
Purdue University Purdue University

Purdue e-Pubs Purdue e-Pubs

Department of Computer Science Technical
Reports Department of Computer Science

1968

ORTNRM - A Fortran Subroutine Package for the Solution of ORTNRM - A Fortran Subroutine Package for the Solution of

Linear Two-Point Boundary Value Problems Linear Two-Point Boundary Value Problems

S. Silverston

Report Number:
68-018

Silverston, S., "ORTNRM - A Fortran Subroutine Package for the Solution of Linear Two-Point Boundary
Value Problems" (1968). Department of Computer Science Technical Reports. Paper 122.
https://docs.lib.purdue.edu/cstech/122

This document has been made available through Purdue e-Pubs, a service of the Purdue University Libraries.
Please contact epubs@purdue.edu for additional information.

https://docs.lib.purdue.edu/
https://docs.lib.purdue.edu/cstech
https://docs.lib.purdue.edu/cstech
https://docs.lib.purdue.edu/comp_sci

ORTNRM - A Fortran Subroutine Package for the
Solution of Linear Two-Point Boundary Value Problems

S. Silverston
April, 1968

CSD TR 18

ORTNRM - A Fortran Subroutine Package for the
Solution of Linear Two-Point Boundary Value Problems

S, Silverston

QRTNRM is used to solve linear two-point boundary value problems

by the method of superposition with orthonormalization. See Reference.

Let x = the independent variable;

u(x) = the vector of n dependent variables;

f(x) * a given n-vector of functions of x;

A(x) = an n x n matrix;

k = an integer 1 < k < n;

B = a constant (n-k)xn matrix;

D = a constant k x n matrix;

Cj = a constant (n-k)-vector;

C * a constant k-vector.
2

Wo want to solve the problem:

- i u(x) = A(x)u(x) + f(x)
dx

Bu(a) = C , Du(b) = C
2 <

The subroutine is entered by the statement:

CALL ORTORM (N,M,K,Y,DER,CO,
A.NM.HjNP.NT,
TEST, C.NX,
NP01,NP02,ALT,
NERR).

2.
In the following discussion, we break the parameters into 5 groups,

I. System of equations:
N,M,K,Y,DER,CO

In the method of superposition, we actually obtain k+1 solu-

n 1 W
tions y ,y , ...»y as follows:

Choose y°(a) 3 By
0

 (a) =

1 k
Choose y , ..., y (a) 3

(y
1

»y
3

)
 s 6 0

» ^ -
k

*

Solve: — y°(x) = A(x)y°(x) + f(x)
dx

S y
1

^) = A(x)y
i

(xJ
>
 l_<i<k.

Wo then solve the system

k .
 n

D[I 5.y
l

Cb) + y (tO] = c,
i=>l

 1 z

for the coefficients ^....jg^.

The solution to the original problem is then given by

k
u O O = y (x) + I p.y

1

(x).
i=l

 1

The solution y^(x) is called the particular ^olution. Tho

solutions y
x

(x) are called base solutions.

If C ^ O and f=0, the system is homogeneous. In this case,

we let

By
1

(a) = 0, l^ifk

and omit the particular solution. We then will solve the system

3.

D I e ^ C b j = c
k

2

for the coefficients

If we also have C^ = 0, then one of the P's must be chosen

arbitrarily and the others computed in terms of it. In this case we

only can determine u(x) to within a constant multiplier. See discus-

sion of parameter NP02 under Output Options for the normalization

convention used here.

The system of equations parameters should bo set as follows:

N: Integer. No. of dependent variables n.

M: Integer. No. of solution vectors to be used for supciposition.

For inhomogeneous system, J1=k+1. For homogeneous systems, M°k.

IC: Integer. No. of base solution vectors k to be used.

Y_: Real array dimensioned (N,M). Values of the vectors

o 1 k
y (a),y (a),...,y (a), chosen as discussed above.

y°(a) yj(a) ... y*(a)

Y

y°Ca) y*(a) ... y*(a)

For homogeneous systems

y ^ O)

Y =

PER: Name of subroutine for evaluation of the expressions

A(x)y°(x) + f(x) and A(x)y
1

(x)

To be called by a statement of the form'

CALL DER (X,Y,DY) with:

X
 3

 Real. Value of independent variable x.

Y = Real array dimensioned (N,M). Values of solution

vectors y°00, y
1

(x) , • • • Cx)

DY = Real array dimensioned (N,M). Values of

S ^ W ' E

The subroutine must (for inhomogeneous systems) compute

A(x) y°(x) + fCx)

and store it in DY(1,1), DY(2,1)„...,DY(N,1). It must similarly

compute

A(x)y
1

 (x), i = 1,...^

and store it in DY(1,I), DY(2jI), DY(N.I) , I = 2
f
...,M.

CO: Name of subroutine for computation of the values i&2*''''®

in the equation

k
D[I B.y^b) + y (b)] = C

i=l
 1 1

To be called by a statement of the form

CALL CO (YO.YjBETA) for an inhomogeneous system

or by a statement of the form

CALL CO (Y,BETA) for a homogeneous system.

5.

with:

YO: Real array dimensioned (N). Values of ygOO• Omitted

for homogeneous system.

1 2 k

Y: Real array dimensioned (N,K). Values of y (b),y (b),...,y (b).

BETA: Real array dimensioned (K). Subroutine must compute the

values of and store them in the array BETA.

None of the parameters specifying system of equations, NJM.KJY,

are changed by ORTNRM.

II. Interval and spacing:
A,NN,H,NP,NT

We solve the problem on the interval

S = [min(a,b), max(a.b)]

Wo nay break S up into j sub-intervals S^, S^, Sj

{x =a,x },{x ,x },..., (x, ,x. ,},{x. .x.=b},
U 1 L £ 3-2 j-1 j-1 J

such that a<x <x_<...<x. . <b for a<b,
1 C J-1

a>x,>x„>...>x. ,>b for a>b.
1 2 j-1

On each sub-interval S^, l_<i_<p, the solution u(x) will be

computed and stored at n^ equally spaced points, i.e., letting

d. =

x

i'
x

i-l
i n.

at the points . . . j + n ^ d ^
 =

6.

The solution values stored at these solution points only will be avail-

able to the user for print-out as well as for use in further computa-

tion.

The intervals d^ between solution points are themselves divided

into increments of integration. Specifically,

- Pi
h

i

where h^ is the length of the increment of integration, or step-size,

for sub-interval S^, and p^ is the number of integration steps

between solution points for the sub-interval S^.

We thus have the following relationships among ^

• : l
s

il
 =

 l
x

r
x

i-il
 = n

i l
d

il
 = n

i
p

i'
h

il

The total number of solution points on S is given by

t = j n • 1
i=l

The "+1" is because the initial point a is also taken as a solution

point.

The interval and spacing parameters should be sot as follows:

A: Real. Initial value (a) of the independent variable.

NN: Integer array dimensioned (J). The set of numbers n.,n
 f
...,n.

giving the number of solution points in each sub-interval S^,

respectively.

H: Real array dimensioned (J)- TTie set of step-sizes h. ,h_>,..»h.
— i i j

to be used on the sub-intervals S^, respectively. The h's

should be positive (>0) if a<b, and negative (<0) if a>b.

7.

NP: Integer array dimensioned (J). The set of numbers p^p,*. ..»p-
i 2 J

which specify the number of integration increments between solu-

tion points for the sub-intervals S^, respectively,

NT: Integer. The total number t of solution points on S.

Note that the number of sub-intervals j does not appear in the

parameter list at all. Of course if j = l, then NN,H, and NP need

not be dimensioned in the calling program.

None of the interval and spacing parameters A,NN,H,NP,NT, are

changed by ORTNRM.

This method of specifying interval and spacing is admittedly

rather complicated. However, the flexibility it affords the user

in varying step-size over the region as well as in specifying output,

or solution, points, is quite useful for research purposes. The

latter is especially valuable in the extension of this method to

non-linear problems. . . .

Ill. Orthonormalization
.TEST,C,NX

As discussed in the reference, an orthonormalization of the form

Z(x) = Y(x)P,

1 k
where Y(x) = [y ,...,y]

P is a k x k matrix

, 1 K

Z(x) = [z ,...,z]

(z
1

^) = lHik,

8.

0 1 k

is performed whenever the solution vectors y ,y , ...,y meet some

criterion to be specified. The two types of test considered here

are

1) the magnitude test

Reorthonormalization is performed whenever [y (x)|>C for

some i=0j1,2,...,k Whore C is a specified constant > 0.
2) the angle test

Reorthonormalization is perfomed whenever

, (y
1

./
3

)
57.3 cos I

 :
—

: : :
— y r = — | < C , 0<i<k, 0<j<k, i^j

U y S y ^ C y
3

^) }
1

'

where C is an angle specified in degrees.

0 1 k

In this program, the solution vectors y , y ,...,y are tested

at all points where they are computed, whether at "solution points"

or points between the solution points.

The user also has the options of

1) reorthon ormalizing at every point

2) not reorthonormalizing at all

3) always reorthonormalizing at the last point (x=b)

TEST; Integer.Flag for orthsnox-alization tost as follows:

TEST = 0, no test (see below under Iteration)

= +1, magnitude test, always orthonormalize at last point (b)

= -1, magnitude test

= +2, angle test, always orthonormalize at last point (b)

= -2, angle test

9.

C: Real array dimensioned (J). For J, see preceding section,

Interval and Spacing. The orthonormalization criterion,

either magnitude (for TEST = +_1) or angle (for TEST * +2), C

may also be set so as to either force orthonormalization at

every point, or suppress orthonormalization. See chart below.

The orthonormalization criteria can be varied for each sub-

interval S^. (The type of test made, as specified by

TEST, is fixed for the whole interval S, however.) Thus C

is actually the set of criteria C ,C ,...,C. to be used on
1 2 J

the sub-intervals S^, respectively. Of course, as for NN,

H, and NP, if j=l C need not be dimensioned in the calling

program.

Mag.
TEST

test
= & Angle test

TEST = ± 2
Test for
re-orth. 0. < C 0 £ C < 90

Re-orth. at
every point C = 0. 90. <_ C

Do not
re-orth. at all c < 0. C < 0.

Note that the do-not-re-orthonormalize option allows ORTNRM to

be used as a straight method-of-superposition package without refer-

ence to orthonormalization.

NX: Integer. The maximum number of re-orthonormalizations for

which space has been allocated, (see below under Storage Space.)

It is possible to have as many as

10.
j

i ,
 n

i
p

i
1=1

orthonormalizations.

None of the parameters TEST, C, NX, are changed by ORTNRM.

IV, Output options
NP01, NP02, ALT

The user may be interested in the following types of output

from ORTNRM:

1) print-out of intermediate vectors. That is, the particu-

lar vector and base vectors (y°(x), y
1

 Cx),... , y
k

0 0) , and, if

orthonormalization occurred at x, the particular and base vectors

0 1 k
(z (x),z (x),...,z (x)J resulting after orthonormalization.

2) availability of the solution vector u(x) at the specified

solution points to the calling program.

This may be stored, without print-out, for use in later computa-

tions. (See below under Storage Space.)

3) print-out of the solution vector at specified solution

points.

In research work, it is often of interest to compare results

obtained using a method being investigated with known "exact values;,

or with values obtained using another method. For this reason, the

option of printing alternate values of the solution u(x), obtained

independently of ORTNRM, along with the values computed by ORTNRM,

is provided.

11.

NP01: Integer. Flag for the print-out of intermediate vectors.

NPOl = 0, omit intermediate vector print-out

^ 1,print intermediate vectors at the initial point (a),

last point (b), and at all points where orthonormalization

has occurrcd.

=» 2, print intermediate vectors at all points where ortho-

normalization has occurrcd and at all solution points.

When intermediate vectors are printed, the y-vectors are always

given, the z-vectors are given whenever orthonormalization has

occurred at the point in question.

NP02: Integer. Flag for the output of solution vector u(x).

NP02 = 0, solution vector u(x) is not generated. This option

is useful mainly in iterative processes, when perhaps

only u(b) is of interest for intermediate iterations.

When this option is exercised, the subroutine may be

re-entered subsequently to obtain u(x). See below

under Alternate Entry.

= + 1, solution vector u(x) generated and stored (see below

under Storage Space) but not printed. When this option

is exercised, the subroutine may be entered subsequently

to obtain printout. See below under Alternate Entry.

= + 2, solution vector u(x) generated, stored, and printed.

= + 3, solution vector u(x) generated, stored, and printed

along with an alternate solution vector u^(x) printed

at the same solution points. This alternate solution

vector is generated by a user-coded subroutine. See ALT

below. The differences between the values computed by

ORTNRM and the alternate values are also printed.

12.

The sign of NP02 serves as a solution-normalization flag for

the case of a homogeneous system. Recall that when

f = 0, Cj » 0
f
 C = 0

the system is homogeneous and tho solution u is determined only

to within a constant multiplier. If NP02 is set negative, the

solution u is normalized according to the convention that the

first non-zero component of u(a) is made equal to 1. (If u(a)=0,

of course, then u(x)=0 for all x.) If the conditions

f = 0 and Cj = 0

do not hold, a minus sign on NP02 will be ignored. However, ORTNRM

does not check for the third necessary condition for a homogeneous

system, namely

c
2
 = 0.

ALT: Name of subroutine for computing an alternate solution

u
A
(x).

To be called by a statement of the form

CALL ALT(X,UA} with:

X: Real. Value of dependent variabl- x.

UA: Real array dimensioned (N). Values of alternate

solution .

The subroutine must compute , given x, and store values

in UA. This subroutine is called only if NP02 is set to 3. If

NP02 is not set to +_ 3, a dummy name may be used for ALT in the CALL

ORTNRM statement.

13. .

Neither of the parameters specifying output, NP01 or NP02, are

changed by ORTNRM.

V. Error flag
NERR

There is only one error condition to be flagged. This is the

case when not enough space has been allocated for storage of

re-orthonormalization parameters. In other words, the case in which

NX is too small.

NERR: Integer variable. If there has been no error, NERR will

have been set to 0 on return from ORTNRM. If the above error condi-

tion exists, NERR is set to 1 on return from ORTNRM. In case of

error, a note is also printed giving details.

The user must include the names for DER, CO, and, if the

alternate solution option is used, ALT in an EXTERNAL statement in

the calling program.

Storage Space

The user must allocate working storage space for use by ORTNRM.

This is done via the labeled COMMON block /SCRATCH/. The ORTNRM

package will use the first L locations of /SCRATCH/, where

L = (NT+6)*N*M + (3*K+K*(K-l)/2+l)*NX + K + NT + 1

and the other variables arc as in the CALL ORTNRM statement. (For

homogeneous systems, L is actually less than the above, by K*NX

locations.)

14.

Upon return from ORTNRM, the first (N,NT) locations of /SCRATCH/

will contain the solution u(x), provided solution generation has

been requested. Thus, the full solution u(x), as evaluated at the

NT solution points, becomes available to the calling program. For

example, suppose

N = 4, M = 3, K => 2, NT = 11, NX = 25.

The user might include the following statement in the calling program:

COMMON /SCRATCH/ U(4,ll), S(374)

Auxilliary COMMON Clocks

ORTNRM uses, in addition to /SCRATCH/, COMMON blocks naned

/KKKK/ and /MMMM/.

ORTNRM does not use blank COMMON.

Alternate Entry

ORTNRM may be re-entered to effect solution generation or

solution print-out where this has been temporarily suppressed via

the flag NP02 as described above.

1) To resume processing after solution generation has been

suppressed (by setting NP02=0), use

CALL SOLN (...)

2) To resume processing after solution print-out has been

suppressed (by setting NP02=+1), use

CALL PRM (...)

IS.

The argument lists for SOLN and PRM aTe exactly the same as

that for ORTNRM, except that the value of NP02 must be changed.

For CALL SOU), NP02 must be M., +2, or +3.

For CALL PRM, NP02 must be +2 or +3.

Iteration

In certain iterative processes, it may be necessary to establish

a set of orthonormalizing transformations on a first pass, and then

use the same transformations at the same points on subsequent passes.

(On these subsequent passes, the transformations may not actually

affect strict orthonormalization}- however, this may be desirable

for purposes of keeping all iterations uniform.) This can be

accomplished via the parameter TEST. If TEST is set to 0, trans-

formations as established on a previous pass and stored in COMION

block /SCRATCH/ will be used. In this case, testing against

orthonormalization criteria, as well as computation of new ortho-

normalizing transformation coefficients, will be omitted.

Backward Integration

Generated solutions will be stored and printed in the direc-

tion of increasing x, regardless of whether a<b or b<a. This

is done for the following reasons:

ORTNRM is primarily useful for problems in which there is some

numerical instability. In problems of this type, the instability

may often exist for one direction of integration but not for the

other. Generating the solution always in the same direction

facilitates comparison when the user wants to try solving a prob-

lem in both directions.

Another application of ORTNRM is in the area of unstable

initial-value problems. Such problems can be worked backwards as

boundary-value problems. In this case too it is convenient to have

the solution stored and printed in the "forward" direction.

Deck Set-up

The ORTNRM package consists of the following subroutines:

ORTNRM

ORTSUB
RUNKUT
NUGO
ARRAY
RND
FLIP
BLOCK DATA

The largest of these subroutines, ORTSUB, needs 50600 locations
a

to compile on the CDC 6S00.

The package uses COMMON blocks named

/SCRATCH/ (discussed above)
/KKKK/

/MMMM/

The ORTNRM package should be placed after the calling program

in the deck to allow proper loading of COMMON blocks.

Reference 1) Conte, The Numerical Solution of Linear Boundary
Value Problems, SIAM Review, Vol. 8, No, 3, July, 1966.

APPENDIX

Fortran listing of ORTNRM package

c

c

c

c

c

SUBROUTINE ORTNRM
PARA.:!. TER5 5PIC I FY I/"G SYSTEM OF EQUATIONS

(N> •:» Y , i;Er? » CO»
PARAMETERS 'j-F I ;•: I INTERVAL A. j SPACING

At Mi :VP» MT»
PAP.AAETFRS SPrCIFYI.v3 CRTHD-'C.n ALIZATIOF

TEST» C,
Sr

j

dClFIC'\TIC.v CF USEUS OUTP'jT OPTIGmS
MPO1» r'02» ALT,

ERsOX FLAG

/KKVA/ L,XI»>:TK
J: ERR)

CO/ Oi-J /SC^ATC!-;/ S (1)
CXTEPkAL .Od'S ,CO».--,LT
^tr: = j
xO = A
>>x • =
XJ--J = AX T + IU + 1

NY = NX* +
 S

!T
CALL ASUAY (Y,.r li-Y)

= \'Y +
KQ = X*('K-I)/2
,\;k = + "

v
O;:-

M

X
KR.'.'X = k*''IX

= iv; + KR'ix
i;L = n + r.^'x + K.
Iv X L = .MX + 1
;-'A = ia + \XL
CALL C"TS'J4 (X » (X 1 +1) ,S[W X M »S('-!'•••) > »3(N/\) »S<N = ") >S(ML) »

1 r\', . 0 » T
 ;
' XL »5 (Y) f .'jFR » C0 s ALT »Tf T »MPu 1 » P C 2 » F ^ ' »-"X.'» »H »

2 mo,C)
ScET'JXN
E'JO

-SUbRCUT I E C;";TSJ!; (X»Z i X »O'-lLO A»ft J ALPn - •». tTA»LX »>"-: ,.;C ,
1 I iX • Y O F R 1 V »C0 " i"~ S > IX •"'.C T • .'•! D » P ^ 1 » -V02 j-E.. *''X. , '.»H »."1P »A) 1 ^ 7 M /\ . I F • - ^ y • « I V ^ ' " I w ^ > I I ^ I k I V » ;\< » ri /

„ . _ ! .T) ,X.' I T j .EGA (KOi :X) 1 ,<R >\X) >ALP.-iA (K3»,
M

X) »
1 DPTA(;<.< 9\X) »Y (, s.»» 6) ».V2 (ftO) 9,0(2) » Y Y (2) - XG (2) ,LX(NX)
2 »,"-'N (1) Jrif 1) (1) . At 1 »

.E'-'SIOV F^T{6)>.\7
r

-(2)sFE:(6)»l-.r;;l6>
EQU! VALr-ACc (NO < 2 J »,\JZ)
I i'iTTGER P I O » S : T I . ') V
LOGICAL HO. .5 -cGi 0 IE , LAST , EriJP T , LASTMK

1 tOLOCO>.-k'-CTST* r.CPO
OOU.. LE PRECISION J •>.:̂
EXTK^A'AL ^ £R I V
•A AT A 1:0 (1) .NZ /1H-

 s
 1H1 »lrlZ , 1K3 »Iri^ ,) H5 »1H6 . 1H7 , INT., 1H

P

 t 2 H l 0 , ~ H H .
1 2 H12 » 2 A13 »2 H1 'h » jMl '-j , 2H1 ̂ , 2H17

 ?
 ?nl ̂ , 2,HI , 2H20 • 2H21 , 2K22 , 2H23 ,

1 »2 H2 »2 H2) 2H 7 , ?;^ . ,2H29 ,?.H30 . 2,, J1 , >H32 , 2H33 ,2|-.34, 2H35 ,
1 2|-1_0,2H3> - ; tPH'^O ,
2 YY,X5 /1HYjlHZ»lhX»lH /
l/AT.'-. FMT (1) ,i-MT (4) »M6 /5l.(li-j /, 3h/(12X,

1 9H/(1H- 2 . X . 9 H / (A1 s 2 X /»
1 F' :T { ft) /2\->)) / ,
1 b;"G

3 hro /l-'Htl!-:: 7X A1 » 11!!, 12 X fi(Al. 1-;!, A 2 , 15X) »
4 1C-H /(1HJ 2«::<» l.:i! 6(A1» A2»»7II 15X »)) /

INITIALIZE

ORTOOOIC
ORTGC02C
ORTCC C3C
ORTOC C4C
ORTOC-'Vlc
ORTOC". :(
0RT'::cr 7(
ORTCv. ,.8(
ORTT

r

'' 9(
O^TCC xOC
CKTOCi

1

(
0RT0C12C
Ci^Tr-CUC
0" T 0 r-1 r
0RT1015C
oiurr i6f
0RTCQ17C
0RTCC13C
Oc<TOO 1°C

ORT0021C
O.^Trr2?r
ORT;^23C
0RT'-;024^
0RTr?025C
OUT00260
ORT00270
Oa TOO230
CrfT^029C
ORT

r

 C.^r
ORT ?jic
0 R T 0 3 2 f

CKTO033C
ORTCO
CKTOCjbf
0RTCC3AC
ORTCO37C
0 R T T 3 = ;
0RTCC39C
CRT1040C
0 R T C 0 4 K
08T0042C
OUTCC43(
CKTTC A4'
OR T

r

 4 3'
CKTOC 46.
o."a::c 47-
Oi-JTOC'43!
driT0C4C;
O.^T0C5C(
o ^ T r c ^ K
ORTOG.>2(
oRTn-::oc
ORT^C 54(
ORT^C 5 5C
0KTCC56C
0RTCC37C
OKTCOS3C
OK T 0 0 5 9 C

K = 2 0RT0060C
HOM = KRoEOoM ORTOQ61G
IF (HOM) K = 1 ORT0062C
Kl = K + 1 0RT00630
KM1 = K. - 1 ORTOO6 '̂ 0
NORXS = 0 ORT0O6 0
U = 1 ORTOO66G
V = 1 ORT0067C
IN = 1 ORTOI68O
IL = NT 0RT006 7C
MORE = KR-GTol ORT007C0
LAST = NDcGTo0 ORT00710
OLDCO = NOoEOcO ORT00720
MAGTST = IABS(ND) 0EG«1 C,OR d uNOT o MORE ORT00730
P = 0 ORT0074G
NTC = 1 0RT0075C
XN(1} = X ORTG07ec
NNC = 0 ORTC077C
NPLP = 1 ORT00780
NHLP = 1 0RT00790
GO TO 17 ORTOOBOO

0RT00810
START INTEGRATION LOOP ORT00820

ORT00830
NNC = NNC + 1 ORTOO8AO
NPLP = MN(NNC) 0RT00850
NHLP = NP(NNC) ORTOO86O
DX = H(NNC)*FLOAT(NHLP) 0RT00870
NTC = NTC + NPLP ORTOO88O
NF = 0 ORT00890
IF (A(NNC),GEoO») GO TO 13 ORT00900
NF = -1 0RT00910
GO TO 17 ORT00920
IF (MAGTST) GO TO 15 ORT00930
C = COS(A(NNC)/57 N 3) ORT0094O
IF (A(NNC}a GE O 90^) NF = 1 0RT0095C
GO TO 17 ORTOO?6C
A2 = A(NNC}**2 ORTC097C
IF (A(NNC)0 EQeO-) NF = 1 ORT00980
DO 301 NPC = 1,NPLP ORT00990
LASTBK = NPC = EQl,NPLP .ANDP NTC o EQo NT ORTOIOOO
XN(U+1) = XN(U) + DX 0RT01010
DO 301 NHC = 1,NHLP ORT01C-20
P = P + 1 0RT01C3C
NOPO = NHC ELTONHLP ORTCIC^O
IF (P e EO1.1) GO TO 200 ORT01050
ENDPT = LASTBK -AND* „NOT. NOPO ORTOIO6O
CALL RUNKUT (X,Y,Y(1»1, 2) , NXM»H(NNC) »DERI V) ORT01070
U = U + 1 CRT01080

ORT01090
BRANCH ON ORTHONORMALIZATION ORTOllOO

ORTOlllO
IF (OLDCO) IF (P-LX(V)) 55 ,70,55 O R T 0 H 2 0
IF (NF) 55,19,100 O R T 0 H 3 0
IF (ENDPT c ANDo LAST) GO TO 100 ORTO1140

O R T O U S O
TEST FOR ORTHOGONALITY OR MAGNITUDE O R T O H 6 O

O R T 0 H 7 0
G = Oo ORTOl180
MM = M ORTOl190

20

30

40

45

50
52
54

DO 30 I • = 1 ,M
IF (MAGTST) MM = I
DO 30 J = I,MM
E = Oc
DO 20 L = 1»N
E = E + Y (L * I»1)*Y(L »J »1)
Y (I ,J,5) = E
IF (EoGT.G) G = E
IF (MAGTST) GO TO 52
DO 40 I = 1,M
DO 40 J = I »M
Y(I»J »5) = Y(I *J » 5)/G
T = 1
Ml = M - 1
DO 45 I - 1»M1
L = 1 + 1
DO 45 J = L»M
IF (Y(I»J»5)**2

0RT0120C
ORTOl21C
ORTOl22C
ORTOl 23*.
O f U O U rC
ORTOl25C
ORTO1- 2 6C
ORTOl27c
0RTQU3C
ORT!

T =
IF
DO
IF

0
(T)
54 I
(Y(I

GTc C * * 2 * Y (I
?
I , 5) * Y (J , J , 5)) GO TO 50

100,55,100
= 1»M

»I»5)3 GT oA2) GO TO 100

55
57

IF
DO
DO

(NOPO)
60 I =
60 J =

60 Z (J . I»U> =

NO RE-ORTHONORMALIZATION

GO TO 65
1 »M
1 ,N
Y(J, I ,1 I

15 PRINT-OUT INDICATED
65

70

71

74

i ct*
ORTOl30C
0RT0131C
ORT0132C
ORT0133C
0RT0134C
ORTOl35(
ORTC136C
ORTOl3">:
ORT013Sv
OR TO 15^
OR TO 140v
0RT0141C
0RT0142C
ORTOl43(
0RT0144C
ORTOl45(
ORTOl46(
0RT0147'
ORTOl4SC
ORTOl49(
ORT0150C
0RT0151C
ok T 015 2(
0RT0153<
ORT0154
ORTOl55
OR TCI 5 i

IF (VvLT.NX) GO TO 74 0RT0157
WRITE (6,71) ORTOl5 S
FORMAT (9 5H0INSUFFICIENT STORAGE FOR ORTHONORMALIZATION PARAMETERSORTO 159

1 DISCOVERED DURING fTTEMPTED COMPUTATION / 78H WITH PREVIOUSLY DETORTOI6O
2ERMINED PARAMETERS, ERROR RETURN TO CALLING PROGRAM GIVEN- / ORT016ir
3 32H SOLUTION GENERATION SUPPRESSED6) ORTOl62<

OR T 016 31
ORTO 164(

ORTHOGONALIZATION ORTOl65(
0RT0166(
ORTOl 6 7<
(5RTOl68f

= Y(Q»I,1) ORTOl69(
K) GO TO 80 ORT0170(

REG = o TRUE c
IF (NPOl.GT.O
IF (NPOl ~ 2)

AND» (ENDPT
300,220,300

»0Ro P o EQe1)) GO TO 222

RE-ORTHONORMALIZATION USING OLD COEFFICIENTS

CHECK FOR SUFFICIENCY OF STORAGE
TO 74

NERR =
RETURN

Q = 1, N

K »M

75
80

DO 80
L = 0
DO 80 I =
Z(Q,I,U)
IF (I.EQ
II = I - 1
DO 75 J = K»11
L = L + 1
Z(QtI«U) = Z(Q*I»U) - 0MEGA(L,V)*Y(Q»J»1)
CONTINUE

NORMALIZATION
DO 85 I = K,M
IR = I - KM1
DO 85 J = 1»N

0RT0171C
ORT0172C
ORT0173C
ORTO!74(
0RT0175C
ORTOl76(
ORTOl77(
ORTOl78(
ORTOl 79<

c
. c
c

85 Z(J,I»U) = R(IR*V>*Z(J,I 9U)
BRANCH ON HOMOGENEITY

90 IF (HOM) GO TO 190
GO TO 183

RE-ORTHONORMALIZATION WITH NEW COEFFICIENTS

100 IF (V-NLoNX) GO TO 105
NORXS = NORXS + 1
V = 1
IN = U

105 LX(VJ = P
C FIRST VECTOR AND M0D**2

F = 0°
DO 110 I = 1,N
E = E + Y(I,K,1)**2

110 Z (I ,K»U> = Y({ ,K»1)
R(1»V) = lo/E

C BEGIN MAJOR ORTHONORMALIZATION LOOP
IF (0NOT0MORE) GO TO 165
L = 0
DO 160 1 = K1jM
1 1 = 1 - 1
LO = L

C BEGIN LOOP TO DETERMINE OMEGAS
DO 140 J = K »I 1
L = L + 1

C OBTAIN FIRST TERM OF EXPRESSION FOR OMEGA IIN 0. P
D = 0..
DO 120 Q = 1»N

12C D = D + Y(0 »I»1)*Z(0» J »U >
tR = J - KM1
DG = D*R(IR»V)

C COMPUTE SUBSEQUENT TERMS IN OMEGA IF NECESSARY (IN
S = J + 1
IF (S^GTbII) GO TO 140
DO 130 Q = S»I 1
D = 0*
DO 125 T = 1»N

125 D = D + Y(T» I »l)*ZtT,OjU)
IR = 0 - KM1
IW = (1R-2)*(IR-1)/2 + J - KM1

130 DG = DG - D*R(LR»V)*OMEGA(IWtV)

140 OMEGA(L > V) = DG
C END OF OMEGA LOOP
C ORTHOGONALIZATION

DO 150 Q = 1,N
L = LO
Z I 0 ,1 »U) = Y (0 > I) 1)
DO 150 J = K, I 1
L = L + 1
Z(Q»I> U) = Z(Q»I»U) - OMEGA(L ,V)*Y(Q»J.1)
IR = I - KM1
E = 0,
DO 155 0 = 1»N
E = E + 2(0, I»U)**2
R(IR,V) = lo/E

C END MAJOR ORTHONORMALIZATION LOOP
C NORMALIZATION

DO 170 I = K,M

1 5 J

155
160

165

ORTOIOOC
ORTOlUK
ORT0182C
ORTOl fi ̂t
ORTO11 <(
ORTOl
ORTOl >6(
ORTOl6 7(
ORTO. '-HC
ORTOl a9C
OR T 019 c C
0RT0191C
ORTO19 2 C
ORT0193C
0 R T 019 4 (
ORTO 19 5(
O^To19 6
ORTOl? 7

ORTCi^S
0RT0199
ORT0200
QRT020 1
OR TO2 0 •?
ORTO^O.^
OR TO.; 0<:H
ORT020 5
ORTO 206i

,) 0RT0207(
0RT02 08(
0RT0209(
ORT0210C
0RT0211C
ORTO212 C

D0RT0213(
ORTO214V
ORT0215C
0RT0216C
0RT0217C
0RT0218C
ORT0219C
0RT02.:0(
ORT022 1(
0RT022 2C

ORT02 2 >C
0RT02;uC
ORT0225C
0RT0226(
ORT0227C
ORT0228C
ORT0229C
ORT0230C
0RT02 31C
ORT0232C
ORT0233C
ORT0234C
ORT0235C
ORT0236C
ORT0237C
0RT0238C
0RT02 39C

170

175
180

183

185

190

200

205

210

220
222

225

230
240

IR = I - KM1 ORT0240C
R(IR»V) = SQRT(R(IR»V>) 0RT0241C
DO 170 J = l,N ORT0242(
Z(J,I»U) = R(IR »V)*Z(J »I,U) OR T 0 2 ̂ 'C

CALCULATE ALPHAS (IN D„ P J 0RT02i-+C
IF (HOM) 60 TO 190 ORT02 r5C
DO 180 I = 2»M ORT0246C
D = 0. 0RTC2't7C
DO 175 J = 1»N ORT0243C
D = D + Y (J »1»1)#Z(J jI»UJ ORT024";
ALPHA(I-1» V) = D ORT025CC

ORTHOGONALIZE PARTICULAR SOLUTION 0RT0251C
DO 185 J = 1»N 0RT0252C
Z(J,1,U) = Y (J»1»1) ORT0253C
DO 185 I = 2 »M ORT02 5~C
Z(J,1»U) = Z(J.l.U) - ALPHA(I-1,V)*Z(J»I»UJ ORT02 5 5C

IS PRINT-OUT INDICATED ORT0256C
REG = ,FALSE0 0RT0257C
V = V + 1 0RT0258C
IF (NPOl) 222,290,222 ORT0259C

0RT0260C
PRINT-OUT OF VECTORS 0RT0261C

ORT0262C
FIRST POINT - SET UP LIMITS -• PRINT HEADING 0RT0263C

IF (NPOIoEQPO) GO TO 57 0RT0264C
NK = 2 - K ORT0265C
NBK = (M-1J/6 + 1 0RT0266C
NXS = M - 6*(NBK-1) ORT0267C
HED(4) = H6 0RT0268C
IF (Mo EQ u 6) HED(4) = SP6 ORT0269C
WRITE (6,205) ORT0270-
FORMAT (7H10RTNRM 42X 20H1 NTERME&I ATE VECTORS) 0RT0271C
DO 210 I = 1,2 0RT0272C
WRITE (6,HED) XB(I)?(YY(I)»NZ(T)»T=NK»KR> ORT0273C
GO TO 57 ORT027^-C

PRINT Y-VECTORS 0RT0275C
IF (NOPO) GO TO 300 ORT0276C
J = -5 ORT0277C
FMT(2) = BEG(l) ORT0278C
FMT(3) = EE(6) ORT0279C
FMT(5 > = EE (6) ORT026GC
DO 240 I = 1,NBK GRT02S1:
J = J + 6 ORTC26K
L = J + 5 CRT0253C
IF (I uNE«.NBK) GO TO 225 0RT02S4C
FMT(3> = EE(NXS) 0RT0285C
FMT(5) = EE(NXS) ORT02860
L = M ORT02870
IF (IuNEol) GO TO 230 ORT02880
WRITE (6 »FMT) X » ((Y(S »T , 1),T=J»L), S = 1, N) ORT02890
FMT{2) = BEG(2) ORT02900
GO TO 240 ORT02910
WRITE(6»FMT) ((Y(S,T,1),T = J,L> ,S=1»N) ORT02920
CONTINUE QRT02930
IF (REG) GO TO 300 ORT02940

PRINT Z-VECTORS ORT02950
J = -5 ORT0296^
FMT(3) = EE(6 » ORT02970
FMT(5) = EE(6) 0RT02980
DO 25u I = 1,NBK QRT0299C

250

J = J + 6
L = J + 5
IF (I.NE-NBK)
FMT(3) =
FMT(5) =
L = M
WRITE (6,FMT)

GO TO 250
EE(NXS)
EE(NXS)

((Z{5 > T »U)» T = J » L) >5=1,N)

RE-INITIALIZE

290 DO 295 I = 1»M
DO 295 J = 1»N

295 Y t J,],1> = Z(J,I,U)
CALL NUGO

300 IF (NOPO)
301 CONTINUE

IF (NTC.LToNT)
LX { V) s P + 1
CALL NUGO

U = U - 1

GO TO 10

END INTEGRATION LOOP

CHECK FOR ERROR - INSUFFICIENT COEFFICIENT

IF (NORXS o EQ c 0) GO TO 305
NERR = l
NX 1 = NX - 1
NEED = NX 1*N0RXS + V - 1
WRITE (6 »302) NEEDiNXl

302 FORMAT (7H10RTNRM // 75H INSUFFICIENT STORAGE HAS BEEN ALLOCATED
10R ORTHONORMALIZATIC.vi PARAMETERS. / 10X 14, 14H BLOCKS NEEDED /
2 10X 14» 17H BLOCK5 ALLOCATED //
1 43H THE SOLUTION GENERATED WILL BE INCOMPLETE.,)

305 IF (NP02oEQ«0) RETURN

CALCULATE BETAS AT END POINT

ENTRY SOLN
IF (HOM) CALL COEFFS (2(1 .1 ,NTI.BETA(1»V))

IF U N O T s HOM) CALL COEFFS (Z(1,1iNT),Z(1»2»NT)»BETA(1>V))

CALCULATE INTERMEDIATE BETAS

Q = V
308 IF (0,. FQc 1) GO TO 340

S = 0 - 1
DO 310 I = 1,KR
E = BETA(I,Q)
IF UNOT. HOM) E = E - ALPHA(I.S)

310 Y(I »1»1) = R(I »SJ *E
KO = 1
DO 335 I = 1j KR
BETAtl ,S) = Y(I ,1,1)
IF (IoEO^KR) GO TO 335
KO = KO + 1
DO 330 K = KO,KR
L = (K-l)* C K—2)/2 + I

330 B E T A(I» S) = BETA(I,S) - OMEGA(L,S)*Y{K,1,1)
335 CONTINUE

ORT0300(
ORT0301C
ORT03 02<"
ORTOJ 03t
0&T03t K
0RT03C5C
QRT0306(
OR! <"• 3 0 7 (
ORTO 3 v,Qf
ORT030r'C
ORT0310C
0RT0311C
0RT031ZC
ORT0313C
0RT0314C
ORT0315C
OR70316C
ORT0317C
ORT0318C
ORT0319C
0RT0320C
ORT0321C
ORT0322C

ST0RA0RT0323C
ORT0324C
0RT0325C
0RT0326C
ORT0327C
ORT0328C
0RT0329C

F0RT0330C
0RT0331C
0RT03 32f
ORT0333C
ORT0334C
0pT0335t
ORT0336C
ORT0337C
ORTC33=C
ORT0339C
0RT034QC
ORT0341C
QRT0342C
0RT0343C
0RT034-."
0RTC3-rC
0RTG34&C
0RT03t7<_
ORT0348C
0RT0349C
ORT0350C
0RT0351C
ORT0352C
0RT0353C
0RT0354C
0RT0355C
ORT0356C
ORT0357C
ORT0358C
0RT0359C

0 = s
GO TO 30 8

C
C
c

c
c
c

c
c
c

REVERSE ARRAYS IF INTEGRATION WAS BACKWARDS

350 340 IF <H(1).GToO,> GO TO
CALL FLIP (XN.NT»1)
DO 342 I = 1»M
DO 342 J = 1»N

342 CALL FLIP (Z(J , I»1) »NT,NXM>
IF (VoEQ^l) GO TO 350
DO 346 I = 1,KR

346 CALL FLIP (BETA (I »1) >V >K.R)
J = V - 1
P = P + 2
DO 348 I = 1,J

348 LX(I) = P - LX(I)
CALL FLIP (LX>J>1)
IF | NORXS = E Q 0) GO TO 350
1L = NT - IN + 1
IN = 1

350

355
360

365

370
380

G = lo
IF UN0T„ HOM oOR
DO 360 I = 1»N
G = 0o
DO 355 J = 1»M
G = G + BETA(J * 1>*Z(I.J*1)
IF (G oNE ̂ 0„) GO TO 365
G = lo
G = l./G

NORMALIZATION FOR HOMOGENEOUS SYSTEM

NP02 o GT o 0) GO TO 370

COMPo AND PRINT LOOP

383
384

385

REG = n FALSE»
NPA2 = IA8S(NP02)
NPG = 0
NBK = 56/(N+l)
NC = 0
0 = 0
V = 1
MORE = N"GTo KR
KR1 = KR + 1
P = 1
NNC = 1
NPC = 0
IF (IN„EQo1) GO TO 388
U = 1
GO TO 334
NNC = NNC + 1
NPLP = NN(NNC)
DO 386 NPC = 1 ,NPLP
P = P + NP(NNC)
U = U + 1
IF {U u EOoIN) GO TO 388
GO TO 383

CALCULATE SOLUTIONS

0RT0360(
0RT0361C
ORT0362C
ORTOSr "iC
ORT036 +C
0RT03f 5C
0RT0366C
0RTO67C
0RT0363C
ORT036TC
0RT037CC
ORT0371C
ORT0372C
0RT0373C
0RT0374C
ORT0375C
ORT0376C
ORT0377C
ORT0378C
ORT037SC
0RT038GC
0RT0381C
ORT0382C
0RT0333C
ORT0384C
ORT0385C
0PT0386C
0RT0387C
ORT0388C
ORT0389C
0RT0390^
0RT0391C
0RT0392C
ORT0393C
0RT0354C
ORTO39 5C
0RT0396C
0RT03S-7;
ORT03S3C
0RT0399C
0RTQ4C0C
ORT04C K
ORT0402C
0RT04C3C
0RTC4C-C
ORTC405C
oRTc^-oe:
0RT04G7C
0RT0406C
ORT0409C
ORTOAIOC
O R T 0 4 U C
0RT0412C
ORT0413C
ORTOA14C
0RT0415C
ORT0416C
0RT0417C
ORTOA18C
0RT0419C

388
390

400

410

420

425
430
440

445

45u

460
470

480

490

500

520

530

<540

550

580

590
600

DO 600 I = 1N»IL
IF {LX(V),GToP) GO TO 400
V = V + 1
GO TO 39U
IF (REG) GO TO 610
IF (HOM) GO TO 420
DO 410 J = 1,N
Y(J,1 ,1) - Z(J,1,I)
DO 410 K = 2 »M
Y(J»1.1) = Y(J.l.l) + B£TA(K-1,V)*Z(J,K,I)
GO TO 440
DO 430 J = 1,M
Y (J , 1,1) = Oo
DO 42 5 K = 1»M
Y (J »1 »1) = Y I J 9 1»1) + 8ETA(K,V)*Z (J >K »I)
Y(J »1»1) = G*Y(J,1,1J
IF (NPC-LT tNN(NNC)) GO TO 445
NNC = NNC + 1
NPC = 0
NPC = NPC + 1
P = P + NP(NNC)

PAGE HEADING

IF {NPA2 uEQo1) GO TC 580
NC = NC + 1
IF {MOD(NC »NBK)oNEol) GO TO 480
NPG = NPG + 1
WRITE (6,450) NPG
FORMAT (7H10RTNRM 10X 14HS0LUTI ON (PAGE 13, 1H))
IF (NPA2cEQc2) WRITE (6,460)
IF (NPA2 o GE ° 3) WRITE (6,470)
FORMAT(1H07X1HX11X 4HBETA 16X 1HUJ
FORMAT(1H07X1HX11X 4HBETA 16X 1HU 13X 9HU COMPARE 9X 4HDIFF)

PRINT SOLUTIONS

IF (NPA2 C GE C 3) GO TO 520
WRITE (6 »490) XN{I) , (BET A{J,V) , Y(J » 1,1),J = 1,KR)
FORMAT (1 H 0 F 1 U 4 , 2E18.8 / (E30„8, E18«8) 1
IF (MORE) WRITE (6,500) (Y(J,1»1)»J=KR1»N)
FORMAT (30X EI808)
IF (REG) GO TO 600
GO TO 580
CALL EXACT (XN(M,Y(I,I,2)I
DO 530 J = 1 ,N
Y(J , 1 ,3) = Y(J.l.l) - Y(J , 14 2)
WRITE (6 ,540) XN(I) »(BETA(J,V),(Y(J,1,L),L = 1,3),J=1,KR)
FORMAT (1H0F11 o 4» 3E18 B8, E13 0 3 / (E30<,8, 2El8o8, E1303))
IF (MORE) WRITE (6,550) ((Y(J »1»L), L = 1,3),J = KR1»N)
FORMAT (30X 2E18„8t E13 03)
IF (REG) GO TO 600

STORE SOLUTIONS

DO 59U J = 1,N
Q = Q + 1
Z (Q , 1,1) = Y (J , 1 ,1)
CONTINUE

ORT0420C
0RT0421C
ORT0422C
O R T 0 4 ~ C
ORTO^S ,-C
0RT0423C
ORT0426C
0RTC+2 7C
ORT04 3C
ORT04290
ORT0430C
ORT0431C
ORT0432C
ORT04330
ORT0434C
ORT0435C
ORT0436C
ORT0437C
ORT0438C
ORT04390
0RT0440C
ORT0441C
ORT04420
ORT0443C
0RT0444C
0RT04450
0RT04460
ORT04470
0RT0448C
ORT0449C
ORT0450C
ORT04510
ORT0451.
0RT0453C
0RT0454C
ORT0455C
ORT0456C
ORT0457C
ORT045 8 r

0RT04590
ORT04600
0RT0461G
ORT04620
ORT04630
ORT04640
ORT04650
0RT04660
ORT0467O
0RT04680
ORT04690
ORT04700
0RT04710
ORT04720
ORT04730
ORT04740
ORT04750
ORT04760
0RT047 7>_
ORT04780
ORTQ479C

RETURN
C
C
C

PRINT-ONLY SECTION

ENTRY PRM
REG = O TRUE ̂
GO TO 380

610 DO 620 T = 1 ,N
Q = Q + 1

620 Y(T »1»1) = Z(Q,1»1)
GO TO 440
END

SUBROUTINE RUNKUT (X»Y»D»N»H»DERIV)
DIMENSION Y(N),D(N»5)»E(2)
COMMON /mm/ MID
DOUBLE PRECISION XDP,H2,EDP
LOGICAL MID
EQUIVALENCE (EDP » E)
H2 = 0 O5*D3LE(H)
H6 = H/6.
IF (MID) GO TO 20
DO 10 I = 1»N
EDP = Y(I)
D(I ,1) = E(1)

1U D I I » 2) = E (2)
MID = CTRUE,
XDP = X

20 CALL DERIV (X»Y»D(1>4U
DO 30 I = 1»N

30 D(I »3 > = Y(I) + SNGL(H2>#D(I ,4)
XDP = XDP + H2
CALL DERIV (SNGL(XDP),D(1>3)>D(1>5))
DO 40 1 = 1,N
D d »4) = D (I >4) + 2o*D(I»5)

40 DI I» 3) = Y(I) + SNGL(H2)*D(I» 5)
CALL DERIV <SNGL(XDP),D(1.3>»D(1»5U
DO 50 I = 1 , N
D(I >4) = D(I»4) + 2 n*D(I a 5)

50 Y(I) = Y(I) + H*D(I
XDP = XDP + H2
X = RND(XDP)
CALL DERIV (X» Y > D(1
DO 60 I = 1»N
D(I ,4 > = D(I»4) + D(I» 5)
E(l) = D D ,1)
E(2) = D(I ,2)
EDP = EDP + H6*D(I,4)
D (I j1) = Ell)
D d ,2) = E (2)

60 Y(I) = RND(EDP)
RETURN
END

SUBROUTINE NUGO
COMMON /MMMM/ MID
LOGICAL MID
MID = OFALSE 0
RETURN
END

• *D1I
»5)

.5))

0RT04Q01
0RT04£i 1 (
0RT04 apj
ORT048 3.
0RT04, +(
ORT04 5(
ORTO'i66(
0RT0487;
0RT04
0RT0489'
0RT049O'
0RT049 1(
0RT0492'

0RT049 3(
0RT0494(
0RT0495(
0RT0496(
0RT049 7(
OR T 0 4 9 8 >
CRTO-99.
ORTOROO-
ORTOSOl
ORT0502«
0RT0503(
ORT0504<
0RT0505
ORTO506l
ORT0507!
0RT0508
0RT0509
OR T 0 51C
0 R T 0 5 U
0RT0512
0RT0513
ORT0514
0RT0515
0RT0516
0RT051 7

ORT0513
ORTO?19
ORTO5 20
0RT0521.
ORT0522<
ORT0523
0RT0524I
OR TO 5 2 5(
OR TO 5 2 6t
ORT05 2 7i
0&T0528(
ORT0529C
OR T 0 5 3 0 f
ORT053K
ORT05 32(

0RT05 33(
ORT0534'
ORTO 53 5f
0RT0536'
ORT0537'
QRT0538

FUNCTION RND (D)
DIMENSION 0(2)
EQUIVALENCE (A,J)
RND = D
IF ((ABS (D(2)) 4000000000000000b) t EQ 0) RETURN
A = ABs(D)
J = J + 1
A = A°O-4000000000C000C0B
RND = SIGN(A,D)
RETURN
END
SUBROUTINE ARRAY (Y.S.N.M)
DIMENSION Y(N,M),S(N,M)
DO 10 I = l.M
DO 10 J = 1»N

10 S(J,I) = Y(J, I)
RETURN
END
SUBROUTINF FLIP
DIMENSION Y(l)
L = (N/2 - 1) # J
M = N*J + 1
DO 10 I = 1 , L , J
M = M - J
E = Y (M)
Y(M > = Y(I)

10 Y(I) = E
RETURN
END
BLOCK DATA
COMMON /KKKK/
LOGICAL MID
DATA K1 /0/
DATA MID /F/
END

(Y.N,J)

L »K1jNTK»NK /MMMM/ MID

ORT0539C
0RT0540C
CRT0541C.
OR TO 542C
ORTO543c
0RT05<-
ORT054 C
ORT05*6C
0RTQ547C
0RTC548C
ORT0549C
ORT055C:
ORT0551C
ORT05520
ORT05530
ORT0554C
0RT0555C
0RT0556C
0RT0557C
0RT0558C
0RT0559C
QRT0560C
0RT056 1C
ORT0562C
ORT0563C
OR T0564(
ORT0565C
0RT0566C
ORT0567C
ORT0568C
0RT0569C
0RT0570C
ORT0571;
OR T 05 7 21"
0RT0573

	ORTNRM - A Fortran Subroutine Package for the Solution of Linear Two-Point Boundary Value Problems
	Report Number:
	

	tmp.1307986960.pdf.GWpQX

