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West Lafayette, IN 47907-2088   USA 

 

ABSTRACT 

Due to the critical role of vapor confinement in establishing distinct flow and heat transfer 

characteristics in microchannels (as distinct from those in larger channels), the conditions under which 

such confinement occurs in microchannels are of great interest.  It is shown in the present work that 

channel dimensions and flow properties alone, as proposed in past studies, are insufficient for determining 

confinement effects in microchannel boiling.  Hence, a new criterion for physical confinement in 

microchannel flow boiling, termed the convective confinement number, that incorporates the effects of 

mass flux, as well as channel cross-sectional area and fluid properties, is proposed.  This criterion helps 

determine the conditions under which a channel qualifies as a microchannel for two-phase flow, needing 

special treatment, and when a macroscale treatment is adequate.  In addition, based on previous work by 

the authors, a new comprehensive flow regime map is developed for a wide range of experimental 

parameters and channel dimensions, along with quantitative transition criteria based on nondimensional 

boiling parameters. 

                                                      
1 Submitted for possible publication in International Journal of Heat and Mass Transfer, August 2009 
2 Author to whom correspondence should be addressed: (765) 494-5621, sureshg@purdue.edu 
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NOMENCLATURE 

csA  cross-sectional area of a microchannel, mm2 

fA  wetted area of a fin, m2 

tA  total heated/wetted area of all microchannels 

in a heat sink, m2 

 Bl  boiling number (
  
Bl = ′′q

w
/ Gh

fg
) 

Bo  bond number ( 2( ) /f gBo g Dρ ρ σ= − ) 

d  microchannel depth, m 

D  length scale ( csA ), m  

hD  hydraulic diameter, µm 

g  gravitational acceleration 

G  mass flux, kg m-2 s-1 

h  heat transfer coefficient, W m-2 K-1 

fgh  latent heat of vaporization for FC-77, J kg-1 

ksi thermal conductivity of silicon W m-1 K-1 

L microchannel length, m 

m used in fin efficiency calculation 

( 2 si fm h k w= ) , m-1 

MAPE mean absolute percentage error 

N  number of microchannels in a test piece 

netqɺ  heat dissipated to the fluid, W 

wq ′′  wall heat flux, W m-2 

Re  Reynolds number (  Re= G D / µ ) 

T  temperature, ºC 

refT  reference temperature: fT  in single-phase 

region and satT  in two-phase region, ºC 

w  microchannel width, m 

fw  microchannel fin width, m 

Greek symbols 

ρ  density, kg m-3 

µ  dynamic viscosity, kg m-1 s-1 

σ  surface tension, N m-1 

fη  efficiency of a fin in the microchannel heat 

sink  

oη  overall surface efficiency of the 

microchannel heat sink 

Subscripts  

f  liquid 

g  vapor 

sat saturated liquid 

w  microchannel wall 

 

 

Keywords: Microchannel flow boiling, confinement effects, cross-sectional area, microchannel size, flow 

regime map, transition criteria 

1. INTRODUCTION 

In flow boiling through channels, as the channel size decreases to approach the bubble diameter, 

physical confinement begins to modify the influence of the different governing forces, resulting in 

different behavior of boiling in microchannels compared to that in conventional-sized channels.  
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Kandlikar [1] classified channels with hydraulic diameters between 10 to 200 µm as microchannels for 

flow boiling, based merely on dimensions and not on physical behavior.  Kew and Cornwell [2] proposed 

a criterion for a threshold hydraulic diameter below which microchannel two-phase flow is characterized 

by confined single bubbles; the available models for macroscale boiling were found to be unsuitable for 

the prediction of heat transfer and pressure drop at these small channel sizes.  Serizawa et al. [3] 

recommended a confinement criterion similar to that of Kew and Cornwell representing the ratio of 

surface tension and gravity forces for the channel size below which the influence of surface tension 

becomes important.  These confinement criteria [2, 3] include channel hydraulic diameter and fluid 

properties; however, it will be shown from the results obtained from the current study that mass flux also 

governs bubble confinement.  A new criterion for the occurrence of vapor confinement in flow boiling in 

microchannels is proposed that incorporates mass flux as well as channel cross-sectional area and fluid 

properties based on these results. 

Flow regime maps are commonly used to determine the flow patterns that exist under different 

operating conditions, as well as the conditions for flow pattern transitions.  Such maps are essential to the 

development of flow regime-based models for the prediction of the heat transfer rate and pressure drop in 

flow boiling.  The coordinates used to plot these flow regime maps can be superficial phase velocities or 

derived parameters containing these velocities; however, the effects of important parameters such as 

channel size are not represented in a number of these maps.  Baker [4], Hewitt and Roberts [5], and Taitel 

and Dukler [6] developed early flow regime maps for horizontal and vertical two-phase flow in channels 

with diameters of a few centimeters.  In recent years, a few studies [7-11] have developed flow regime 

maps for boiling in microchannels using similar axes as conventional maps with flow regime definitions 

pertinent to microscale boiling, and have shown that flow regime maps developed for larger tubes are 

inapplicable for predicting flow regime transitions in microchannels.  Flow regime maps for adiabatic 

two-phase flow in microchannels have also been proposed through high-speed visualizations [12-14]; 

however, it has been shown [9] that adiabatic flow regime maps are not suitable for the prediction of 

microscale boiling.  Despite the inability of macroscale boiling maps or adiabatic two-phase flow regime 

maps to predict the boiling flow patterns in microchannels, a review of the literature shows a dearth of 
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investigations into flow regime maps specifically targeted at microchannels undergoing flow boiling that 

are applicable to a wide range of microchannel dimensions and experimental conditions. 

In recent work by the authors [15-17], the effects of microchannel dimensions and mass flux on flow 

boiling regimes and heat transfer rates were investigated.  Experiments were conducted with the 

perfluorinated dielectric fluid, Fluorinert FC-77, over a wide range of channel dimensions and mass 

fluxes.  The microchannel width, aspect ratio, and hydraulic diameter in these experiments ranged from 

100 µm to 5850 µm, 0.27 to 15.55, and 96 µm to 707 µm, respectively, and the mass flux ranged from 

225 to 1420 kg/m2s.  The dependence of the boiling heat transfer coefficient on vapor quality was also 

investigated in detail for a number of refrigerants [18].  In [16], two types of flow regime maps were 

developed, one on mass flux-vapor quality coordinates and the other on vapor-liquid superficial velocity 

coordinates.  However, the flow regime maps represented in these coordinate systems depend on channel 

dimensions, and therefore, individual maps were developed for each channel size. 

This review of the literature shows that existing flow regime maps for boiling in microchannels are 

limited to narrow ranges of channel sizes and have been developed for water and refrigerants.  In the 

present work, a new type of comprehensive flow regime map for microchannel flow boiling is developed 

for a wide range of experimental parameters and channel dimensions for FC-77; quantitative transition 

criteria based on nondimensional parameters are also proposed.  Also, a new criterion for the definition of 

a microchannel based on the presence or absence of confinement effects in flow boiling is proposed. 

2. EXPERIMENTAL SETUP AND TEST PROCEDURES 

In this section, key details of the experiments on which the present comprehensive flow regime map 

and vapor confinement transition criterion are based are explained.  More details of the test section 

assembly, flow loop, and calibration procedures are available in Harirchian and Garimella [15]. 

The test loop consists of a magnetically coupled gear pump, a preheater installed upstream of the test 

section to heat the coolant to the desired subcooling temperature, and a water-to-air heat exchanger 

located downstream of the test section to cool the fluid before it enters a reservoir (Figure 1).  The liquid 

is fully degassed before initiating each test using two degassing ports and the expandable reservoir.  
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Details of the expandable reservoir design and the degassing procedure are available in Chen and 

Garimella [19].  A flow meter with a measurement range of 20-200 ml/min monitors the flow rate through 

the loop and five T-type thermocouples are utilized to measure the fluid temperature at different locations 

in the loop.  The pressure in the outlet manifold of the test section is maintained at 1 atmosphere.  The 

pressure in the inlet manifold and the pressure drop across the microchannel array are measured using a 

pressure transducer (Gems Sensors, 2200 series) and a differential pressure transducer (Omega, PX2300 

series), respectively. 

The microchannel test piece shown in Figure 2(a) consists of a 12.7 mm × 12.7 mm silicon substrate 

mounted on a printed circuit board (PCB).  Parallel microchannels of rectangular cross-section are cut 

into the top surface of the silicon chip using a dicing saw.  A polycarbonate top cover positioned above the 

test piece and sealed with an O-ring provides enclosed passages for the liquid through the microchannels 

(Figure 2(b)). 

Twelve test pieces, with microchannel widths ranging from 100 µm to 5850 µm and depths ranging 

from 100 µm to 400 µm, all having a channel length of 12.7 mm, are included in the experimental 

investigation.  The aspect ratio and hydraulic diameter of the microchannels in the different test pieces 

take values from 0.27 to 15.55 and 96 µm to 707 µm, respectively.  The width (w), depth (d), and number 

(N), along with the hydraulic diameter (Dh), aspect ratio (w/d), and single channel cross-sectional area 

(Acs) of the microchannels in each test piece are summarized in Table 1.  The average roughness of the 

bottom wall of the microchannels ranges from 0.8 to 1.4 µm for the different test pieces as measured by 

an optical profilometer; the bottom wall of the 100 µm-wide microchannels has a lower average 

roughness of 0.1 µm since a single dicing cut was used in their fabrication. 

A 5 × 5 array of individually addressable resistance heat sources is fabricated on the underside of the 

silicon chip.  In the present work, a uniform heat flux is provided to the base of the microchannels.  Since 

the resistances of all 25 heat sources are measured to be almost identical, they are connected in parallel 

and are supplied with a single DC voltage in order to provide a uniform heat flux.  Also, a like array of 

temperature-sensing diodes facilitates local measurements of the base temperature.  For a given current 

passing through a diode temperature sensor, the voltage drop across the diode determines the wall 
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temperature.  Details of the integrated resistance heaters and diode temperature sensors, as well as the 

procedures used to calibrate the heaters and sensors, are provided in [15]. 

Experiments are conducted with 12 test pieces to study the effects of microchannel dimensions on the 

boiling heat transfer and flow patterns for four mass fluxes ranging from 225 to 1420 kg/m2s.  Before 

initiating each test, the liquid in the test loop is fully degassed.  It is then driven into the loop at a constant 

flow rate and preheated to approximately 92°C, providing 5°C of subcooling at the inlet of the channels.  

For each test, the flow rate and the inlet fluid temperature are kept constant throughout the test and the 

uniform heat flux provided to the chip is incremented from zero to the point at which the maximum wall 

temperature reaches 150°C, which is the upper limit for the safe operation of the test chips.  Heat flux 

values approaching critical heat flux are not used in the experiments since the corresponding temperatures 

could cause the solder bumps in the test chip to fail. 

Fully degassing the liquid in the test loop before initiating each test helps to minimize flow 

instabilities.  Also, a valve positioned upstream of the test section serves to suppress instabilities in the 

microchannel heat sink.  Mild flow reversals were still observed at the inlet of the microchannels at the 

highest heat fluxes studied, for microchannels of cross-sectional area 0.144 mm2 and smaller; however, 

these instabilities did not affect the inlet fluid temperature, which is held constant throughout each test. 

At each heat flux and after the system reaches a steady state, high-speed visualizations are performed 

simultaneously with the heat transfer and pressure drop measurements.  Movies of the flow patterns are 

captured at various frame rates ranging from 2,000 frames per second (fps) to 24,000 fps, with the higher 

frame rates used for the smaller microchannels at the larger heat and mass fluxes.  The images obtained 

from the camera are then post-processed using a MATLAB [20] code developed in-house to enhance the 

quality of the images, especially for those captured at higher frame rates. 

2.1. Data reduction  

The local heat transfer coefficient is calculated from 

 
( )

w

o w ref

q
h

T Tη
′′

=
−

 (1) 
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where refT  is the local mean fluid temperature in the single-phase region and the liquid saturation 

temperature in the two-phase region.  oη  is the overall surface efficiency of the microchannels defined as 

( )1 1f
o f

t

NA

A
η η= − − , where 2fA Ld=  is the wetted area of a fin and 

tanh
f

md

md
η =  is the efficiency 

of a fin with an adiabatic tip.  The heat flux used in Eq. (1) is the wall heat flux and is defined as 

 ( )/ / 25w net tq q A′′ = ɺ  (2) 

where tA  is the total heated area of the microchannels 

 
  
A

t
= N w + 2d( )L  (3) 

The net heat transfer rate to the fluid, netqɺ , is obtained from the energy balance for each heating 

element: 

 net lossq q q= −ɺ ɺ ɺ  (4) 

in which qɺ  is the total heat dissipated from each heat source and lossqɺ  is the heat loss which is 

experimentally determined before the test assembly is charged with coolant.  Further details of the heat 

loss measurement procedure and data reduction can be found in Harirchian and Garimella [15].  The heat 

loss values range from 7% to 50% of the net heat transfer rate for different test pieces and different mass 

fluxes, and are larger for wider microchannels at lower mass fluxes. 

The calculated local heat transfer coefficients presented in this paper are based on measurements from 

the temperature sensor located along the centerline of the test piece near the exit.  In general, boiling starts 

at the downstream end of the microchannels and two-phase flow does not cover the whole length of the 

microchannels at low heat fluxes.  In this study, the local values are reported for the location near the exit 

of the central microchannels.  

Important nondimensional parameters often used in flow boiling include Reynolds number, Re, Bond 

number, Bo, and Boiling number, Bl.  The Reynolds number is calculated using the liquid phase mass flux 

as: 

 
f

GD
Re

µ
=  (5) 
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The Bond number represents the ratio of buoyancy force to surface tension force and becomes important 

in microscale boiling: 

 
  
Bo =

g ρ
f

− ρ
g( )D2

σ
 (6) 

As demonstrated in Harirchian and Garimella [17], the channel cross-sectional area plays a critical role in 

determining microchannel boiling mechanisms and heat transfer; therefore, the length scale used in 

equations (5) and (6) is the square root of the cross-sectional area of one channel rather than its hydraulic 

diameter.  Boiling number is the nondimensional form of the heat flux and is calculated using the liquid 

mass flux and latent heat as follows: 

 

 

Bl =
′′q
w

Gh
fg

 (7) 

The measurement uncertainties for the flow meter and the pressure transducers are 1% and 0.25% of 

full scale, respectively.  The uncertainties in the measurement of the channel dimensions, the T-type 

thermocouples and the diode temperature sensors are ±15 µm, ±0.3°C and ±0.3°C, respectively.  

Following a standard uncertainty analysis [21], the uncertainties associated with the wall heat flux and the 

heat transfer coefficient are estimated to be 2.0 to 11.4% and 2.2 to 11.7%, respectively, for the cases 

considered, with the larger uncertainties occurring for smaller microchannels at lower heat fluxes.  These 

uncertainties are primarily governed by uncertainties in the measurement of the wetted surface area, since 

the uncertainties in the net heat transfer rate, wall temperature, and saturation temperature are relatively 

small. 

3. RESULTS AND DISCUSSION 

As mentioned in the introduction, a systematic investigation of boiling flow patterns and heat transfer 

with respect to microchannel dimensions and mass flux was recently performed by the authors [16, 17] 

and it was shown that confinement effects are present below a threshold value of channel cross-sectional 

area for a fixed mass flux [17].  In the present work, a criterion is developed for the existence of physical 

confinement in microchannel boiling based on channel dimensions, mass flux and fluid properties.  The 

effects of vapor confinement on the boiling heat transfer coefficient are then discussed.  Finally, a 
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comprehensive flow regime map is developed based on approximately 390 experimental data points [16, 

17]. 

3.1. Microscale phenomena 

There has been a good deal of discussion in the literature regarding the appropriate definition of a 

microchannel; however, a clear, physics-based distinction of microchannels from conventional-sized 

channels has not emerged.  In general, a microchannel refers to a channel for which the heat transfer 

coefficient and pressure drop deviate from the predictions from widely accepted models for conventional-

sized channels.  For single-phase flow, Liu and Garimella [22] and Lee et al. [23] showed that channels 

with hydraulic diameters as small as 244 µm (the minimum considered in the studies) still exhibit heat 

transfer and pressure drop behavior that is well-predicted by conventional models.  With boiling present 

in the channels, however, the flow phenomena differ from those in macroscale channels as the channel 

approaches the bubble diameter in size.  In these small channels, correlations and models developed for 

larger channels no longer apply [24].  In this section, a new criterion is developed for delineating 

microchannels from macroscale channels based on the presence of vapor confinement. 

In Harirchian and Garimella [16], flow visualizations were performed with simultaneous heat transfer 

measurements during flow boiling in microchannels of different sizes for different flow rates.  Five flow 

regimes – bubbly, slug, churn, wispy-annular, and annular flow – were identified in these microchannels 

and reference may be made to that paper for photographs, schematic diagrams and detailed descriptions of 

the regimes.  The changes in flow regimes with microchannel size and mass flux were discussed in detail.  

Figure 3 shows a summary of the existing flow regimes at different microchannel sizes and different mass 

fluxes.  It is seen that in the smaller microchannels and at low mass fluxes, bubbly flow is not established; 

instead, slug flow is observed for low heat fluxes.  In slug flow, elongated vapor bubbles are confined 

within the channel cross-section and are separated from the walls by a thin liquid layer.  As the heat flux 

is increased, an alternating churn and confined annular flow appears in these microchannels.  In the 

confined annular flow, the vapor core occupies the whole cross-section of the microchannels and is 

separated from the walls by a thin liquid film. 
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As the channel cross-sectional area or the mass flux increases, bubbly flow is observed at low heat 

fluxes.  In the bubbly flow regime, bubbles are smaller relative to the cross section of the channels and 

multiple bubbles may occupy the channel; confinement is not observed.  At higher heat fluxes, alternating 

churn and wispy-annular or annular flow occurs.  In the wispy-annular or annular flow, the vapor core 

does not necessarily occupy the entire cross-section and can instead exist on only one side of the channel; 

in other words, the flow is not confined by the channel walls.  For example, the annular flow and churn 

flow patterns are distributed side by side across the width of the channel for channels with a large aspect 

ratio, as explained in [16].  

The experimental flow visualizations reveal that the flow confinement depends not only on the 

channel size, but also on the mass flux since the bubble diameter varies with flow rate.  The different 

experimental cases listed in Table 1 for various channel sizes and mass fluxes are categorized into two 

groups of confined and unconfined flow regardless of the heat input, and are represented in Figure 4 on 

Reynolds number and Bond number coordinates.  This plot shows that for channels of small cross-

sectional area and at low mass fluxes, vapor confinement is observed, while for larger microchannels and 

at high mass fluxes, the flow is not confined.  The solid line on this plot shows the transition between 

confined and unconfined flow and is a curve fit to the transition points, represented by  

 
( ) 0.5

0.5 21
160

f g

f

g
Bo Re GD

ρ ρ
µ σ

 −
 × = =
 
 

 (8) 

0.5Bo Re× , a parameter named the convective confinement number here, is proportional to the mass flux, 

G, and the cross-sectional area, D2, and is inversely proportional to the fluid surface tension.  This new 

flow boiling transition criterion recommends that for 0.5 160Bo Re× < , vapor bubbles are confined and 

the channel should be considered as a microchannel.  For larger convective confinement numbers, the 

flow does not experience physical confinement by the channel walls and the channel can be considered as 

a conventional (macroscale) channel.  It is important to note that this transition criterion is independent of 

the heat flux and is very useful in determining whether a channel behaves as a microchannel or a 

conventional, macroscale channel, regardless of the heat input, for practical applications.  A 
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comprehensive flow regime map accounting for the heat input which determines the specific flow patterns 

is presented in section 3.3. 

The proposed criterion for transition between confined and unconfined flow is compared in Figure 5 

with available experimental observations from other studies in the literature for water [1, 3, 7, 25-31], 

dielectric liquids [32-35], and refrigerants [36].  Details of the fluid, geometry, mass flux, and heat flux of 

the data points used in this comparison are listed in Table 2.  Figure 5 shows that the proposed criterion is 

successful in predicting the confined or unconfined nature of the flow from a variety of studies in the 

literature. 

The effects of the physical confinement by the channel walls on the heat transfer coefficient are 

discussed next. 

3.2. Effect of vapor confinement on the heat transfer coefficient 

The experimentally determined heat transfer coefficients for various microchannel sizes and four 

mass fluxes in the range of 225 to 1420 kg/m2s are plotted in Figure 6.  At the mass flux of 225 kg/m2s, 

vapor confinement is visually observed in microchannels with cross-sectional area of 0.258 mm2 

(corresponding to the 700 µm × 400 µm microchannels) and smaller.  Figure 6(a) shows that the heat 

transfer coefficients for the microchannels with such flow confinement are larger in the low heat flux 

region.  As explained in Harirchian and Garimella [17], for the confined flow (i.e., slug flow at low heat 

fluxes), evaporation of the thin liquid film at the walls contributes to the heat transfer, and nucleate 

boiling is not the only boiling mechanism.  This leads to higher heat transfer coefficient values.  At higher 

heat fluxes, where annular flow exists in all channel sizes, heat transfer coefficients in small 

microchannels approach those of larger channels in value. 

For the mass flux of 630 kg/m2s, flow visualizations reveal confinement in microchannels smaller 

than 250 µm × 400 µm [17].  Correspondingly, Figure 6(b) shows that the heat transfer coefficients in 

these microchannels depend on the channel dimensions, and also take values that are higher relative to 

those in larger microchannels, increasing with decreasing channel cross-sectional area [17].  For 

microchannels with cross-sectional area of 0.089 mm2 and larger, in which confinement is not visually 
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observed and nucleate boiling is dominant, the heat transfer coefficient is independent of channel 

dimensions. 

At a higher mass flux of 1050 kg/m2s, slug flow and vapor confinement are seen only in the 100 µm × 

400 µm microchannel, and all other microchannels exhibit similar values of heat transfer coefficient 

regardless of the channel size (Figure 6(c)).  For the largest mass flux tested of 1420 kg/m2s, vapor 

confinement is not observed for any of the microchannels considered, and Figure 6(d) shows an 

independence of the heat transfer coefficient on channel dimensions. 

The plots in Figure 6 show that for the channels in which confinement is not present and nucleate 

boiling is dominant up to very high heat fluxes, and for which the convective confinement number 

0.5Bo Re×  is larger than 160, the heat transfer coefficient is independent of microchannel size and all the 

curves collapse on to a single curve.  For microchannel dimensions and mass fluxes which result in 

0.5 160Bo Re× < , the heat transfer coefficients are larger due to the contribution of thin film evaporation 

to the heat transfer mechanisms. 

In a previous work by the authors [15], the experimental results for the heat transfer coefficient were 

compared to predictions from a number of existing correlations in the literature developed for 

macrochannel flow boiling, microchannel flow boiling, and for pool boiling.  It was shown that for most 

of the cases studied in that work (now determined to have 0.5 160Bo Re× > ), the nucleate pool boiling 

correlation of Cooper [37] predicted the experimental results very well, with a mean absolute percentage 

error of 7.2%.  For smaller microchannels at lower mass fluxes (which would exhibit vapor confinement 

according to the criterion proposed here), the error associated with the prediction of heat transfer 

coefficient using this correlation was larger at 15%; however, this correlation still predicted the 

experimental results better than other empirical correlations developed specifically for microchannel flow 

boiling. 

It can be concluded that for 0.5 160Bo Re× >  where vapor confinement is not detected, the heat 

transfer is governed by bubble nucleation, and the nucleate pool boiling correlation of Cooper [37] is 

suitable for heat transfer predictions.  For channel sizes and mass fluxes with smaller convective 
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confinement numbers, vapor confinement and microscale effects become important, resulting in larger 

errors in the prediction of heat transfer coefficient using nucleate boiling correlations.  Other existing 

empirical correlations do not seem to be suitable for prediction of heat transfer in these microchannels 

either, and flow regime-based models need to be developed to accurately account for the microscale 

effects and the differences in the heat transfer phenomena compared to macroscale boiling mechanisms 

[24, 38]. 

3.3. Comprehensive flow regime map 

In recent work by the authors [16], two different types of flow regime maps for microchannel flow 

boiling of FC-77 were developed based on the experimentally visualized flow patterns.  Twelve different 

flow regime maps were plotted for the six channel dimensions considered using coordinates of mass flux - 

vapor quality and of liquid superficial velocity and vapor superficial velocity.  Both types of flow regime 

maps depend on channel dimensions; hence, for each channel dimension, a separate flow regime map is 

required to capture the flow regime transitions accurately.  The effects of channel width on the flow 

regime transition were discussed as well.  The flow regime maps developed in [16] were also compared to 

flow transitions from other studies in the literature for adiabatic two-phase flow and for boiling in macro- 

and micro-channels.  It was concluded that only the flow regime maps developed for microscale flow 

boiling in comparable channel sizes could reasonably match the observed flow transitions.  A review of 

the literature reveals that despite the inability of macroscale boiling maps and adiabatic two-phase flow 

maps to predict the flow patterns for boiling in microchannels, there is a lack of flow regime maps 

developed for microchannel flow boiling for a range of channel dimensions. 

Due to dependence of flow regimes (and regime maps) on channel dimensions, it is important to 

include the effects of channel size in the flow regime maps.  To address this need, a comprehensive flow 

regime map is developed here. 

Figure 7 shows the comprehensive flow regime map developed based on the experimental results and 

flow visualizations performed with FC-77.  The abscissa in this plot is the convective confinement 

number, 0.5Bo Re× , which is proportional to G × D2 .  The ordinate is a nondimensional form of the 
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heat flux, Bl Re× , which is proportional to ′′qw × D .  Plotting all the ~390 experimental data points 

obtained in [16] and [17] for 12 different microchannel test pieces, four mass fluxes, and heat fluxes in 

the range of 25 to 380 kW/m2 on Bl Re×  versus 0.5Bo Re×  logarithmic axes leads to a comprehensive 

flow regime map with four distinct regions of confined slug flow, churn/confined annular flow, bubbly 

flow, and churn/annular/wispy-annular flow.  

The vertical transition line is given by 0.5 160Bo Re× = , which represents the transition to confined 

flow.  The other transition line is a curve fit to the points of transition from bubbly or slug flow to 

alternating churn/annular or churn/wispy-annular flow, given by 

 ( )0.70.50.017Bl Re Bo Re× = ×  (9) 

which can be rearranged to give 

 ( )0.4 0.30.017Bl Bo Re−= ×  (10) 

This flow regime map shows that for 0.5 160Bo Re× <  vapor confinement is observed in both slug 

and churn/annular flow regimes while for 0.5 160Bo Re× > , the flow is not confined.  For low heat 

fluxes with ( )0.4 0.30.017Bl Bo Re−< × , flow patterns of slug (if 0.5 160Bo Re× < ) or bubbly (if 

0.5 160Bo Re× > ) flow exist in the microchannels.  At higher heat fluxes with 

( )0.4 0.30.017Bl Bo Re−> × , vapor bubbles coalesce resulting in a continuous vapor core in the 

alternating churn/annular or churn/wispy annular flow regimes. 

In Figure 8, experimental data from a range of other studies in the literature are plotted on this 

comprehensive flow regime map.  The map developed here is clearly able to represent the flow regimes 

found in the literature for water and fluorocarbon liquids. 

4. CONCLUSIONS 

Based on the experimental results obtained in recent work by the authors, a new transition criterion is 

developed which predicts the conditions under which microscale confinement effects are exhibited in 

flow boiling.  This criterion depends on the value of a parameter termed the convective confinement 
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number in this study, 0.5Bo Re× , which depends not only on the channel dimensions and fluid properties, 

but also on the mass flux.  It is shown that for flow boiling of FC-77, physical confinement in the 

microchannels exists for convective confinement numbers less than 160; under this condition, thin film 

evaporation contributes to heat transfer in addition to nucleate boiling, and results in larger values of heat 

transfer coefficient compared to those cases in which no confinement is observed and nucleate boiling is 

dominant.  

A comprehensive flow regime map for flow boiling of FC-77 is developed with approximately 390 

data points encompassing a wide range of microchannel dimensions with channel cross-sectional area in 

the range of 0.009-2.201 mm2, mass flux in the range of 225-1420 kg/m2s, and heat flux in the range of 

25-380 kW/m2.  The convective confinement number,0.5Bo Re× , and a nondimensional form of heat 

flux, Bl Re× , are used as the abscissa and the ordinate of this map, respectively.  Using these 

coordinates, the flow regime map reveals four distinct regions of confined slug, bubbly, churn/confined 

annular, and churn/annular/wispy-annular flow regimes with two transition lines.  One transition line, 

0.5 160Bo Re× = , represents the transition to confined flow, while the other transition line, 

( )0.4 0.30.017Bl Bo Re−= ×  ,which includes the effects of heat flux, illustrates the transition from 

bubbly/confined slug flow to alternating churn/annular/wispy-annular flow. 

For 0.5 160Bo Re× > , where physical confinement does not occur in flow boiling, the heat transfer 

coefficient is independent of channel dimensions and can be accurately predicted by a nucleate pool 

boiling correlation; however, for convective confinement numbers below 160, modified empirical 

correlations or regime-based models are required to more precisely account for the microscale effects 

present. 

The proposed confinement transition criterion and the comprehensive flow regime map developed are 

shown to capture trends observed in the experimental data from the literature as well, and show good 

agreement with results for water and fluorocarbon liquids.  While the convective confinement number 

criterion and the flow regime map have been shown to be very promising tools for predicting the flow 

regimes and their transitions in microchannel boiling, only limited studies are available for comparison, as 
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both visualized flow boiling patterns in microchannels as well as heat flux data are necessary for such 

comparisons.  As more well-characterized data become available, it will be possible to further generalize 

this confinement criterion and to expand the applicability of the comprehensive flow regime map to other 

fluids. 
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Table 1.  Microchannel dimensions and mass fluxes (the microchannel widths and depths are 
referred to in the rest of the paper by the nominal values that are provided in the table; similarly, 

the four mass fluxes are referred to in the rest of the paper by the nominal values of 225, 630, 1050, 
and 1420 kg/m2s). 

 
w (µm) 

(actual values) 
d (µm) 

(actual values) 
N 

Dh  
(µm) 

w/d 
Acs 

(mm2) 
G 

(kg/m2s) 

100 (99) 100 (94) 61 96 1.05 0.009 660 

100 (97) 220 (217) 63 134 0.45 0.021 630 

100 (102) 400 (369) 60 159 0.27 0.037 214, 621, 1017, 1405 

250 (240) 400 (371) 35 291 0.64 0.089 226, 611, 1126, 1415 

400 (398) 100 (65) 25 111 6.12 0.026 615 

400 (400) 220 (197) 25 264 2.03 0.079 637 

400 (395) 400 (365) 24 379 1.08 0.144 227, 633, 1031, 1431 

700 (686) 400 (376) 14 486 1.83 0.258 225, 641, 1053, 1461 

1000 (1024) 220 (226) 10 370 4.53 0.231 630 

1000 (978) 400 (374) 10 541 2.62 0.366 224, 627, 1037, 1440 

2200 (2203) 400 (370) 5 634 5.95 0.815 227, 633, 1034, 1427 

5850 (5851) 400 (376) 2 707 15.55 2.201 229, 632, 1028, 1289 
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Table 2.  Summary of the experimental data from the literature used in the comparisons of the 
confinement transition criterion and of the flow regime map. 

 

Reference Fluid Geometry 
Mass flux 
(kg/m2s) 

Wall heat flux 
(kW/m2) 

Peles et al. [25] 
1999 

Water 
Parallel microchannels 

Dh = 157, 207 µm 
3500, 
6000 

- 

Jiang et al. [26] 
2001 

DI Water 
Parallel grooves 

w = 50 µm 
110-365 - 

Kandlikar [1] 2002 DI Water 
Parallel microchannels 
w = 1 mm, d = 1 mm 

40 - 

Serizawa et al. [3] 
2002 

DI Water 
Circular tube 
D = 50 µm 

24 - 

Lee et al. [27] 2003 DI Water 
Parallel microchannels 
w = 120 µm, d = 14 µm 

30-60 - 

Hetsroni et al. [7] 
2003 

Water 
Parallel triangular microchannels 

Dh = 103, 129 µm 
87-108 80-220 

Steinke and 
Kandlikar [28] 

2003 
DI Water 

Parallel microchannels 
w = 214 µm, d = 200 µm 

115-467 55-839 

Zhang et al. [29] 
2005 

DI Water 
Single microchannel 

w = 50 µm, d = 40 µm 
160 - 

Garimella et al. 
[30] 2006 

DI Water 
Parallel microchannels 

w = 275 µm, d = 636 µm 
651 160 

Wang et al. [31] 
2008 

DI Water 
Parallel trapezoidal microchannels 

w = 208, 427 µm, d = 146 µm 
91-787 365, 486 

Hetsroni et al. [32] 
2002 

Vertrel 
XF 

Parallel triangular 
microchannels 

Dh = 130 µm 
148 36 

Mukherjee and 
Mudawar [33] 

2003 
FC-72 

Parallel mini- and microchannels 
in a gap, w = 200 µm, d = 660 µm 

w = 1.57 mm, d = 3.05 mm 
500-1100 - 

Zhang et al. [34] 
2005 

FC-72 
Parallel microchannels 

w = 200 µm, d = 2000 µm 
120 42 

Chen and 
Garimella [35] 

2006 
FC-77 

Parallel microchannels 
w = 389 µm, d = 389 µm 

345 9-56 

Coleman and 
Garimella [36] 

2003 
R134a 

Glass tube 
w = 4.9 mm 150, 750 - 
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Figure 1.  Photograph of the experimental facility. 
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Figure 2.  (a) Microchannel test chip, and (b) test section assembly.  
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Figure 3.  Summary of boiling flow patterns in the microchannel test pieces; the microchannel 
dimensions are presented as width (µm) × depth (µm) with a single-channel cross-sectional area 

(mm2) in parentheses. 
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Figure 4.  Transition from confined flow to unconfined flow.  
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Figure 5.  Comparison of the confinement criterion with experimental data from a variety of 

sources in the literature. 
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Figure 6.  Effects of physical confinement on heat transfer coefficients for four mass fluxes; the 
microchannel dimensions are presented as width (µm) × depth (µm).
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Figure 7.  Comprehensive flow regime map for FC-77. 
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Figure 8.  Comparison of the comprehensive flow regime map with the experimental data from the 

literature. 
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