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ABSTRACT 

Bayesian inference and decision making requires elici1:ation of prior 

probabilities and sampling distributions. In many applica~tions such as 
exploratory data analysis, however, it may not be possible to construct the prior 

probabilities or the sampling distributions precisely. 

The objective of this thesis is to address the issues and provide some solutions 

to the problem of inference and decision making with imprecise or partially 

known priors and sampling distributions. More specifically, we will address the 

following three interrelated problen~s: (1) how to describe in~precise priors and 

sampling distributions, (2) how to proceed from approximate priors and 

sampling distributions to approximate posteriors and posterior related 

quantities, and (3) how to make decisions with imprecise posterior probabilities. 

When the priors and/or sampling distributions are not known precisely, a 

natural approach is to consider a class or a neighborhood of priors, and classes 

or collections of sampling distributions. This approach leads naturally to 

consideration of upper and lower probabilities or interval-valuedl probabilities. 

We examine the various approaches to representation of imprecision in priors 

and sampling distributions. We realize that many useful classes, either for the 

priors or for the sampling distributions, are conveniently described in terms of 2- 

Choquet Capacities. 

We prove the Bayes' Theorem (or Conditioning) for the 2-Choquet Capacity 

classes. Since the classes of imprecise probabilities described by the 
Dempster-Shafer Theory are .o-Choquet Capacities (and therefore 2-Choquet 

Capacities) our result provides another proof of the incon:sistency of the 
Dempster's rule. 

We address the problem of combination of various sources of information and 
the requirements for a reasonable combination rule. Here, we also examine the 



issues of independence of sources of information which is a crucial issue in 

combining various sources of information. We consider three methods to 
combine imprecise information. In method one, we utilizes thle extreme-point 
representations of the imprecise priors and/or the sampling distributions to 
obtain the extreme-points of the class of posteriors. This method is usually 
computationally very demanding. Therefore, we propose a simple iterative 
procedure that allows direct computation of not only the posterior probabilities, 
but also many useful posterior related quantities such as the posterior mean, 
the predictive density that the next observation would lie in a given set, the 
posterior expected loss of a decision or an action, etc. Finally,, by considering 
the joint space of observations and parameters, we show that if this class of joint 

probabilities is a 2-Choquet capacity class, we can utilize our Bayes' Theorem 
found earlier to obtain the posterior probabilities. This last approach is 
computationally the most efficient method. 

Finally, we address the problem of decision making with imprecise posteriors 
obtained from imprecise priors and sampling distributions. Even ,though, 
allowing imprecision is a natural approach for representation of lack of 
information, it sometimes leads to complications in decision making and even 
indeterminacies. We suggest a few ad-hoc rules to resolve the remaining 
indeterminacies. The ultimate solution in such cases is to simply gather more 
data. 



CHAPTER 1 

INTRODUCTION 

1 .I Introduction 

Inference is the process of observing a sample or samples and drawing 

information about certain parameters of the underlying process. There are two 

distinct approaches to inference problems: one approach utilizes prior 

information, and the other is based solely on the observatiori samples. It is 

taken as given that prior information should be utilized whenever available. To 

this extent the Bayesian approach provides a sound and coherent way of 

Combining prior information, represented by prior probabilities and sampling 

distributions. 

Decision-making problems are specific forms of inference problems. In decision 

making problems two other elements are added; namely a slet of actions or 

decisions and a loss function indicating our subjective measure of losses 

between the decision or action made and the true value of the parameter under 

consideration. Even though proper selection of a loss function is very important, 

in this work we will not consider this problem and assume thal: an appropriate 

loss function is given. 

In many real world problems, however, prior probabilities and/or sampling 
distributions may not be known precisely. For instance, in the early stages of 

outbreak of any new disease, with a small sample size, it is difficult i f  not 

impossible to obtain a precise model for the disease epistemology. Another 
example is the case of high sample dimensionality, where re~rely if ever the 



available data are adequate to define a precise niodel. See Hoffbech and 

Landgrebe (1 993), Kim and Landgrebe (1 991 ), Landgrebe ( ' 1  993), Safavian 
and Landgrebe (1 991 ), and Lee and Landgrebe (1 993). 

Our goal in this research is to consider situations where one can at best only 
describe a class or a neighborhood of priors, and classes clr collections of 

sarr~pling distributions. In such cases, we propose various mettiods to combine 
imprecise priors and sampling distributions and consider lthe problem of 

decision making with imprecise posteriors. The range of posterior quantities 

would be indicative of how robust the posterior quantity is with regards to 

variations of the priors and the sampling distributions. 

1.2 Basic Approaches to Imprecision and Uncertainty 

There are several basic approaches to handling imprecision. When the source 
of imprecision is linguistic in nature, fuzzy set theory has proved to be very 

useful. In contrast to regular set theory where an element either completely 

belongs to a given set or it has no membership in that set, in the fuzzy set theory 
one allows partial membership. Calculus of fuzzy set theory is developed by 

Zadeh (1 965). 

Another fundamentally different approach to allow for imprecision is to extend 

the concept of point-valued probability measures to set-valued (or Interval- 

valued) probability measl.lres. This approach was first studied by Artstein (1 972) 

and later further studied by Puri and Ralescu (1983) and Negoita and Ralescu 

(1987). Here, one assigns (compact, i.e., closed and bounded) intervals of 

values between 0 and 1 for events under consideration. Additivity of real-valued 

probability measures is preserved under this approach and is extended to "set 
Additivity". The Bayes Theorem is provided for the interval-valued probability 

measures [Negoita 19871. The only major problem with this line of thinking is 

tha.t, here probability measure of the sample space is not I !  Instead, all that is 

required is that probability measure of the sample space shoulld be an interval 
including 1, i.e., [a,  11 , where a <  1. This is very counter-intuitive. As one would 



expect, probability of a sample space should be exactly equal to 1 ; otherwise 

one could augment another outcome to the sample space and assign the 
remaining uncertainty of (1-a) to that outcome! 

Also, one method to assign interval-valued probabilities to events is to use two 
sets of measures, Pl and P2, such that Pl(A) < Pr(A) < P2(A) for all events A. 
Where P2 is any ordinary probability measure, and P, is any measure such that 

P,('A) < P2(A) for all events A. Note that when Pl(A) = P2(A) fc~r all events A ., 

one gets the usual point-valued probability measures. This is a special case of 

"ln.tervals of Measures" considered by DeRobertis and Hartigan (1 978). We will 

examine intervals of measures more carefully in the sequel. 

-The third approach is to consider "higher-order" probabilities. That is, suppose 

in a coin tossing experiment one does not feel comfortat~le with simply 

assigning probabilities, say, 0.5 for "heads" and 0.5 for ''tails". It is suggested by 

Domotor (1981) and Kyburg (1988) that one can consider a second-order 

probability on the values of probabilities. For instance, one can assign a 

probability of 0.9 that probability of "heads" is going to be 0.5. Tliere are several 

major problems with this approach. It is obvious that if one does not feel 

comfortable with assigning "first-order" probabilities, it is not olbvious why one 

would feel comfortable in assigning the "second-order" probabilities. This leads 

to an endless argument: Assign "third-order" probabilities on the "second-order" 

probabilities, etc. Also, it has been shown by Kyburg (1988), that second-order 
probabilities have nothing to contribute to the analysis and representation of 

uncertainty. "The same ends can be achieved more simply, and without the 

introduction of novel machinery, by combing the "first" -and ".secondH - order 

probabilities into a joint probability space, even if they are conceptually different 

kinds of probabilities." 

Finally, the most natural and useful approach in modeling imprlecision, the one 
that we will consider in detail in the sequel, is to consilder classes or 
neighborhoods of probability measures. This approach is not new. It has been 
corisidered by Koopman (1 940) and Boole (1 884), among others. 



Several different approaches could lead to consideration of classes of 

probability measures. The most obvious one is to start with a nominal model (or 

probability measure) and then consider a neighborhood arol-~nd the nominal 

model described in ternis of some appropriate metric. Or, for instance, using 

available data estimate a nominal model and then consider the confidence 
interval around the nominal model, etc. Or, suppose instead of having 

numerical values of probabilities, one only has some knowledge of partial 

ordering among the various probabilities. For example, supposle all we know is 

that disease 1 is more likely than disease 2 and disease 3 is 5 to 10 times more 

likely than disease 2, etc. This kind of available information leads to a class of 

probabilities all compatible with the above given information. Or, as Boole 

(1884) first observed, one may start with knowledge of prob~abilities of only 

some of the events. Then, again, one can construct a class of probability 

measures that will be compatible with the known probabilities. This approach 

was resurrected and extended by Dempster (Dempster 1968) and later by 

Shafer (1 976). 

It is obvious that consideration of classes of probability measures would directly 

lead to consideration of "upper" and "lower" probabilities. The difference 

between the "upper" and the "lower" probabilities indicate the robustness or 

sensitivity with respect to the class of probabilities considered. 

1.3 Related Works 

Even though robustness with respect to deviation in priors with fixed sampling 

distributions has been studied extensively in the literature (sele Berger (1992) 

for a survey), very few studies has been performed to analyze the sensitivity of 

posteriors (and posterior related quantities) with respect to variations on both 

the priors and the sampling distributions. 

Considering model robustness, Smith (1983) examines the parametric case, 

where a given model is "elaborated" or enlarged by considering a family of 

models parameterized with one (or more) new parameters. In our work, we 



consider the non-parametric case and examine robustness with respect to both 

the priors and the models. 

When both the parameter space and the measurement space are discrete, 

White (1986), considers classes of priors and sampling probability mass 
functions that are described in terms of linear inequalities. Thlese classes are 

convex polyhedrons. He characterizes these convex polyhedrons via their 

exrtreme points and uses Bayes' Theorem to combine all the extreme points to 

obtain the extreme points of the posterior probabilities. We will examine this 

approach in detail in the sequel. This approach, ill general, suffers from a I-rig11 

computational cost. 

1.4 Statement of the Problem 

We now formally state the problem that is solved in this thesis. First of all, we 
will implicitly assume the existence of densities and regular conditional 

probabilities as needed and we will ignore, as much as possible, all other 

measure-theoretic questions. 

Let O represent the parameter space. We assume that@ E 93. Let x E 9Id 
represent the measurement space, f ( ~ 1 8 )  denote the sampling density and 

17('8) denote the prior distribution on O. In order to avoid differentiating between 

"s~~mmation" and "integration", we will use the following notation: 

( [ n(8)dO i f  8 is continous; 
JI l (df3)= : 
A 1 2 n(f3) i f  f3 is discrete, 

We assume that instead of having a precise prior probability distribution I l ,  we 
know that Il E Tn, and instead of knowing f ( x / 8 ) ,  0 E O, we know that for each 
0, f ( x / B )  E T i ,  where rn is a class of admissible priors and r'i are classes of 



admissible sampling densities. Then, We like to find the following posterior 

related quantities: 

Note that for the following choices of @(0): 

we have (1 ) the posterior mean, (2) the posterior probability of set B, and (3) the 
posterior expected loss of decision 6(x). The range [p-p] - indicates the degree 

of robustness or sensitivity of posterior quantity p with respect to the deviations 

in the priors and the sampling densities. 

1.5 Thesis Organization 

In Chapter 2, we examine several useful classes for priors and sampling 

distributions. These neighborhoods have very natural and useful 

interpretations. We examine both finite spaces and continuos spaces. We point 

out that most of these neighborhoods can be characterized in terms of 2- 

Choquet Capacities. Here, we formally introduce Choquet Capacities. An 
example of classes of uncertainty described by Choquet Capacities is the 
Dempster-Shafer (D-S) class. Therefore, we provide a brief lexposure to the 

Dempster-Shafer Theory as we will be referring to this particular class 

frequently in the sequel. 



Realizing the importance of 2-Choquet Capacity classes, we prove Bayes' 
Theorem (or conditional Choql~et Capacities) for this class in Chapter 3. As 

mentioned earlier since D-S classes are --Choquet Calpacity classes 

(therefore, 2-Choquet Capacity classes), therefore our results apply there as 
well and furthermore provide another proof for the inconrsistency of the 

Dempster's rule. 

In Chapter 4, we examine the Bayes' Theorem in statistical applications. First, 

we study the desired properties for any combination rule. Next, we investigate 

the issue of independence in combing sources of information and point out the 

potentials for assuming "too much" independence. Then, we examine 

properties of Bayes' rules and D-S combination rule in light of the enlisted 

properties and highlight the strength and weakness of each approach. 

In Chapter 5, We provide (or introduce) three methods based on the Bayes' 

Theorem for combination of imprecise sources of inforniation. In the first 

approach, we utilize the extreme point representation originally suggested by 

White (1 986) and obtain the posterior extreme points from the extreme points of 

the priors and the sampling distributions. We look at the computational 

complexity of this approach and compare it to the computational complexity of 

D-:S Theory. Even though the Bayesian approach has better computational 

complexity and does not suffer inconsistency criticisms of D-S Theory, here still 

co~mputational complexity may be a problem. Thus we propose a second 

method that uses a linearization technique of Wasserman, Lavin and Wolpert 

(11393). This approach is iterative and converts a nonlinear optimization 
problem for finding p (or p )  into a sequence of simpler linear optimizations. We - 
provide several examples here. As the third and final approach, we look at the 
product or the joint space of measurements and parameters, x x O. We note 

that if the class of joint distributions (or densities) is described in terms of a joint 

2-Choquet Capacity, then we can utilize the Theorem of Chapter 3 and find the 
Posterior Choquet Capacities directly. This approach has the simplest 
computational complexity. We provide several examples. 



In Chapter 6, we look at the problem of decision-making with imprecise 
probabilities. In general, even though representation of priors and sampling 
distributions in terms of classes of priors and sampling distributions is a natural 
wa.y to indicate our available knowledge (or lack of it), this approach may 
sometimes lead to complications in decision-making, and even perhaps 
indeterminacies between certa.in actions or decisions. We provide a. few ad-hoc 

suggestions to resolve possible cases of indeterminacies. The optimal solution, 
however, would be to simply acquire more data! 

In Chapter 7, we provide our conclusions and directions for further research 
areas. 



CHAPTER 2 

REPRESENTATION OF IMPRECISE INFORMATION 

2.1 Introduction 

In this chapter, we will examine various approaches for representation of 

imprecision in priors and sampling distributions (also sometimes referred to as 
likelihoods, models, or conditional probabilities). We will look at the discrete 

case and the continuos case separately and motivate e,ach method of 
representation with an example. We note that many of the useful and natural 

methods for describing imprecision can be characterized in terrns of 2-Choquet 

Capacities. We will formally introduce Choquet Capacities. As an important 

example of Choquet Capacities, we will consider the class described by the 

Dempster-Shafer Theory. 

2.2 Discrete Case: 

2.2.a Class of Imprecise Prior Probabilities: 

Suppose 63 is the parameter space (e.g., space of all classes of interest in a 
classification problem, etc.) where 0 = je,, ..., OM}. Without any loss of 

generality, in order to be able to provide a geometrical representation for 
demonstration, let us assume M = 3. Then .the space of all possible priors is the 
probability simplex shown in Figure 1 below which, employing a system of 
triangular coordinates, can be displayed in 2-dimensions as in Figure 2. 



Figure 2.1 - Probability simplex in 3-d 

( 1.0.0 ) 

Figure 2.2 - Probability Simplex Using Triangular Coordinate System 



Example 2.1: Suppose we do not have enough informatiori to construct a 
precise prior distribution for 0, but we know that, for instance, the prior 
probability of 8, is at least 0.5 and 8, is more likely than 8,. The class of priors 

corresponding to the above information is 

which corresponds to the convex shaded area shown in Figure 2.3 below. 

x( 0,) 

Figure 2.3 - Class of Priors for Example 2.1 

Remarks: 

1) The convex set T, can be completely specified in terms of its extreme points 

(or vertices). 



2) The case of "total ignorance" or complete lack of knowledge would 
correspond to 

i.e., the entire simplex of probabilities. Even though the case of total ignorance 

oc'curs rarely in applications, the above representation is mlore natural and 

sui~table than the conventional approach where one uses "non-informative" or a 

uniform distribution, 

There are at least two problems with this latter representation. First, the uniform 

distribution does not exactly correspond to "total ignorance", as with ,the uniform 
distribution one expresses the knowledge that, for instance, 8, is as likely to 
occur as 6, where as in the case of total lack of knowledge this information is 

noit available. 

Second, for the case of a continuos and unbounded parame'ter space (e.g., 

0 := %), non-informative priors become improper priors, i.e., 

An interesting example indicating the inconsistencies that may arise using non- 

informative priors is provided by Shafer (1976, page. 24). See also Fishburn 

(1 965) and Potter and Anderson (1 980). 

Another useful approach to represent imprecision is to specify lower and upper 
bol~nds for the prior probabilities n(6,). Where the lower andl upper bounds 

indicate the minimum degree of belief or support, and the maximum degree of 
support for O i ,  respectively. That is, we consider the class 



Of course, it is possible that for some parameter(s), say Ok, lk= u k ,  i.e., the prior 

probability ~(8 , )  is known precisely . 

It i.s straightforward to check that for T2 to be non-empty, we need to have 

R1) xlisl and x u i > l  (2.2.6) 
1 i 

Consider the following example. 

Example 2.2: Let O={O,,O2,8,] and 

There are many probability distributions which obey these inequalities. For 

instance, 

Nevertheless the above interval representation is not satisfactory because ~ ( 8 2 )  

2 0.4 and ~ ( 8 3 )  2 0.2 would in- ply that ~ ( 8 ~ )  can not be larger than 0.4., so the 

upper bound of 0.6 specified for ~ ( 8 3 )  is unnecessarily too large. Similarly, since 

.n(O2) 5 0.5 and ~ ( 8 3 )  5 0.4, this implies that ~ ( 8 ~ )  has to be larger than 0.1. 

Therefore the new lower and upper bounds for ~ ( 8 ~ )  are 



In other words, with the above original interval specifications, for 

we can not find any probability distributions that satisfy the remaining 

constraints. That is, there are regions that are infeasible. We state this formally. 

Definition 2.1: A non-empty class r of probability distributions is feasible if for 
each i, and every ai with li <ai <ui, there exists at least one probability 

distribution in r such that ~ ( 9 , )  = ai. 

The class of prior probabilities corresponding to example 2 is shown in Figure 

2.4 below. 



Figure 2.4 - Class of Priors for Example 2.2. Dark Area Is the Feasible Set. I ;  

and U; Are the New Lower and Upper Bounds for ~ ( 8 ~ ) .  

It i:s easy to verify that a given class l- is feasible if and only i f  the lower and 

upper bounds satisfy the following requirements: 

< 

i=l  
i t j  

M 
for j =1, ..., M. 

1, 2 1 - C u ,  
i= l  



Therefore given an arbitrary set of upper and lower bound specifications, we 

need to first check the requirement R1) to make sure that the class Tis non- 
enipty and check the requirement R2) to verify that the bounds specified are not 

too large. In case the bounds are too large, we can refine them using the 
following result. 

Lemma 2.1: Given a non-empty infeasible class T, the new lower and upper 

bounds for the feasible class are given by 

We will refer to the feasible class T2 as the discrete band model. Band models 

in general play an important role in our studies. 

The following classes can be used for both finite (discrete) spaces and 

continuos spaces. 

Suppose we have elicited a nominal prior, say no(8), but we do not feel 100% 

certain about it. Suppose, however, we feel ( I -&)% comfolrtable with tl- is 

nominal model, where 0 I E 1 1 .  This type of information can be conveniently 

described as: 



where q can be any arbitrary distribution (referred to as contamination). This 

class is known as the &-contamination class and was introduced by Huber 

(1!373) and Berger and Berliner (1986). 

In the &-contamination class one needs knowledge of a nominal model to work 
with. In the absence of a nominal model, we can consider the following class 

where i(o)do 2 15 I~(o)do,  with the equalities corresponding to the trivial case I 
8 8 

where the prior is known precisely. This is known as the density bounded model 

and was introduced by Kassam (1981) and Lavine (1991). Mote that in this 

class, one allows the prior to have any shape as long as it is bounded from 

below and above with i(o) and qo), respectively. 

Even though to use a band model one does not need a nominal model, band 

models can also be used in situations where one estimates a model from the 

available data and then considers a pair of confidence limits around this model. 

Furthermore, another specialization of the band model is obtained by taking 

[to) = o, in which case the class is completely characterized in terms of the upper 

bound ~ ( 8 )  only. 

In the density bounded model, one only considers valid densities that are 

bounded by ito) and ~ (8 ) .  A simple but useful generalization of density bounded 

models can be obtained as 



This is known as the density ratio class or the band model' class and was 

introduced by DeRoberis and Hartigan (1981). Here, one considers all the 
furlctions f(8) that are bounded by r(e) and ~ ( e ) ,  and then normalizes them to 

get valid densities. 

Finally, we consider the following class known as the total variation class. This 

is the class of all prior measures that are at most &-away from the nominal 
measure I3 , where distance is measured by the metric d: 

where d could be either the total variation, Prohorov, Kolmogorov, or Levy 

distance, and E is a fixed constant, 0 < E < 1. 

2.2.b Classes of Imprecise Sampling Distributions 

All the classes introduced above can also be adapted to represent imprecision 

about the sampling distributions. For instance, suppose we! have nominal 
sampling densities f (x/8), 8 E O which might have been estimated from an 

0 

available training sample. Then, we can consider, for example, the E -  

contamination classes 

where ( l - ~ ~  ) reflects our confidence in the nominal model f,(x/O), and for the 

sake of generality, we have allowed the different sampling distributions to have 

different degrees of contamination depending on 8. We could have also 

corlsidered the density bounded model, i.e., 



where [ ( X I  8) and .(XI e) 2 0 and / r c x i  el& -c 1 / . ( x i  el&, etc. 

2.3 Choquet Capacities 

Except for the class TI which is a general convex set and does not necessarily 

have any other structure, the remaining classes have richer structure and can 

all be characterized in terms of Choquet Capacities. Next, we formally define 

Choquet Capacities. 

Let Q be a sample space and a be a Borel field (or o-algebra) on Q. If R is 

finite, then we can take a to be the power set. Then any set function defined on 

a that satisfies the following properties p1) - p4) is called a Choquet Capacity 

(Choquet (1953) and Huber (1973)): 

If it also satisfies the sub-Additivity property P5) below, 

then it is called an alternating of order 2, or for short, 2-alternating capacity. 
More generally, a Choquet capacity that satisfies 



is called an n-alternating capacity. If it satisfies the above relationship for any n, 

then it is called an - - alternating capacity. 

Note that property pl) is just the boundary condition, p2) is the monotonicity, 

p3) and p4) are continuity conditions from below and above for arbitrary 

inc:reasing sequences of events and decreasing sequences of events that are 
closed sets, respectively. And p5)is a weak form of Additivity. Similarly, a set 
fur~ction u that satisfies pl') - p4') 

and the super-Additivity property p5') 

is called a monotone of order 2, or for short, 2-monotone capacity. Sirr~ilarly, if a 

monotone Choquet capacity satisfies 



is called an n-monotone capacity. If it satisfies the above relationship for any n, 
then it is called an -- - monotone capacity. 

Remarks: 

1) Alternating and monotone capacities v and u, satisfy 

and are said to be conjugates. Therefore, it suffices to consider only one of 

these two functions. 

2) It is known that i f  u (v) is monotone (alternating) of order 17 ,  then it is also 
monotone (alternating) of order k for any integer 2%n. 

3) Probability nieasures are special types of capacities: they are both w - 

monotone and w - alternating capacities. 

Next, we will provide some motivation for the above Choquet capacity 
definitions. Given a measurable space (SZ,A), let M denot'e the set of all 
probability measures on SZ, and, let P be a non-empty subset of M; T c M .  
Then, one may define the following lower and upper probabilities induced by P: 



v (A)  = sup P(A)  , A  E a ,  
P E T  

and 

u(A) = inf P ( A ) ,  A  € a .  
P E T  

It i's easy to see that 

That is, these two set functions are conjugate pairs. The set fu~ictions u  and v 
are called a "lower envelope" for P and an "upper envelope" for P,  respectively. 

Note that when the true probability distribution P  is unknown, and it is only 

believed that P E T ,  then u  and v  provide us with a lower and upper bound for 

the actual value of the unknown probabilities. The interval [ u  v ]  is called an 

"interval-valued probability"; Kim (1 990). 

More importantly, Huber and Strassen (1 973) have shown tha.t if P is weakly 

compact, then the set functions u  and v  are capacities (though not necessarily 

of any order). 

Conversely, one may start with an arbitrary pair of conjugate capacities u  and 

v ,  and define the sets pV , pU , and puV by: 

and pU = { P E M / U ( A ) I P ( A ) , A E A }  



It is known that pV =iU =gUv. SO we can only consider one of them; sayTv. 

The set pV is the set of all probability measures dominated by v. It is pointed out 

by Huber (1981) that in general (2.3.4) followed by (2.3.6) does not restore P, 
that is in general aV z T. If pV = T ,  then we call the set function v and the set of 

probabilities P representable. 

Hwber and Strassen (1973) have shown that only when v (or u )  are alternating 

(or monotone) of order 2 or higher that we have this useful property. This further 

erriphasizes the importance of 2-capacities, that is, alternating or monotone 
capacities of order 2. As we will see next, fortunately, almost all1 of the classes 
for describing imprecision introduced earlier can be repre:sented with an 

appropriate 2-capacity. Our discussion will be around the classes of imprecise 

pri~ors, but as we mentioned earlier, with only a slight change of notation, the 
same argument will hold for the classes of imprecise sampling distributions. 

In particular, the E-contamination, the band model or the ge!neralized band 

model, the density-ratio, the total variation, the Prohorov, etc. classes can be all 

represented by some appropriate 2-capacities. 

The E-contamination class: - 

I7: I I ( A )  = (1 - E)II ( A )  + EQ(A) ] , 
0 

(2.3.7) 

where I7,(A) is a nominal prior measure, 0 < E < 1, and Q is any arbitrary 

(contaminating) measure, can be represented by 

where 



is a 2-alternating capacity. 

The densitv bounded class: 

'density bounded = { n: L(A)I~(A)Iu(A); n(o)=i} (2.3.10) 

where L and U are lower and upper measures (with densities 1 and u with 
respect to an appropriate measure and L(O) I 1 5 U(O) < -). This class can be 

relpresented by 

'density bounded = { n: n ( A )  I v(A) ) (2.3.1 1 ) 

where 

is a 2-alternating capacity. ACdenotes the complement of the set A .  

The total variation class: 

I- t - v  ={n:In(~)-~-l,(~)li&} (2.3.1 3) 

where q ( A )  is a nominal prior measure, and 0 < E <1 can be represented by 

r = { n: n (~)  I V(A) } 
t - v  

and 

is a 2-alternating capacity, etc. 



Next, we consider an important family of w -  capacities arising from Dempster- 

Shafer (D-S) theory. We start with a brief introduction to D-S theory. 

2.4 Dempster-Shafer Theory 

The basic idea can become clear with the following simple (desk) example. 

Suppose there is a desk wi,th two drawers on the right side: the right top drawer 
(RT) and the right bottom drawer (RB) . There are three drawers on the left side: 

the left top drawer (LT), the left middle drawer (LM), and the left bottom drawer 

(LIB). So, tlie sample space is R = { RT, RB, LT, LM, LB). 

Suppose a file is placed, at random, in one of the drawers. Furtlier suppose that 

,the available information ( or evidence in the D-S language) is given as 

prob( file is in any of the left side drawers) = rn (LT u LM (J LB ) = 0.5 

prob ( file is in ,the RT drawer ) = rn ( RT ) = 0.2 

and there is no more information. 

Note that the total evidence, rn(LT u LM u LB) + m (RT) = 0.7 c 1. Shafer calls 

the difference (1- 0.7 =0.3), the global ignorance . The global ignorance can be 

assigned to any of the drawers (sets), and yet to none in particular. Then given 

the above scenario, one would like to answer questions like: what is the 

probability that the file is in the (LM) drawer, etc. Obviously, the answer to these 

questions can not be given by single numbers. George Boole [4] was the first to 
reidize this point and he suggested the idea of inner and outer measures, p. 

and p', such that probability of any event, p, is bounded by p* and p' as 

Shafer calls m (.) the basic probability assignments or (bpa)'~. rn (A) represents 

the measure of belief that is committed exactly to set A and not to any of its 



proper subsets. Note that if m(.) can be specified for every singleton, then bpa 

reduces to the usual probability mass function. bpa is formally defined as: 

DEFINITION 2.2: [Shafer (1 976)] 

A function m: 2Q-+ [0,1], where 2 n  is the power set of R ,  is called a basic 

probability assignment (bpa) whenever 

and 
( 2 )  Z m ( ~ ) = l  

A cll 

Note that 

i) It is not required that m(0) = 1; 

ii) It is not required that m(A) I m(B) when A _c B ; 
iii) There is no obvious relationship between m(A) and m(A"). 

Recall that m(A) reflects the measure of belief that is committed exactly to A, not 

the total belief that is committed to A. To obtain the total belief committed to A, 

Shafer argues, that one must add to m(A), the bpa of all the proper subsets B of 

A. He calls this belief function or Be1 for short. That is 

Dampster in his original work called these Be1 functions, lo~rer  probabilities. 
More formally, a function Bel: 2n-+[0,1] is called a belief function if it is given by 
(2.4.2), for some bpa m: 2n-+[0,1]. For our earlier "desk" example : 

Be1 ('file is in (ML) drawer) = 0. 
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Be1 ('file is in (RT) drawer) = 0.2 

It is important to note that 

Tcr see the implication of this relationship, suppose that there is no evidence at 

all to support A, or Bel(A) = 0. Then, (2.4.3) says that, in D-S theory, it is not 

automatically implied that Be1 (AC) = 1 ; i.e., lack of belief in soniething does not 

necessitate its compliment. 

Furthermore, the bpa that produces a given belief function can be uniquely 

recovered from the belief function. This inverse relation is called mobius 

inverse. For any belief function Bel, a dual function called the plausibility 

function (or "PI" for short) is defined as 

In terms of bpa m ,  plausibility could be written as 

Dempster called these Pl's, upper probabilities. Note 

and 
Pl(A) 2 Bel(A) 

From our earlier "desk" example: 



PI (file is in (ML) drawer) = 0.3 

PI (file is in (RT) drawer) = 0.5 . 

To make the idea of "Bel" and "Pi" clearer, let us consider the following 

example. Suppose we are given: m (B1) = 0.3, m (B2) = 0.4, and m (Bg) = 0.1 , 

t h ~ ~ s  m(R) = 0.2, and want to find the lower and upper probablility (or Bei  and 
P1') of a set A given in the following diagram. 

Figure 2.5 - Some Arbitrary Sets with Their Associated BP,4 Numbers 

Shafer, further argues that the class of belief functions can be characterized 

without reference to any basic probability assignment function. That is: 



THEOREM 2.1 : [Shafer (1 976)] 

A function B e l :  2Q-+ [O, 1 ] is a belief function if and only if it satisfies the 

following: 

(1 ) Bel (@)  = 0. 

(2) Bel(S;Z) = 1. 

(3) For every positive integer n and every collection Al , .. . , A, of subsets of 52 

Bel(A, u... u A n )  2 z B ~ z ( A ~ )  - z B ~ I ( A ~  n A,)+ ...+(- I),+' B ~ Z ( A ,  n n  (2.4.8) 
i i c j  

Remark: Note that Be1 functions are - monotone capacities . 

As mentioned earlier, ,there is a one-to-one correspondence between basic 

probability assignments (bpa) and Be1 functions; i.e., given a bpa one can 

cc~nstruct the corresponding Be1 function and conversely given a Be1 function 

one can obtain the corresponding bpa. This relationship is called mobius 

inverse. More precisely, 

THEOREM 2.2: [Shafer (1 976)] 

Sifppose Be1 : 2%[O, 1 ] is the Be1 function given by its bpa m : 2 b  [0,1]. Then 

for allA c 52. 

Similarly, one can define plausibility functions as: 



THEOREM 2.3: [Shafer (1 976)] 

A function PI : 2n+[0,1] is a plausibility function if and only if it satisfies the 

following conditions: 

(1 ) PI(@)  = 0. 

(2) P l ( R )  = 1. 

(3) For every positive integer n and every collection 4, .. . , An of subsets of R 

Remarks; 

1) Note that PI functions are -- alternating capacities. 

2) When Bel(A u B )  = Bel(A)  + Bel (B) ,  A  n B  = @ belief function becomes the 

usual classical probability measures. Furthermore, one can sliow that (Klir 

[23]) a belief function, B e l ,  on a finite power set 2n is a probability measure 

i f  and only if its basic probability assignment, m ,  i:s given by 
m ( { o } )  = B e l ( { o } )  and m ( { A } )  = O  for all subsets of Rthat are not singletons. 

3) A Be1 function that satisfies Bel(A) = 0 for every proper subset A  of R is 

called avacuous belief function. In terms of basic probability assignments, 
this means m ( R )  = 1 and m ( A )  = O  for every proper subset A  of R . 

Fi~rthermore plausibility of every such A  is one. That is 

Again, the major conclusion of this section is that Be1 functions (and PI functions 

,that are major components of D-S theory are -- monotone and -- alternating 

capacities, respectively. 



In the next Chapter, we will drive the Bayes' Theorem for Capacities and 

compare the results with the corresponding rule given by D-S theory. 





CHAPTER 3 

BAYES' THEOREM FOR CAPACITIES 

3.1 Bayes' Theorem in Probability 

Consider a measurable space (f2,a) along with a probability measure pr(.) 

defined on a. Then, Bayes' theorem (or conditioning) in probability, in its 
sirrlplest form, states that given the information that event B,B E A ,  has occurred, 
we need to revise our original belief function (expressed by pr(.)) as 

provided pr(B) > O .  Where now the new sample space is B and A belongs to 
the appropriate o-algebra restricted toB.  Here pr(A1) represents our 
knowledge about A' before observing B ,  pr(B/A1)captures the relationship 

between A' and B, and p(A1/B)represents our new belief in A' after observing 

B, also referred to as the posterior belief function. Our goal next is to drive a 
relationship similar to the above but for Capacities. 

3.;! Bayes' Theorem for Capacities 

Suppose we have the same measurable space (f2,a) but we are unable or 

unwilling to represent our beliefs via a precise probability measure. Instead we 
have chosen to consider a family or a neighborhood of probability measures 



such as the E - contamination family or the band model described in the Chapter 

2. Recall that these neighborhoods could be expressed as 

and v ( . )  is the 2-alternating capacity corresponding to ( or representing) the 

neighborhood T . 

Now suppose we have observed B  and wish to revise our beliefs in light of this 
new piece of information. Let T(.IB) represent the family of revised or posterior 

measures. A simple but naive approach to obtain T(.IB) would be to revise every 

probability measure p r ~ T .  Of course, in most cases, this would be 

computationally prohibitive. Instead, we focus on the 2-alternating capacity v ( . ) .  

We first drive the conditional capacity v ( . / B ) .  Then, we cor~sider the set of 

probability measures dominated by this new conditional capacity; i.e., 

T = {p: p(A') I v(A'/  B) ) }  
v( .  1 B )  

In general, T would be somewhat larger than T(.lB), p rovitling a somewhat 
v ( .  I B )  

conservative estimate of the actual T(.IB), but would have the advantage of 

providing a closed form solution. 

3.3 Conditional Capacities 

Before we prove the conditional capacity theorem, we need the following 

lemma due to Huber (1981, page 273): 

Lemma: 

LetT be a family of probability measures majorized with a 2-alternating 

capacity v ;  i.e., 



Then for any monotone sequence A, c4 c . . . c A ,  belonging to a ,  it is 

possible to find a probability measure pr* E T ,  such that simult;~neously for all i ,  

i = 1,2, ..., n 

We also need the following facts: 

1) Any set B can be decomposed into two disjoint sets: B = ( B  n A )  u ( B  n A').  

3) prsT inf pr(A) = p r e p  inf { l -  pr(Ac))I = 1 - suppr(Ac).  p r e p  

Now we are ready to state our theorem: 

Theorem: 

LetT be a family of probability measures majorized with a 2-alternating 

capacity v ; i. e., 

T = {pr: pr(A) 5 v(A))I 

and let 

and 



denote the upper and lower conditional probabilities over the family P ,  
respectively. Then, v(A/  B )  and u(A/  B )  can be expressed in terms of the original 

unconditional 2-alternating capacity v  and its conjugate u as 

v(A/  B )  = 
v ( A  n B )  

v ( B  n A)  + u(B n A') 

and 
u(A n B )  

u(A/  B )  = 
u(B n A)  + v(B n A') 

Proof: See Appendix A.1. 

Remarks: 

1) It is easy to check to see that the conditional capacities v(AL/B) and u ( A / B )  

satisfy the properties p l )  - p 4 )  and pl ' )  - p4' ) ,  respectively. Therefore, they are 

both capacities. 

2) For the finite sample space case, recently Sundberg and \Nagner (1994a), 

(1994b) using a completely different line of reasoning have shown that the 

conditional capacities are also 2-alternatiqg and 2-monotone capacities, 

respectively. 

3) We conjecture that even for general sample spaces, the reslulting conditional 

capacities will remain 2-alternating and 2-monotone capacitiles, respectively. 

But, we have not been able to show this yet. 

Next, we compare our results with the conditional belief and plausibility 

functions given by D-S theory. 



3.4 Conditioning in Dempster-Shafer Theory 

Re'call that lower and upper probabilities in the D-S framework are called the 

Be'lief function, B e l ,  and the Plausibility function, PI,  respectively; whereBel is 

an--monotone capacity and P1 is an --alternating capacity. 'Then, given an 
event B ,  the condi t ional  Be1 and condi t ional  PI derived directly from 

Dempster's rule of combination of evidences (Shafer 1976, pag'e 66-67) are 

Bel(A u B c )  - Bel (B c)  
Bel(A J B )  = 

1 - Bel(B c)  

and 

Sirice Be1 and PI are conjugates, we need to examine only one of the above 

conditional quantities. P1 has a simpler form, so let us examine it. It is obvious 

that in general 

s u ~ ~ r ( A n B )  P I ( A n B )  
P l (A/  B )  = sup P'(A n B )  * pep  - - 

prep  P ~ ( ~ )  Sup P ~ ( ~ )  
PG'P 

PI ( B )  - 

A similar argument applies for the conditional Bel .  This discrepancy provides 

another proof of inconsistency of Dempster's rule of combination. 

Remark: 

Note that the bound provided by D-S conditional Be1 and P1 is in general tighter 

than the bound given by the conditional capacities; i.e., 

That is, the conditional capacities provide a more conservative estimate of the 

true conditional probabilities. See also Kyberg (1987). 





CHAPTER 4 

COMBINATION OF IMPRECISE SAMPLING DENSITIES 

AND IMPRECISE PRIORS 

4.1 Introduction 

The main objective of this chapter is to address the problem of combination of 
imprecise sampling distributions {P(x/O),B E O }  E T,P with imprecise priors 
n ( 8 )  E rp,,,. TO avoid unnecessary measure-theoretic issues, we will assume 

that all distributions under consideration have their corresponding densities 

(with respect to some appropriate measure, e.g., Lebesgue measure), thus we 

will consider imprecise sampling densities (also known as conditional 
densities, models, and likelihood functions) { f ( x / 8 ) , 8  E O }  E r:. We start by 

considering the conventional Bayesian approach and hclw it combines 

information provided by models and priors. Then we examine the Bayesian 

solution for combination of several sources of information where each source, 
S i ,  is described in terms of a different (possibly imprecise) families of samplirlg 

densities, { f  (x/O;S,),B E O,i = 1, ..., L } .  Here, we need to closely examine the 

roe  of assumption of "independence" and consequences of making "too much" 
independence assumption. We also briefly look at the notion of independence 

in the context of D-S theory and its consequences. See also Kim (1990), 
Benediktson, Swain and Ersoy (1989), and Lee, Richards and Swain (1987). 



4.2 Independence and Combination of Sources of lnformatiori 

The major goals of this section are the following. First, we want l:o investigatethe 

desired properties that any rule for combination of information from various 

sources should have. Then, we will examine how Bayes' rule combines 
information under various types of independence assumptions and the resulting 

properties of these rule. Finally, we will briefly study how D-S theory combines 

information, some of its properties, the type of independence assumptions 

made there and their consequences. To keep our discussion general, we will 

use ,the following more general and generic notation. We will denote the 
av'ailable information from source Si , e.g., a measurement provided by sensor 

i ,  as evidence ei. We will denote the desired unknown quantity, i.e., the state of 
the nature or the parameter, as hypothesis h,. We will denote the degree of 

belief provided for hypothesis hj given evidence ei, by B(h,/e,). The degree of 

belief defined here should not be confused with 'the belief function of D-S 
theory. B(hj/ei)could be either the posterior probability, if \Me work in the 

Bayesian framework, or the belief function of D-S theory, etc. To make the 
notation simpler, we will write Bj(ei) for B(h,/ei) and, if from the context it is clear 

that we are addressing a particular hypothesis, say h,, we will drop the index 

and simply write B(ei). This should cause no confusion. 

Now suppose we are given m pieces of evidence, el, ..., em. Let B(el ,..., em) 

relpresent the combined degree of belief for a hypothesis, say hj, where again 

for the sake of simplicity of notation, the index j has been dropped. We can 

write the B function above as 

where b, = B(ei), is the degree of belief provided by the individual source i. The 

Function G, must have certain nice properties. For instance, the ordering of its 

argument should not change its value. Furthermore, if we can find another 
function g such that 



Following cheng et. al. (1988), we will call G, binary decomposable and we 

will call the function g its binary operator. What this basically says is that, we 

can obtain the combined degree of belief by taking any two pair of evidences, 

gel1 their joint degree of belief and combine that number with the third piece of 
evidence, etc. It should be obvious that computing the overall degree of belief in 
this fashion inherently assumes some type of "independence" among various 
pieces of evidence. This will become clearer shortly. Now, we will list a set of 
properties that we would expect any reasonable combination rule to have. 

Property p l  ) Commutativity 

g(a, b )  = g(b,a) for all a, b. 

Property p2) Associativity 

g(gfa,b),c) = g(a,g(b,c)) for all a, b. (4.2.4) 

These two properties imply that pieces of evidence are excha~qgeable and the 

order of combination is irrelevant. 

Property p3) Monotonicity 

a 5 b implies g(a,c) 5 g(b,c) for all c. (4.2.5) 

This property implies that if a piece of evidence is replaced by a stronger one, 
the combined belief should also be stronger. 

Property p4) Continuity 

For any a,b,c, if g(a,c) 5 u I g(b,c), then there exists d such th~at a ~d s b  and 
g(d,c)  = u.  



This property conforms with our human intuition that our combined degree of 

belief should not change abruptly with a slight change in strength of any pieces 

of evidence. 

An element I that has the property g(a,I) = a  for all a, is callecl the identity for 
the binary operator g. An element z that has 'the property g(a,z)= z for all a, is 

called the annihilator for the binary operator g. Since, we assume 

corr~mutativity and associativity, the identity and the annihilator are unique, if 

they exist. The intuitive interpretation for an identity I is that thle corresponding 

source (or piece of evidence) is non-informative and the combined information 
is solely due to the other source (or piece of evidence). Similarly, an annihilator 
z ,  represents piece of evidence so strong that overcomes the information 

provided by the other source. Typical values for I and Z ,  when they exist and 

when the belief interval is [0 11 is either the endpoints (0 or 1) or the mid-point 

(0.5). 

It is interesting to note that Abel (1926) and Aczel (1949) were able to show that 

the solution to the functional equation given by the associative property p2) 

ab'ove that has also commutativity, monotinicity and continuity properties is 
given b) 

where his a continuos and strictly monotone function. As an example, we can 

consider the following family of operators (called Hamacher's family) indexed 

by Y ~ Y  '0 

with the corresponding binary operator 



Remark: 

1) When the range of values for the degree of belief is an interval on the real 

line, (e.g., which typically is the range [0,1], as opposed to the case where the 

bellief is described in terms of linguistic quantifiers such as {unlikely, likely, very 
likely, most likely), etc. ), then any binary operator g that satisfies properties p l )  

- p4) is called a thread (Clifford, 1958 and Cheng et. al. 1988). Threads have 

been studied extensively in the areas of functional equations, measurement 

theory, etc. A thread that has its endpoints (e.g., 0 and 1 if the range of belief is 

[0 I ] ) ,  as its identities is called a Faucett's thread. For a comprehensive 

treatment of threads, see Cheng and Kashyap (1 988 and 1989), Aczel (1 966), 

Haljek (1 985). 

2) A binary operator T ,  T  : [O,l] x /0,1] + /0,1] , which has properties p l  ) - p3) , 

i.e., commutativity, associativity and monotinicity property arld has 1 as its 

identity is also called a T-norm and has been studied in statistical metrics 

context by Menger (1 942), and Schweizer and Sklar (1 983). Note that general 

T-~iorms are not required to have the continuity property. A T-norm that is also 
continuos and has the additional property that T ( x , x )  < x  for all x  ~ ( 0 , l )  is 

called an Archimedean T-norm. T-norms have also been investigated in the 

fuirzy set theory context; see Alsina et. al (1 983), and Weber (1 !383). 

Now , we are equipped with the required machinery to examine Bayes' rule and 

D-S theory for combination of evidence. 

4.:3 Bayesian Combination Rules 

The Bayesian approach to combination of evidence is simple. Given evidence 
el from source S,, evidence e, form source S,, etc. regardin'g hypothesis hi, 

wliere el could be for instance measurement X made with an MSS sensor, e, 

ccluld be measurement Y made with a Radar, etc. , the combined information is 

given by 



where above, knowledge of joint behavior of sources under hypothesis hi is 

required. This information is usually rarely available. So some sort of (statistical) 

independence assumptions are needed to be able to proceed any further. 

Statistical independence has the clear meaning that probability of conjunction 
of events can be written as the product of probabilities of the individual events. 

Cclmmon types of statistical independence are: 

I )  The conditional independence of evidence on atomic hypottieses 
assumption (CI) : 

m 

pr(e,& ... & e m / h i )  = n p r ( e j /  hi) for i = 1.2 ,..., n .  
j =I 

2) The global independence assumption (GI): 

3) The Conditional independence on the negation of hypotheses 
assumption (CIN): 

m 

pr(e,& ... & e m / h F )  = n p r ( e , / h i C )  for i = 1.2 ...., n .  
j = l  

where h: is the set - theoretic complement of hi. 



Of course one can make a combination of CI, CIN, and GI assumptions. Note 

that for n = 2 CI and CIN are identical, but for n > 2 they are quitle different. 

Let us now see how the Bayesian approach handles combination of 
information. The available information here are the sampling distributions 
pr(e,/hi), and the priors pr(h,), from which we can compute the posterior 

probabilities of individual sources, pr(h,/ej). The combination rule depends on 

the independence assumptions made. Assuming CI independence, Bayes' rule 
given in (4.4.1) becon~es 

Under simultaneous CI and GI independence assumptions, Bayes' rule of 

(4..4.1) becomes 

This is the rule recommended by Swain et. at, (1985) and is also used in the 

expert system MYCIN, a medical diagnosis system. clinical consultation 
program. 

Applying both CI and CIN, Bayes' rule of (4.4.1 ) becomes 



This is the rule used in PROSPECTOR, an expert system for mineral 

exploration and interpretation of geological data. See Goicoechea (1988), 

Frybach (1 978), and Buxton (1 989). 

It is important to realize that all of the above variants of Bayes' rule are 

decomposable. The binary operator for each rule can be easily obtained by 

setting the number of evidence m=2. For instance, the rule (4.'4.4), has binary 

operator 

F~~rthermore, the binary operator has 0.5 as the identity, since g(p1,0.5) = p, , or 

g(0.5,p2) =p2. And 0 (and 1) are the annihilators of the binary operator. That is, 

g(pl,O) = 0 for all pl except pl = 1 , or g(0,p2) = O  for all p, except p, = 1 ; 

similarly g(pl,l) = 1 for all p, except pl =0 ,  and g(l,p,) = 1 for all p, except 

p, = O .  The interpretation here is that if one piece of evidence rejects (or 

confirms) a hypothesis with certainty, then as long as the other source does not 

confirm (or reject) with certainty the same hypothesis, its information is 

irrelevant. The case where one piece of evidence confirms a given hypothesis 

with certainty and the other piece rejects the same hypothesis vvith certainty, i.e. 

complete contradiction, would lead to an undefined value for the combined 
belief g(0,l). 



We also like to mention that, one can easily verify that the binary operators for 
each of the above rules have all the desired commutativit:y, associativity, 

monotinicity and continuity properties (i.e., properties p l )  - p4) ). 

An important question remaining here is which rule should be used; i.e., what 
independence assumption(s) must be made? The answer is simple: Ideally, 
none! That are no independence assumptions that must be made, and Bayes' 

rule of (4.4.1) must be used. This means that if it is possible to obtain the joint 

distributions without any independence assumptions, one should do so. But in 

rea.1 applications the joint information may not be available. Then, we claim that 

only conditional independence (CI) alone should be made. One should 
definitely avoid the combination of (CI), (Gi), or (CIN) independence 

assumptions. The reason for this discrepancy becomes clear afer  the following 

definitions due to Cheng et. al. (1 986). 

DEiFINITION 4.1 : Evidence e, is said to be irrelevant to the hypothesis hi if 

Otherwise, it is said to be relevant to hi. 

DEFINITION 4.2: Evidence e, is said to be completely irrelevant if it is 

irrlelevant to every hypothesis: 

pr(hi /e ,)=pr(hi)  for all i = l ,  ..., n. (4.3.1 1) 

Ttie following results due to Glymore (1.985), Johnson (1986), Cheng and 

Kashyap (1986), and Pednault et. al. (1981) show that combinlation of any two 

or more of CI, GI and CIN could lead to undesirable consequences. That is 

THEOREM 4.1: Under simultaneous CI and CIN assumptions, for each 
hypothesis hi there can be at most one relevant evidence. Furthermore, at least 

max{O,(m - I n  I 2  J)}  pieces of evidence will be completely irrelevant. 



Similar results can be stated for combination of CI and GI, CIN and GI, etc. The 

main conclusion here is that CI alone is usually sufficient and no other 

independence assumptions should be made. 

In closing this section, we also like to making the following remarks in support of 
Bayesian updating rule. 

Remarks: 

1 ) Cox's (1 946) postulated seven desirable properties, among which were 

commutativity, associativity, monotonicity and continuity, for any belief updating 
rule and proceeded to prove that the resulting belief function is a probability. 

See also Schocken and Kleindorfer (1989). 

2) As the amount of information (data or evidence) increases, the uncertainty in 

the combined belief diminishes; put in different words, asymptotically the 

cclmbined posterior probability approaches a 0-1 distribution, where the true but 

unknown hypothesis will have posterior probability of one and the rest will have 

posterior probability of zero. 

3) Note that in decision problems, often we do not need to compute the 

denominators in the Bayesian combination or updating rule(s) above. 

Next, we investigate the D-S combination rule and the independence 

assumptions made in there. However, since D-S is not the main focus of our 

thesis, we will not give the full details here. Interested readers can consult the 

original papers of Demspter (1966, 1967, 1968), Shafer (1976, 1982), Klir 

(1 988), Smets (1 981, 1988, 1990) and many other interestin'g papers written 

since. A comprehensive list of references is provided in the reference section. 



4.4 D-S Combination Rule 

Recall from Chapter 3 that in the D-S theory sample space is required to be 
finite and the belief functions, Bel, and their conjugates plausibility functions, Pl 

are = - monotone and = - alternating capacities, respectively. Also recall, that 
for every belief function, there is a unique mobius inverse function, m, called the 

basic probability assignment (bpa) function. The combination rule can be 

explained more conveniently in terms of the bpa functions. 

The D-S combination rule (also known as Dempster's orthogonal sum) states 
that given two entirely distinct bodies of evidence el and e,, with ,their 
cclrresponding bpa functions m, and m,, the combined bpa. function m,, is 

ex:pressed by 

A A C ~ ( B ) . ~ ( C )  
m,,(A) =m, (A) O m,(A) = 

1 - Cm,(B,.m,(C) 
BnC=@ 

The above combination rule has the following desirable proper1:ies: 

1) The combination rule is obviously decomposable and n;!,, is the binary 

operator for the combination rule. 

2) The binary operator m,, is commutative and associative. 

3) 0 and 1 are the annihilators for m,,. 

The undesirable properties of the above rule, however, are: 

1) The meaning of "entirely distinct" bodies of evidence is not clear. Many 

researchers have tried to find statistical and other inter~r~etations for this 

requirement with limited success. See Voorbraak (1 991). 



2) Many researchers , e.g., Zadeh (1984) and (1986), 1-ammer (1986), 

Voorbraak (1991), etc. have constructed examples where using Dempster's rule 

would lead to inconsistencies. The main problem is the denominator in (4.5.1) 

which serves as re-normalization factor. 

3) We showed in Chapter 3, that the conditioning rule that follows directly from 

Dempster's combination rule is inconsistent with the desired rule. 

4) D-S has been used for combination of statistical evidence and prior 

evidence. Shafer (1982), Walley (1987), Kim (1990). But Walley (1987) has 

elaborately proven that Dempster's rule is not generally suitable for combing 

evidence from independent observations nor it is suitable to combine prior 

belief with observation evidence. 

5) The number of computations required in Dempster's rule grows 
exponentially; Orponen (1990), Kennes (1992). This is mainly due to the fact 

that D-S theory works with the power sets. To be exact, i f  the sample space R 
has n elements, to compute (4.5.1), we need to perform (22" - 2 " )  additions and 

2"" multiplications. And to corlipute the Be1 function (or the PI function) we 
need to do (3" - 2 ")  extra additions. Ignoring the required addition operations, 

this implies that to combine two sources in D-S theory, the time complexity is of 
order 0 ( 2 ~ " ) .  And if there are K sources, then the time complexity is 0 ( 2 ~ " ) .  

6) Furthermore, in D-s Theory one needs to specify the values of bpa's on the 

power set, whereas in probability theory one needs to specify probability 

density (or actually mass) function only on the sample space. that is if the 

sample space R is finite and has n elements, one needs to specify values of 2" 

basic probabilities, opposed to specifying n values for the probability mass 

function. So, if one has difficulty in specifying the probability m,ass function, it is 

not clear how specifying bpa function would be any easier! Also, in terms of 

storage, above implies that D-S requires exponentially more storage space. In 
the next Chapter, we will examine Bayesian approaches fo~r combination of 
irriprecise information and provide their computational complexities and 



highlight the savings they offer in terms of storage and computational 

complexities. 





CHAPTER 5 

COMBINATION OF IMPRECISE SOURCES OF INF:ORMA'rION 

5.1 Introduction 

In this Chapter we will introduce three different approaches for combination of 
irr~precise sampling distributions (possibly from multiple sources) and irr~precise 

priors. Throughout the Chapter, we will adhere to Bayes' rule (or its new version 

for Capacities). In the case of multiple sources, we will only make a conditional 

independence (CI) assumption to combine information. We will consider the 

computational burden of each method and compare them with the 

computational complexity cost in D-S theory. 

In the first approach, we utilize the extreme point representatifon suggested by 

W'hite (1 986) and obtain the posterior extreme points from the extreme points of 

the priors and the extreme points of the sampling densities. We look at the 

computational complexity of this approach and conipare it to tlie computational 

complexity of D-S Theory. Even though this approach has bett.er computational 

complexity than D-S approach and does not suffer from some of the major 

criticisms of D-S Theory, its computational complexity may still be a problem. 
Tlhus we propose a second method that uses a linearization technique of 

Vl'asserman, Lavin and Wolpert (1993). This approach is iterative and converts 
a nonlinear optimization problem for finding upper (and lower) posteriors or 
posterior related quantities into a sequence of simpler linear optimizations. We 

provide several examples here. As the third and final approach, we look at the 
product or .the joint space of measurements and parameters, x O .  We realize 

that if the class of joint distributions (or densities) can be described in terms of 



jo~int 2-Choquet capacities, then we can utilize our Theorem of Chapter 3 and 

find the posterior capacities directly. This approach ha~s the smallest 

co~mputational complexity. We provide several examples. 

5.2 Extreme Point Representation 

Let us assume that the measurement space and the parameter space are both 
finite. Furthermore, let us assume that the set of imprecise models and priors 

are Convex sets. This is a relatively mild requirement arid many useful 
neighborhoods are convex. For example, when ,the imprecisiori is described in 

terms of linear inequalities, the resulting set is convex. A, description of 

im,precision in terms of linear inequalities is often very natural and practical. 

Below, we provide three cases to molivate the idea. Case 1 corresponds to the 
situation where the available information translates into a general convex set. 

The idea is explained by a typical example from medicine. Case 2 corresponds 
to imprecision specified by general lower and upper bounds. Case 3 

corresponds to an important special case of Case 2 which ha!; a very natural 

interpretation and the lowest computation cost; i.e., that of point valued or 
precise probabilities. We begin with Case 1 with an example which is due to 

White (1 986). 

CASE 1: Here we will assume that both the parameter space,@, and the 
measurement space, x , are finite. 

Consider a patient with joint pain who is assumed to be in one of the four 

following mutually exclusive states of health: 

A 

1 ) fibrositis = 8, 
A 

2) cervical nerve compression = 8, 
A 

3) polymyalgia rheumatica = 8, 
A 

4) nonspecific joint pain = 8, 



Assume that a physician makes the following statements, based on the patient's 

history 

1) The likelihood that the patient has nonspeci.fic joint pain is between 

2.0 to 2.5 times that the patient has fibrositis. 

2) The likelihood that the patient has cervical nerve corrlpression is nine 
to ten times the likelihood that the patient has polymyalgia 

rheumatica. 

3) The likelihood that the patient has cervical nerve connpression is five 

times as great as the likelihood that ,the patient has nonspecific joint 

pain. 

That is: 

Note that the above information corresponds to the following set of priors: 

Suppose that the models f ( x / 0 , )  , i=1, ..., 4 for the above disorders are also 

known partially. More specifically, assume that the physician determines that 

there are trigger points (with or without modules) in the soft tissue surrounding 
the affected area and can only state ,the following 

1) The likelihood that trigger points will be found is the same as if the 

patient has cervical nerve compression or if the patient has 
nonspecific joint pain. 

2) The likelihood that trigger points will be found if tlie patient has 

cervical nerve compression is between one and two times the 



likelihood that trigger points will be found if the patient has 

polymyalgia rheumatica. 

3) The likelihood that trigger point will be found if the patient has 

fibrositis is 7 to 8 times the likelihood that trigger points will be found if 

the patient has cervical nerve compression. 
4) The probability that trigger points will be found in a patient with 

polymyalgia rheumatica is at least 0.01. 
5) The probability that trigger points will be found in a patient with 

fibrositis is between 0.90 and 0.95. 

Let x  represents the result of the physicians measurement (or examination), 

where x can have only two possible values of trigger points being present or 

absent. Then the above information can be summarized as: 

f ( x  = trig. pts. found / 8,) = f ( x  = trig. pts. found / 8,) 
f ( .x  = trig. pts. found / 8,) 5 f ( x  = trig. pts. found / 8,) 5 2 f ( x  = trig. pts. found / 8,) 

7 f ( x  = trig. pts. found / 8,) I f ( x  = trig. pts. found / 8,)  I 8 f ( x  = trig. pts. found / 8,) 
f ( x  = trig. pts. found / 8,) 2 0.01 

0.90 5 f ( x  = trig. pts. found / 8,)  I 0.95 

Now, suppose the physician examines a patient and detects the presence (or 

absence) of the trigger points. Given the above measurement and the 

imprecise information (5.2.1) and (5.2.2) regarding the priors and the 

likelihoods or the models, we like to determine the set of posterior probabilities 

that the patient has any of the given disorders. 

Noi:e that the set of priors specified in (5.2.1) is a convex set with finite number 
of extreme points. Let epriorr denote the set of prior extreme points and z'"' 
denote its elements. 

Note also that any prior in the set r can be expressed as a linear convex 

conibination of the above extreme points. 



Similarly, given the observation that a trigger point was found, let T,,,ibo, 
represent the set of possible likelihoods given by (5.2.2). Let E,,,~,, be the set 
of extreme points of T,i,,i,o, and f ("j be its elements. - 

Then the set of posterior extreme , with elements; TJ(~)(.) .) can be 

computed by using the classical Bayes' rule which in the vector form can be 

written as 

where z'"' Q - f(") is the vector whose jth element is the product of jth element 

of the vector z("' and the jth element of the vector - /("I, and C(~(I) Q - fin)) 

represent the sum of the elements of the vector z("' QL(~ ) .  

dk'(. / x = trig. pts. found) = - 

If we let Q represent the set of posteriors obtained by applying the Bayes' rule 

to the entire set of priors and ,the entire set of likelihoods (and not just the 
extreme points), and let CH (A) denote the convex hull of set A ,  we have the 

folll~wing useful results proofs of which can be found in White (1986). 

- 
nfk'(8, / x  = trig. pts. found) 

dk'(o4 / X  = trig. pts. found) 

Result 2: Let ext represent either minimum or maximum, and C E Rn where nis 

the dimension of the parameter space O .  Then 



posterior 
} = ext {yc: y s Q 1 = ext yc: y E CH 8 ( p o s f I r i o r ) ) ~  (5.2'5) 

That is, for instance, to find the minimum (or the maximum) posterior probability 
ofOi, i.e., ext {yi: y e Q } ,  one only needs to search through the posterior 

extreme points for the minimum (or the maximum) value. 

Fclr the above example, the upper and lower posterior probabilities using eq. 

(5.2.4) and result 2 (eq. (5.2.5)) can easily be computed as 

0.253 1 n(9, ( trig. pts. found) 50.443 

0.418 I n(9, 1 trig. pts. found) 20.607 

0.018 I n(9, I trig. pts. found) 1 0.077 

0.083 I n(9, 1 trig. pts. found) 1 0.125 

If the set of priors and the set of likelihoods have N,,,,,, and N,,,,,,, extreme 

poiints, respectively, then to compute the set of all posteriors extreme points, we 

need to perform 3(n + 1)* ( N ; L i )  mulfipli~ations and I*  [Nr. l )  additions, where 

Ntc.tal = Nprio, + Nli,lihoodu, and n is the dimension of the parameter space, 

Of course the above approach can be easily extended to several sources using 

the! Bayes' rule and any of the independence assumptions, in particular, the 

coriditional independence (CI) assumption. Given ,there are S sources and if we 
assume the set of likelihoods corresponding to source k has l Y ~ ~ , h o o ,  extreme 

points, then to compute the posterior extreme points we need to perform 

Nroral (n.+l)*S*( ) multipl ications, and n * [ N y i )  addii,ions, where 



S-1 

Ntotal = Nprior + x N ~ i k e i i b o d  . Si rice [:)=O($), the computation cost of above 
i=l 

prclcedure is of order 0 

Of course, the above computational costs do not include the cost of 

determining the extreme points for the priors and the likelihoods, which in 

general is a nontrivial task. 

Even though, there is no Dempster-Shafer interpretation for the scenario 

presented in the Case 1, and the only statistical interpretation given by Shafer 

(1982) corresponds to the case of combination of precise likelihoods with 

imprecise priors, described by belief and plausibility functions, we like to 

examine the computational complexity of the Dempster-Shafer rule to obtain a 

feeling for the number of computations involved in the different approaches. 

Recall the worst case computat io~~al complexity of Demspter-Shafer 

combination rule [Kennes (1992)) Henkind and Harrison (1!388), Orponen 

(1990)] for combining two sources, where the parameter space has n elements, 
involves 22" multiplications and 2"(2" - 1) additions; i.e., is of order 0 ( 2 ~ " )  

computation. By induction the worst case computational complexity of 
Dernpster-Shafer rule to combine S sources is 0 ( 2 $ " ) .  

Direct comparison of computational complexities of the Dempsiter-Shafer rule 

and ,the extreme point approach is not possible since the later depends on the 
total number of extreme points, N,o,i, and there is no closed form expression for 

,this quantity. However, unless N,,a, is O(2 ") or larger, the extreme points 

approach would be more efficient in terms of computational complexity. 

CASE 2: Here we will assume that the parameter space O is finite, but the 

measurement space x could be either finite or continuos. 



In many practical situations, the available imprecise information can be 

expressed in terms of upper and lower bounds for the unknown quantity. A 

typical example is using confidence interval estimates. 

More precisely, let us consider the imprecise priors and represent the available 
information as 

Recall from Chapter 2 that, for the set of imprecise priors defined by (5.2.7) to 
be rlon empty, we need the following simple requirement 

R1) x e ( q )  5 1 and X u ( 9 , )  I .  

Furthermore, for this set not to be "unnecessarily too large", we require 

j t i  
n 

~ ( 6 , )  s 1 - z e ( e , )  

As we mentioned earlier, there are many ways that one could come up with the 

lower and upper bounds above. They represent our minimum and maximum 
prior beliefs in occurrence of various outcomes. Lower and uppler bounds for 
the likelihoods (or the sampling densities) can come about, for example, when 



they are estimated from small size training data and are expressed as lying 

witlhin pairs of confidence limits. 

Given a set of linear inequalities such as (5.2.7), if the set is non empty but too 
large, we can refine the bounds to get a set that satisfies requirement R2 as 

eye,)= ma, e(e,) , i - C u c q ) ~  
i=l  
itj 

Here, the resulting set of priors is not only convex, but also a polytope which 
again is completely determined in terms of its finite number of lextreme points. 

Extreme points of a convex polytope can be found using different methods such 

as linear programming, etc. See Balinski (1961), Matheiss ancl Rubin (1980), 

Karmarker (1984), Ho and Kashyap (1965). In general, for an arbitrary convex 

polytope the task of finding all its extreme points is usually nontrivial. But due to 

the sirr~ple structure present in our representation, it is easy to see that in an n -  

dim~ensional space, the corresponding convex polytope could have minimum of 
n and maximum of n(n-1)  vertices, and those can be computed relatively 

easily. 

Given an observation x =xo,  to combine the information provided by the lower 

ancl upper bounds for the priors and the likelihoods using the Ba:yes' rule, in the 

worst case we need to perform 0 ( 2 ~ " - l )  multiplications. See Figure 5.1 below. 

Thi!; is because in the worst case there would be n(n-1)  extreme points in the 

prior convex polytope, and 2n possible combinations for the extlreme likelihood 

values, thus the overall 

n(n - 1) + 2" 
Worst Case Cost = - 2'"-'+ (n2  - n)2" - 2n-1+ - n4 + - n = 0 2 

2 2 ( 2n-1)  



which is comparable to the corr~bination cost of Dempster-Shafer rule and can 

be easily generalized for S sources. 

Figure 5.1 - (a) The Set of Imprecise Priors; (b) Upper and Lower Bounds 
Specification of the lmprecise Sampling Probability Mass Functions. 

CASE 3: Here we will assume that both the parameter space O and the 

measurement space x are finite. This is an important special case of Case 2 

where we can specify only the lower bounds; i.e., the minimum degrees of 

beliiefs, and we let the upper bounds to be the largest values allowed by the 
requirement R2. That is, considering imprecise priors, we have 



Note that 

which is independent of the index i ;  i.e., the range of uncertainty specified by 
the width of the interval is the same for all 8; ' s .  That is the upper bounds are, in 

a manner of speaking, non-informative. 

Similarly for the imprecise likelihoods, we have 

! ( x j / O i ) S  f ( ~ , / t 3 ~ ) 5 u ( x , / 8 ~ ) ;  j = 1 , 2 ,  ..., M 
M 

!(xi / 8 , )  2 0  and U ( X ,  / 0 , )  = 1 - x ( ( x ,  / 8 , )  
k=l  I 

Since in this section, discussion regarding the priors and the likelihoods are 

almost identical, we will use the generic notation 

e ( z i )  s P ( z , )  s U ( Z ,  j 

! ( z i j L O  and u ( z i j = l - x ! ( z k )  ; Z ~ E Z  (5.2.1 6) 
k zi 

to refer to the set of priors or the set of likelihoods. Above, subscript !,u is used 

to emphasize the role of both the upper and the 'lower bounds. 

Let T denote the set of all possible probability distributions. Since we are 

considering finite spaces, T is simply the (appropriate) probability simplex. Let 
DC:T be an arbitrary set of probability distributions that satisfies the 

requirements RI and R2. Let 



A 

l(zi) = inf p(zi) ; zi E Z 
P ~ D  

be the lower bound of I, atpoint zi, and Let 

be the set of all probability distributions that are larger than ,the lower bound at 
every point, Z, E Z .  

Note that, in general, re + I,. When T, = I, , we say T, and C are representable 

(palintwise) and write them as (T,,l) to contrast them with the more general 

notion of representability defined in Chapter 2, Section 3. Figure 5.2 shows an 
example of the above idea in 3-dimensions. Note that, in 3-D tlhe set T, is an 

eqi~ilateral triangle. 



Figure 5.2 - An Arbitrary Set of Imprecise Probabilities, D, and Its 
Corresponding Set T,. 

Similarly, let ( z , = l - ( z )  and define the set of probability distributions 
k # i  

specified only by the upper bound as 

Note that, in general, T, = T,,, c T,. Proof is simple and is omitted. This implies 

that specification by the upper bounds alone is not enough, and we need to 
consider T,., or T,. Figure 5.3 indicates this idea in the case of 3-dimensions. 



Figure 5.3 - An Arbitrary Set of Imprecise Probabilities', D, and Its 
Corresponding Set T,. 

Now, let $2, and {r:: ; i = 1, ..., n} represent the set of imprecise priors and the 

imprecise sampling distributions, respectively. That is 

n.. e(ei) 2 n(ei) s ~ ( 6 , )  ; i = 1, ..., n 
rfr = 

priors u ( e i )  = 1- z!(ek) (5.2.20) 
k t i  

and 



The following theorem shows how we can obtain the lower and upper bounds 

for the resulting set of imprecise posteriors. 

THEOREM: Given an obsetvation x  = xi ,  and the above representation for the 

imprecise priors and the imprecise sampling distributions, then 

where 8' = arg m y  u ( x , / O k )  , provided in (5.2.23) we are not dividing by zero. { k+ i  } 
The upper posterior probabilities can be computed as 

Proof: See appendix A.2. 

Let us consider the followirlg simple example to illustrate the method. Suppose 
the parameter space @ = { 8 , ,8 , ,  8,) and the measurement space x = { x l , x 2 . x , } .  



Furthermore, the available information is expressed as lower bounds for the 

priors and the conditionals as 

Given the observation x =x , ,  posterior lower and upper probabilities can be 

found using (5.2.23) and (5.2.24) as 

0.039 I n(8,  / x,) I 0.609 ; 

0.308 5 ~ ( 8 ,  / x,) 10.913 ; 

0.037 I n(8, / x,) 50.526. 

Above method can easily be extended for combination of ir~formation from 

multiple sources. For sake of simplicity of notation and without loss of generality 

we will consider combination of only two sources. Let us denote the 

observations .from source 1 and source 2, with discrete random variables X and 

Y, respectively. Furthermore, let us assume that available information regarding 

each source can be expressed as lower bounds on the conditionals; i.e., 

Source 1 : { f x , , ( . / ~ , ) ~ f x 1 , ( . / @ )  ; i=1,  ... ,n I (5.2.28) 

Source 2: { fylo{. I ei) 5 fyl,{./  ei) ; i = 1, ... ,n I (5.2.29) 

and the available information regarding the priors is expressed as 

Priors: { ! { O i ) 5  n{Oi) ; i =  1, ..., n } (5.2.30) 

Then, under the assumption of Conditional Independence (CI) of the sources, 

the combined lower posterior probabilities can be computed as 



where 

and 

Siniilar results can be stated foot the combined upper posterior probabilities 

Proof of (5.2.31) can be found in the appendix A.3. 

It is interesting to note .that, apart from computing 8*,  the computational 

complexity of the above method is identical to the computational complexity of 

the combination of CI sources using the Bayes' rule with thle point-valued 

probabilities mentioned earlier. That is, no extra computational cost is involved 

due to presence of imprecision r uncertainty in the available information. 

5.3 Linearization (Iterative) Method 

Lei: rn denote the set of imprecise prior distributions and { f ( x / 8 )  ; 8 E O }  be 

the set of imprecise sampling densities. Let 



represent the posterior quantity of interest. Note that for the follo\nring choices of 

@(el: 

we have (1) the posterior mean, (2) the posterior probability of set B, and (3) the 

posterior expected loss of decision 6(x). Furthermore, since the priors and the 

san~pling densities are not known precisely, for a given observation or 

measurement x,  we are interested in computing 

- - inf e - n,rn,, , (x ,  O,,,} 
p(0, n, f )  

The range of the interval [p - , j] indicates the degree of robustness of the 

posterior quantity p to the variations or indeterminacies in the priors and the 
sarnpling densities. Computation of j (or p )  - is complicated by the fact that the 

above optimization problem is nonlinear in and f(x/8). F=ortunately, the 

following linearization result due to Lavine (1991 b), DeRobertis (1 978), and 

Wasserman et. al. (1993) can be used to convert a single nonlinear 

optimization into a set of simpler linear optimizations. 

Theorem: (Linearization) Let q  be any real number and define 

and 

Then, p > q iff C (q)  > 0. A sirr~ilar result holds for the lower posterior bound p. - 



Note that C  (q )  is a linear function of both 17 and f ( X I  8 ) .  That is, to compute p 
we do the following iterative procedure: 

1) choose some arbitrary number q .  

2) Compute F ( q ) .  

3) If ( q )  > 0, then p > q .  So, we choose another number larger than q  

and go to step 2); 
If C ( q )  < 0 ,  choose a nuniber smaller than q  and go to step 2); 
if C ( q )  = 0, p = q  and stop. 

A simple way to implement the above algoriZhm is to compute C ( q )  over a grid 
of points { q,, ..., q,} and then solve Z'(q) = 0 numerically. 

It is; also important to note that usually the set of imprecise priors and imprecise 

sanipling densities, e.g., E - contamination or band models, are convex sets with 

easily identifiable extreme points; Berger (1 990). Furthermore, as mentioned 
earlier C ( q )  is a linear function of 17 and f (x l8 ) .  It is a well known fact that 

linear functionals over convex constraint sets attain their minimum or maximum 

at l:he extreme points of the constraint sets. That is, if we denote the set of 

extreme points of the imprecise prior set, T", as E" and the imprecise sampling 
densities, { T i  ; 8  E 01, as { EL ; 8  E @}, then 

As an application of the above result, let us consider the following example. 

Example 5.3.1: Let the imprecision regarding 'the priors and the models both be 

described by band models as 



and 

Band models are useful because they do not require knowledge of the shape of 

the distribution or nominal model illformation and allow a wide range of 
distributions. 

In the above example, ? (q)  can be computed easily as: 

1 ) Choose a real number q and fix a Z ~ E  T" (or actually Z ~ E  E"). 

2) Compute the maximum over the sampling densitiles: clearly the 
maximum occurs at 

3) Compute the maximum over the priors: The maximum occurs at 

where k is simply a normalizing constant that woulcl make ~ ' ( 8 )  a 

valid density. 

4) Repeat the above steps for several values of q and numerically 
solve for ?(q) = 0 .  

It is obvious that we can not compute, at least in a closed form, the 
cornputational complexity of this iterative approach. The amount of computation 
would depend on the degree of accuracy that we wish to solve c(q)=O 
equation. 



Next, we will consider an approach that is based on the properties of 2- 

Capacities and we will use our result of Chapter 3 to directly find a closed form 

expression for the upper and lower posterior probabilities. See also 

Wa:sserman (1 990). 

5.4 Joint 2-Capacity Method 

First, we will re-examine the Bayes Theorem in the context of olbservation and 

par(ameters, and then will proceed to discuss the joint 2-Capacity results. 

5.4.1 Bayes Theorem (Revisited) 

Let Xrepresent the space of measurements or observations and F be a o-field 

of subsets of X I  and let 0 be the parameter space with its corresponding o- 
,field B. Let {P(x/8),8 E 0 )  represent a family of probability measures (i.e., the 

sarnpling distributions) and I7 denote the prior distribution of the parameters. 

We will assume that all measures have densities (with re:spect to some 

appropriate measure), and denote the sampling densities corresponding to the 
sarnpling distributions above as {f(x/8),8 E 01 and the prior density or mass 

function corresponding to the prior distribution above as n(8). Furthermore, Let 

Xx:@ represent the joint space of observatio~is and parameters, and FxB be an 

appropriate o-algebra on this joint space. Then, Bayes theorem states that there 
exists a unique probability measure P(. x .)on ( X x O ,  FxB), with its 

corresponding density p( .  , .), 'that has I7 as its 8-marginal and {P(x/8),8 E 0) 

as its conditional distribution. That is, 

and for each 8 E 0 and any given observation x E X ,  



Furthermore, given an observation x, i.e., the set {x} x O in the joint space, we 

can obtain the conditional (or the posterior) probability of parameter 8, i.e., the 

set xx {e l ,  by 

The posterior density of parameter 8, given observation x, is ~l~sually denoted 
by n(O/x) and the above expression is usually written in terms of the sampling 

density f ( ~ 1 8 )  and the prior density n(8) as 

where above we have made use of the notation: 

jgn(8)d8 if 8 is  conrinous; 

A gn(8) if 8 is  discrete. 

See DeRobertis and Hartigan (1981) for further details. The main implication of 

the above statements is that all we have to do is to consider the joint space of 

the observations and the parameters and consider the joint measure on this 

space. From this joint measure, we can uniquely deduce posterior related 

information. More specifically, given a set of priors and sets of sampling 

distributions, we construct the set of joint distributions. Next, we note that if the 

set for the joint distributions can be described by 2-Capacities, we could use our 

theorem of Chapter 3, to directly computed the conditional, i.e. the posterior 

probabilities. 



5.4.2 Proposed Method Based on 2-Capacities 

Let rn be the class of imprecise priors, { TL ; 6 E 8) be the set of imprecise 

sanipling densities, and let TXxe denote the set of resulting joint distributions. 

Let us assume that rXXe can be characterized by 2-Capacities; i.e., we can 
wri1:e 

rX xe = { P: P(C) I v(c)} (5.4.6) 

where v(.) is some 2-alternating Capacity and C is a set in the product space 

X x  O .  Then from our Theorem in Chapter 3, eq. (3.3.6), we know that 

and similarly, 

Where typically set D =  X x  A,, i.e. a subset of the parameter space, and set 

C == j x , ]  x O is an observation in the measurement space. 

Note that equations (5.4.8) and (5.4.10) provide us with a direct method to 

cornp~~te ,the conditional (i.e., posterior) upper and lower probabilities. 

Example: 5.4.1 Let us reconsider Example 5.3.1 above where imprecision in 
botth ,the priors and the sampling densities are described by the band models; 
i.e., 



Then the corresponding joint space will be 

which is also a band model. 

Although the band model classes are very useful, they have two disadvantages: 
1 ) They are usually too large and can lead to posterior ranges that are too wide 
and non-informative; 2) At this point, we are not aware of the 2-capacity that can 

characterize this class. For these two reasons, we consider the density bounded 

subset of this class. Recall that density bounded class corresponding to a band 

model class contains elements that are bounded by the same upper and lower 

bounds, are valid densities, and do not need renormalization. The density 

bounded class corresponding to (5.4.1 4) above is 

or in terms of distributions 

where A, x B, E F x p ,  and typically A, = { x o }  is a single observation and B, is a 

subset of parameters of interest. 



We know from Chapter 2 that density bounded classes can be characterized in 

terrns of 2-Capacities; i.e., eq. (5.4.16) can be rewritten as 

, = { P: P(A,  x B e )  2 v(A, x B e )  } (5.4.1 7) 

where 
v(A, x B,) = min { U(Ax x Be), 1-  L((A, x B,)') } (5.4.1 8) 

wh'ich can be used in eq. (5.4.8) to compute the upper posterior probabilities. 
Lower posterior probabilities can be computed similarly. 

At this time, we do not know what other classes of imprecise priors and 

sarnpling distributions will give rise to joint spaces that are characterized with 2- 

Capacities. More study is needed in this area. 

It is obvious that this direct method has the lowest computational complexity of 

all the methods we have considered and has basically the samle computational 

cost as the point-valued precise probabilities. 

Also, this method can be extended to multiple sources under Conditional 

Independence (CI) assumption, as long as the resulting joinlt space can be 

charactrized in terms of 2-Capacities. Even when the joint space is not directly 

characterizable in terms of 2-Capacities, one can often slightly enlargen or 

recluce the joint space to get a new joint space which is characterizable with 2- 

Capacities. 

Again, the only requirement for this method is that the joint space must be 

characterizable in terms of some joint 2-Capacity. 





CHAPTER 6 

INFERENCE AND DECISION-MAKING WITH IMPRECISE 

POSTERIOR PROBABILITIES 

6.1 Introduction 

Regardless of the method used to model imprecise prior probabilities and the 

conditional probabilities, and how they are combined to obtain posterior 

probabilities, the next issue is how does one proceed with these imprecise 

posteriors to make inferences and decisions. 

In statistical inference the goal is not to make an immediate decision, but 

instead to provide a "summary" of the statistical evidence whiclh a wide variety 

of ,future "users" of this evidence can easily incorporate into their own decision- 

making process. Posterior probabilities carry the required information. So, as far 

as the statistical inference is concerned, once the posterior probabilities are 

obtained, the task is completed. 

In a decision-making process, however, given an observation, prior information 

and the models (or the conditional densities), rationality dictates that an action 

a, from the set of possible actions A, should be chosen thalt has minimum 

expected loss (or risk). See Berger (1 985). 

To be more specific, let 63 be the parameter space, let A be the set of all 

possible actions, and let A denote the loss function; i.e., 



where 31 is the set of real numbers and A(8, a )  is the loss incurred when action 

a  is selected and the parameter is 8 .  Note that in many applications (e.g., 
estimation problems) a = Q .  

Then, the expected loss is simply 

or i~n terms of posterior probability ~ ( 8  1 x )  

6.2 Upper and Lower Expected Losses 

Of course, imprecise priors and imprecise sampling distributions give rise to 

imprecise posteriors. Let us denote the set of imprecise posteriors as T"'./'). 
Then the corresponding upper and lower posteriors ca.n be defined, 

respectively, as 

and 

A A 

E [ A ]  = &(a) = inf j ~ ( e , a )  n(B 1 X )  d e  - 
R ( . / O )  E ra(.le1 e 

Note that the upper and the lower expectations are linear functions of the 
posteriors probabilities n ( e ( x ) ,  and if the set T"(./') is convex, then their 



cornputation is relatively simple. In fact, if the set of the imprecise posterior 

probabilities TH'./') can be characterized by 2-Capacities, then computation of 

upper and lower expected losses can be even further simplified as the following 
example illustrates. 

Example 6.2.1: Let us assume that the set of imprecise posteriors T"'. '~) is 

given by 

which is an E - contamination model (see Chapter 2 for the definition). It is easy 

to :see that 

where 

For a "0-1" loss function, i.e., 

which is a typical loss function, A* = 1. 

Similar results can be shown for other 2-Capacity classes such as the density 

bounded model, etc. 

There are other indirect methods for computing the upper and lower 

expectations which can be found in Dempster (1968), Wolfenson and Fine 

(11382), and Kim (1990). 



6.3 Decision-Making with the Upper and Lower Expected Losses 

With the usual point-value probabilities, expected losses are allso point-valued 
and an action or a decision is made that has the minimum expected loss (or 

risk). For upper and lower expected losses, however, the problem is somewhat 
mare complicated. 

Let us assume that the set of actions or decisions A is finite. Then, when the 

upper and lower expected loss intervals are non-intersecting, the choice of an 
action is easy. That is, we order acts by dominance: a, > a, (read a, is preferred 
to a,) i f  and only if 

And for more than two actions, we choose the action a' such that 

When the upper and lower expected loss intervals overlap, however, we face 

the problem of indecisiveness. 

When &(a,) > &(ai)  and X(a,) < %(ai) ,  i.e. [&(a,) ,  X(a,)] c [&(a, ) ,  %(a,)] the 

int,ervals are nested, and it is not clear which action should be preferred and 

wh~y. 

What can be done, however, is to eliminate from the set of possible actions, 
those actions that are not preferable. That is, suppose for a,, k i t  i ,  k z j 

and 



Then we eliminate a,, from further considerations and try to resolve the 
remaining indecision between ai and a,. Note also that one may face 

indecisiveness between ai and aj when, 

and 

There are two possibilities at this point: 1) Claim indecisiveness and require 

more information (e.g., in the form of more sample data for the frequentist 

approach), 2) Use some ad hoc but "reasonable" approach to resolve the 
problem. Let us show the above situation graphically (see Figure 6.1 below). 



Figure 6.1 - Four Possibilities for Actions a, and a j  with Overlapping 

Expected Losses : (a) &(a,) Much larger than &(a,) and X(a,) Slightly 

Larger than %(ai) ;  ( b) , (c) , (d) etc. 

For the above scenario the following is recommended: 

For case a): a, > a, ; that is a j  is preferred over a, 

For case b) : a, and a, are about equally preferable; this 

situation can happen in the point-valued expected loss problems too 

when the expected loss of two actions are equal. We say that we are 
indifferent about a, and a j  and use a "tie-breaking" n~ le  to decide. 



For case c): a, + a, 

For case d) : a, + a, . 

Of course, other ad hoc rules such as making decisions based on the mid- 

values of each interval can also be used. The main conclusion i~n these cases is 

that there is not information to make a clear decision and we need to gather 

more data or information. See also Loui (1 986). 





CHAPTER 7 

CONCLUSIONS AND SUGGESTIONS FOR 

FURTHER RESEARCH 

7.1 Conclusions 

The problem of representing imprecise information and combination of 

imprecise and uncertain information are important problems with many 
implications in engineering and science. -The validity of any inference and 

decision-making mechanisim depends on the assumptions and inputs put into 
that system. Therefor it is essential that one models the availcable information 

carefully without either makirrg too many unrealistic assurr~ptions that are 

typically difficult to justify, or throwing away valuable information, albeit not very 

complete or precise, for the sake of simplicity of computation. 

The goal of this thesis has been: 1) to provide realistic and useful mechar~isms 

for describing imprecise information; 2) To come up with useful rules for 

combining imprecise information; 3) and finally making suggelstions regarding 

decision-making with imprecise posteriors. 

In Chapter 2, we examined various useful and natural ;approaches for 

describing imprecise information. We noted that many useful situations can 

easily and convenien,tly be characterizied in terms of Capacities. In particular, 
we noted that Dempster-Shafer modeling of imprecise inforrr~ation also is in 

terms of Capacities. 



In Chapter 3, we drived Bayes' theorem (conditiong) for Capacities. Comparing 
with the results provided with ,the Denispter-Shafer Conditioning, which is 

based on Demspter-Shafer rule of combination of information, we provided 

another proof for inconsistency of that Demspter-Shafer rule. 

Chapter 4 focused on combination of information sources. We examined some 

of the properties that a reasonable rule of combination of inflormation should 

poses. We also showed the implications of various types of "independence" 

assumptions. The main conclusion here was that Bayes' comblination rule with 

the Conditional Independence assumption had many desirable properties and 
avoided some of the criticism of other rules such as the Dempster-Shafer rule of 

combination. 

In Chapter 5, we addressed the problem of combination of imprecise priors and 
imprecise sampling distributions. We suggested three approaches: 1) Extreme- 

point representation; 2) Linearization method; 3) and a direct rrlethod based on 

joint Capacities. We also considered the computational conlplexity of each 

approach. 

In the Extreme-point approach, the available imprecise iriformation was 

modeled as convex sets with identifiable extreme points. We u.sed the extreme 
points of the convex imprecise priors and sampling distributions to construct the 

extreme points of the imprecise posterior probabilities. 

In the linearization approach, we used a ,theorem of Lavine (Lavine 1991) to 

convert a nonlinear optimization problem into a set of linear optimizations. This 

is a powerful iterative approach. 

In the direct approach, we used our theorem of Chapter 3. We noted that when 
the space of joint measurements and parameters can be characterized in terms 
of 2-Capacities, we could use the conditioning n ~ l e  of Chapter 3 and directly 
obtain the posterior or posterior related quantities. This method, being a direct 

approach, has the lowest computational complexity. 



Chapter 6 addressed the problem of decision-making with upper and lower 
expected losses. Here, we also found that with imprecise information there 

would be moments of indecision where a unique action or decision may not be 

available. We suggested a few ad hoc rules to resolve the indecisions in those 

situations. The main conclusion in such cases is that we simply need to gather 
more data. 

7.2 Suggestions for Further Research 

Capacities seem to be a very natural and useful tool in describing imprecise 

information and deserve a further examination. Bayes rule for conditioning 

provided in Chapter 3 is a very useful and computationallgl simple rule to 

compute the upper and lower posteriors. This rule, however, requires that the 
joint space of measurements and parameters be characterized in terms of 2- 

Capacities. Although, one can start directly with joint space s and model the 

imprecision in terms of 2-Capacities, this does not seem a very natural 

approach to us. Furthermore, even though priors and sampling distributions can 

easily and naturally be described in terms of 2-Capacities, at this point we do 

not know what farr~ily of imprecise priors and imprecise distributions would lead 

to joint spaces that can be characterized in terms of 2-Capacities. Considering 

the low cost of computational complexity of the Capacity approach, this may be 

a very useful direction to pursue and needs further study. 
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APPENDICES 

Appendix A.l 

Theorem: 

LetT be a family of probability measures majorized with a 2-alternating 

capacity v  ; i.e., 

T = { p r :  pr( A )  I v( A ) }  

and let 

and 

(A. 1.2) 

(A. 1.3) 

denote the upper and lower conditional probabilities over the familyT, 
re,spectively. Then, v ( A / B )  and u ( A / B )  can be expressed in terms of the original 

urrconditional 2-alternating capacity v and its conjugate u as 

v ( A  n B )  
v( A  / B )  = 

v ( B  n A )  + u(B n A ")  

and 
u ( A  n B )  

u ( A /  B )  = 
u(B n A)  + v ( B  n A ")  

Proof: 

We give the proof for the upper conditional capacity v ( A / B ) .  The proof for the 

l o \ ~ e r  conditional capacity is similar. First, we use fact 1) (see section 3.3) to 
rewrite the upper conditional capacity v ( A / B )  as 



v ( A /  B )  = su pr (A  n B )  (A. 1.4) 
P r g ~  pr (B)  

pr (A  n B )  
= SUP (A.1.5) 

pr T  pr(B n A )  + pr(B n A'S 

Now, we claim that to maximize this ratio, we can find a probability measure in 
P that simultaneously maximizes the numerator and minimizes the 
denominator. That is, 

sup pr (A  n B )  
v ( A /  B)  = prep (A.1.6) 

sup pr(B n A )  + inf pr(B n A') 
p r ~ ! P  pr E!P 

Or using facts 2) and 3) 

sup pr (A  n B )  
v ( A /  B )  = prET 

sup pr(B n A )  + 1 + sup pr (A  u Bc ) 
p r e p  pr€T 

(A. 1.7) 

This is true because 

and because of the lemma stated in section 3.3. Rewriting the results in terms of 
the unconditional capacities v  and u gives the final desired form. Q.E.D. 



Appendix A.2 

Theorem: 

Let r$o, and { ; = 1 ,  } represent the set of imprecise priors and the 

imprecise sampling distributions, respectively, where 

Then given an observation x = x,, the posterior lower bound is given as 

A 

! (e , /x , )  = inf f ( x j / e , )  n(ei) 
n e r : ~ ,  f( . /oi)~r: ;  

i=l , . . , ,n C f ( ~ , / e , )  No,)  

where 8' = arg max u(x,/Ok) , provided in (A.2.4) we are not dividing by zero. { k:i 1 
The upper posterior probabilities can be computed as 



Proof: 

Note that 

.f ( x ,  / ' i )  ~ ( 0 '  ) 
= i$, inf ... inf ... inf 7 

~rc -,, f ( . ~ e , ) ~ r $  f(.1ei)~T(e: f(.le.)cr!j; 
C f ( x , / e i )  Ne i l  

Note also that 

inf 
f ( x ,  / O i )  ~ ( @ i )  - - 

f B k c r  t f ( x , / e i ) n ( e i )  

w, 16, ) N ei ) - for k = i 
n 

l ( x , /B i )  W i ) +  z f ( x , l e , )  *(el)  

thus, 

inf ... inf .. inf f (x , le i )  ~ ( 0 ' )  - - ecx,/e,, Ne,)  
r ( . ~ e ,  j~r!j; r ( . 1 e i ) ~ r i ;  !( . I  em j ~ r ; ;  

C f ( x j / e i ) n ( e i )  i=l ~ ( x , / ~ . ~ n ( e , ) +  l = t , l # i  ' ? ~ ( x , / e , ) n f e , )  ~.-1 

Now, we need to minimize the above quantity with respect to the priors; i.e., 



! (Oi lx i )  = inf 
! (x i /  0 , )  W i )  

XS~A, ,  n (A.2.7) 
e ( x , l 4 )  * ( e i )  + x u ( * , l e l )  7 W , )  

1 = 1 .  l + i  

In the eq. (A.2.7) above, quantities ! (x , /B , )  and u ( x , / e , )  are nonnegative real 

n ~ ~ m b e r s  (constants) that are independent of the minimizir~g condition. To 
sirnplify the notation, let 

or 

subject to the conditions that 

!(Oi lx i )  = inf Q 

Rewriting Q as 



Q is minimized if and only if 

is maximized. Furthermore, since the of numerator of Q' does not contain i ,  Q' 
is maximized when C c 1 z l  is maximized and cizi is minimized; i.e., when Q is 

l#i  

mirrimum, we have 

Note that the maximum of C c l z l l  which is a linear combination of z"s, subject to 
/ t i  

the earlier constraints which constitutes a convex set, occurs at one of the 

vertices of the constraint set; i.e., at 

l+i lei, J~ 

where optimal jog jo*, is selected as 

jo* = arg me c,  . I 



This completes the proof. Proof of the upper posterior probability is similar and 
is omitted. 





Appendix A.3 

The following theorem is the extension of previous theorem to multiple sources 
of information under he assumption of conditional independence (CI). For 

sirrlplicity of notation, we only consider two sources, though results can be 
easily extended to more than two sources. 

Theorem: 

Let us denote the observations from source 1 and source 21, with discrete 

random variables X and Y, respectively. Furthermore, let us assume that 

available inforrrlation regarding each source can be expressed as lower 
bounds on the conditionals; i.e., 

Source 1 : { Pxle(./ei) ~ f x l e ( . / e i l  ; i = 1. ... .n 1 (A.3.1) 

Source 2: { ~ r , e ( . I e i ) s f y l e ( - / e i )  ; i = l ,  . . . )n  } (A.3.2) 

and the available information regarding the priors is expressed as 

Priors: { C(ei) 2 n(ei) ; i = 1, ... , n  } (A.3.3) 

Then, under the assumption of Conditional Independence (CI) of the sources, 

the combined lower posterior probabilities can be computed as 

where 



and 

Proof: 

Follows from previous theorem; just let 

and 
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