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ORTNRM - A Fortran Subroutine Package for the 
Solution of Linear Two-Point Boundary Value Problems 

S, Silverston 

QRTNRM is used to solve linear two-point boundary value problems 

by the method of superposition with orthonormalization. See Reference. 

Let x = the independent variable; 

u(x) = the vector of n dependent variables; 

f(x) * a given n-vector of functions of x; 

A(x) = an n x n matrix; 

k = an integer 1 < k < n; 

B = a constant (n-k)xn matrix; 

D = a constant k x n matrix; 

Cj = a constant (n-k)-vector; 

C * a constant k-vector. 
2 

Wo want to solve the problem: 

- i u(x) = A(x)u(x) + f(x) 
dx 

Bu(a) = C , Du(b) = C
2 < 

The subroutine is entered by the statement: 

CALL ORTORM (N,M,K,Y,DER,CO, 
A.NM.HjNP.NT, 
TEST, C.NX, 
NP01,NP02,ALT, 
NERR). 



2. 
In the following discussion, we break the parameters into 5 groups, 

I. System of equations: 
N,M,K,Y,DER,CO 

In the method of superposition, we actually obtain k+1 solu-

n 1 W 
tions y ,y , ...»y as follows: 

Choose y°(a) 3 By
0

 (a) = 

1 k 
Choose y , ..., y (a) 3 

(y
1

»y
3

)
 s 6 0

» ^ -
k

* 

Solve: — y°(x) = A(x)y°(x) + f(x) 
dx 

S y
1

^ ) = A(x)y
i

(xJ
>
 l_<i<k. 

Wo then solve the system 

k .
 n 

D[ I 5.y
l

Cb) + y (tO ] = c, 
i=>l

 1 z 

for the coefficients ^....jg^. 

The solution to the original problem is then given by 

k 
u O O = y (x) + I p.y

1

(x). 
i=l

 1 

The solution y^(x) is called the particular ^olution. Tho 

solutions y
x

(x) are called base solutions. 

If C ^ O and f=0, the system is homogeneous. In this case, 

we let 

By
1

(a) = 0, l^ifk 

and omit the particular solution. We then will solve the system 
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D I e ^ C b j = c 
k 

2 

for the coefficients 

If we also have C^ = 0, then one of the P's must be chosen 

arbitrarily and the others computed in terms of it. In this case we 

only can determine u(x) to within a constant multiplier. See discus-

sion of parameter NP02 under Output Options for the normalization 

convention used here. 

The system of equations parameters should bo set as follows: 

N: Integer. No. of dependent variables n. 

M: Integer. No. of solution vectors to be used for supciposition. 

For inhomogeneous system, J1=k+1. For homogeneous systems, M°k. 

IC: Integer. No. of base solution vectors k to be used. 

Y_: Real array dimensioned (N,M). Values of the vectors 

o 1 k 
y (a),y (a),...,y (a), chosen as discussed above. 

y°(a) yj(a) ... y*(a) 

Y 

y°Ca) y*(a) ... y*(a) 

For homogeneous systems 

y ^ O ) 

Y = 



PER: Name of subroutine for evaluation of the expressions 

A(x)y°(x) + f(x) and A(x)y
1

(x) 

To be called by a statement of the form' 

CALL DER (X,Y,DY) with: 

X
 3

 Real. Value of independent variable x. 

Y = Real array dimensioned (N,M). Values of solution 

vectors y°00, y
1

(x) , • • • Cx) 

DY = Real array dimensioned (N,M). Values of 

S ^ W ' E 

The subroutine must (for inhomogeneous systems) compute 

A(x) y°(x) + fCx) 

and store it in DY(1,1), DY(2,1)„...,DY(N,1). It must similarly 

compute 

A(x)y
1

 (x), i = 1,...^ 

and store it in DY(1,I), DY(2jI), DY(N.I) , I = 2
f
...,M. 

CO: Name of subroutine for computation of the values i&2*''''® 

in the equation 

k 
D[ I B.y^b) + y (b) ] = C 

i=l
 1 1 

To be called by a statement of the form 

CALL CO (YO.YjBETA) for an inhomogeneous system 

or by a statement of the form 

CALL CO (Y,BETA) for a homogeneous system. 
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with: 

YO: Real array dimensioned (N). Values of ygOO• Omitted 

for homogeneous system. 

1 2 k 

Y: Real array dimensioned (N,K). Values of y (b),y (b),...,y (b). 

BETA: Real array dimensioned (K). Subroutine must compute the 

values of and store them in the array BETA. 

None of the parameters specifying system of equations, NJM.KJY, 

are changed by ORTNRM. 

II. Interval and spacing: 
A,NN,H,NP,NT 

We solve the problem on the interval 

S = [min(a,b), max(a.b)] 

Wo nay break S up into j sub-intervals S^, S^, Sj 

{x =a,x },{x ,x },..., (x, ,x. ,},{x. .x.=b}, 
U 1 L £ 3-2 j-1 j-1 J 

such that a<x <x_<...<x. . <b for a<b, 
1 C J-1 

a>x,>x„>...>x. ,>b for a>b. 
1 2 j-1 

On each sub-interval S^, l_<i_<p, the solution u(x) will be 

computed and stored at n^ equally spaced points, i.e., letting 

d. = 

x

i'
x

i-l 
i n. 

at the points . . . j + n ^ d ^
 = 
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The solution values stored at these solution points only will be avail-

able to the user for print-out as well as for use in further computa-

tion. 

The intervals d^ between solution points are themselves divided 

into increments of integration. Specifically, 

- Pi
h

i 

where h^ is the length of the increment of integration, or step-size, 

for sub-interval S^, and p^ is the number of integration steps 

between solution points for the sub-interval S^. 

We thus have the following relationships among ^ 

• : l
s

il
 =

 l
x

r
x

i-il
 = n

i l
d

il
 = n

i
p

i'
h

il 

The total number of solution points on S is given by 

t = j n • 1 
i=l 

The "+1" is because the initial point a is also taken as a solution 

point. 

The interval and spacing parameters should be sot as follows: 

A: Real. Initial value (a) of the independent variable. 

NN: Integer array dimensioned (J). The set of numbers n.,n
 f
...,n. 

giving the number of solution points in each sub-interval S^, 

respectively. 

H: Real array dimensioned (J)- TTie set of step-sizes h. ,h_>,..»h. 
— i i j 

to be used on the sub-intervals S^, respectively. The h's 

should be positive (>0) if a<b, and negative (<0) if a>b. 
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NP: Integer array dimensioned (J). The set of numbers p^p,*. ..»p-
i 2 J 

which specify the number of integration increments between solu-

tion points for the sub-intervals S^, respectively, 

NT: Integer. The total number t of solution points on S. 

Note that the number of sub-intervals j does not appear in the 

parameter list at all. Of course if j = l, then NN,H, and NP need 

not be dimensioned in the calling program. 

None of the interval and spacing parameters A,NN,H,NP,NT, are 

changed by ORTNRM. 

This method of specifying interval and spacing is admittedly 

rather complicated. However, the flexibility it affords the user 

in varying step-size over the region as well as in specifying output, 

or solution, points, is quite useful for research purposes. The 

latter is especially valuable in the extension of this method to 

non-linear problems. . . . 

Ill. Orthonormalization 
.TEST,C,NX 

As discussed in the reference, an orthonormalization of the form 

Z(x) = Y(x)P, 

1 k 
where Y(x) = [y ,...,y ] 

P is a k x k matrix 

, 1 K 

Z(x) = [z ,...,z ] 

( z
1

^ ) = lHik, 
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0 1 k 

is performed whenever the solution vectors y ,y , ...,y meet some 

criterion to be specified. The two types of test considered here 

are 

1) the magnitude test 

Reorthonormalization is performed whenever [y (x)|>C for 

some i=0j1,2,...,k Whore C is a specified constant > 0. 
2) the angle test 

Reorthonormalization is perfomed whenever 

, (y
1

./
3

) 
57.3 cos I

 :
—

: : :
— y r = — | < C , 0<i<k, 0<j<k, i^j 

U y S y ^ C y
3

^ ) }
1

' 

where C is an angle specified in degrees. 

0 1 k 

In this program, the solution vectors y , y ,...,y are tested 

at all points where they are computed, whether at "solution points" 

or points between the solution points. 

The user also has the options of 

1) reorthon ormalizing at every point 

2) not reorthonormalizing at all 

3) always reorthonormalizing at the last point (x=b) 

TEST; Integer.Flag for orthsnox-alization tost as follows: 

TEST = 0, no test (see below under Iteration) 

= +1, magnitude test, always orthonormalize at last point (b) 

= -1, magnitude test 

= +2, angle test, always orthonormalize at last point (b) 

= -2, angle test 
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C: Real array dimensioned (J). For J, see preceding section, 

Interval and Spacing. The orthonormalization criterion, 

either magnitude (for TEST = +_1) or angle (for TEST * +2), C 

may also be set so as to either force orthonormalization at 

every point, or suppress orthonormalization. See chart below. 

The orthonormalization criteria can be varied for each sub-

interval S^. (The type of test made, as specified by 

TEST, is fixed for the whole interval S, however.) Thus C 

is actually the set of criteria C ,C ,...,C. to be used on 
1 2 J 

the sub-intervals S^, respectively. Of course, as for NN, 

H, and NP, if j=l C need not be dimensioned in the calling 

program. 

Mag. 
TEST 

test 
= & Angle test 

TEST = ± 2 
Test for 
re-orth. 0. < C 0 £ C < 90 

Re-orth. at 
every point C = 0. 90. <_ C 

Do not 
re-orth. at all c < 0. C < 0. 

Note that the do-not-re-orthonormalize option allows ORTNRM to 

be used as a straight method-of-superposition package without refer-

ence to orthonormalization. 

NX: Integer. The maximum number of re-orthonormalizations for 

which space has been allocated, (see below under Storage Space.) 

It is possible to have as many as 
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j 

i ,
 n

i
p

i 
1=1 

orthonormalizations. 

None of the parameters TEST, C, NX, are changed by ORTNRM. 

IV, Output options 
NP01, NP02, ALT 

The user may be interested in the following types of output 

from ORTNRM: 

1) print-out of intermediate vectors. That is, the particu-

lar vector and base vectors (y°(x), y
1

 Cx),... , y
k

0 0 ) , and, if 

orthonormalization occurred at x, the particular and base vectors 

0 1 k 
(z (x),z (x),...,z (x)J resulting after orthonormalization. 

2) availability of the solution vector u(x) at the specified 

solution points to the calling program. 

This may be stored, without print-out, for use in later computa-

tions. (See below under Storage Space.) 

3) print-out of the solution vector at specified solution 

points. 

In research work, it is often of interest to compare results 

obtained using a method being investigated with known "exact values;, 

or with values obtained using another method. For this reason, the 

option of printing alternate values of the solution u(x), obtained 

independently of ORTNRM, along with the values computed by ORTNRM, 

is provided. 
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NP01: Integer. Flag for the print-out of intermediate vectors. 

NPOl = 0, omit intermediate vector print-out 

^ 1,print intermediate vectors at the initial point (a), 

last point (b), and at all points where orthonormalization 

has occurrcd. 

=» 2, print intermediate vectors at all points where ortho-

normalization has occurrcd and at all solution points. 

When intermediate vectors are printed, the y-vectors are always 

given, the z-vectors are given whenever orthonormalization has 

occurred at the point in question. 

NP02: Integer. Flag for the output of solution vector u(x). 

NP02 = 0, solution vector u(x) is not generated. This option 

is useful mainly in iterative processes, when perhaps 

only u(b) is of interest for intermediate iterations. 

When this option is exercised, the subroutine may be 

re-entered subsequently to obtain u(x). See below 

under Alternate Entry. 

= + 1, solution vector u(x) generated and stored (see below 

under Storage Space) but not printed. When this option 

is exercised, the subroutine may be entered subsequently 

to obtain printout. See below under Alternate Entry. 

= + 2, solution vector u(x) generated, stored, and printed. 

= + 3, solution vector u(x) generated, stored, and printed 

along with an alternate solution vector u^(x) printed 

at the same solution points. This alternate solution 

vector is generated by a user-coded subroutine. See ALT 

below. The differences between the values computed by 

ORTNRM and the alternate values are also printed. 
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The sign of NP02 serves as a solution-normalization flag for 

the case of a homogeneous system. Recall that when 

f = 0, Cj » 0
f
 C = 0 

the system is homogeneous and tho solution u is determined only 

to within a constant multiplier. If NP02 is set negative, the 

solution u is normalized according to the convention that the 

first non-zero component of u(a) is made equal to 1. (If u(a)=0, 

of course, then u(x)=0 for all x.) If the conditions 

f = 0 and Cj = 0 

do not hold, a minus sign on NP02 will be ignored. However, ORTNRM 

does not check for the third necessary condition for a homogeneous 

system, namely 

c
2
 = 0. 

ALT: Name of subroutine for computing an alternate solution 

u
A
(x). 

To be called by a statement of the form 

CALL ALT(X,UA} with: 

X: Real. Value of dependent variabl- x. 

UA: Real array dimensioned (N). Values of alternate 

solution . 

The subroutine must compute , given x, and store values 

in UA. This subroutine is called only if NP02 is set to 3. If 

NP02 is not set to +_ 3, a dummy name may be used for ALT in the CALL 

ORTNRM statement. 
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Neither of the parameters specifying output, NP01 or NP02, are 

changed by ORTNRM. 

V. Error flag 
NERR 

There is only one error condition to be flagged. This is the 

case when not enough space has been allocated for storage of 

re-orthonormalization parameters. In other words, the case in which 

NX is too small. 

NERR: Integer variable. If there has been no error, NERR will 

have been set to 0 on return from ORTNRM. If the above error condi-

tion exists, NERR is set to 1 on return from ORTNRM. In case of 

error, a note is also printed giving details. 

The user must include the names for DER, CO, and, if the 

alternate solution option is used, ALT in an EXTERNAL statement in 

the calling program. 

Storage Space 

The user must allocate working storage space for use by ORTNRM. 

This is done via the labeled COMMON block /SCRATCH/. The ORTNRM 

package will use the first L locations of /SCRATCH/, where 

L = (NT+6)*N*M + (3*K+K*(K-l)/2+l)*NX + K + NT + 1 

and the other variables arc as in the CALL ORTNRM statement. (For 

homogeneous systems, L is actually less than the above, by K*NX 

locations.) 
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Upon return from ORTNRM, the first (N,NT) locations of /SCRATCH/ 

will contain the solution u(x), provided solution generation has 

been requested. Thus, the full solution u(x), as evaluated at the 

NT solution points, becomes available to the calling program. For 

example, suppose 

N = 4, M = 3, K => 2, NT = 11, NX = 25. 

The user might include the following statement in the calling program: 

COMMON /SCRATCH/ U(4,ll), S(374) 

Auxilliary COMMON Clocks 

ORTNRM uses, in addition to /SCRATCH/, COMMON blocks naned 

/KKKK/ and /MMMM/. 

ORTNRM does not use blank COMMON. 

Alternate Entry 

ORTNRM may be re-entered to effect solution generation or 

solution print-out where this has been temporarily suppressed via 

the flag NP02 as described above. 

1) To resume processing after solution generation has been 

suppressed (by setting NP02=0), use 

CALL SOLN (...) 

2) To resume processing after solution print-out has been 

suppressed (by setting NP02=+1), use 

CALL PRM (...) 
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The argument lists for SOLN and PRM aTe exactly the same as 

that for ORTNRM, except that the value of NP02 must be changed. 

For CALL SOU), NP02 must be M., +2, or +3. 

For CALL PRM, NP02 must be +2 or +3. 

Iteration 

In certain iterative processes, it may be necessary to establish 

a set of orthonormalizing transformations on a first pass, and then 

use the same transformations at the same points on subsequent passes. 

(On these subsequent passes, the transformations may not actually 

affect strict orthonormalization}- however, this may be desirable 

for purposes of keeping all iterations uniform.) This can be 

accomplished via the parameter TEST. If TEST is set to 0, trans-

formations as established on a previous pass and stored in COMION 

block /SCRATCH/ will be used. In this case, testing against 

orthonormalization criteria, as well as computation of new ortho-

normalizing transformation coefficients, will be omitted. 

Backward Integration 

Generated solutions will be stored and printed in the direc-

tion of increasing x, regardless of whether a<b or b<a. This 

is done for the following reasons: 

ORTNRM is primarily useful for problems in which there is some 

numerical instability. In problems of this type, the instability 

may often exist for one direction of integration but not for the 



other. Generating the solution always in the same direction 

facilitates comparison when the user wants to try solving a prob-

lem in both directions. 

Another application of ORTNRM is in the area of unstable 

initial-value problems. Such problems can be worked backwards as 

boundary-value problems. In this case too it is convenient to have 

the solution stored and printed in the "forward" direction. 

Deck Set-up 

The ORTNRM package consists of the following subroutines: 

ORTNRM 

ORTSUB 
RUNKUT 
NUGO 
ARRAY 
RND 
FLIP 
BLOCK DATA 

The largest of these subroutines, ORTSUB, needs 50600 locations 
a 

to compile on the CDC 6S00. 

The package uses COMMON blocks named 

/SCRATCH/ (discussed above) 
/KKKK/ 

/MMMM/ 

The ORTNRM package should be placed after the calling program 

in the deck to allow proper loading of COMMON blocks. 

Reference 1) Conte, The Numerical Solution of Linear Boundary 
Value Problems, SIAM Review, Vol. 8, No, 3, July, 1966. 



APPENDIX 

Fortran listing of ORTNRM package 



c 

c 

c 

c 

c 

SUBROUTINE ORTNRM 
PARA.:!. TER5 5PIC I FY I/"G SYSTEM OF EQUATIONS 

( N> •:» Y , i;Er? » CO» 
PARAMETERS 'j-F I ;•: I INTERVAL A. j SPACING 

At Mi :VP» MT» 
PAP.AAETFRS SPrCIFYI.v3 CRTHD-'C.n ALIZATIOF 

TEST» C, 
Sr

j

dClFIC'\TIC.v CF USEUS OUTP'jT OPTIGmS 
MPO1» r'02» ALT, 

ERsOX FLAG 

/KKVA/ L,XI»>:TK 
J: ERR ) 

CO/ Oi-J /SC^ATC!-;/ S ( 1 ) 
CXTEPkAL .Od'S ,CO».--,LT 
^tr: = j 
xO = A 
>>x • = 
XJ--J = AX T + IU + 1 

NY = NX* +
 S

!T 
CALL ASUAY (Y,.r li-Y) 

= \'Y + 
KQ = X*('K-I)/2 
,\;k = + "

v
O;:-

M

X 
KR.'.'X = k*''IX 

= iv; + KR'ix 
i;L = n + r.^'x + K. 
Iv X L = .MX + 1 
;-'A = ia + \XL 
CALL C"TS'J4 (X » ( X 1 +1 ) ,S[ W X M »S('-!'•••) > »3(N/\) »S<N = " ) >S( ML) » 

1 r\', . 0 » T
 ;
' XL »5 ( Y) f .'jFR » C0 s ALT »Tf T »MPu 1 » P C 2 » F ^ ' »-"X.'» »H » 

2 mo,C) 
ScET'JXN 
E'JO 

-SUbRCUT I E C;";TSJ!; ( X»Z i X »O'-lLO A»ft J ALPn - •». tTA»LX »>"-: ,.;C , 
1 I iX • Y O F R 1 V »C0 " i"~ S > IX •"'.C T • .'•! D » P ^ 1 » -V02 j-E.. *''X. , '.»H »."1P »A ) 1 ^ 7 M /\ . I F • - ^ y • « I V ^ ' " I w ^ > I I ^ I k I V » ;\< » ri / 

„ . _ ! .T ) ,X.' I T j .EGA (KOi :X ) 1 ,<R >\X ) >ALP.-iA (K3»,
M

X ) » 
1 DPTA(;<.< 9\X ) »Y (, s.»» 6 ) ».V2 ( ftO ) 9,0(2 ) » Y Y ( 2 ) - XG ( 2 ) ,LX(NX) 
2 »,"-'N (1 ) Jrif 1 ) (1) . At 1 » 

.E'-'SIOV F^T{6)>.\7
r

-(2)sFE:(6)»l-.r;;l6> 
EQU! VALr-ACc ( NO < 2 J »,\JZ ) 
I i'iTTGER P I O » S : T I . ' ) V 
LOGICAL HO. .5 -cGi 0 IE , LAST , EriJP T , LASTMK 

1 tOLOCO>.-k'-CTST* r.CPO 
OOU.. LE PRECISION J •>.:̂  
EXTK^A'AL ^ £R I V 
•A AT A 1:0 ( 1 ) .NZ /1H-

 s
 1H1 »lrlZ , 1K3 »Iri^ ,) H5 »1H6 . 1H7 , INT., 1H

P

 t 2 H l 0 , ~ H H . 
1 2 H12 » 2 A13 »2 H1 'h » jMl '-j , 2H1 ̂  , 2H17

 ?
 ?nl ̂  , 2,HI , 2H20 • 2H21 , 2K22 , 2H23 , 

1 »2 H2 »2 H2 ) 2H 7 , ?;^ . ,2H29 ,?.H30 . 2,, J1 , >H32 , 2H33 ,2|-.34, 2H35 , 
1 2|-1_0,2H3> - ; tPH'^O , 
2 YY,X5 /1HYjlHZ»lhX»lH / 
l/AT.'-. FMT ( 1 ) ,i-MT (4 ) »M6 /5l.(li-j /, 3h/(12X, 

1 9H/(1H- 2 . X . 9 H / ( A1 s 2 X /» 
1 F' :T { ft ) /2\->) ) / , 
1 b;"G 

3 hro /l-'Htl!-:: 7X A1 » 11!!, 12 X fi(Al. 1-;!, A 2 , 15X) » 
4 1C-H /(1HJ 2«::<» l.:i! 6(A1» A2»»7II 15X » ) ) / 

INITIALIZE 

ORTOOOIC 
ORTGC02C 
ORTCC C3C 
ORTOC C4C 
ORTOC-'Vlc 
ORTOC". :( 
0RT'::cr 7( 
ORTCv. ,.8( 
ORTT

r

'' 9( 
O^TCC xOC 
CKTOCi

1

( 
0RT0C12C 
Ci^Tr-CUC 
0" T 0 r-1 r 
0RT1015C 
oiurr i6f 
0RTCQ17C 
0RTCC13C 
Oc<TOO 1°C 

ORT0021C 
O.^Trr2?r 
ORT;^23C 
0RT'-;024^ 
0RTr?025C 
OUT00260 
ORT00270 
Oa TOO230 
CrfT^029C 
ORT

r

 C.^r 
ORT ?jic 
0 R T 0 3 2 f 

CKTO033C 
ORTCO 
CKTOCjbf 
0RTCC3AC 
ORTCO37C 
0 R T T 3 = ; 
0RTCC39C 
CRT1040C 
0 R T C 0 4 K 
08T0042C 
OUTCC43( 
CKTTC A4' 
OR T

r

 4 3' 
CKTOC 46. 
o."a::c 47-
Oi-JTOC'43! 
driT0C4C; 
O.^T0C5C( 
o ^ T r c ^ K 
ORTOG.>2( 
oRTn-::oc 
ORT^C 54( 
ORT^C 5 5C 
0KTCC56C 
0RTCC37C 
OKTCOS3C 
OK T 0 0 5 9 C 



K = 2 0RT0060C 
HOM = KRoEOoM ORTOQ61G 
IF (HOM) K = 1 ORT0062C 
Kl = K + 1 0RT00630 
KM1 = K. - 1 ORTOO6 '̂ 0 
NORXS = 0 ORT0O6 0 
U = 1 ORTOO66G 
V = 1 ORT0067C 
IN = 1 ORTOI68O 
IL = NT 0RT006 7C 
MORE = KR-GTol ORT007C0 
LAST = NDcGTo0 ORT00710 
OLDCO = NOoEOcO ORT00720 
MAGTST = IABS(ND) 0EG«1 C,OR d uNOT o MORE ORT00730 
P = 0 ORT0074G 
NTC = 1 0RT0075C 
XN(1} = X ORTG07ec 
NNC = 0 ORTC077C 
NPLP = 1 ORT00780 
NHLP = 1 0RT00790 
GO TO 17 ORTOOBOO 

0RT00810 
START INTEGRATION LOOP ORT00820 

ORT00830 
NNC = NNC + 1 ORTOO8AO 
NPLP = MN(NNC) 0RT00850 
NHLP = NP(NNC) ORTOO86O 
DX = H(NNC)*FLOAT(NHLP) 0RT00870 
NTC = NTC + NPLP ORTOO88O 
NF = 0 ORT00890 
IF (A(NNC),GEoO») GO TO 13 ORT00900 
NF = -1 0RT00910 
GO TO 17 ORT00920 
IF (MAGTST) GO TO 15 ORT00930 
C = COS(A(NNC)/57 N 3) ORT0094O 
IF (A(NNC}a GE O 90^) NF = 1 0RT0095C 
GO TO 17 ORTOO?6C 
A2 = A(NNC}**2 ORTC097C 
IF (A(NNC)0 EQeO-) NF = 1 ORT00980 
DO 301 NPC = 1,NPLP ORT00990 
LASTBK = NPC = EQl,NPLP .ANDP NTC o EQo NT ORTOIOOO 
XN(U+1) = XN(U) + DX 0RT01010 
DO 301 NHC = 1,NHLP ORT01C-20 
P = P + 1 0RT01C3C 
NOPO = NHC ELTONHLP ORTCIC^O 
IF ( P e EO1.1 ) GO TO 200 ORT01050 
ENDPT = LASTBK -AND* „NOT. NOPO ORTOIO6O 
CALL RUNKUT (X,Y,Y(1»1, 2 ) , NXM»H(NNC) »DERI V) ORT01070 
U = U + 1 CRT01080 

ORT01090 
BRANCH ON ORTHONORMALIZATION ORTOllOO 

ORTOlllO 
IF (OLDCO) IF (P-LX(V)) 55 ,70,55 O R T 0 H 2 0 
IF (NF) 55,19,100 O R T 0 H 3 0 
IF (ENDPT c ANDo LAST) GO TO 100 ORTO1140 

O R T O U S O 
TEST FOR ORTHOGONALITY OR MAGNITUDE O R T O H 6 O 

O R T 0 H 7 0 
G = Oo ORTOl180 
MM = M ORTOl190 



20 

30 

40 

45 

50 
52 
54 

DO 30 I • = 1 ,M 
IF (MAGTST) MM = I 
DO 30 J = I,MM 
E = Oc 
DO 20 L = 1»N 
E = E + Y (L * I»1)*Y(L »J »1) 
Y ( I ,J,5) = E 
IF (EoGT.G) G = E 
IF (MAGTST) GO TO 52 
DO 40 I = 1,M 
DO 40 J = I »M 
Y(I»J »5 ) = Y(I *J » 5)/G 
T = 1 
Ml = M - 1 
DO 45 I - 1»M1 
L = 1 + 1 
DO 45 J = L»M 
IF (Y(I»J»5)**2 

0RT0120C 
ORTOl21C 
ORTOl22C 
ORTOl 23*. 
O f U O U rC 
ORTOl25C 
ORTO1- 2 6C 
ORTOl27c 
0RTQU3C 
ORT! 

T = 
IF 
DO 
IF 

0 
(T) 
54 I 
(Y(I 

GTc C * * 2 * Y ( I
?
I , 5 ) * Y ( J , J , 5 ) ) GO TO 50 

100,55,100 
= 1»M 

»I»5)3 GT oA2) GO TO 100 

55 
57 

IF 
DO 
DO 

(NOPO) 
60 I = 
60 J = 

60 Z ( J . I»U> = 

NO RE-ORTHONORMALIZATION 

GO TO 65 
1 »M 
1 ,N 
Y(J, I ,1 I 

15 PRINT-OUT INDICATED 
65 

70 

71 

74 

i ct* 
ORTOl30C 
0RT0131C 
ORT0132C 
ORT0133C 
0RT0134C 
ORTOl35( 
ORTC136C 
ORTOl3">: 
ORT013Sv 
OR TO 15^ 
OR TO 140v 
0RT0141C 
0RT0142C 
ORTOl43( 
0RT0144C 
ORTOl45( 
ORTOl46( 
0RT0147' 
ORTOl4SC 
ORTOl49( 
ORT0150C 
0RT0151C 
ok T 015 2( 
0RT0153< 
ORT0154 
ORTOl55 
OR TCI 5 i 

IF (VvLT.NX) GO TO 74 0RT0157 
WRITE (6,71) ORTOl5 S 
FORMAT (9 5H0INSUFFICIENT STORAGE FOR ORTHONORMALIZATION PARAMETERSORTO 159 

1 DISCOVERED DURING fTTEMPTED COMPUTATION / 78H WITH PREVIOUSLY DETORTOI6O 
2ERMINED PARAMETERS, ERROR RETURN TO CALLING PROGRAM GIVEN- / ORT016ir 
3 32H SOLUTION GENERATION SUPPRESSED6 ) ORTOl62< 

OR T 016 31 
ORTO 164( 

ORTHOGONALIZATION ORTOl65( 
0RT0166( 
ORTOl 6 7< 
(5RTOl68f 

= Y(Q»I,1) ORTOl69( 
K) GO TO 80 ORT0170( 

REG = o TRUE c 
IF (NPOl.GT.O 
IF (NPOl ~ 2) 

AND» ( ENDPT 
300,220,300 

»0Ro P o EQe1)) GO TO 222 

RE-ORTHONORMALIZATION USING OLD COEFFICIENTS 

CHECK FOR SUFFICIENCY OF STORAGE 
TO 74 

NERR = 
RETURN 

Q = 1, N 

K »M 

75 
80 

DO 80 
L = 0 
DO 80 I = 
Z(Q,I,U) 
IF (I.EQ 
II = I - 1 
DO 75 J = K»11 
L = L + 1 
Z(QtI«U) = Z(Q*I»U) - 0MEGA(L,V)*Y(Q»J»1) 
CONTINUE 

NORMALIZATION 
DO 85 I = K,M 
IR = I - KM1 
DO 85 J = 1»N 

0RT0171C 
ORT0172C 
ORT0173C 
ORTO!74( 
0RT0175C 
ORTOl76( 
ORTOl77( 
ORTOl78( 
ORTOl 79< 



c 
. c 
c 

85 Z(J,I»U) = R( IR*V>*Z(J,I 9U) 
BRANCH ON HOMOGENEITY 

90 IF (HOM) GO TO 190 
GO TO 183 

RE-ORTHONORMALIZATION WITH NEW COEFFICIENTS 

100 IF (V-NLoNX) GO TO 105 
NORXS = NORXS + 1 
V = 1 
IN = U 

105 LX(VJ = P 
C FIRST VECTOR AND M0D**2 

F = 0° 
DO 110 I = 1,N 
E = E + Y(I,K,1)**2 

110 Z ( I ,K»U> = Y({ ,K»1 ) 
R(1»V) = lo/E 

C BEGIN MAJOR ORTHONORMALIZATION LOOP 
IF (0NOT0MORE) GO TO 165 
L = 0 
DO 160 1 = K1jM 
1 1 = 1 - 1 
LO = L 

C BEGIN LOOP TO DETERMINE OMEGAS 
DO 140 J = K »I 1 
L = L + 1 

C OBTAIN FIRST TERM OF EXPRESSION FOR OMEGA IIN 0. P 
D = 0.. 
DO 120 Q = 1»N 

12C D = D + Y(0 »I»1 )*Z(0» J »U > 
tR = J - KM1 
DG = D*R(IR»V) 

C COMPUTE SUBSEQUENT TERMS IN OMEGA IF NECESSARY (IN 
S = J + 1 
IF (S^GTbII) GO TO 140 
DO 130 Q = S»I 1 
D = 0* 
DO 125 T = 1»N 

125 D = D + Y(T» I »l )*ZtT,OjU) 
IR = 0 - KM1 
IW = (1R-2)*(IR-1)/2 + J - KM1 

130 DG = DG - D*R(LR»V)*OMEGA(IWtV) 

140 OMEGA(L > V) = DG 
C END OF OMEGA LOOP 
C ORTHOGONALIZATION 

DO 150 Q = 1,N 
L = LO 
Z I 0 ,1 »U) = Y ( 0 > I ) 1 ) 
DO 150 J = K, I 1 
L = L + 1 
Z(Q»I> U) = Z(Q»I»U) - OMEGA(L ,V)*Y(Q»J.1) 
IR = I - KM1 
E = 0, 
DO 155 0 = 1»N 
E = E + 2(0, I»U)**2 
R(IR,V) = lo/E 

C END MAJOR ORTHONORMALIZATION LOOP 
C NORMALIZATION 

DO 170 I = K,M 

1 5 J 

155 
160 

165 

ORTOIOOC 
ORTOlUK 
ORT0182C 
ORTOl fi ̂t 
ORTO11 <( 
ORTOl 
ORTOl >6( 
ORTOl6 7( 
ORTO. '-HC 
ORTOl a9C 
OR T 019 c C 
0RT0191C 
ORTO19 2 C 
ORT0193C 
0 R T 019 4 ( 
ORTO 19 5( 
O^To19 6 
ORTOl? 7 

ORTCi^S 
0RT0199 
ORT0200 
QRT020 1 
OR TO2 0 •? 
ORTO^O.^ 
OR TO.; 0<:H 
ORT020 5 
ORTO 206i 

, ) 0RT0207( 
0RT02 08( 
0RT0209( 
ORT0210C 
0RT0211C 
ORTO212 C 

D0RT0213( 
ORTO214V 
ORT0215C 
0RT0216C 
0RT0217C 
0RT0218C 
ORT0219C 
0RT02.:0( 
ORT022 1( 
0RT022 2C 

ORT02 2 >C 
0RT02;uC 
ORT0225C 
0RT0226( 
ORT0227C 
ORT0228C 
ORT0229C 
ORT0230C 
0RT02 31C 
ORT0232C 
ORT0233C 
ORT0234C 
ORT0235C 
ORT0236C 
ORT0237C 
0RT0238C 
0RT02 39C 



170 

175 
180 

183 

185 

190 

200 

205 

210 

220 
222 

225 

230 
240 

IR = I - KM1 ORT0240C 
R(IR»V) = SQRT(R(IR»V>) 0RT0241C 
DO 170 J = l,N ORT0242( 
Z(J,I»U) = R(IR »V)*Z(J »I,U) OR T 0 2 ̂  'C 

CALCULATE ALPHAS (IN D„ P J 0RT02i-+C 
IF (HOM) 60 TO 190 ORT02 r5C 
DO 180 I = 2»M ORT0246C 
D = 0. 0RTC2't7C 
DO 175 J = 1»N ORT0243C 
D = D + Y ( J »1»1)#Z(J jI»UJ ORT024"; 
ALPHA(I-1» V) = D ORT025CC 

ORTHOGONALIZE PARTICULAR SOLUTION 0RT0251C 
DO 185 J = 1»N 0RT0252C 
Z(J,1,U) = Y ( J»1»1) ORT0253C 
DO 185 I = 2 »M ORT02 5~C 
Z(J,1»U) = Z(J.l.U) - ALPHA(I-1,V)*Z(J»I»UJ ORT02 5 5C 

IS PRINT-OUT INDICATED ORT0256C 
REG = ,FALSE0 0RT0257C 
V = V + 1 0RT0258C 
IF (NPOl) 222,290,222 ORT0259C 

0RT0260C 
PRINT-OUT OF VECTORS 0RT0261C 

ORT0262C 
FIRST POINT - SET UP LIMITS -• PRINT HEADING 0RT0263C 

IF (NPOIoEQPO) GO TO 57 0RT0264C 
NK = 2 - K ORT0265C 
NBK = (M-1J/6 + 1 0RT0266C 
NXS = M - 6*(NBK-1 ) ORT0267C 
HED(4) = H6 0RT0268C 
IF (Mo EQ u 6) HED(4) = SP6 ORT0269C 
WRITE (6,205) ORT0270-
FORMAT (7H10RTNRM 42X 20H1 NTERME&I ATE VECTORS) 0RT0271C 
DO 210 I = 1,2 0RT0272C 
WRITE (6,HED) XB(I)?(YY(I)»NZ(T)»T=NK»KR> ORT0273C 
GO TO 57 ORT027^-C 

PRINT Y-VECTORS 0RT0275C 
IF (NOPO) GO TO 300 ORT0276C 
J = -5 ORT0277C 
FMT(2) = BEG(l) ORT0278C 
FMT(3) = EE(6) ORT0279C 
FMT(5 > = EE ( 6) ORT026GC 
DO 240 I = 1,NBK GRT02S1: 
J = J + 6 ORTC26K 
L = J + 5 CRT0253C 
IF ( I uNE«.NBK ) GO TO 225 0RT02S4C 
FMT(3> = EE(NXS) 0RT0285C 
FMT(5) = EE(NXS) ORT02860 
L = M ORT02870 
IF (IuNEol) GO TO 230 ORT02880 
WRITE (6 »FMT) X » ( (Y(S »T , 1),T=J»L), S = 1, N) ORT02890 
FMT{2) = BEG(2) ORT02900 
GO TO 240 ORT02910 
WRITE(6»FMT) ( (Y(S,T,1),T = J,L> ,S=1»N) ORT02920 
CONTINUE QRT02930 
IF (REG) GO TO 300 ORT02940 

PRINT Z-VECTORS ORT02950 
J = -5 ORT0296^ 
FMT(3) = EE(6 » ORT02970 
FMT(5) = EE(6) 0RT02980 
DO 25u I = 1,NBK QRT0299C 



250 

J = J + 6 
L = J + 5 
IF (I.NE-NBK) 
FMT(3) = 
FMT(5) = 
L = M 
WRITE (6,FMT) 

GO TO 250 
EE(NXS) 
EE(NXS) 

( (Z{5 > T »U)» T = J » L ) >5=1,N) 

RE-INITIALIZE 

290 DO 295 I = 1»M 
DO 295 J = 1»N 

295 Y t J,],1> = Z(J,I,U) 
CALL NUGO 

300 IF (NOPO) 
301 CONTINUE 

IF (NTC.LToNT) 
LX { V) s P + 1 
CALL NUGO 

U = U - 1 

GO TO 10 

END INTEGRATION LOOP 

CHECK FOR ERROR - INSUFFICIENT COEFFICIENT 

IF (NORXS o EQ c 0) GO TO 305 
NERR = l 
NX 1 = NX - 1 
NEED = NX 1*N0RXS + V - 1 
WRITE (6 »302) NEEDiNXl 

302 FORMAT (7H10RTNRM // 75H INSUFFICIENT STORAGE HAS BEEN ALLOCATED 
10R ORTHONORMALIZATIC.vi PARAMETERS. / 10X 14, 14H BLOCKS NEEDED / 
2 10X 14» 17H BLOCK5 ALLOCATED // 
1 43H THE SOLUTION GENERATED WILL BE INCOMPLETE.,) 

305 IF (NP02oEQ«0) RETURN 

CALCULATE BETAS AT END POINT 

ENTRY SOLN 
IF (HOM) CALL COEFFS (2(1 .1 ,NTI.BETA(1»V)) 

IF U N O T s HOM) CALL COEFFS (Z(1,1iNT),Z(1»2»NT)»BETA(1>V)) 

CALCULATE INTERMEDIATE BETAS 

Q = V 
308 IF (0,. FQc 1 ) GO TO 340 

S = 0 - 1 
DO 310 I = 1,KR 
E = BETA(I,Q) 
IF UNOT. HOM) E = E - ALPHA(I.S) 

310 Y( I »1»1) = R( I »SJ *E 
KO = 1 
DO 335 I = 1j KR 
BETAtl ,S) = Y( I ,1,1) 
IF (IoEO^KR) GO TO 335 
KO = KO + 1 
DO 330 K = KO,KR 
L = (K-l)* C K—2)/2 + I 

330 B E T A(I» S) = BETA(I,S) - OMEGA(L,S)*Y{K,1,1) 
335 CONTINUE 

ORT0300( 
ORT0301C 
ORT03 02<" 
ORTOJ 03t 
0&T03t K 
0RT03C5C 
QRT0306( 
OR! <"• 3 0 7 ( 
ORTO 3 v,Qf 
ORT030r'C 
ORT0310C 
0RT0311C 
0RT031ZC 
ORT0313C 
0RT0314C 
ORT0315C 
OR70316C 
ORT0317C 
ORT0318C 
ORT0319C 
0RT0320C 
ORT0321C 
ORT0322C 

ST0RA0RT0323C 
ORT0324C 
0RT0325C 
0RT0326C 
ORT0327C 
ORT0328C 
0RT0329C 

F0RT0330C 
0RT0331C 
0RT03 32f 
ORT0333C 
ORT0334C 
0pT0335t 
ORT0336C 
ORT0337C 
ORTC33=C 
ORT0339C 
0RT034QC 
ORT0341C 
QRT0342C 
0RT0343C 
0RT034-." 
0RTC3-rC 
0RTG34&C 
0RT03t7<_ 
ORT0348C 
0RT0349C 
ORT0350C 
0RT0351C 
ORT0352C 
0RT0353C 
0RT0354C 
0RT0355C 
ORT0356C 
ORT0357C 
ORT0358C 
0RT0359C 



0 = s 
GO TO 30 8 

C 
C 
c 

c 
c 
c 

c 
c 
c 

REVERSE ARRAYS IF INTEGRATION WAS BACKWARDS 

350 340 IF <H(1).GToO,> GO TO 
CALL FLIP (XN.NT»1) 
DO 342 I = 1»M 
DO 342 J = 1»N 

342 CALL FLIP (Z(J , I»1) »NT,NXM> 
IF (VoEQ^l) GO TO 350 
DO 346 I = 1,KR 

346 CALL FLIP ( BETA ( I »1 ) >V >K.R ) 
J = V - 1 
P = P + 2 
DO 348 I = 1,J 

348 LX( I) = P - LX(I ) 
CALL FLIP (LX>J>1) 
IF | NORXS = E Q 0 ) GO TO 350 
1L = NT - IN + 1 
IN = 1 

350 

355 
360 

365 

370 
380 

G = lo 
IF UN0T„ HOM oOR 
DO 360 I = 1»N 
G = 0o 
DO 355 J = 1»M 
G = G + BETA(J * 1>*Z(I.J*1) 
IF (G oNE ̂  0„ ) GO TO 365 
G = lo 
G = l./G 

NORMALIZATION FOR HOMOGENEOUS SYSTEM 

NP02 o GT o 0) GO TO 370 

COMPo AND PRINT LOOP 

383 
384 

385 

REG = n FALSE» 
NPA2 = IA8S(NP02) 
NPG = 0 
NBK = 56/(N+l) 
NC = 0 
0 = 0 
V = 1 
MORE = N"GTo KR 
KR1 = KR + 1 
P = 1 
NNC = 1 
NPC = 0 
IF ( IN„EQo1) GO TO 388 
U = 1 
GO TO 334 
NNC = NNC + 1 
NPLP = NN(NNC) 
DO 386 NPC = 1 ,NPLP 
P = P + NP(NNC) 
U = U + 1 
IF {U u EOoIN) GO TO 388 
GO TO 383 

CALCULATE SOLUTIONS 

0RT0360( 
0RT0361C 
ORT0362C 
ORTOSr "iC 
ORT036 +C 
0RT03f 5C 
0RT0366C 
0RTO67C 
0RT0363C 
ORT036TC 
0RT037CC 
ORT0371C 
ORT0372C 
0RT0373C 
0RT0374C 
ORT0375C 
ORT0376C 
ORT0377C 
ORT0378C 
ORT037SC 
0RT038GC 
0RT0381C 
ORT0382C 
0RT0333C 
ORT0384C 
ORT0385C 
0PT0386C 
0RT0387C 
ORT0388C 
ORT0389C 
0RT0390^ 
0RT0391C 
0RT0392C 
ORT0393C 
0RT0354C 
ORTO39 5C 
0RT0396C 
0RT03S-7; 
ORT03S3C 
0RT0399C 
0RTQ4C0C 
ORT04C K 
ORT0402C 
0RT04C3C 
0RTC4C-C 
ORTC405C 
oRTc^-oe: 
0RT04G7C 
0RT0406C 
ORT0409C 
ORTOAIOC 
O R T 0 4 U C 
0RT0412C 
ORT0413C 
ORTOA14C 
0RT0415C 
ORT0416C 
0RT0417C 
ORTOA18C 
0RT0419C 



388 
390 

400 

410 

420 

425 
430 
440 

445 

45u 

460 
470 

480 

490 

500 

520 

530 

<540 

550 

580 

590 
600 

DO 600 I = 1N»IL 
IF {LX(V),GToP) GO TO 400 
V = V + 1 
GO TO 39U 
IF (REG) GO TO 610 
IF (HOM) GO TO 420 
DO 410 J = 1,N 
Y(J,1 ,1) - Z(J,1,I) 
DO 410 K = 2 »M 
Y(J»1.1) = Y(J.l.l) + B£TA(K-1,V)*Z(J,K,I) 
GO TO 440 
DO 430 J = 1,M 
Y ( J , 1,1) = Oo 
DO 42 5 K = 1»M 
Y ( J »1 »1) = Y I J 9 1»1 ) + 8ETA(K,V)*Z ( J >K »I ) 
Y(J »1»1) = G*Y(J,1,1J 
IF (NPC-LT tNN(NNC) ) GO TO 445 
NNC = NNC + 1 
NPC = 0 
NPC = NPC + 1 
P = P + NP(NNC) 

PAGE HEADING 

IF {NPA2 uEQo1) GO TC 580 
NC = NC + 1 
IF {MOD(NC »NBK)oNEol) GO TO 480 
NPG = NPG + 1 
WRITE (6,450) NPG 
FORMAT (7H10RTNRM 10X 14HS0LUTI ON (PAGE 13, 1H) ) 
IF (NPA2cEQc2) WRITE (6,460) 
IF (NPA2 o GE ° 3) WRITE (6,470) 
FORMAT(1H07X1HX11X 4HBETA 16X 1HUJ 
FORMAT(1H07X1HX11X 4HBETA 16X 1HU 13X 9HU COMPARE 9X 4HDIFF ) 

PRINT SOLUTIONS 

IF (NPA2 C GE C 3) GO TO 520 
WRITE (6 »490 ) XN{I) , (BET A{J,V) , Y(J » 1,1),J = 1,KR) 
FORMAT ( 1 H 0 F 1 U 4 , 2E18.8 / (E30„8, E18«8) 1 
IF (MORE) WRITE (6,500) (Y(J,1»1)»J=KR1»N) 
FORMAT (30X EI808) 
IF (REG) GO TO 600 
GO TO 580 
CALL EXACT (XN(M,Y(I,I,2)I 
DO 530 J = 1 ,N 
Y(J , 1 ,3) = Y(J.l.l) - Y(J , 14 2 ) 
WRITE (6 ,540) XN(I) »(BETA(J,V),(Y(J,1,L),L = 1,3),J=1,KR) 
FORMAT ( 1H0F11 o 4» 3E18 B8, E13 0 3 / (E30<,8, 2El8o8, E1303) ) 
IF (MORE) WRITE (6,550) ((Y(J »1»L), L = 1,3),J = KR1»N) 
FORMAT (30X 2E18„8t E13 03) 
IF (REG) GO TO 600 

STORE SOLUTIONS 

DO 59U J = 1,N 
Q = Q + 1 
Z ( Q , 1,1 ) = Y ( J , 1 ,1) 
CONTINUE 

ORT0420C 
0RT0421C 
ORT0422C 
O R T 0 4 ~ C 
ORTO^S ,-C 
0RT0423C 
ORT0426C 
0RTC+2 7C 
ORT04 3C 
ORT04290 
ORT0430C 
ORT0431C 
ORT0432C 
ORT04330 
ORT0434C 
ORT0435C 
ORT0436C 
ORT0437C 
ORT0438C 
ORT04390 
0RT0440C 
ORT0441C 
ORT04420 
ORT0443C 
0RT0444C 
0RT04450 
0RT04460 
ORT04470 
0RT0448C 
ORT0449C 
ORT0450C 
ORT04510 
ORT0451. 
0RT0453C 
0RT0454C 
ORT0455C 
ORT0456C 
ORT0457C 
ORT045 8 r 

0RT04590 
ORT04600 
0RT0461G 
ORT04620 
ORT04630 
ORT04640 
ORT04650 
0RT04660 
ORT0467O 
0RT04680 
ORT04690 
ORT04700 
0RT04710 
ORT04720 
ORT04730 
ORT04740 
ORT04750 
ORT04760 
0RT047 7>_ 
ORT04780 
ORTQ479C 



RETURN 
C 
C 
C 

PRINT-ONLY SECTION 

ENTRY PRM 
REG = O TRUE ̂  
GO TO 380 

610 DO 620 T = 1 ,N 
Q = Q + 1 

620 Y(T »1»1) = Z(Q,1»1) 
GO TO 440 
END 

SUBROUTINE RUNKUT (X»Y»D»N»H»DERIV) 
DIMENSION Y(N),D(N»5)»E(2) 
COMMON /mm/ MID 
DOUBLE PRECISION XDP,H2,EDP 
LOGICAL MID 
EQUIVALENCE (EDP » E) 
H2 = 0 O5*D3LE(H) 
H6 = H/6. 
IF (MID) GO TO 20 
DO 10 I = 1»N 
EDP = Y( I ) 
D( I ,1) = E(1 ) 

1U D I I » 2 ) = E ( 2 ) 
MID = CTRUE, 
XDP = X 

20 CALL DERIV (X»Y»D(1>4U 
DO 30 I = 1»N 

30 D( I »3 > = Y(I) + SNGL(H2>#D(I ,4) 
XDP = XDP + H2 
CALL DERIV (SNGL(XDP),D(1>3)>D(1>5)) 
DO 40 1 = 1,N 
D d »4) = D (I >4) + 2o*D(I»5) 

40 DI I» 3) = Y( I) + SNGL(H2)*D(I» 5) 
CALL DERIV <SNGL(XDP),D(1.3>»D(1»5U 
DO 50 I = 1 , N 
D( I >4 ) = D(I»4) + 2 n*D(I a 5 ) 

50 Y(I) = Y(I) + H*D(I 
XDP = XDP + H2 
X = RND(XDP) 
CALL DERIV (X» Y > D(1 
DO 60 I = 1»N 
D( I ,4 > = D(I»4) + D( I» 5) 
E(l) = D D ,1 ) 
E(2 ) = D(I ,2) 
EDP = EDP + H6*D(I,4) 
D ( I j1) = Ell) 
D d ,2 ) = E ( 2 ) 

60 Y(I) = RND(EDP) 
RETURN 
END 

SUBROUTINE NUGO 
COMMON /MMMM/ MID 
LOGICAL MID 
MID = OFALSE 0 
RETURN 
END 
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FUNCTION RND (D) 
DIMENSION 0(2) 
EQUIVALENCE (A,J) 
RND = D 
IF ( (ABS (D( 2 )) 4000000000000000b ) t EQ 0) RETURN 
A = ABs(D) 
J = J + 1 
A = A°O-4000000000C000C0B 
RND = SIGN(A,D) 
RETURN 
END 
SUBROUTINE ARRAY (Y.S.N.M) 
DIMENSION Y(N,M),S(N,M) 
DO 10 I = l.M 
DO 10 J = 1»N 

10 S(J,I) = Y(J, I ) 
RETURN 
END 
SUBROUTINF FLIP 
DIMENSION Y(l) 
L = (N/2 - 1 ) # J 
M = N*J + 1 
DO 10 I = 1 , L , J 
M = M - J 
E = Y ( M ) 
Y(M > = Y(I) 

10 Y(I) = E 
RETURN 
END 
BLOCK DATA 
COMMON /KKKK/ 
LOGICAL MID 
DATA K1 /0/ 
DATA MID /F/ 
END 

(Y.N,J) 

L »K1jNTK»NK /MMMM/ MID 

ORT0539C 
0RT0540C 
CRT0541C. 
OR TO 542C 
ORTO543c 
0RT05<-
ORT054 C 
ORT05*6C 
0RTQ547C 
0RTC548C 
ORT0549C 
ORT055C: 
ORT0551C 
ORT05520 
ORT05530 
ORT0554C 
0RT0555C 
0RT0556C 
0RT0557C 
0RT0558C 
0RT0559C 
QRT0560C 
0RT056 1C 
ORT0562C 
ORT0563C 
OR T0564( 
ORT0565C 
0RT0566C 
ORT0567C 
ORT0568C 
0RT0569C 
0RT0570C 
ORT0571; 
OR T 05 7 21" 
0RT0573 


	ORTNRM - A Fortran Subroutine Package for the Solution of Linear Two-Point Boundary Value Problems
	Report Number:
	

	tmp.1307986960.pdf.GWpQX

