legs is shown in Fig. 4.1. The load voltage, vl,,,-~, in an H- 

bridge can be swung from +Vdc to -V&. A positive load voltage can be achieved by hav- 

ing the first phase leg latched to the upper rail and the second phase leg latched to the 

lower phase leg. A negative load voltage can be obtained by having the first phase leg 

latched to the lower rail and the second phase leg latched to the upper rail. 

Many control strategies may be used to control the load voltage or bad current. In this 

chapter, pulse-width modulation (PWM) will be uses to control the loa~d voltage. In 

P'WM, a controlled sinusoidal waveform which oscillates at the fundamental frequency of 

the load, f l  (1 kHz), is compared with a triangle wave whose frequency is on the order of 

ten times larger than f l  to determine whether the load voltage is high or low. If the con- 

trolled waveform is larger than the mangle wave, the load voltage is switched positive. If 

the controlled waveform becomes smaller than the triangle wave, the load voltage is 

switched negative. Plots showing the controlled waveform, the mangle waveform, and 

th.e load voltage are shown in Fig. 4.2 [4]. 



Fig. 4.1. H-bridge using ARCP phase legs. 

4.3 H-B ridge Loss Analysis 

In this section, a comparison is made between the losses of a hard-switched H-bridge 

and an H-bridge using ARCP phase legs. In the standard hard-switched converter, the 

losses will be conduction losses of the transistors and diodes and the switching losses in 

the transistors. However, in the ARCP converter, the switching losses in the transistors 

are eliminated at the cost of introducing conduction losses from the auxiliary circuits. The 

energy loss in the hard-switched converter is explained in detailed in Clhapter 2 with the 

equations describing the losses shown in (4- 1) through (4-4). 

In the ARCP converter, the conduction losses will be the same; however, the switching 



Fig. 4.2. Vload versus time and PWM wavefornns. 

losses shown in (4-3) and (4-4) are replaced by the auxiliary circuit con~duction loss (4-5). 

Eau,mn = Jpaux , an  dt = VcE, ,,li,dt (4-5) 

Plots of the energy loss during one cycle using PWM and an H-bridge with a resistive 

anid induc tive-load for- both the hard-switched exampleJos s hs, and the ARCP example, 

10s sa rcp ,  are shown in Fig. 4.3. In this example, the turn-on commutation interval,t,, 

and the turn-off rise time interval, t, were both set equal to 5 ps which is a typical value 

for high-power transistors. From the plot, it is shown that through one PWM cycle the 



Fig. 4.3. Energy losses for hard-switched and ARCP converters. 

AIRCP H-bridge dissipated about one-nineth the amount of energy of the hard-switched 

example used. This drastic savings in energy, not only allows the application to be more 

efficient, but also allows the switching circuitry to be reduced is size because of the elimi- 

nabtion of heat sinks. This reduction in size makes the ARCP technology extremely useful 

in applications were size constraints are the major driving factors. 

Plots of the capacitor voltage, VC1, and the auxiliary circuit current, irl, are shown in 

Fig. 4.4. The capacitor voltage and auxiliary current for the second pha:se leg is shown in 

Fig. 4.5. The plots show that the auxiliary circuits are only on during a capacitor voltage 



Fig.4.4. ARCP H-bridge example, VC1 and irl versus time. 

swing. Therefore, the only time the additional circuitry introduces conduction losses is 

duling the switching interval. Since the auxiliary circuits are turned on (luring every 

switching interval, the high current switching case of the ARCP, which allows the voltage 

to swing from one rail to the opposite rail without the introduction of the auxiliary circuit, 

is not entered. 

Plots of the load current, iload, and the load voltage, Vload, for the =,-load are shown 

in 14g. 4.6. From the plot of the load current, the fundamental frequency of the load is 

sholwn to be 1 kHz. This is the same frequency of the control sinusoidal wave used in the 

PN'M control. 





Fig. 4.6. ARCP H-bridge converter, iload and vload versus time. 





5. ANALYSIS OF ARCP THREE-PHASE 

5.1 Introduction 

In this chapter, a variable-speed drive system which includes a three-phase ARCP 

inverter, a current controller, and an induction motor, is described. A computer simulation 

of this system has been implemented using ACSL. Results of a computer study using the 

variable-speed drive system are presented herein. 

5.2 Description of ARCP Three-Phase Circuit 

A block diagram of the system configuration studied is shown in Fig. 5.1. The current 

controller is depicted in Fig. 5.2. Therein, i&* and Pd,* are the commanded currents in 

the synchronously rotating reference frame. The speed of the synchron,ous reference 

kune is given by 61,. The synchronous reference frame variables are transformed into 

the stationary reference frame by 

cos 6, sin 6, 

Th~e actual as,  bs, and cs currents (i,, , ibs , and i,, ) are then subtracted from the corn- 

miinded as, bs, and cs currents (i,,* , ibs* , and i,,* ) to produce an enror value i, for 

each phase [4]. If the error value is larger than a hysteresis value, the switch signal for 

thiit phase (SW,, SWb, or SW,) will command that phase leg to switch to the upper rail in 



orider to increase the current of that phase and to reduce the error value. If the error value 

becomes more negative than a negative hysteresis value, the switch siginal for that phase 

will command the phase leg to switch to the lower rail; thus, the phase lcurrent will 

decrease and the error value will become smaller in magnitude. 

Inverter 'cg 

Fig. 5.1. Three-phase example using ARCP inverter: 

The switch signals SW,, SWb, and SWc are used to control the a, bl, and c phase legs 

of the inverter, respectively. A circuit diagram of the inverter using AR.CP phase legs is 

shown in Fig. 5.3. The inverter is identical to a conventional inverter except for the auxil- 

i a y  circuit and the snubber capacitors associated with each phase. The output voltages of 

the phase legs is used as the three-phase input voltage for the induction ]motor. These volt- 

ages are the voltages between the output phase leg and the lower rail of the inverter. Since 

the neutral of the induction motor is internal to the motor, the neutral voltage v, is not 

equal to the lower rail voltage vg of the inverter. Therefore, to obtain v,,, Vbs, and v, for 

theinduction-motor-the-following algebra must .be applied [5]. 



'be 'ca 

Fig. 5.2. Current control block diagram. 
- 
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W'ith v,, vb,, and v,, as inputs to the induction motor the phase currents (i,, ib,, and ic,) 

can be calculated [5] .  These phase currents serve as inputs to the current controller. 

5,3 Computer Study 

In this study, the steady-state characteristics of the three-phase system shown in Fig. 

5.1 are established by computer simulation. The parameters of an ARCP phase leg are 
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Fig. 5.3. Inverter using ARCP phase legs. 



given in Appendix A with the parameters of the induction motor listed i;n Appendix C [5]. 

It is assumed that the induction machine is operating at half of rated or base frequency 

(188.5 radian per second (rds));  therefore, the required line-to-neutral voltage is approx- 

imately 133 V rms to produce rated torque. The rated slip is 0.05278. Hence, the rotor 

speed for this study is set to a constant value of 178.6 rad/s. 

Plots of the simulated current i,, and the commanded current i,,* are shown in Fig. 

5.4. These plots were made with a hysteresis value of 7.5 amperes (A) or a tolerance-band 

of 15 A [4]. The smaller the tolerance-band, the more closely the actual currents will 

tra.ck the commanded currents. However, with this smaller tolerance-biind, the switching 

frequency of the phase legs will increase because of the increased restrictions on the con- 

m11s. 

The upper capacitor voltage and the auxiliary circuit current for the tz-phase leg is 

shown in Fig. 5.5. Each spike in the auxiliary current corresponds to coimmutation from a 

ditde or commutation from a switch in the low-current switch in the a-]phase leg. 

Although the capacitor voltage waveform appears to be a square-wave vvith instantaneous 

switching, this is a result of the time scale being too large to observe thr: soft-switching 

transitions of the capacitor voltages as discussed in Chapter 3. From the: plot of the capac- 

itor voltage, it can be observed that the switching frequency of the phase leg does not 

rernain constant. This is result of the switching frequency depending on how fast the cur- 

rerrt changes from one side of the tolerance-band to the other, which is not constant due to 

the: dependence of the current changes on V&, the back-electromotive force, and the load 

of the induction motor [4]. 

Comparing i, from Fig. 5.4 with the auxiliary circuit current for the a-phase in Fig. 

5.5, a dependence of phase current on the auxiliary current can be examined. When the 

phase current is smaller than the threshold value for the ARCP (60 A), every switch is in 

the low-current case.- In this case the auxiliary current-spikes oscillate fiom positive to 

negative since one of the commutations is from a diode and the other from a switch. In 

the other case, were the phase current is positive and larger than the threshold value, every 

auxiliary current spike is positive. This is a result of the commutation from the switch 



Fig. 5.4. Plots of i, and i& versus time. 

(upper-to-lower transition) not requiring the auxiliary circuit to be turnled-on. Therefore, 

the spikes are all results of lower-to-upper transitions when the current is commutating 

from the lower diode. When the phase current is negative and larger icr magnitude than 

the threshold voltage;-all~of~theauxiliary~current spikes-are negative. ?'his is for the same 

reason as in the previous case except that commutation is from the upper diode in this 

case. 

Plots of the stator voltages (v,, vb,, and v,,) for the induction motor are shown in Fig. 



Fig. 5.5. Auxiliary circuit current, irl, and capacitor voltage, Vcl, for the a-phase. 

5.6. The peak value of the stator voltages is 133 V, two-thirds of the rail-to-rail voltage of 

the ARCP. This value is comparable to the rms voltage for the inductica motor at half 

speed. 



T +lo-* 

Fig. 5.6. Stator voltages for the induction motor. 



6. SUMMARY 

In this thesis, the ARCP phase leg was described and analyzed. For purposes of com- 

parison, the switching and conduction losses of a conventional hard-switched phase leg 

wlere also described. Losses associated with hard-switching include conduction loss and 

sviitching loss associated with transistor turn-on and turn-off. In an AFXP phase leg, all 

sviitching losses are eliminated by turning transistors on and off under (either zero current 

or zero voltage conditions. This is accomplished with the introduction of an auxiliary cir- 

cuit which aids the commutation process. With the switching losses eliminated, the only 

losses in an ARCP phase leg involve the conduction losses in the phase leg and in the aux- 

iliary circuit. 

The switching sequence of the ARCP and the corresponding state equations are 

de:scribed in detail in this thesis. Based upon these state equations, computer models of 

th'e ARCP and hard-switched phase legs were developed and implemen~ted using ACSL. 

A computer study was performed to compare the losses of ARCP and hard-switched 

switching strategies. In the study, an H-bridge using conventional PWvl was analyzed 

using both types of phase legs and a comparison was made between the: energy loss in 

both cases. It was shown that the ARCP, by eliminating switching losses, used approxi- 

mately one-ninth the energy per PWM cycle of the hard-switched convlerter. 

Finally, a variable-speed induction motor drive system using a three,-phase ARCP 

inverter was simulated. The dependence of an ARCP phase leg's auxili~ary current on the 

phase current-was presented-along-with a.discussion onthe relationship between current 

control parameters and switching frequency. 
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APPENDIX A 

ARCP Parameters 

Table A.1. ARCP parameters used in simulation. 

ARCP Parameter 

Upper Capacitor, C1 

Lower Capacitor, C2 

Resonant Inductor, L, 

Threshold Current, ith 

Boost Current, iboost 

Rail-To-Rail Voltage, Vd, 

Value used in simulation 

0.159 pF 

0.159 pF 

0.159 p H  

60 A 

30 A 

200 V 



APPENDIX B 

Advanced Continuous Simulation Language Code For ARC:P Phase Leg 

! Program: ARCP phase leg 

I 

! Purpose: To simulate an ARCP phase leg. 

I 

! Programmer: Eric Walters 

I 

! Date: January 17, 1995 

I 

I.----------------------------------------------,-- 

include 'MACROS/leg.macl 

include 'MACROS/per2.mac1 

include 'MACROS/err3 .mac ' 
include 'MACROS /st change1 .mac ' 
P13OGRAM arcp 

INITIAL 

CONSTANT iload=0.0 ! load current 

1 . .--- Load parameters and DC voltage parameters---- 

CONSTANT Vdc = 200.0 ! DC voltage 

INTEGER SW1 



CONSTANT maxmaxt = 1.0e-5 

CONSTANT minmaxt = 1.0e-8 

END ! of initial 

DYNAMIC 

MAXTERVAL maxt = 1.0e-5 

MINTERVAL mint = 1.0e-9 

CONSTANT tstop = 1.0e-3 

TERMT (t.ge.tstop) 

ALGORITHM ialg = 3 

CINTERVAL cint = 1.0e-3 

DERIVATIVE main 

SCHEDULE statechangel .XP. intxzerol 

Vload = Vdc - Vcl 

err3 (1, xzerol) 

per (SW1) 

leg (1, iload, SW1) 

END ! of derivative 

t .--- Discrete block to change state and to change maxt -- 

DISCRETE statechangel 

stchange (1, xzerol, intxzerol, statel, SW1, nextstatel) 



END ! of discrete 

!.----------------------------------------------.---------- 

END ! of dynamic 

END ! of program 

1 --- MACRO for an ARCP leg -------------------.-- 

I 

! PROGRAMMER: Eric Walters 

1 

! DATE: January 17, 1995 

MACRO LEG (z, iload, SW) 

INITIAL 

INTEGER nextstate&z, state&z 

nextstate&z = 1 

state&z = 5 

xzero&z = -1.0 

! flag = -1 

CONSTANT Cl&z = 0.159e-6 ! capacitor 1 voltage 

CONSTANT C2&z = 0.159e-6 ! capacitor 2 voltage 

CONSTANT Lr&z = 0.159e-6 ! resonant inductor 

CONSTANT ith&z = 60.0 ! threshold current level 



CONSTANT i b o o s t & z  = 3 0 . 0  ! b o o s t  curre :n t  l e v e l  

CONSTANT Rswitch&z = 0 . 0 5  ! s w i t c h  r e s i s t a n c e  i n  nea r  

v o l t .  c a s e  

CONSTANT Vc&z&ic  = 0 . 0  

CONSTANT i r i c & z  = 0 . 0  

END ! o f  i n i t i a l  

SCHEDULE s t a t e c h a n g e & z  .XP. xze ro&z ! c a l l s  d i s c r e t e  

b:Lock w i t h  

! z e r o  c r o s s i n g  o f  x z e r o  

Vc&z = INTEG(pVc&z,Vc&z&ic) ! C a p a c i t o r  v o l t a g e  i n t e -  

g:rat i o n  

i r & z  = I N T E G  ( p i r & z ,  i r i c & z )  ! Resonant  c u r r e n t  i n t e g r a -  

t i o n  

b u f f e r  ( z ,  Vc&z, i r & z )  

! err  ( z ,  x z e r o & z )  

I .--- P r o c e d u r a l  t o  produce  z e r o  c r o s s i n g s  f o r  sclhedule c a l l s  

- .-- 

PROCEDURAL (xzero&z,  n e x t s t a t e & z = .  . . 
i l o a d , V c & z ,  s t a t e & z ,  i r & z ,  SW, i t h & z ,  iboos t&z,pVc&z,Vdc)  



IF (statecz .NE. SW) THEN 

GO TO (N&z&l,N&z&2,N&z&3,N&~&4~N&z&5~N&z&6) , state&z 
N<Sz&l. . IF (iload .GT. -ith&z) THEN 

nextstate&z = 2 

xzero&z = 1.0 

ELSE 

nextstate&z = 6 

xzeroCz = 1.0 

END IF 

GO TO loopend&z 

N&z&2.. IF ((ir&z.GT.(iboost&z+iload)) .AND. (SW.EQ.5)) 

THEN 

nextstate&z = 3 

xzero&z = 1.0 

END IF 

IF ( (ir&z .GE. 0.0) .AND. (SW .EQ. 1) ) THEN 

nextstate&z = 1 

xzero&z = 1.0 

END IF 

GO TO loopend&z 

Nliz&3. . IF ((VC&Z .LE. 0.0) .AND. (SW .EQ. 5)) THEN 

nextstate&z = 4 

xzeroCz = 1.0 

END IF 



IF ( ( p V c & z  .GE. 0 . 0 )  .AND. (SW .EQ. 5 ) )  THEN 

n e x t s t a t e C z  = 4  

x z e r o & z  = 1 . 0  

END IF 

I F  ( ( V c C z  .GE. V d c )  .AND. (SW .EQ. 1 ) )  THEN 

n e x t s t a t e C z  = 2 

x z e r o & z  = 1 . 0  

END I F  

I F  ( ( p V c & z  .LE.  0 . 0 )  .AND. (SW .EQ. 1 ) )  THEN 

n e x t s t a t e C z  = 2 

x z e r o C z  = 1 . 0  

END I F  

GO TO 1 o o p e n d C z  

N(SzC4. . I F  ( ( i r C z  .LE. 0 . 0 )  .AND. (SW .EQ. 5 ) )  THEN 

n e x t s t a t e C z  = 5 

x z e r o C z  = 1 . 0  

END I F  

I F  ( ( i r C z  .LT.  - i b o o s t & z )  .AND. (SW .EQ. 1 ) )  THEN 

n e x t s t a t e C z  = 3 

x z e r o C z  = 1 . 0  

END IF 

GO TO 1 o o p e n d C z  

N(SzC5. . I F  ( i l o a d  .LT.  i t h C z )  THEN 

n e x t s t a t e C z  = 4  

x z e r o C z  = 1 . 0  



ELSE 

nextstate&z = 6 

xzero&z = 1.0 

END IF 

GO TO loopend&z 

N8&z&6. . IF ((Vc&z .GE. Vdc) .AND. (SW .EQ. 1)) THEN 

nextstate&z = 1 

xzero&z = 1.0 

END IF 

IF ((VcCz .LE. 0.0) .AND. (SW .EQ. 5)) THEN 

nextstateCz = 5 

xzero&z = 1.0 

END IF 

loopend&z..CONTINUE 

END IF 

END ! of procedural 

l - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -  

!---Procedural to set the derivatives of ir and Vc based on 

t:he state- 

PROCEDURAL(pVc&z,pir&z= ... 
state&z, iload, ir&z, Vc&z,Vdc, Rswitch&z, Cl&z, C2&zI Lr&z) 



psetend& z . . CONTINUE 
END ! of procedural 



MACRO END 

MACRO PER (SW) 

INITIAL 

CONSTANT freq = 20.0e3 

END 

PROCEDURAL (SW=f req, t ) 

period=l/freq 

remain=mod (t , period) 
IF (remain .LE. period/2) THEN 

SW=1 

ELSE 

SW=5 

END IF 

IF (t .LE. le-6) THEN 

SW=1 

END IF 

END ! of procedural 

MACRO END 

MACRO BUFFER ( z , Vc , i r ) 



INITIAL 

INTEGER i&z 

i&z=3 ! buffer counter 

bufferflag&z = .false. 

delta&z = 0.5 

DIMENSION bufferir&z (2000) ! resonant current leg 1 

DIMENSION buffertime&z (2000) ! time 

DIMENSION buf ferVc&z (2000) ! Capacitor volt. leg 1 

bufferVc&z (1) = 0 

bufferVc&z (2) = 0 

bufferir&z (1) = 0 

bufferir&z(2) = 0 

END ! of initial 

!--STORAGE for resonant currents and capacitor voltages - 

PROCEDURAL(i&ztbufferir&zIbufferVc&zt ... 
buffertime&z,bufferflag&z=Vctir,t,delta&z) 

IF (abs (bufferir&z (i&z-2) -ir) .GT. delta&z) buffer- 

flag&z = .true. 

IF (abs (bufferVc&z (i&z-2) -Vc) .GT. delta&z) buffer- 

flagdz = .true. 

IF (bufferflag&z .eq. .true.) THEN 



bufferir&z (i&z) = ir 

bufferVc&z (itz) = Vc 

buffertime&z (i&z) = t 

i&z = i&z + 1 
ELSE 

buffertime&z (i&z-1) =t 

END IF 

END ! of procedural 

l . - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - . - - - - - - - - - - -  

WYCRO END 

MACRO ERR3 (z, xzero) 

INITIAL 

constant k&z=l.Oe7 

CONSTANT intxzero&z&ic=-1.0 

END ! of initial 

MACRO END 

MACRO STCHANGE (z, xzero, intxzero, statel, SW,nextstate) 



s t a t e & z  = n e x t s t a t e  

x z e r o  = -1 

i n t x z e r o  = -1 

I F  ( ( s ta te&z.eq .  1) .OR. ( s ta te&z.eq .5)  ) THIEN 

i r & z  = 0 

CALL LOGD ( . TRUE. ) 

END IF  

IF  ( ( s t a t e l  .EQ. 2) .OR. ( s t a t e 1  .EQ. 4)) CALL 

LOGD ( . TRUE. ) 

I F  ( s t a t e 1  .NE. SW) THEN 

maxt ( 1 )  =minmaxt 

CALL RSTART (main, minmaxt) 

ELSE 

maxt ( 1 ) =maxmaxt 

CALL RSTART (main, maxmaxt ) 

END IF 

MACRO END 



APPENDIX C 

Induction Motor Parameters 

The following parameters come from [5] on page 190. 

Table A.2. Induction motor parameters. 

Induction Motor Parameter 

rs 

xzs 
XM 

xk 

rr 

J 

Rated line-to-line voltage 

Rated slip 

Parameter value 

0.087 ohms 

0.302 ohms 

13.08 ohms 

0.302 ohms 

0.228 ohms 

1.662 kilogram square: 
meters 

460 V 

0.05278 
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