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(a) Scenario

(b) Throughput

Figure 3.7. Two applications sharing a network bottleneck

Figure 3.8 depicts the resulting average throughput for one 2-hop flow, two 4-hop flows,

and twelve 6-hop flows under different amounts of background traffic. Clearly the presence

of background traffic affects the average throughput of every flow. But the extent of unfair-
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(a) 100 Mbps background traffic
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(b) 200 Mbps background traffic
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(c) 500 Mbps background traffic

Figure 3.8. Average throughput of 2-hop, 4-hop, and 6-hop flows under
background traffic

ness is not mitigated by the background traffic completely. In particular, the gap between

the throughput of 2-hop flows and 6-hop flows remain 4× and 2.5× under background

traffic of 10%, 20% of the bottleneck link capacity (1 Gbps) respectively. Only when the

background traffic reaches 50% of the bottleneck link capacity, the unfairness seems to

taper off, that too after 0.2 seconds.

Case VI – Other Experiment Scenarios

We also vary other parameters such as buffer sizes and RTT on the TCP Outcast prob-

lem.
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(a) TCP CUBIC without SACK
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(b) TCP CUBIC with SACK
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(c) MPTCP

Figure 3.9. Average throughput of 2-hop, and 6-hop flows under CUBIC,
SACK, and MPTCP.

Buffer size. We found that increasing the buffer size does not have a significant effect

on the TCP Outcast problem. A larger buffer size means that it would take longer for the

queue to fill up and for port blackout to happen but it eventually happens. In our testbed, we

have tried with buffer sizes of 16KB and 512KB and found that the unfairness still persists.

Using ns-2 simulations, we simulated different buffer sizes of 32, 64, 128KB, and found

similar results.

RTT. We simulate twelve flows from one 4-hop server and one flow from the other 4-hop

sender (hence all flows have the same RTTs). We observed that the TCP Outcast problem
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still exists and the single flow is starved for throughput. Thus, it appears the number of

flows on the ports, as opposed to the RTT differential, impacts the unfairness.

Multiple ports contending. In the test bed, we modified routing so that we have flows

coming on 3 input ports and going to one output port. Even in this case, the TCP Outcast

problem is present. In ns-2, we have experimented with even more input ports (e.g., 6-pod,

8-pod fat-tree, VL2 [13] topology) and found that the Outcast problem exists.

CUBIC, SACK, and MPTCP. We tested the existence of Outcast problem with TCP

CUBIC with and without SACK, and with MPTCP [11]. Figure 3.9 depicts the occurence

of Outcast in all these scenarios, although MPTCP seems to reduce the extent of unfair-

ness. Since MPTCP opens many different sub-flows corresponding to each TCP flow, this

scenario is roughly equivalent to the multiple flows experiment in Figure 3.5.

3.3 Explaining Unfairness

Routers with taildrop queues have been known to suffer from the lockout problem, in

which a set of flows experience regular packet drops while other flows do not. Floyd et

al. [45] have demonstrated that TCP phase effects can lead to these lockouts where packets

arriving at a router after certain RTTs find the queue to be full and hence are dropped. TCP

phase effects were studied in the context of the Internet and RTT was the primary factor in

determining which flows will suffer from lockout.

In this section, we demonstrate the existence of a different phenomenon called port

blackout in the context of data center networks. Port blackout is defined as the phenomenon

where a stream of back-to-back packets arriving on multiple input ports of a switch compete

for the same output port, and packets arriving on one of the input ports are dropped while

packets arriving on the other input ports are queued successfully in the output port queue.

Port blackouts occurs when the switch uses taildrop queue management policy.

In the following, we explain how port blackouts can occur in data center networks. We

also corroborate our observation with ns-2 simulations with configurations identical to our

testbed. We then introduce a drop model using ns-2 simulation to demonstrate the effects
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Figure 3.10. Timeline of port blackout

of port blackout on TCP throughput. We end with insights into how port blackout can be

prevented in data center networks.

3.3.1 Port Blackout in Data Center Testbed

Figure 3.10 schematically depicts the timeline of events occurring at a switch amidst a

port blackout episode. A stream of packets A1, A2 and A3 arriving at port A and B1, B2

and B3 arriving at port B are competing for output port C which is full. Since most of the

competing flows are long flows, their packets are of the same size, which means the time

spent by each of the frames is the same on the wire. Now, since these packets arrive on two

different ports, they are unlikely arriving at exactly the same time (the ports are clocked

separately). However, the inter-frame spacing on the wire is the same for both ports, since

there are back-to-back packets (assuming the senders are transmitting many packets) and

no contention from any other source on the Ethernet cable (given switched Ethernet). Now,

due to the asynchronous nature of these packet arrivals, one port may have packets slightly

ahead of the others, e.g. in Figure 3.10, port B’s packets arrive just slightly ahead of port

A’s packets.
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Figure 3.11. Blackout behavior observed in taildrop queues

After de-queuing a packet C1, the output port queue size drops to Q − 1. Now, since

packets from B arrive slightly ahead of A, packet B1 arrives at port B next (denoted by

an arrow on the time line), finds queue size to be Q − 1, and is successfully enqueued in

the output queue making it full. Next, packet A1 arrives at port A, finds the queue to be

full, and hence gets dropped. The above pattern of consecutive events then repeats, and

A2 as well as A3 end up with the same fate as its predecessor A1. This synchronized

chain of events among the three ports can persist for some time resulting in a sequence

of packet losses from one input port, i.e., that port suffers a blackout. Once the timing is

distorted, either because there is a momentary gap in the sending pattern or due to some
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other randomness in timing, this blackout may stop. But, every so often, one of the ports

may enter into this blackout phase, losing a bunch of consecutive packets. We note that

either of the input ports can experience this blackout phenomenon; there is no intrinsic bias

against any one port.

To investigate the existence of port blackout in our data center testbed, we collected

the traffic traces close to output port p0 and input ports p1 and p2 of switch ToR0 during

the experiment in Figure 3.4(c). The trace at port p1 consists of a stream of back-to-back

packets from server S1 which is under the same ToR0. The trace at port p2 consists

of packets from servers that are located outside ToR0. Both these streams of packets

are meant to be forwarded toward output port p0 and hence, compete with each other.

Correlating these two traces with the traffic trace at output port p0, we can infer the set of

packets that were successfully forwarded and the set that were dropped.

Figure 3.11(c) shows the timeline of packets successfully sent and dropped at port p2

(for 6-hop flows) and port p1 (for 2-hop flows) of switch ToR0 during the experiment.

When port blackouts happen, we can observe clusters of packet drops. To see the de-

tailed timing of packet events during blackouts, we zoom into small time intervals. Figure

3.11(a) depicts a small time interval (about 500 microseconds) when port p2 carrying the

flows from servers outside ToR0 experiences a port blackout, during which packets from

port p1 are successfully sent while consecutive packets from port p2 are dropped. Figure

3.11(b) depicts a similar blackout event for port p1. While we highlight a single incident

of port blackout here, Figure 3.12(a) shows the distribution of episodes with k consecutive

packet losses. As we can see, the 2-hop flow experiences many more episodes of 3 and 4

consecutive packet drops than the 6-hop flows. This trend does not seem to change even

with a larger number of flows per host as shown in Figure 3.12(b).

3.3.2 Port Blackout Demonstration in ns-2

While the traces above give us some insight that blackouts may be happening, due

to inaccuracies in timing we only get rough insights from the above trace. In order to



38

 0

 50

 100

 150

 200

 250

 300

 350

 400

1 2 3 4 5 6 7 8 9

#
 o

f 
o

c
c
u

rr
e

n
c
e

s
 p

e
r 

fl
o

w

# of consecutive packet drops

2-hop flows
6-hop flows

(a) With 1 flow per host

 0

 200

 400

 600

 800

 1000

 1200

1 2 3 4 5 6 7 8 9

#
 o

f 
o

c
c
u

rr
e

n
c
e

s
 p

e
r 

fl
o

w

# of consecutive packet drops

2-hop flows
6-hop flows
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Figure 3.12. Distribution of consecutive packet drops

understand this even more closely, we resort to simulations in ns-2. In simulations, we

can easily observe the changing value of the dynamic output port queue size and the exact

timing of how it correlates with packet enqueue and dequeue events. We simulate the

same experiment, i.e., fat-tree configuration and traffic pattern, as in Figure 3.3(c), in ns-2.
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Figure 3.13. Queue dynamics at the ToR 0 switch

Figure 3.13 depicts the exact timeline of different packet events, enqueue, dequeue, and

drop, corresponding to the three ports.

For each port (right y-axis), packet enqueue, drop, and dequeue events are marked. The

left y-axis shows the queue size at any given instant of time. The queue dynamics is shown

for one of the intervals during which in-port1 is suffering from a port blackout episode.

Consider the interval between 68 and 69 (*10 microsecond). First, a packet arrives at in-

port1. But the queue was full (Q-size 30) at that instant as denoted by the square point. As

a result this packet at in-port1 is dropped by the taildrop policy. Soon after that, a packet is

dequeued from the output queue and now the queue size drops to 29. Next, a new packet

arrives at in-port2, and is accepted in the queue making the queue full again. This pattern

repeats and in-port1 suffers from consecutive packet drops, leading to an episode of port

blackout.
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3.3.3 Effect of Port Blackout on Throughput

We have explained the root cause for the port blackout phenomenon in previous sections

using real traces collected from our data center testbed as well as using the ns-2 simula-

tions. In this section, we present a simulation model to help us understand the impact of

port blackout on the throughput of TCP flows. More specifically, we want to analyze the

relationship between the number of flows on an input port (that experiences blackout) and

the impact on their TCP throughput due to port blackout.

We simulate a simple topology in ns-2 consisting of a single sender node (node 1)

and a single receiver node (node 2) connected via a switch. To simulate the port blackout

behavior, we modified the taildrop queue at the switch to operate in two states. In the ON

state, it drops all packets that it receives from node 1. In the OFF state, it does not drop any

packet. The queue toggles from OFF to ON state after every k seconds, where k is chosen

from an exponential distribution with a mean of 0.005 seconds, which is the approximate

time period between two blackout periods we observed in our testbed. It remains in ON

state for a fixed duration that corresponds to m consecutive packet drops. Note that an ON

state does not necessarily correspond to m actual packet drops; it is the time duration in

which the switch would have dropped m consecutive packets. In other words, we only drop

consecutive packets if they appear back-to-back during the ON state.

Using this drop model, we study the impact of the length of ON duration on the through-

put of f TCP flows from node 1. Figure 3.14 shows the aggregate TCP throughput (on

y-axis) of f flows, as the number of consecutive packet drops m (on x-axis) varies. We

observe that when there are 7 or more flows, port blackout, i.e. consecutive packets drops

during the ON state, only affects the throughput of the flows slightly, even as m grows

to 10. This is because packets dropped in the ON state are spread across the flows and

each flow can recover quickly from few packet losses due to fast retransmission. However,

when there are few flows, the consecutive packet drops have a catastrophic effect on their

throughput because of timeouts that leads to reducing the congestion window significantly.



41

 0

 200

 400

 600

 800

 1000

 0  2  4  6  8  10  12

T
h
ro

u
g
h
p
u
t 
(M

b
p
s
)

# consecutive pkt drops

# flows=1
# flows=3
# flows=5
# flows=7
# flows=9

# flows=11

Figure 3.14. Effect of consecutive packet drops on TCP

While it may appear from the above experiment that the Outcast problem may disappear

if we have larger number of flows, Figure 3.5 clearly indicates that that is not true. The

reason lies in the fact that if there are a larger number of flows, the duration of the blackout

simply increases causing more consecutive packet drops, translating to a similar number of

packet losses per flow as before. We find evidence of this effect in Figure 3.12(b) which

shows the number of consecutive drops for 2-hop flows remains much higher than the 6-hop

flows even with 20 flows per host.

3.4 Mitigating Unfairness

The root cause of the TCP Outcast problem in data center networks is input port black-

out at bottleneck switches happening due to the taildrop policy of the output queue, which

has a drastic effect on the throughput of the few flows that share the blackout input port.
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Figure 3.15. Distribution of consecutive packet drops under RED, SFQ,
and TCP pacing solutions

Hence, the key to solving the TCP Outcast problem is to distribute packet drops among all

competing flows (for an output port) arriving at the switch to avoid blackout of any flow.

In this section, we study three approaches that all achieve this goal, but via rather dif-

ferent means. The first includes two solutions that directly get rid of the taildrop packet

drop policy, by replacing it with RED or SFQ. The second, TCP pacing, tries to alleviate

the burstiness of packets in each TCP flow (i.e., window), and hence potentially reduces

bursty packet loss for any particular flow. The third approach avoids port blackout by forc-

ing flows with nearby senders to detour to take similar paths as flows with faraway senders

so that their packets are well interleaved along the routing paths. We evaluate the effective-
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Figure 3.16. Average throughput under RED, SFQ, and TCP pacing solutions

ness of each approach and further discuss their pros and cons in terms of implementation

complexity and feasibility in data center networks.

3.4.1 RED

RED [47] is an active queue management policy which detects incipient congestion and

randomly marks packets to avoid window synchronization. The random marking of packets

essentially interleaves the packets from different input ports to be dropped and hence avoids

blackout of any particular port. We simulate RED in ns-2 with the same configuration as

Figure 3.4(c), with 12 6-hop flows and 1 2-hop flow destined to a given receiver. In our
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setup, we use the classical RED policy, with the minimum threshold set to 5 packets, the

maximum threshold set to 15 packets, and the queue weight set to 0.002.

Figure 3.15(a) shows the distribution of different number of consecutive packet drops

for 2-hop and 6-hop flows (since there are multiple 6-hop flows we take an average of all

the twelve flows). We observe that the consecutive packet drop events are similar for 2-hop

and 6-hop flows. More than 90% of packet drop events consist of a single consecutive

packet loss, suggesting that blackouts are relatively uncommon, and all the flows should

have achieved a fair share of TCP throughput. However, Figure 3.16(a) shows a difference

in average throughput between 2-hop and 6-hop flows. This is explained by the well-known

RTT bias that TCP exhibits; since the 2-hop flow has a lower RTT, it gets the a larger share

of the throughput (TCP throughput e 1
RTT×

√
droprate

). Thus, we can clearly see that RED

queuing discipline achieves RTT bias but does not provide the true throughput fairness in

data center networks.

3.4.2 Stochastic Fair Queuing

We next consider stochastic fair queuing (SFQ) [48], which was introduced to provide

fair share of throughput to all the flows arriving at a switch irrespective of their RTTs. It

divides an output buffer into buckets (the number of buckets is a tunable parameter) and

the flows sharing a bucket get their share of throughput corresponding to the bucket size.

A flow can also opportunistically gain a larger share of the bandwidth if some other flow

is not utilizing its allocated resources. We simulate the same experimental setup as before

(twelve 6-hop and one 2-hop flow) in ns-2 with SFQ packet scheduling. We set the number

of buckets to 4 to simulate the common case where there are fewer buckets than flows.

Figures 3.16(b) shows the average throughput observed by different flows. We see that

SFQ achieves almost equal throughput (true fairness) between the 6-hop flows and the 2-

hop flow. We can also observe in Figure 3.15(b) that the 2-hop flow experiences a higher

percentage of consecutive packet drop events (20% of the time, it experiences 2 consecutive
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drops). Since the 2-hop flow has a lower RTT, it is more aggressive as compared to the 6-

hop flows, leading to more dropped packets than those flows.

3.4.3 TCP Pacing

TCP pacing, also known as “packet spacing”, is a technique that spreads the transmis-

sion of TCP segments across the entire duration of the estimated RTT instead of having a

burst at the reception of acknowledgments from the TCP receiver (e.g., [49]). Intuitively,

TCP pacing promotes the interleaving of packets of the TCP flows that compete for the out-

put port in the TCP Outcast problem and hence can potentially alleviate blackout on one

input port. We used the TCP pacing in our ns-2 [50] setup and repeated the same experi-

ment as before. Figure 3.16(c) shows that TCP pacing reduces throughput unfairness; the

throughput gap between the 2-hop flow and 6-hop flows is reduced from 7× (Figure 3.4(c))

to 2×. However, the Outcast problem remains. This is also seen in Figure 3.15(c), where

the 2-hop flow still experiences many consecutive packet drops. The reason is as follows.

There is only a single (2-hop) flow arriving at one of the input ports of the bottleneck

switch. Hence, there is a limit on how much TCP pacing can space out the packets for that

flow, i.e. the RTT of that 2-hop flow divided by the congestion window.

3.4.4 Equal-Length Routing

As discussed in Section 3.2, one of the conditions for TCP Outcast problem is the

asymmetrical location of senders of different distances to the receiver, which results in dis-

proportionate numbers of flows on different input ports of the bottleneck switch competing

for the same output port. Given we can not change the location of the servers, one intuitive

way to negate the above condition is to make flows from all senders travel similar paths and

hence their packets are well mixed in the shared links and hence well balanced between dif-

ferent input ports. Before discussing how to achieve this, we briefly discuss a property of

the fat-tree network topology that makes the proposed scheme practical.
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In a fat-tree [20] topology, each switch has the same amount of fan-in and fan-out

bandwidth capacity, and hence the network is fully provisioned to carry the traffic from

the lowest level of servers to the topmost core switches and vice versa. Thus although the

conventional shortest path routing may provide a shorter RTT for packets that do not need

to reach the top-most core switches, the spare capacity in the core cannot be used by other

flows anyways.

Based on the above observation, we propose Equal-length routing in a fat-tree data-

center network topology, where data packets from every server are forwarded up to the core

switch irrespective of whether the destination belongs in the same pod of the sender. Ef-

fectively, Equal-length routing prevents the precarious situations where a given flow alone

suffers from consecutive packet losses (as discussed in Section 3.2). Since all the flows are

routed to the core of the network, there is enough mixing of the traffic arriving at various

ports of a core switch that the packet losses are uniformly shared by multiple flows. Equal-

length routing ensures a fair share among multiple flows without conceding any loss to the

total network capacity. It is simple to implement and requires no changes to the TCP stack.

Implementation. Equal-length routing can be implemented in a fat-tree by routing each

packet to a core switch randomly or deterministically chosen. Under the random scheme,

the core switch is randomly uniformly chosen [13]. Under the deterministic scheme, the

core switch is determined based on the destination address as follows. On our testbed

running OpenFlow for routing control, at the ToR switches, a packet coming from a server

(down port) is forwarded to one of the aggregate switches (up ports) as decided by the

destination address (e.g., port selection is based on the last bit of the destination address).

Similarly at the aggregate switches, packets coming from ToR (down) are forwarded to

the core (up) switches and vice versa (e.g., port selection based on the second last bit of

the destination address). Consider the flow of packets from S1 to the Dest in Figure 3.1.

Without the Equal-length routing, the packets take the path S1→ Tor0→ Dest, but under

Equal-length routing, the packets will go through S1 → Tor0 → Agg0 → Core0 →

Agg0→ Tor0→ Dest.
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Properties. Equal-length routing creates interesting changes in the dynamics of interac-

tions among the TCP flows. Under the new routing scheme, all the flows are mixed at core

switches (feasible in a network providing full-bisection bandwidth) which gives rise to two

properties: (1) The deterministic scheme results in all flows in many-to-one communica-

tion sharing the same downward path, whereas the random scheme results in flows going

to the same destination being well balanced between different input ports at each switch

in the downward paths. Both effects avoid the blackout of any particular flow; instead, all

the competing flows suffer uniform packet losses. (2) All the flows have similar RTTs and

similar congestion window increases. Together, they ensure that competing flows achieve

similar true fair share of the bottleneck link bandwidth.

Evaluation. To analyze the proposed routing scheme, we implemented Equal-length rout-

ing in our data center testbed and conducted similar experiments as Figure 3.4(c). Other

than the new routing scheme, all the setup was kept the same. We analyze the TCP through-

put achieved by different flows as before. Note that even though every flow is now com-

municating via a core switch, we label them as 2-hop and 6-hop flows for consistency and

ease of comparison with previous results.

Figure 3.17(a) depicts the TCP throughput share between different flows. We can ob-

serve that the flows get a fair throughput share which is comparable to what they achieved

under the SFQ packet scheduling discipline. The fair share of throughput can be further

explained from Figure 3.17(b), which shows that the flows experience similar packet drops;

none of the flows has to suffer a large number of consecutive packet drops.

3.4.5 Summary

Table 3.2 summarizes the four potential solutions for the TCP Outcast problem we have

evaluated. All solutions share the common theme of trying to break the synchronization of

packet arrivals by better interleaving packets of the flows competing for the same output

port and hence evening out packet drops across them. We find that although all approaches
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Figure 3.17. Effectiveness of equal-length routing

alleviate the TCP outcast problem, RED still leads to RTT bias, and TCP pacing still leads

to significant inverse RTT bias. SFQ and Equal-length routing provide RTT fairness but

have their limitations too. SFQ is not commonly available in commodity switches due
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Table 3.2
Fairness property of TCP Outcast solutions

Techniques Fairness Property

RED RTT bias

SFQ RTT fairness

TCP Pacing Inverse RTT bias

Equal-length routing RTT fairness
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Figure 3.18. Average throughput of flows in MapReduce sort application

to its complexity and hence overhead in maintaining multiple buckets, and Equal-length

routing is feasible only in network topologies without over-subscription. The final choice

of solution will depend on the fairness requirement, traffic pattern, and topology of the data

center networks.
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3.5 Outcast in MapReduce

We investigate the existence of TCP outcast in MapReduce sort application. In our

testbed setup, each server hosts two maps and two reduce tasks. The input to the sort

application is a 10 GB file of randomly generated integers. Each map task sorts a split

of this large file and sends the sorted result to the reduce tasks distributed across the data

center. Hence, a reduce task is a destination of multiple TCP flows arriving from servers

at varying hop distance in the network. This creates a scenario similar to one in which we

have observed TCP Outcast to occur.

We analyze the network traces collected at end hosts for the existence of TCP Outcast.

We observe a similar throughput unfairness phenomenon as was observed in case of many-

to-one file transfer. Figure 3.18 depicts one such network event at a reduce task in which

the average throughput achived by 2-hop TCP flows are almost three times smaller than

that achieved by other flows. When we implement the equal-length routing in our testbed

and repeat the same experiment, we observe that the throughput unfairness is no longer

present. One important thing to note is that the completion time of sort application in both

the experiments were similar. In MapReduce sort application, the bottleneck is the disk

access time and improvement in network throughput fairness does not have any impact on

the application completion time.

3.6 Related Work

We divide related work into three main categories—TCP problems in data centers, new

abstractions for network isolation/slicing, and TCP issues in the Internet context.

3.6.1 TCP Issues in Data Centers.

Much recent work has focused on exposing various problems associated with TCP in

data centers (already discussed before in Section 3.1). The TCP Incast problem was first

exposed in [37], later explored in [38,39,43]. Here the authors discover the adverse impact
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of barrier-synchronized workloads in storage network on TCP performance. [39] proposes

several solutions to mitigate this problem in the form of fine-grained kernel timers and

randomized timeouts, etc.

In [33], the authors observe that TCP does not perform well in mixed workloads that

require low latency as well as sustained throughput. To address this problem, they propose

a new transport protocol called DC-TCP that leverages the explicit congestion notification

(ECN) feature in the switches to provide multi-bit feedback to end hosts. While we have

not experimented with DC-TCP in this dissertation, the Outcast problem may potentially

be mitigated since DC-TCP tries to ensure that the queues do not become full. We plan to

investigate this as part of our future work.

In virtualized data centers, researchers have observed serious negative impact of virtual

machine (VM) consolidation on TCP performance [51,52]. They observe that VM consol-

idation can slow down the TCP connection progress due to the additional VM scheduling

latencies. They propose hypervisor-based techniques to mitigate these negative effects.

In [11], the authors propose multipath TCP (MPTCP) to improve the network perfor-

mance by taking advantage of multiple parallel paths between a given source and a desti-

nation routinely found in data center environments. MPTCP does not eliminate the Outcast

problem as we discussed in Section 3.2.2.

3.6.2 Network Isolation.

The second relevant body of work advocates network isolation and provides each ten-

ant with a fixed share of network resources [14–16]. For example, SecondNet [15] uses

rate controllers in hypervisors to ensure per-flow rate limits. Seawall [14] uses hypervisors

to share the network resources according to some pre-allocated weight to each customer.

Finally, Oktopus [16] provides a virtual cluster and a two-tier oversubscribed cluster ab-

straction, and also uses hypervisors to implement these guarantees. Our focus in this disser-

tation, however, is on the flow-level fairness as opposed to tenant-level isolation considered

in these solutions.
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3.6.3 Wide-area TCP Issues.

While this dissertation is mainly in the context of data centers, several TCP issues have

been studied for almost three decades in the wide-area context. One of the most related

work is that by Floyd et al. [45], where they study so-called phase effects on TCP per-

formance. They discover that taildrop gateways with strongly periodic traffic can result in

systematic discrimination and lockout behavior against some connections. While our port

blackout phenomenon occurs because of systematic biases long mentioned in this classic

work and others (e.g., RFC 2309 [46]), they do not mention the exact Outcast problem

we observe in this dissertation. RTT bias has also been documented in [45] where TCP

throughput is inversely proportional to the RTT. TCP variants such as TCP Libra [53] have

been proposed to overcome such biases, but are generally not popular in the wild due to

their complexity. The typical symptom of the TCP Outcast problem in data centers is the

exact opposite.
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4 JUMBO FRAMES OR NOT: THAT IS THE QUESTION!

In this dissertation, we focus on Ethernet jumbo frames, which are essentially Ethernet

frames with size greater than 1500 bytes up to 9000 bytes. The key argument in support for

jumbo frames has been mainly that they help reduce CPU overheads for TCP processing

and achieve better network utilization and throughput since they lead to overall fewer pack-

ets. Unfortunately, despite the fact that jumbo frames were introduced almost 15 years ago,

their deployment in the Internet is not widespread. Part of the reason is that larger frame

sizes can cause additional delays for latency-sensitive traffic, as each frame has a high se-

rialization delay [54]. A more serious reason, perhaps, is that it requires all ASes along an

end-to-end path to upgrade their network to provide a larger MTU, which poses significant

deployment challenges. Deployment challenges are slightly less aggravated in enterprise

networks which are managed by a single authority. Nonetheless, jumbo frame deployment

in enterprise networks has been relatively sparse, possibly because of the presence of sev-

eral types of middleboxes (e.g., firewalls, load balancers) that are often incompatible with

jumbo frames, even if most commodity forwarding devices (e.g., switch, routers) today are

more or less compatible with jumbo frames.

Before network operators can turn jumbo frames on, however, it is extremely impor-

tant to ascertain whether there are any application-level benefits of jumbo frames and also

determine whether they cause more harm than good for a canonical set of data center ap-

plications. Unfortunately, there exist no prior studies that explore whether jumbo frames

offer any advantages in these specific scenarios. Most studies [55, 56] conducted in the

past used outdated hardware that did not possess new features such as large-send offload

(LSO), large-receive offload (LRO) which essentially make the software networking stack

deal with large packets (almost 64KB) than typical Ethernet MTUs of 1500 bytes. Even

for those relatively recent studies (e.g. [54]) conducted with modern hardware, they deal

with latencies at the Internet scale and not intra data center such as less than a couple of
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milliseconds. Finally, none of the existing studies focus on data center applications, which

makes it hard for operators to directly use these results.

To address this gap, in this dissertation, we conduct a detailed empirical study involving

jumbo frames with canonical data center applications such as file transfer, MapReduce and

3-tiered Web applications. While our study is not the final word for all data centers and

all scenarios, our study is timely as many data center network operators are thinking about

turning on jumbo frames in their data centers. Indeed the study itself originated from such

a requirement at a large web service provider’s data center network with whom we spent

a considerable amount of time understanding the needs of their environment and their best

practices. Our study is complementary to all existing studies involving jumbo frames, but

provides new results as we use modern hardware with features such as LSO and LRO, and

is conducted with more relevant data center oriented applications, making our study more

applicable to data center operators today.

Through our comprehensive evaluation of jumbo frames in our data center testbed con-

sisting of 12 servers, we observe increased throughput and reduced CPU utilization across

all tested applications. For instance, jumbo frames achieved 5.5–11% higher throughput

for file transfer applications, and a small reduction (up to 4%) in job completion time for

MapReduce applications, but virtually no benefit for Olio web service. Somewhat surpris-

ingly, however, we observed that response time of the web application has gone up, even if

only slightly. Upon further investigation, we discovered that the Nagle’s algorithm in TCP

causes this effect; upon disabling Nagle (which some data center network operators, like

the one we have interacted with, already do), we found that response times were back to

normal. This points to an important issue regarding the interplay of Nagle’s algorithm with

latency sensitive algorithms that merits a more detailed treatment outside the scope of this

dissertation.
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4.1 Motivation

In this section, we provide the motivation for conducting a detailed empirical study on

jumbo frames in modern data center environments. At a high level, there are primarily

two reasons that necessitate deliberation about jumbo frames in modern networks. Firstly,

most of the observations and results about jumbo frames are outdated; thereby past research

conducted with obsolete devices creates disagreement in the community about the efficacy

of jumbo frames. Another motivation for this study is the environmental shift. In the

past, jumbo frames were mainly studied for wide area networks and specialized storage

networks. Modern data center networks provide a new frontier where jumbo frames have

not been thoroughly evaluated. In the following, we enlist some of the canonical properties

(or myths) of jumbo frames that we wish to re-evaluate in data center setup. We also take

a look at some key features of data center networks that make the use of jumbo frames

conducive in this environment.

4.1.1 Properties Associated with Jumbo Frames

P1: Increased throughput. The most well-known property of jumbo frame is the sig-

nificant throughput gain that can be achieved with it. For instance, in [55], Feng et al.

illustrated, in their micro-benchmark tests using Chelsio T110 10GE adapters, that with

9KB MTU, TCP achieves a throughput of up to 7.2 Gbps, but only 4.9 Gbps with 1,500

byte MTU. Similarly, in [56], significant throughput gain was reported when 8KB jumbo

frames are used along side other TCP optimization mechanisms such as zero-copy and

checksum offloading. In contrast, another study [57] reports that LSO (Large Segment

Offload) achieves the most gain while LSO along with jumbo frames provides additional

8% improvement. Due to the mixed view about the benefits of jumbo frames, some engi-

neers question the need for jumbo frames [58, 59] and some others advocate the adoption

of jumbo frames in modern data centers [10].

Similar to previous works, we focus on evaluating the throughput gains. We, however,

use several real data center applications and more typical traffic patterns. We also vary the
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size of data transfers and RTTs (from hundreds of microseconds to ten milliseconds) in

the network and provide a fully rounded analysis of throughput gain with the use of jumbo

frames.

P2: Increased delay. A large packet size basically means a large transmission time. The

transmission time of a 9KB jumbo frame is approximately 6 times more than a 1500 byte

Ethernet frame. Thus, jumbo frames lead to increased delay of packet transmission [60].

This property of jumbo frames may worsen the response times of real time applications

such as VoIP, gaming, web services and HPC applications, which are severely impacted by

end-to-end latency.

Higher transmission time for jumbo frames is a non-issue for modern faster network

cards. For instance, serialization delay of a 9K frame on a GE network is less than the

serialization delay of a 1500 byte packet on a 100 Mbps network. But unlike throughput,

the studies that analyze the effect of using jumbo frame on the response times of these

services have been very limited. In [61], Joubert et al. measure response times of memory-

based web servers in terms of connection rate, but the results are only about jumbo frame-

enabled cases, not the regular Ethernet frame case. Thus, they do not study the benefits of

using jumbo frames over regular frames, let alone consider different frame sizes and fully

explore the advantages and disadvantages of jumbo frames in these environments [62, 63].

We use a popular open source web service to study the impact of frame sizes on response

time in modern data center networks.

P3: Reduced system overhead. One of the essential network properties is reduced per-

packet processing overhead at end hosts and switches. Given the same amount of data,

using jumbo frame generates fewer packets to be processed than the usual 1,500 byte MTU

Ethernet frames. Thus, end hosts generate fewer interrupts and thus save CPU cycles. For

instance, Chase et al. showed that 8KB jumbo frames reduced the CPU utilization by a

factor of 3, compared to the standard Ethernet frames [56]. However, the benefit of jumbo

frames seems to wither due to the wide adoption of LSO as the LSO which also significantly

saves CPU utilization [64]. We want to revisit this property in case of various data center

applications.
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4.1.2 Uniqueness of Data Center

Modern data centers possess a lot of characteristics that make them feasible candidates

to use jumbo frames. We highlight a few of those properties that show case the necessity

of studying the impact of jumbo frames in data centers.

High bandwidth. The most distinctive aspect of modern data center networks is the avail-

ability of high bandwidth to the end hosts. Some are already deploying 10 Gbps Ethernet,

while practically every network has at least 1 Gbps at the edge. Jumbo frames were de-

signed keeping high bandwidth networks in mind and are well suited for use in data center

networks. In addition to increasing throughput, the reduction of overheads can help accom-

modate more jobs at these servers.

Low latency. Nodes in a data center are closely located from each other in a geographically

small region. Therefore, the end-to-end delay between any pair of servers is typically a few

hundred microseconds but can go upto a few milliseconds during congestion [33]. The

study of the influence of jumbo frames in such a low-latency environment is limited.

New applications. Given the high capacity and low latency characteristics, many new ap-

plications with different requirements started to nest in data centers. For instance, MapRe-

duce tends to demand higher throughput while less caring about delay. On the other hand,

low latency is key to meeting the response time requirement of latency-sensitive applica-

tions such as search, 3-tier web services and many HPC applications. Jumbo frames can be

a desirable feature to bandwidth-hungry applications, but not to latency-sensitive applica-

tions. Moreover, all these services are hosted in the same data center. Thus, it is important

to understand how the option influences both types of applications.

Single administrative authority. Data centers are mostly managed by a single organiza-

tion. Multiple management domains (i.e. different ISPs) were one of the main hurdles that

prohibited the adoption of jumbo frames in the Internet. On the other hand, the single own-

ership of a data center makes enabling jumbo frames much simpler and straightforward.
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4.1.3 Other Use Cases of Jumbo Frames

JumboGen [65] enables packet aggregation with jumbo frames at core networks while

keeping edge networks unmodified. It reduces the overhead of processing a number of

small packets and increase the core network utilization. However, it does not show what

“real” benefits jumbo frames would create for today’s data center applications. In the data

center context, a few recent research papers consider jumbo frames as one of their system

features. In [66], Rhoden et al. propose that enabling jumbo frames would be beneficial for

block-level data transfer. Unfortunately, there is no quantitative evaluation on the benefits

of jumbo frames. Storage Area Network (SAN) is one canonical field where jumbo frame

has been heavily tested and used as a part of the iSCSI (SCSI over TCP) specification

because 4KB or 8KB SCSI blocks cannot fit in a single 1,500-byte Ethernet frame. The

performance of the iSCSI protocol that relies on jumbo frames was evaluated in several

previous studies [67–69].

4.2 Methodology

In this section, we describe our testbed, the set of applications, and the performance

metrics we use to evaluate the impact of jumbo frames.

4.2.1 Testbed Setup

Our testbed consists of a rack of 12 servers connected via full duplex 1 GE links to a

top of rack network switch. Each server has a quad-core Intel(R) Xeon(R) CPU X3430

(@2.40GHz) with no hyper-threading support. The L1 cache size is 256 KB, L2 cache size

is 1024KB, and the L3 cache size is 8192KB. Each server has a total of 4GB RAM. Each

server is connected with SATA drives with a rotational speed of 7200 RPM. The servers

are running Linux 3.0.0-12 provided with Ubuntu 11.10 distribution.

Every host has an Intel Corporation 82574L Gigabit network card which provides

jumbo frame support. Technologies like LSO (large segmentation offload), TSO (TCP
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Figure 4.1. Communication patterns of applications tested.

segmentation offload), LRO (large receive offload), and interrupt coalescing in order to

reduce packet processing overhead, are enabled. LSO eliminates the per-packet CPU over-

head at the sender side and thus limits the benefits of jumbo frames. On the other hand,

LRO (the inbound counterpart of LSO) does not totally eliminate the CPU overhead borne

by incoming packets. All these features are supported by the network card we use. While

one could explore how these options interplay with jumbo frames, it does not make sense

to pursue this direction since these options are pretty much universally deployed.

4.2.2 Data Center Applications

We evaluate the performance of jumbo frames on three applications, file transfer appli-

cation, Hadoop MapReduce application and Olio which is a tiered web service application.

These applications vary in terms of their traffic patterns and system resource requirements.

Figure 4.1 shows the traffic patterns of these applications. On one end of the spectrum,

file transfer applications require mostly network resources and consume little computation
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resources. Hadoop MapReduce applications like terasort have high requirement for com-

putation resources as well as network resources. At the other end of spectrum, Olio is

representative of web service applications, which have many small HTTP request-response

type of flows. We describe the details of these applications in below.

File Transfer

We use standard FTP clients and servers for experiments. We experiment with different

traffic patterns ranging for one-to-one, many-to-one and many-to-many. In these applica-

tions, we are mainly concerned about the throughput achieved by using different frame

sizes.

Hadoop

The Hadoop test setup consists of 13 nodes. We run Hadoop version 1.2.0 on these

servers. One of the servers acts both as the namenode and the jobtracker. All other servers

run datanode and tasktracker on them. Each server runs a maximum of 2 mappers and 2

reducers. The tasks are initiated in JVM running with a heap size of 512MB. The various

configurations for Hadoop setup are similar to the one described in [70]. We run MapRe-

duce terasort and grep applications on our testbed. In these applications, we are concerned

about the completion time of a given job.

Olio

Olio is a web 2.0 toolkit to help evaluate the suitability, functionality and performance

of web technologies [71]. Among many different implementations, we choose the binary

kit for the RubyOnRails implementation. Our setup consists of 1 load balancer (running

the nginx server), 2 web servers (running the thin servers), 1 SQL database server, 1 mem-

cached server , 1 NFS server, and 1 faban client which is driving load against the web
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application. In Olio web service, we are interested in recording the response time and

number of operations successfully completed using different frame sizes.

4.2.3 Performance Metrics

The metrics of interests are throughput, CPU cycles, number of instructions, instruction

per cycle (IPC), and number of network interrupts. We choose the metrics because they

are ones that system administrators in data centers most care about. We use the Linux

perf tool for collecting various system-level metrics and counters cpu-cycles (cycle count

when the CPU is not idle), instructions, and IPC (instructions per cycle). We record these

counters system-wide with and without running the applications. The difference gives us

an estimate of the counter values while executing applications. Similarly, the numbers

of network transmit interrupts (NET TX) and receive interrupts (NET RX) are reported

through /proc/softirq. In addition to system-level metrics, we also record various

application level metrics which vary with different applications.

4.3 Evaluation

In the experiments, we configure the network cards with 4 different MTU values:

1,500bytes, 4KB, 8KB and 9KB. While 1,500bytes is the default Ethernet MTU value

(thus, we call this 1,500 byte packet Ethernet frame hereafter), 9KB is the widely accepted

frame size for jumbo frames. We also find 4KB and 8KB as interesting choices for frame

sizes as they can fit within one and two memory pages respectively.

Jumbo frames typically reduce per-packet overhead both at the end host and at the

network switches. Thus, expected microscopic benefits of jumbo frames are increased

throughput and reduced number of CPU cycles and instructions for packet processing. To

quantitatively evaluate such improvements, the first application we test is file transfer since

jumbo frames are best known for its efficacy for these types of applications.
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4.3.1 File Transfer Application

In order to evaluate the benefits of jumbo frames, we conduct a progressive study start-

ing from one-to-one file transfer, to many-to-one file transfer and finally many-to-many

transfer. In all three cases, we conduct experiments with traditional FTP (file transfer pro-

tocol) server/client with different file sizes: 100KB, 1MB and 100MB ( [33] shows that the

flow sizes in data centers can range from a few kilobytes to hundreds of megabytes). All

the results are averaged over 5 runs.

One-to-one Transfer

This basic setup involves two hosts, where one host transfers data to the other. Figure

4.2(a) depicts the throughput achieved for different file transfer sizes. We observe that in

case of 100KB file transfer, the throughput achieved with all the frame sizes are less than

700 Mbps. Because of the smaller file size to transfer, the flow is not able to increase its

congestion window enough to fully utilize the link capacity. The throughput achieved by

jumbo frames of sizes 8K and 9K is 700 Mbps which is almost 4% more than the throughput

achieved by the 1.5K Ethernet frames (675 Mbps). The.throughput achieved by 4K frame

lies between these two. To the best of our knowledge, none of the previous works have

results that compare the throughput of regular and jumbo frames when a small sized flow

is used.

As the file size is increased, we observe higher throughput for all the frame sizes. With

1MB files (which is still not large enough for saturating the link capacity), the throughput

with jumbo frames (8K/9K) is almost 10% more than with the 1.5K frames. The through-

put obtained by jumbo frames in transferring 1MB files show better improvement than the

standard Ethernet frames. It is because of the higher MSS value from jumbo frames that

leads to larger initial congestion window (10 MSS [72]) and also a rapid increase in the

congestion window. A file transfer size of 100MB leads to full utilization of the link ca-

pacity. At saturation, we see the best performance by all the frame sizes. The throughput

achieved with jumbo frames is around 985 Mbps as compared to 934 Mbps with standard
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Figure 4.2. Results in one to one file transfer using FTP.

Ethernet frames. We observe that use of jumbo frames in one-to-one file transfer provides a

5.5% potential benefit over standard Ethernet frames even when utilizing full link capacity.

At the sender side, there is no significant difference in the system level statistics in

case of regular and jumbo frames. This is expected as LSO eliminates the per-packet

CPU overhead on the system (which the jumbo frames were designed to help with). The
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major difference is visible at the receiver side. Figure 4.2 highlights the number of CPU

cycles used and instructions executed with different frame sizes. Looking at the graph

corresponding to the 100MB file transfer (for better visibility, the graphs corresponding to

100KB has been scaled up by a factor of 100 while, the for 1MB it has been been scaled

up by 10), we can observe that the total number of CPU cycles in case of jumbo frames

(8K/9K) is 13% less and the number of instructions is also similarly low. It shows that

for receiving the same amount of data, end host CPU spends fewer cycles and instructions

when using jumbo frames. This saving can help other applications running on the same

host, especially those that are CPU-bound. The IPC numbers depicted in Figure 4.2(d)

show similar values for different frame sizes.

In previous work, Chase et al. showed that transferring data over jumbo frames reduces

CPU utilization by a factor of 3 [56]. In our setup, we did not see huge improvements in

CPU utilization. We see a slightly lower CPU usage in case of data transfer with jumbo

frames. The average CPU usage reported for the period of data transfer over jumbo frame

(9K) is usr = 0.08, sys = 0.94, softirq = 0.04. In case of Ethernet frames, the average

CPU usage is usr = 0.13, sys = 1.77, softirq = 0.17. As we mentioned previously, modern

network cards have technologies like GSO, TSO, and interrupt coalescing, that help to

reduce per packet CPU overhead. Hence we do not see as high CPU savings as observed

in previous work.

One-to-one Transfer with inflated RTTs The experiments conducted in the previous

section have no interference from any other network traffic. The RTTs were of the order of

200 microseconds. In data centers, one would expect some queuing delays at the routers

and switches. We used Linux traffic controller to artificially inflate the RTTs. Figure 4.3(a)

demonstrates that for a small size file transfer (1MB), increase in RTT has a huge impact

on the application throughput. When the RTT is inflated by 1ms, the throughput obtained

with standard Ethernet frames drops well below 200 Mbps, but the throughput with jumbo

frames are still around 400 Mbps (more than 200% compared to Ethernet frames).

With large size file transfer (100MB), we see that an RTT inflation of 10ms has a drastic

impact on the throughput of Ethernet frames. It drops below 250 Mbps. The jumbo frames
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Figure 4.3. Average throughput in file transfer application with inflated RTTs.

still obtain a throughput of more than 800 Mbps. We also tested out a 1GB file transfer

with 10 ms RTT (result not shown) and found that the jumbo frame achieves 950 Mbps

compared to 875 Mbps with regular frames. While 10ms may seem like a large value of

RTT for intra data center environment, it is very common for inter data center data transfers.

Hence having jumbo frames enabled in the network can speed up the process of taking data

center backups which require transferring large amounts of data.
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Figure 4.4. Micro-benchmark results in many to one file transfer using FTP.

Many-to-one Transfer

Many-to-one data transfer is one of the more commonly occurring traffic pattern in data

center networks (e.g. barrier-synchronized workload in MapReduce). In our setup we have

12 nodes on a rack, with 11 of them sending data to 1 end host. We repeat experiments
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with FTP; each host is sending a file with the same x amount of data where x is 100KB,

1MB and 100MB. The throughput presented in Figure 4.4(a) is the aggregated throughput

at the receiving node. We observe that regardless of file sizes, the throughput obtained by

jumbo frames (8K/9K) is much higher than that of the regular frames. When the file size is

small (100KB), the jumbo frames achieve almost 11% higher throughput.

In case of many-to-one file transfer of 1MB, using jumbo frames saturates the link

capacity, whereas using 1.5K frames still has room for improvement. In fact, the throughput

with jumbo frames is still 11% more than with 1.5K frames. The performance of 4K frame

lies between the two. With 100MB file transfer, the throughput of using jumbo frames does

not change, while the using Ethernet frames finally saturate the link. In this state, jumbo

frames have 5.5% higher throughput compared to 1.5K frames.

Figure 4.4 also highlights the CPU resources used at the receiving host. The total num-

ber of CPU-cycles used is almost 17% lesser with jumbo frames while 22% fewer instruc-

tions are executed. As we observed in the one-to-one scenario, the IPC values are roughly

the same across different frame sizes. The savings in CPU resources is a huge benefit of

using jumbo frame; not only we get higher application throughput, we also save a lot of

system resources useful for other operations.

Many-to-many Transfer

In many-to-many file transfer, half of the 12 nodes on the rack are transferring data to

the other half as depicted in Figure 4.1(a). We repeat experiments with file sizes of 100KB,

1MB and 100MB. In our setup, all the senders send data to all the receivers resulting in 6

concurrent connections at each receiving node. We report the average throughput achieved

by individual receivers.

Figure 4.5(a) demonstrates that the data transfer over jumbo frames achieves a higher

throughput compared to over standard Ethernet frames. The results are similar to many-to-

one file transfer experiments. For small files, jumbo frames have a 7% higher throughput.

We also see that jumbo frames achieve link capacity faster than the 1.5K frames. At link sat-
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Figure 4.5. Micro-benchmark results in many to many file transfer using FTP.

uration, the average throughput achieved by the receivers is 860 Mbps with jumbo frames

and 830 Mbps with Ethernet frames. Jumbo frames also saves a lot of CPU resources com-

pared to Ethernet frames. Figure 4.5(b) shows the average number of cycles used at each

receiver. We observe that the use of jumbo frames saves more than 20% of CPU cycles at
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Figure 4.6. Average completion time of Hadoop applications.

each receiver. The number of instructions is also reduced which leads to overall low CPU

utilization at the receivers.

4.3.2 MapReduce Applications

Next we evaluate the impact of jumbo frame on MapReduce applications, which are

commonly used in data centers. We test two simple but popular MapReduce applications—

terasort and grep—using Hadoop. The two applications have slightly different flavor. On

one hand we have the Terasort has a significant networking component and involves shuf-

fling large amounts of data, while Grep is mostly CPU bound with a small sized shuffle

phase. We want to study the impact of jumbo frames on both classes of applications. All

of the results reported are averaged over 3 runs.

Hadoop Terasort

We run the MapReduce terasort application on a 100 GB file generated using the

Hadoop teragen application. As mentioned in previous section, Hadoop is run on 12 nodes
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with 2 mappers and 2 reducers running on each node. The task to sort 100 GB file is broken

down into 744 map and 24 reduce tasks. Figure 4.6(a) shows the completion time of tera-

sort with different frame sizes. We observe that the completion time with standard Ethernet

frame is almost 4% more than the completion time with 9K jumbo frames. To reason about

the difference in completion time, we analyze the shuffle phase of the reduce tasks. In case

of standard Ethernet frames, the average shuffle phase lasted for a total of 440 seconds (it

lasted for 434 seconds with 4K frames). With 9K jumbo frames, the average shuffle phase

lasted for only 421 seconds. We see that use of jumbo frames results in a slightly smaller

shuffle phase period which helps the terasort application to finish up faster.

Table 4.3.2 shows the results for terasort. Similar to our observations in file transfer

application, we find that jumbo frames contribute in reducing the system overhead of run-

ning Hadoop applications. For example, 9K jumbo frames allow terasort to consume about

1% less CPU cycles than Ethernet frames. The number of network receive interrupts in

case of 1.5K frames is also about 6% higher than in case of 9K jumbo frames. In terms

of CPU utilization, we observe a marginal benefit with jumbo frames. The average CPU

usage reported for jumbo frames is usr = 30.5, sys = 4.66, softirq = 0.62. In case of Ethernet

frames, the average CPU usage is usr = 32.18, sys = 4.82, softirq = 0.72. Thus we see that

a higher network throughput and lower resource utilization from using jumbo frames result

in almost 40 seconds difference in the completion time of the terasort application.

Hadoop Grep

We run the MapReduce grep application on a 10GB file. This is a small scale job con-

sisting of 96 mappers and 24 reducers. We want to study the impact of jumbo frames on

MapReduce applications which may not have a large networking component but is CPU

intensive. Figure 4.6(b) highlights the completion time of grep with different frame sizes.

We see that the completion time under jumbo frames is about 1.5% shorter than with stan-

dard Ethernet frames. The gain is smaller as compared to the terasort application (which

has a significant network load).
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Table 4.1
Average CPU cycles, instructions and IPC values for different Hadoop applications

The base count for cycles and instructions: ×1012

Fsize Terasort Grep

cyc ins IPC cyc ins IPC

1500 3.221 3.577 1.110 2.660 5.940 2.231

4000 3.199 3.574 1.113 2.659 5.939 2.232

8000 3.190 3.558 1.115 2.658 5.936 2.235

9000 3.192 3.564 1.117 2.658 5.935 2.232

In the grep application, the number of CPU cycles used by jumbo frames (8K) is 0.07%

lower than used by standard Ethernet frames. The number of network receive interrupts is

about 5% lower. In terms of CPU utilization, we observe a marginal benefit with jumbo

frames. The average CPU usage reported for jumbo frames is usr = 35.5, sys = 0.24, softirq

= 0.12. In case of Ethernet frames, the average CPU usage is usr = 36.1, sys = 0.28, softirq

= 0.15.

4.3.3 Olio Web Application

Olio is an open source reference architecture supported by apache to evaluate various

web2.0 technologies. It showcases various components used in social web sites. In our

setup (Figure 4.1(b)), we have one faban driver [73] which drives load against the appli-

cation setup. We have two web servers running instances of thin servers. The requests to

the web servers are routed through a load balancer running nginx server. The driver em-

ulates different kinds of client operations like login, accessing home page, adding events,

etc. An operation involves loading one entire web page (which consists of multiple HTTP

requests to complete the page). The inter-arrival times between operations are chosen from

a negative exponential distribution with a mean of 5 seconds. The inter arrival time can be
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Figure 4.7. Average number of operations per second for Olio.

understood as the think time between operations. To fulfill client requests, the web servers

access an SQL database server, a memcached server and an NFS server. We disabled Na-

gle’s algorithm on all these systems (details discussed below).

Faban is configured to drive load against the application servers for a certain amount of

time (in our case we set it to 150 seconds of ramp up time and 400 seconds of steady time).

At the end of a run, faban outputs the average number of operations per second completed

by the web servers. In addition to the number of operations, it also outputs the average

response time for various types of operations. We progressively increase the load on the

web servers till the response times of difference operations are within the acceptable limit

as prescribed with the olio application. In our setup, we found that a load of 250 concurrent

users achieves this saturation point. Note that actual number of loaded users emulated by

olio is about 100× the number of concurrent users.

Figure 4.7 depicts the average number of operations per second completed by the web

servers with different Ethernet frame sizes. The average is taken over 3 runs for each

frame size. We can see that the number of operations per second in case of different Eth-

ernet frame sizes remains similar. The network workload generated by olio operations are

mostly of HTTP request-response type. The average flow size for most flows is less than
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Figure 4.8. Average response time for Olio with Nagle disabled.

1KB (Figure 4.10). In these kinds of requests, there is not much to choose between stan-

dard Ethernet or jumbo frames. Even when we have relatively lower or higher number of

concurrent users (150 or 350), we see that the number of operations per second stays the

same for different frame sizes. The average response time in case of different frame sizes

also remains similar as shown in Figure 4.8.

Along with application level metrics, we also record the system level metrics at different

components. Figure 4.9 shows the micro-benchmark results with the olio web application.

At a high level we observe that jumbo frames reduce the system overheads slightly for

most of the web application components. For instance we can see that for web servers

(which are the most loaded component for olio), jumbo frames (8K/9K) save about 3.25%

of the cpu cycles during the experimental period compared to the Ethernet frames. For

other components also, we observe similar savings in terms of the number of cycles and

instructions. The IPC values stay the same for all the Ethernet frame sizes. We see that even

in olio, the savings of system resources are similar to other applications like file transfer

and Hadoop.

In terms of CPU utilization, jumbo frame (9K) has a marginal benefit over the Ethernet

frames. Table 4.3.3 highlights the average, maximum and minimum value of the total cpu
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Figure 4.9. Results at each component of the Olio web application.

used (including usr, sys etc.) at different components of the olio web application. We

observe that use of jumbo frames save about 1-2% of total CPU at most the components.

This is consistent with our observations with previous applications.
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Table 4.2
CPU utilization (in %) at different components of Olio.

Component Ethernet Frame Jumbo Frame

Avg Max Min Avg Max Min

LoadBal 8 14 4 7 11 4

Web-1 28 49 12 27 44 11

Web-2 28 48 12 27 45 11

Database 2 6 1 2 6 0.5

Memcached 1 3.5 0 1 2.5 0

NFS 0.75 4 0 0.5 3 0

 0

 0.2

 0.4

 0.6

 0.8

 1

101 102 103 104 105 106 107 108 109

C
D

F

Flow size (bytes)

NFS
Memcached

Database
Web server1
Web server2

Load balancer

Figure 4.10. CDF of flow size distribution at different components of Olio.

Nagle’s algorithm and response time. Nagle’s algorithm is known to increase the re-

sponse time for small requests [74, 75]. As Nagle’s algorithm holds the application data

(less than the size of MSS) in the TCP buffer until it receives an acknowledgement, it

causes more delay in case of jumbo frames. We conducted our Olio experiments with Na-

gle enabled at first, and saw that the response times with jumbo frames were higher than
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Figure 4.11. Average response time of Olio with Nagle enabled.

standard Ethernet frames in Figure 4.11. Then we disabled Nagle on our system and re-

peated the same experiments. We make two interesting observations with the new setup.

First, the response time decreased for all frame sizes and with different client load. For

example, the average response time for 250 users decreased from around 500 ms to 270

ms. Second, the response times became similar for different frame sizes. A more detailed

study of the interplay between Nagle’s algorithm and responsiveness, however, is outside

the scope of this dissertation.

4.3.4 Summary and Discussion

In this section, we studied various properties (introduced in Section 4.2) of jumbo

frames in the data center environment. Using the file transfer application, we discovered

that the use of jumbo frame leads to increased throughput (P1). Though the gain is not

as high as reported in some of the previous work, we still see about 6% improvement in

throughput at full link capacity. The gains are higher in case of smaller file transfers, or

when we have higher network RTTs. In fact, when the network latencies are between 1–

10ms ( [33] reports that in data centers with excessive queuing, delays could be as high
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as 1–14 ms), the throughput with jumbo frames could be 2-4 times higher. In the Hadoop

terasort application, we saw a 3% decrease in completion time with jumbo frames. It shows

that jumbo frames are well suited for modern applications with high network requirements.

It can increase the application throughput and help them to finish faster. The benefits are

even higher in congested networks with higher latencies.

We also studied the delay introduced by jumbo frames using a tiered web service appli-

cation (P2). When we experimented with default settings we found that the response times

corresponding to jumbo frames were higher than regular frames. However, further investi-

gation reveals that the difference was due to Nagle’s algorithm which is known to increase

response time for small requests. So for this application, we disabled Nagle’s algorithm

and observe that the response times of the web requests become similar with regular and

jumbo frames. The number of operations per second was also similar in both cases. Our

experiments show that different frame sizes have similar performance for this class of ap-

plications. For all of the above applications, we observe lower resource utilization (P3)

when using jumbo frames for data transfer. The savings may not be as high as observed

in previous work. But with all the optimizations in modern network cards, we still see a

saving of about 1-2% in CPU utilization.
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5 CONCLUSION

This thesis explores the effects of various prominent networking protocols on the per-

formance of increasingly important data center applications. We investigate some of the

widely deployed protocols like TCP (at transport layer) and use of jumbo frames (at data

link layer).

In the first part of the dissertation, we study the dynamics of network resource sharing

in data center network. While the fairness achieved by TCP is generally deemed accept-

able in the wide-area Internet context, data centers present a new frontier where it may

be important to reconsider TCP fairness issues. In this dissertation, we present a surpris-

ing observation we call the TCP Outcast problem, where if many and few flows arrive at

two input ports going towards one output port, the fewer flows obtain much lower share

of the bandwidth than the many flows. Careful investigation of the root cause revealed the

underlying phenomenon of port blackout where each input port occasionally loses a se-

quence of packets. If these consecutive drops are distributed over a small number of flows,

their throughput can reduce significantly because TCP may enter into the timeout phase.

We evaluate a set of solutions such as RED, SFQ, TCP pacing, and a new solution called

Equal-length routing that can mitigate the Outcast problem. We also observe the existence

of TCP Outcast in MapReduce application and notice that there is no significant effect on

the completion time of sort application.

Then we revisit Ethernet jumbo frames in the context of data center networks. We em-

pirically evaluate the impact of jumbo frames on a set of canonical data center applications.

Our evaluations show that jumbo frames are advantageous to applications like file transfer

and Hadoop MapReduce. For a tiered web service, jumbo frames can lead to increase in

response time with Nagle algorithm enabled on the system. But with Nagle disabled, it

performs as well as with regular Ethernet frames. All of the above observations highlight

that turning on jumbo frames can be beneficial for data centers in general.
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In this dissertation, we show that data centers present a new frontier where network

protocols have to be carefully evaluated. Conventional protocols can result in anomalous

application behavior in this new environment. We also demonstrate that some of the old

protocol features can positively affect the performance of applications. These studies are

not exhaustive but take small steps towards guiding the next wave of changes necessary for

making data centers more efficient and beneficial to society.

5.1 Future Work

Demands for migrating applications, computation and storage into data centers is in-

creasing with every passing day. In the future, a substantial portion of the Internet services

would be hosted on data centers. New technologies are being developed for this new envi-

ronment, which also inherits a lot of conventional protocols. This dissertation has asked a

few questions about how these different elements would interact. A lot of work still needs

to be done to deeply understand and uncover the dynamics of these interactions. We pro-

pose the next couple of steps which would help accomplish the high level goals. Firstly, we

need to develop a tool to detect TCP problems in the data center network. TCP has been

the most studied and widely used protocol in the computer network. Building a tool that

detects and identifies any anomalous TCP behavior would be crucial in helping data center

operators to better manage network resources. Secondly, we need to experiment with more

of the conventional parameters in the network stack. One example would be to understand

how Nagle algorithm affect the bandwidth-sensitive and latency-sensitive applications.

5.1.1 TCP Problem Detection Tool

TCP has been shown to suffer from a few problems in the data center environment.

Researchers identified these problems and proposed solutions. Ideally, one would like to

detect these problems sooner rather than later so that these do not continually affect the

application performance. In order to attain this goal, we need to build a TCP problem

detection tool which can discover the anomalies in TCP behavior. Development of this
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tool faces numerous challenges. Firstly, collecting packet traces at end hosts is a costly

operations and have to be done wisely. Secondly, in order to identify packet drops we need

to synchronize network traces at multiple hosts. Finally, this tool should be able to detect

most of the known TCP problems and also warn about aberrant TCP behaviors from the

packet traces.

5.1.2 Impact of Nagle Algorithm on Applications

A number of network features and parameters need to be evaluated in details in the data

center environment. We need to understand how these parameters interact with the up and

coming data center applications. One such parameter is turning the Nagle algorithm on or

off in the network stack. We observe, in this dissertation, that the Nagle algorithm has an

adverse effect on the response time of web services. We need to go further and evaluate

how the Nagle algorithm affect bandwidth heavy application like MapReduce and is there

an optimal global value for network parameters like the Nagle algorithm.
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