Purdue University

Purdue e-Pubs

ECE Technical Reports Electrical and Computer Engineering

7-21-2003
Extending Peer-to-Peer Computing Infrastructures
for Computing Cycle Sharing

Ali Raza Butt

Y. Charlie Hu

Follow this and additional works at: http://docs.lib.purdue.edu/ecetr

Butt, Ali Raza and Hu, Y. Charlie, "Extending Peer-to-Peer Computing Infrastructures for Computing Cycle Sharing" (2003). ECE
Technical Reports. Paper 132.
http://docs.lib.purdue.edu/ecetr/132

This document has been made available through Purdue e-Pubs, a service of the Purdue University Libraries. Please contact epubs@purdue.edu for

additional information.

http://docs.lib.purdue.edu?utm_source=docs.lib.purdue.edu%2Fecetr%2F132&utm_medium=PDF&utm_campaign=PDFCoverPages
http://docs.lib.purdue.edu/ecetr?utm_source=docs.lib.purdue.edu%2Fecetr%2F132&utm_medium=PDF&utm_campaign=PDFCoverPages
http://docs.lib.purdue.edu/ece?utm_source=docs.lib.purdue.edu%2Fecetr%2F132&utm_medium=PDF&utm_campaign=PDFCoverPages
http://docs.lib.purdue.edu/ecetr?utm_source=docs.lib.purdue.edu%2Fecetr%2F132&utm_medium=PDF&utm_campaign=PDFCoverPages

Extending Peer-to-Peer Computing
Infrastructures for Computing Cycle
Sharing

All Raza Butt
Y. Charlie Hu

School of Electrical and Computer Engineering
1285 Electrical Engineering Building
Purdue University
West Lafayette, IN 47907-1285

1

Contents

1 Introduction
2 The Java Application Isolation Model

3 Extending the Isolation Model for Distributed Execution
3.1 Execution Environment 00000
3.2 Isolate Migration
3.3 Isolate Fork

3.4 Isolate Communication

4 Cycle Sharing in P2P Systems
4.1 Data distribution
4.2 Fault tolerance,

4.3 Security e
5 Related Work and Conclusions

Bibliography

-1 S » ot

o o o ®

12

1l

Abstract

Compute—cycle sharing across machines can facilitate fast solutions of complex scientific
problems. Therefore, software for distribution of problem sets to a large number of nodes
is becoming increasingly important. Structured peer—to—peer (p2p) overlay networks, which
implement scalable and fault-tolerant distributed hashing tables primarily for data sharing,
has also seen a boost. This report proposes a novel approach for bringing the two worlds of
cycle—sharing and data sharing together to yield a decentralized distributed computer that
is more scalable and robust than centralized computation distribution schemes. This work
is unique as it shows that p2p systems are not limited to data sharing applications, they
can also form a suitable substrate for computing cycle sharing. Its access is not limited to
distribution managers; instead all users of the system can access the resources available.
The approach leverages p2p overlays in conjunction with the programming model laid down
in the Java Application Isolation API. The issues of computation migration, integrity,

routing, and failure resiliency with regard to the proposed scheme are also addressed.

Key Phrases: Compute cycle sharing, peer—to—peer computing, distributed computing.

1. Introduction

Compute—cycle sharing for complex and large scientific problems is a long studied topic
in distributed computing. Many cycle-sharing setups such as SETI@Home [18], Dis-
tributed.Net [5], and Entropia [6] have shown that complex scientific problems can be
quickly solved by distributing them to thousands of clients. There are several issues asso-
ciated with this setup: a) The distribution manager becomes a single point of failure as
well as a performance bottleneck, as all communication is routed through it; b) There is an
absence of direct communication between the clients, which restricts the ways a problem
can be distributed; ¢) The clients are unable to spawn sub—computations; d) Only the
manager has access to use the shared resources; and e) There is an explicit allocation of
clients, which limits the available resources, and does not provide any resiliency in choos-
ing a client. In contrast to compute—cycle sharing setups, p2p systems consist of clients
that are identical in capabilities and all clients can perform symmetric communications.
There is natural replication among clients which provides resiliency and fault tolerance.
Therefore, all clients can use the system for solving problems. However, p2p systems so
far have aimed at sharing data, and there is no well-established compute—cycle sharing
paradigm associated with the p2p systems. The key idea of this paper is to extend both
the p2p infrastructure and the distributed programming model in order to support a robust
distributed computer.

To leverage p2p infrastructures developed for sharing data to support distributed compu-
tations, some means need to be provided for transforming computations to some “images”
that can then be treated as data. One way of achieving this on traditional Unix sys-

tems is by freezing the computation, checkpointing [22, 21, 14] the process image to a file

and then using structured p2p systems such as CAN [16], Chord [19], Pastry [17], and
Tapestry [23] to distribute the checkpoint to remote nodes. The problem is complicated
by the fact that checkpointing is machine dependent, whereas p2p clients are inherently
heterogeneous. Even a machine-independent checkpointing approach as described in [15]
is insufficient since an elaborate procedure is required on each node for migration and ex-
ecution. Furthermore, checkpointing approaches usually require special user accounts on
all the shared resources; an approach that has many problems [3]. For this reason, a new
programming paradigm as described in JSR121 [8] is adopted for the presented scheme.
With the help of this model, the standard p2p system can be extended to provide robust
cycle sharing. The proposed scheme does not require creation of special user accounts on
shared resources and is more practical.

The underlying problem of node selection can be solved using the routing mechanisms of
structured p2p systems. The desire to be able to migrate the computation from one node
to another dictates that the programming model should a) be easy to adapt applications to;
b) be efficient, i.e. execution environment can be easily setup without unnecessarily loading
the node; c) provide means for encapsulating whole computations as programming objects;
d) support functions on the programming objects such as stopping and starting computa-
tions on demand; e) protect two objects from each other; and f) be machine independent so
that computations can be executed on heterogeneous machines. Java is a good candidate
for providing machine independence. However, setting up a Java Virtual Machine (JVM)
for each migrated computation is expensive [2]. Therefore a new programming model is
required.

The rest of the report is organized as follows. Chapter 2 presents the Java Application
[solation model. Chapter 3 describes a set of extensions to the isolate model for use
in distributed systems. Chapter 4 describes a technique to achieve the computing cycle
sharing using p2p systems. Finally, Chapter 5 presents a brief discussion of related work

and gives concluding remarks.

2. The Java Application Isolation
Model

The Java Application Isolation model is described in [8, 7]. It provides a programming
paradigm based on isolated computation entities. An isolate is defined as a Java object
that encapsulates a complete computation. In some respects, it is similar to a process in
operating systems. It provides facilities that the JVM can use to start, suspend, resume
and terminate the computation referred by the isolate. Each isolate can perform a compu-
tational task similar to a process. However, Figure 2.1 illustrates main differences between
processes and isolates: Isolates are Java objects and multiple isolates can coexist in differ-
ent portions of the same address space without interfering or even detecting each other.
Address space sharing is not possible for processes. Threads, however, share an address
space, but there is no protection between coexistent threads. In this regard, an isolate can
be thought of a self-contained thread, that has more capability in terms of isolation.

Since one instance of JVM can only have a single address space [10], creation of a separate
address space on a node implies spawning a separate JVM. This is an expensive process,
which can be minimized by sharing a JVM. But, protection problems prohibit the use of
threads for such sharing. Isolates, on the other hand, are guaranteed a safe address space
sharing by type safety in the language. They can run safely in a single instance of a JVM
and avoid all overheads associated with spawning a new JVM. This makes the Java Isolate
API ideal for efficient computation migration in wide area networks.

Since the model is Java based, adapting applications to it is not overwhelming, and
heterogeneity issues are solved automatically. Overall, the Java Application Isolation API

fits all the requirements of the programming model for cycle sharing as listed in Chapter 1.

\ /\/\ I .
J_Z_. | Computation
PN

T~~~ | Adress space

[N

!]

—— Logical protection
AN

(a) Processes (b) Threads (c) Isolates

Figure 2.1. Differences between processes, threads and isolates. (a) For processes each computation
is enclosed in its own address space. (b) For threads multiple computations can share an address space,
but without protection. (c) For isolates each computation has its own logical protected subspace,

guaranteed by safety in the language. Multiple isolates can co—exist in the same address space.

3. Extending the Isolation Model

for Distributed Execution

For distributed execution, the Isolation Model alone is not sufficient. The following sections

discuss the issues faced in extending the isolate model for use in distributed cycle sharing.

3.1 Execution Environment

In order to utilize the systems, the problem should be coded using the Application
[solation API, and submitted to the system. Upon receipt of the code, the execution
environment starts the isolate using the start method, and then suspends it using the
suspend method. This ensures uniformity by enabling clients to always execute an isolate
via resume method. An appropriate node for the execution of the application is then
selected as described in Chapter 4. Once the node is chosen, the isolate is migrated to that
node (as explained in the next Section) for execution. If a node decides that it can no longer
spare resources for the computation, the computation is suspended and the submitter is
informed. The stopped computation can either be stored locally for continuation later, or
migrated to another node. Since many different computations can run in the same address
space, the node needs to set up only one JVM at startup. Aslong as resources are available,

new isolates can be distributed in the shared address space.

3.2 Isolate Migration

A migration facility is required to enable isolates to move from one node to another. The
problem of migration is somewhat simplified as an isolate is a Java object, and therefore
can be serialized using the Java Serialization API [20].

To migrate an isolate, a node proceeds as follows. The suspend method is called on
the target isolate to suspend the computation. The serialization API is then invoked to
create a serial image of the isolate. This image is hashed and inserted into the system to
be sent to a new node. Upon arrival at a node, the image is de—serialized and instantiated
in the shared JVM. The resume method is used to transparently restart the computation,
completing the migration of an isolate.

If processes were used instead of isolates, spawning new JVMs on the target nodes would
become necessary. This is an expensive process. Alternatively, if threads were used to
share a single JVM, unexpected problems could occur due to unexpected interference with
already running threads. An involved analysis would be required to determine the safety of
such interference. Isolates are free from these issues. They are safe to migrate to a node as
long as it has resources to spare, and no extensive interference analysis is required due to
safety guarantees in the language. Hence, isolate migration is more efficient than process
migration and safer than thread migration.

The serialization and migration performed here is different than Java Remote Method
Invocation (RMI). In RMI the caller process explicitly locates a target node and is aware
of it throughout the life of the computation. In this case, the computation is completely
handed off to a remote node without any knowledge about that node. Moreover, isolates

are lightweight and efficient than RMI as discussed in [13].

3.3 Isolate Fork

The ability for an isolate to fork a new isolate is also provided. For this purpose a data
structure called neighbor set is added to each isolate image. The neighbor set is defined as a
set containing information about the parent and immediate children of a node. When a fork

is required, an isolate creates a copy of itself, serializes the copy, attaches the information

about which data to process, adds itself as the parent node in the neighbor set of the
image and then inserts it in the system to be migrated. A parent/child computation tree is
formed. When an isolate arrives at a new node, the JVM retrieves the neighbor set and data
information and execute the isolate similarly as done in migration. The child node then
communicates to the parent and decides on what problem set to process. On completion
of the computation, each node passes the result to its parent. In this way, computations

can be tracked and results can be formed by traversing the parent tree.

3.4 Isolate Communication

The isolates can support a communication library called Links [13], which allows isolates
in a shared address space to exchange information. In a distributed scenario, the basic
communication facility has to be extended to provide information exchange between isolates
running on distributed nodes.

Cross virtual machine communication can be set up by implementing the Links
API over the Sockets API. In this way, the isolates can communicate between any two
nodes independent of whether they run in the same address space or not. This approach
is easier to implement, but poses challenges to the programmer as it exposes the fact that
some isolates may be remote.

A multi—node virtual machine can be established by extending a single virtual ma-
chine across multiple nodes [1, 13]. Once again, the underlying communication between
nodes is provided using the Sockets API. In this case, however, the location of isolates
is not exposed to the programmer. This results in an easier programming model without
special considerations for local and remote isolates. The multi-node virtual machine cou-
pled with the proposed scheme for cycle sharing can result in a distributed virtual machine
implementation whose underlying nodes are self-organized via a p2p infrastructure. Such

a virtual machine is inherently scalable and fault tolerant.

4. Cycle Sharing in P2P Systems

It is proposed that available computing resources are organized into a peer-to-peer overlay
network and the above isolate model is extended for distributed execution for compute
cycle sharing among the users by using the p2p overlay. Structured p2p overlay networks
such as CAN[16], Chord[19], Pastry[17], and Tapestry[23] effectively implement scalable
and fault-tolerant distributed hash tables (DHTs), where each node in the network has a
unique nodeld and each data item stored in the network has a unique key. The nodelds and
keys live in the same namespace, and each key is mapped to a unique node in the network.
Thus DHTs allow data to be inserted without knowing where it will be stored and requests
for data to be routed without requiring any knowledge of where the corresponding data
items are stored.

The computing cycles in a p2p overlay of computing nodes can be shared as follows.
When an isolate is submitted to the p2p system for execution, the initiating node creates a
suspended isolate as described in Chapter 3. To migrate the suspended isolate or a forked
isolate to another computing node, the code is first signed for integrity and protection
from malicious nodes. The JVM on the initiating node then simply takes a hash of the
signed code, and uses the underlying p2p system to route the code with the hashed key
to a suitable node (child node). If the child node does not have free cycles, it can use a
technique similar to “replica diversion” in PAST to divert the migrated isolate to some
node in its leafset. If none of the nodes in its leafset have free cycles, it returns a negative
acknowledgment to the parent node, and the parent node can use a technique similar to
“file diversion” in PAST to generate a new key and repeat the migration process.

In the following sections, several issues related to data distribution, fault tolerance, and

security in the p2p—based cycle sharing infrastructure are discussed.

4.1 Data distribution

An important aspect of the problem distribution is the distribution of data. Two tech-
niques can be used. Either the data can be packed with the computation and distributed
with the isolate, or the clients can communicate with the data source for their data needs.
If the data is packed with the isolate, a whole new paradigm will have to be set up to ensure
that the problem set distribution is correct. However, if the isolates are only used for code
distributions and data is retrieved by the clients only when they start computations, the
time tested techniques of problem set distribution in distributed computation systems such
as SETI@Home [18], Distributed.Net [5], and Entropia [6] can be leveraged. Therefore, in

this scheme data propagation is orthogonal to code distribution.

4.2 Fault tolerance

An advantage of p2p system is that if a failure occurs, the underlying p2p system auto-
matically finds an alternative node for re-execution, hence, providing fault tolerance. This
is an important advantage over traditional ways, where failure of a client implies explicit
reselection.

For reasons of failure resiliency and/or malicious node detection via comparison of results
from multiple children, a node may create multiple similar computation branches by forking
identical children. In case a parent has failed by the time a child completes, the child
discards the results. There is no point of trying to send the results to a grand parent, as
it may not be aware of how the data set was distributed among its various grand children,

and without this knowledge any results from a grand child are meaningless.

4.3 Security

It is shown in [3] that active enforcement of security polices is required when sharing

code from arbitrary users on shared resources. The problem is two—pronged, the code can

10

be malicious and tries to compromise the shared resource, or the resource can be malicious
and tries to jeopardize the results of a computation. Since the scheme employs the Java
Virtual Machine, which provides effective sandboxing [4], the host machine is protected
from any the submitted code of malicious nature. On the other hand, computation repli-
cation and comparison can provide some protection against malicious hosts trying to affect
a calculation. Furthermore, the isolate execution environment can be extended to check
the integrity of the executable. If any attempt is made at modifying it, it can be detected
and the execution is aborted. In fact, all that is needed to guarantee is that the execution
environment itself is unmodified. As long as it is unmodified, the executed code is guar-
anteed to run as intended, because a malicious host can only reach it via the execution

environment.

11

5. Related Work and Conclusions

The work done in the fields of both p2p systems and computing cycle sharing are related to
the proposed approach. Structured p2p systems such as CAN [16], Chord [19], Pastry [17],
and Tapestry [23] implement distributed hashing tables and can be used to self-organize the
computing nodes and for selecting nodes for computation migration. On the computing
cycle sharing front, Condor [11] is a example of a system that uses a large number of
idle computers for solving complex scientific problems. However, it has been shown that
using ordinary UNIX environment for resource sharing has security implications [12, 3].
Kazaa [9] is an example of a p2p system that packages an independent distributed client
with its p2p data sharing software, which in essence is identical to standard distributed
clients of systems such as SETI@Home [18], Distributed.Net [5], and Entropia [6]. Hence,
kazaa remains prone to the problems discussed earlier.

The paper makes following contributions: a) A Java Application Isolation API based
scheme for distributed computing cycle sharing on top of p2p networks is described; b) Nec-
essary extensions are made to the isolates for providing robust execution environment,
migration and fork facilities, and inter-node communication; ¢) The p2p routing infras-
tructure is leveraged for fault tolerant, secure compute cycle sharing; and d) All users are
allowed to utilize the computation resources, and the use is not limited to system managers.
No specialized permissions etc. are required.

Although the Java Application Isolation has been used as the programming model for
the proposed system, the presented approach can work equally well with any program-
ming paradigm that provides application isolation via type safety and computation sus-
pend/resume facilities. The resulting system is robust and efficient, and can provide a

huge base of resources for solving complex scientific problems.

12

Bibliography

[1]

[2]

J. Andersson, S. Weber, E. Cecchet, C. Jensen, and V. Cahill. Kaffemik - A distributed
JVM on a Single Address Space Architecture.

G. Back, W. C. Hsieh, and J. Lepreau. Processes in KaffeOS: Isolation, resource management,
and sharing in Java. In Proceedings of the 4th Symposium on Operating Systems Design and
Implementation (OSDI-00), San Diego, CA, October 2000.

A. R. Butt, S. Adabala, R. J. Figueiredo, N. H. Kapadia, and J. A. B. Fortes. Fine-
grain access control for securing shared resources in computational grids. In Proceedings of
IPDPS’02, April 2002. Ft. Lauderdale, FL.

D. Dean, E. W. Felten, and D. S. Wallach. Java security: from HotJava to Netscape and
beyond. In 1996 IFEFE Symposium on Security and Privacy, Oakland, California, 1996.
Distributed Computing Technologies Inc. http://www.distributed.net.

Entropia Inc. http://www.entropia.com.

Grzegorz Czajkowski. Application Isolation in the Java(tm) Virtual Machine. In Proceedings
of ACM OOPSLA’00, MN, October 2000.

Java Community Process. JSR 121 - Application Isolation API Specification.
http://www.jcp.org/jsr/detail /121.jsp, 2001.

Kazaa. http://www.kazaa.com.

T. Lindholm and F. Yellin. The Java Virtual Machine Specification. Addison-Wesley, Read-
ing, MA, 1997.

M. J. M. J. Litzkow, M. Livny, and M. W. Mutka. Condor - A hunter of idle workstations.
In Proceedings of the 8th ICDCS, 1988.

B. P. Miller, M. Christodorescu, R. Iverson, T. Kosar, A. Mirgorodskii, and F. Popovici.
Playing inside the black box: Using dynamic instrumentation to create security holes. Par-

allel Processing Letters, 11(2,3):267-280, 2001.

[13]

[14]

[15]

[23]

13

K. Palacz. Crusoe — A Cluster Java Virtual Machine. Technical report, Purdue University,
August 2002. PhD Thesis Preliminary Examination.

J. S. Plank, M. Beck, G. Kingsley, and K. Li. Libckpt: Transparent checkpointing under
unix. In USENIX Winter 1995 Technical Conference, January 1995. New Orleans, LI.

B. Ramkumar and V. Strumpen. Portable checkpointing for heterogenous architectures. In
Digest of Papers - 27th International Symposium on Fault—Tolerant Computing, pages 5867,
June 1997. Seattle, Washington.

S. Ratnasamy, P. Francis, M. Handley, R. Karp, and S. Schenker. A Scalable Content-
Addressable Network. In Proceedings of ACM SIGCOMM, August 2001.

A. Rowstron and P. Druschel. Pastry: Scalable, distributed object location and routing for
large-scale peer-to-peer systems. In Middleware, November 2001.

SETI. Institute online http://www.seti-inst.edu/science/setiathome.html.

I. Stoica, R. Morris, D. Karger, M. I. Kaashoek, and H. Balakrishnan. Chord: A Scalable
Peer-to-peer Lookup Service for Internet Applications. In Proceedings of ACM SIGCOMM,
San Diego, California, August 2001.

Sun (TM). Object Serialization http://java.sun.com/j2se/1.3/docs/guide/serialization/.
M. L. V.C. Zandy, B.P. Miller. Process Hijacking. In Fighth International Symposium
on High Performance Distributed Computing (HPDC ‘99), pages 177-184, August 1999.
Redendo Beach, CA.

Y.-M. Wang, Y. Huang, K.-P. Vo, P.-Y. Chung, and C. M. R. Kintala. Checkpointing and its
applications. In 25th International Symposium on Fault-Tolerant Computing, pages 22-31,
June 1995. Pasadena, CA.

B. Y. Zhao, J. D. Kubiatowicz, and A. D. Joseph. Tapestry: An Infrastructure for Fault-
Resilient Wide-area Location and Routing. Technical Report UCB//CSD-01-1141, U. C.
Berkeley, April 2001.

	Purdue University
	Purdue e-Pubs
	7-21-2003

	Extending Peer-to-Peer Computing Infrastructures for Computing Cycle Sharing
	Ali Raza Butt
	Y. Charlie Hu

