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A Three-Dimensional Simulation Study of the
Performance of Carbon Nanotube Field-Effect

Transistors With Doped Reservoirs
and Realistic Geometry

Gianluca Fiori, Giuseppe Iannaccone, Member, IEEE, and Gerhard Klimeck, Senior Member, IEEE

Abstract—This paper simulates the expected device perfor-
mance and scaling perspectives of carbon nanotube (CNT) field-
effect transistors with doped source and drain extensions. The
simulations are based on the self-consistent solution of the three-
dimensional Poisson–Schrödinger equation with open boundary
conditions, within the nonequilibrium Green’s function formal-
ism, where arbitrary gate geometry and device architecture can be
considered. The investigation of short channel effects for different
gate configurations and geometry parameters shows that double-
gate devices offer quasi-ideal subthreshold slope and drain-
induced barrier lowering without extremely thin gate dielectrics.
Exploration of devices with parallel CNTs shows that ON currents
per unit width can be significantly larger than the silicon counter-
part, while high-frequency performance is very promising.

Index Terms—Ballistic transport, carbon nanotubes (CNTs),
nonequilibrium Green’s function (NEGF), technology computer-
aided design (CAD).

I. INTRODUCTION

CARBON nanotubes (CNTs) represent a promising alter-
native to conventional silicon technology [1] for future

nanoelectronics at the end of the International Technology
Roadmap for Semiconductors (ITRS) [2]. Since the first work
on the topic by Iijima [3], significant improvements have been
achieved from the point of view of both technology and physi-
cal modeling. In particular, Heinze et al. [4] have demonstrated
Schottky barrier CNT-FETs, where the modulation of the cur-
rent is mainly determined by the field-induced modulation of
the nanotube band structure at the CNT ends. Such a working
principle, however, strongly limits the device performance. The
ambipolar behavior, the poor control of the channel, and the
possible degradation of electrical properties like Ion/Ioff ratio
deeply affect such kind of devices, especially nanotubes with
large diameters, as shown in [5]. To obtain acceptable drain-
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induced barrier lowering (DIBL), it has been demonstrated that
the downscaling of device dimensions has to follow particular
rules, like maintaining the ratio between the channel length and
the oxide thickness larger than 18 [5].

To alleviate these problems, different solutions have been
proposed to achieve channel modulation of the barrier.
Javey et al. [6] and Nosho et al. [7] have respectively shown,
for example, that ohmic contacts can be obtained by choosing
Pd or Ca as the metal for the contacts. Inducing charge in the
source and drain regions is another possible solution, reported,
for example, in [8] and [9].

Channel modulation has also been obtained [10], [11] by
definition of multiple gates able to fix independent potentials
both in the reservoirs and in the channel as well as transparent
Schottky barrier at the contacts.

In a scenario where many geometries are feasible, adequate
physical models and simulation tools are necessary not only
to provide explanations to experimental results but also to
define device guidelines for the fabrication of CNT FETs, with
performance benchmarked against their mainstream silicon
counterpart.

Gate-all-around CNT FETs have been studied [12], [13],
where the three-dimensional (3-D) Poisson equation has been
reduced to two dimensions because of the cylindrical symmetry
of the electrostatic potential, and transport has been computed
through the Landauer formalism. Such a coaxial geometry has
also been adopted in [14], where the Poisson equation has been
coupled with the nonequilibrium Green’s function (NEGF)
formalism using the uncoupled mode space approach, which
enables the computation of transport for a small number of
electron subbands with a small computational cost.

However, planar gate structures are more attractive because
of their simpler fabrication technology, and all the experimental
data discussed above are on planar geometries.

A full 3-D approach has been followed in [15], where
the Poisson equation has been solved using the method of
moments. Such a method provides the advantage of requir-
ing the computation of the Poisson equation only in regions
where charge is not zero, with the drawback that it is prac-
tically impossible to treat more than two different dielectric
constants.

In this paper, we focus on realistic and experimentally
relevant CNT-FETs with doped source and drain extensions,
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and evaluate their performance against the requirements at the
end of the ITRS. To this purpose, we have developed a code able
to solve full band Schrödinger equations with open boundary
conditions in the NEGF framework. Such a module has been
included in our 3-D Poisson solver NANOTCAD ViDES [16],
which can deal with very general structures, since it does not
take advantage of particular symmetries and can consider struc-
tures in which both CNTs and conventional semiconductors are
simultaneously present.

Our realistic simulations show that CNT-FETs are very at-
tractive for 1) their capabilities of suppressing short channel
effects; 2) driving high ON currents per unit length; 3) providing
Ion/Ioff ratio required by the ITRS for the 15-nm gate length,
and 4) their potential for terahertz applications. On the other
hand, we shall show that the subthreshold slope deteriorates for
a gate voltage close to zero due to the filling of hole states in
the channel.

II. SIMULATION APPROACH

The potential profile in the 3-D simulation domain obeys the
Poisson equation

∇ [ε("r)∇φ("r)] = −q
[

p("r) − n("r) + N+
D ("r) − N−

A("r) + ρfix

]

(1)

where φ("r) is the electrostatic potential, ε("r) is the dielec-
tric constant, N+

D and N−
A are the concentrations of ionized

donors and acceptors, respectively, and ρfix is the fixed charge.
The electron and hole concentrations (n and p, respectively)
are computed by solving the Schrödinger equation with open
boundary conditions by means of the NEGF formalism [17].
A tight-binding Hamiltonian with an atomistic (pz orbitals)
real-space basis [18] has been used with a hopping parameter
t = 2.7 eV.

Green’s function can then be expressed as

G(E) = [EI − H − ΣS − ΣD]−1 (2)

where E is the energy, I the identity matrix, H the Hamiltonian
of the CNT, and ΣS and ΣD the self-energies of the source and
drain, respectively. As can be seen, transport is assumed here to
be completely ballistic.

The considered CNTs are all zigzag nanotubes, but the
proposed approach can be easily generalized to nanotubes with
a generic chirality since the required changes involve only the
Hamiltonian matrix. Once the length and the chirality of the
nanotube are defined, the coordinates in the 3-D domain of each
carbon atom are computed [19]. After that, the 3-D domain is
discretized so that a grid point is defined in correspondence with
each atom, while a user-specified grid is defined in regions not
including the CNT.

A point charge approximation is assumed, i.e., all the free
charge around each carbon atom is spread with a uniform
concentration in the elementary cell including the atom. As-
suming that the chemical potential of the reservoirs is aligned
at the equilibrium with the Fermi level of the CNT, and

given that there are no fully confined states, the electron
concentration is

n("r) = 2

+∞
∫

Ei

dE
[

|ψS(E,"r)|2 f(E − EFS )

+ |ψD(E,"r)|2 f (E − EFD )
]

(3)

while the hole concentration is

p("r) = 2

Ei
∫

−∞

dE
{

|ψS(E,"r)|2 [1 − f(E − EFS )]

+ |ψD(E,"r)|2 [1 − f(E − EFD )]
}

(4)

where "r is the coordinate of the carbon site, f is the
Fermi–Dirac occupation factor, |ψS |2(|ψD|2) is the probability
that states injected by the source (drain) reach the carbon site
("r), and EFS (EFD ) is the Fermi level of the source (drain).

The current has been computed as

I =
2q

h

+∞
∫

−∞

dE T (E) [f(E − EFS ) − f(E − EFD )] (5)

where q is the electron charge, h is Planck’s constant, and T (E)
is the transmission coefficient computed as [17]

T = −Tr
[(

ΣS − Σ†
S

)

G
(

ΣD − Σ†
D

)

G†
]

(6)

where Tr is the trace operator. We have to point out that with
the present model, we only deal with the one-dimensional (1-D)
transport between source and drain reservoirs, while the leakage
gate current has not be taken into account. For the considered
devices with channel length of a few nanometers, it can be
shown that the gate current is negligible with respect to the
drain current.

From a numerical point of view, Green’s function is
computed by means of the recursive Green’s function (RGF)
technique [20], [21]. Particular attention must be put in the def-
inition of each self-energy matrix, which can be interpreted as a
boundary condition of the Schrödinger equation. In particular,
in our simulation, we have considered a self-energy for semi-
infinite leads as boundary conditions, which enables to consider
the CNT as connected to infinitely long CNTs at its ends.

We have to point out that the computation of the self-energy
is quite demanding. To achieve faster results, we have followed
the approach proposed in [22], which we have verified to be
four times faster than a simple underrelaxation method.

We have to point out that, using a real-space basis, the
computed current takes into account intraband and interband
tunneling, since, as compared to the mode space approach, all
the bands of the nanotube are considered simultaneously.

From a numerical point of view, the nonlinear system has
been solved with the Newton–Raphson (NR) method with
the Gummel iterative scheme. In particular, the Schrödinger
equation is solved at the beginning of each NR cycle of the
Poisson equation, and the charge density in the CNT is kept
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Fig. 1. 3-D structure of the simulated CNT-FETs.

constant until the NR cycle converges (i.e., the correction on the
potential is smaller than a predetermined value). The algorithm
is then repeated cyclically until the norm of the difference
between the potential computed at the end of two subsequent
NR cycles is smaller than a predetermined value.

Some convergence problems, however, may be encountered
when using this iterative scheme. Indeed, since the electron
density is independent of the potential within an NR cycle,
the Jacobian is null for points of the domain including carbon
atoms, losing control over the correction of the potential. We
have used a suitable expression for the charge predictor to give
an approximate expression for the Jacobian at each step of
the NR cycle. To this purpose, we have used an exponential
function for the predictor [22]. In particular, if n is the electron
density as in (3), the electron density ni at the ith step of the
NR cycle can be expressed as

ni = n exp

(

φi − φ̃

VT

)

(7)

where φ̃ and φi are the electrostatic potentials computed at
the first and ith steps of the NR cycle, respectively, and VT

is the thermal voltage. The same considerations follow for the
hole concentration. Since the electron density n is extremely
sensitive to small changes of the electrostatic potential between
two NR cycles, the exponential function acts in the overall
procedure as a dumping factor for charge variations. In this way,
convergence has been improved in the subthreshold regime and
in the strong inversion regime. Convergence is still difficult
in regions of the device where the charge in the nanotube is
not compensated by a fixed charge, like in the case of bound
states in the channel, where the right-hand term of the Poisson
equation is considerably large.

III. RESULTS AND DISCUSSIONS

We first consider a (11, 0) CNT embedded in SiO2 with a
diameter d of 0.9 nm, an undoped channel of varying length
L, and n-doped CNT extensions of 10 nm at the source and

Fig. 2. Transversal cross section of the CNT-FETs with different gate struc-
tures: (a) single gate, (b) DG, and (c) triple gate. Null Neumann boundary
conditions are imposed on lateral ungated surfaces.

Fig. 3. (a) Subthreshold slope and (b) DIBL as a function of oxide thickness
for L = 15 nm and for different gate layouts. f = 10−3.

drain ends (Fig. 1). The CNT extensions have on average f
donated electrons for each carbon atom. f is the product of
the stoichiometric ratio of donors times the average number of
electrons donated by each donors.

As a first attempt to study CNT-FET performance, we con-
sidered dc properties, evaluating the devices in terms of short
channel effects and Ion and Ioff currents. We first consider short
channel effects for different gate layouts (single, double, and
triple gates) for the same channel length L = 15 nm (Fig. 2).

Subthreshold swing S and DIBL as a function of oxide thick-
ness are plotted in Fig. 3(a) and (b). Null Neumann boundary
conditions are imposed on the lateral faces of the transversal
cross sections to consider an array of CNTs. As expected,
the more gates surround the channel, the better is channel
control. Triple-gate devices show an ideal behavior even for the
thickest oxide we have considered (5 nm), while a quasi-ideal
S is obtained for the double-gate (DG) structure in the whole
considered range of SiO2 thickness. A single gate provides
acceptable S and DIBL for 2-nm oxides. Fig. 4 shows S and
DIBL as a function of the channel length for a DG device with
oxide thickness tox of 1 and 2 nm. DG devices show both very
good S and DIBL down to 10 nm, and still acceptable values
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Fig. 4. (a) Subthreshold slope and (b) DIBL as a function of channel length
for DG CNT-FETs with tox = 2 nm and tox = 1 nm. f = 5 × 10−3.

Fig. 5. (a) ON current per unit width as a function of channel length for
DG CNT-FET (2 nm lateral dielectric between adjacent nanotubes). (b) Ion
current per nanotube as a function of the nanotube diameter for L = 7 nm DG
CNT-FET. tox = 2 nm, f = 5 × 10−3.

at 7 nm, while smaller channel lengths suffer from excessive
degradation of the gate voltage control over the channel.

From here on, we will focus on a DG structure with tox =
2 nm and the cross section shown in Fig. 2(b). Fig. 5(a) shows
the ON current Ion per unit width defined as the current ob-
tained for VGS = VDS = 0.8 V as a function of channel length,
assuming a lateral dielectric separating adjacent nanotubes of
2 nm. In Fig. 5(b), Ion is plotted as a function of the nanotube
diameter for a device with channel length equal to 7 nm.

Short channel effects become more important as the channel
length is decreased; and at the same biasing conditions, shorter
devices show larger Ion currents, since lowering of the chan-
nel barrier occurs. Moreover, as far as the CNT diameter is
increased, quantized states along each atom ring are closer in
energy so that more subbands participate in electron transport,
increasing the channel conductance.

Fig. 6(a) shows the ON current as a function of the nor-
malized tube density per unit length ρ = d/T , where T is the
distance between the center of two nanotubes, as illustrated
in the inset of Fig. 6(a). All the results show that CNT-FETs
can drive significant currents. As compared with the ITRS

Fig. 6. (a) ON current as a function of nanotube normalized density per unit
length ρ = d/T for DG CNT-FET with L = 15 nm. (b) OFF current as a
function of channel length for a DG CNT-FET.

Fig. 7. (a) OFF current as a function of nanotube normalized density per unit
length ρ = d/T for DG CNT-FET with L = 15 nm. (b) Ion/Ioff ratio as
a function of nanotube normalized density per unit length ρ = d/T for DG
CNT-FET with L = 15 nm.

requirements, in the case of the most densely packed array, the
current per unit length is almost seven times larger than that
expected for high-performance devices at the 32-nm technology
node (hp32: effective gate length equal to 13 nm), and six times
for the 22-nm technology node (hp22: effective gate length
equal to 9 nm). In our opinion, such factors are attributable
to the fully ballistic transport regime we have assumed and to
the zero series resistance of the contacts. As a consequence,
our results have to be considered as an upper limit for CNT
performance.

The OFF current (Ioff), defined as the current obtained for
VGS = 0 V and VDS = 0.8 V, is 15 times larger than that re-
quired for both hp32 and hp22 nodes [Fig. 6(b)]. However, as
shown in Fig. 7(a), where the OFF current is plotted as a func-
tion of the normalized tube density, as the density decreases,
the current in the OFF state also decreases, so for a tube density
smaller than 8 × 10−2, we obtain a Ion/Ioff ratio larger than
that required by the ITRS for the hp32 [Fig. 7(b)].

As also observed in [23], the degradation of the OFF current is
due to the presence of bound states in the valence band, which,
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Fig. 8. Density of states computed for the device with L = 7 nm, for VGS =
0 V, and (a) VDS = 0.8 V and (b) VDS = 0.5 V, as a function of the energy
and the coordinate along the nanotube axis. Dashed lines are in correspondence
of the source and drain Fermi level.

for high doping and for large drain-to-source voltages, are
occupied by holes tunneling from the drain reservoir [Fig. 8(a)].
For smaller VDS, bound states are quite far from the drain Fermi
level [Fig. 8(b)], so the linear behavior in the semilog plot of
the transfer characteristics in the subthreshold regime is almost
recovered, as shown in Fig. 9.

Another interesting effect due to bound states is that, in
the negative gate voltage regime, when band-to-band tunneling
occurs at both source and drain ends, the current increases
for a negative gate voltage (Fig. 10). For a larger VDS, this
effect requires a larger negative VGS to be observed since the
larger the drain-to-source voltage, the stronger the influence
of the bound states in the valence band, which act against the
activation of the band-to-band tunneling process. In addition,
as can be seen in the case of VDS = 0.1 V, for negative gate
voltages, resonant states appear. Since in the considered CNTs
the band gap is close to 1 eV, the above considerations suggest
that such an effect could also limit the performance of silicon
devices in the deca nanometer regime. Let us note that in
such a band-to-band tunneling regime, the Coulomb blockade

Fig. 9. Transfer characteristics for DG CNT-FET with L = 7 nm for VDS =
0.5 V and VDS = 0.8 V. tox = 2 nm, f = 5 × 10−3.

Fig. 10. Transfer characteristics for DG CNT-FET with L = 7 nm for VDS =
0.5 V and VDS = 0.1 V. tox = 1 nm, f = 5 × 10−3.

Fig. 11. Transconductance as a function of gate voltage for DG CNT-FETs
with different channel lengths: L = 5, 7, and 10 nm; tox = 2 nm; VDS =
0.8 V; and f = 5 × 10−3.

effects are relevant and not included in the NEGF approach.
NEGF results can still give a qualitative understanding of CNT
behavior for very negative gate voltages.

Fig. 11 shows the transconductance gm as a function of gate
voltage for devices with channel lengths of 5, 7, and 10 nm
computed for VDS = 0.8 V. The transconductance peaks are
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Fig. 12. Current density for VDS = 0.5 V and VGS = 0 V as a function of
molar fraction of doping atoms f for DG (11,0) CNT-FETs with L = 7 nm and
L = 15 nm and (7,0) L = 7 nm DG CNT-FET.

in correspondence with the gate voltage at which the first
1-D subband crosses the source Fermi level. As can be seen,
a large transconductance is obtained for the all three considered
devices.

We also considered the impact of the donated electron
fraction f on device performance. Fig. 12 shows the current
for VDS = 0.5 V and VGS = 0 V as a function of f for two
DG CNT-FETs with tox = 2 nm and L = 7 and 15 nm. For
such applied voltages, we verified that the interband tunneling
currents are zero and the net current is due only to thermionic
and intraband tunneling. As can be seen, for the L = 7 nm
device, the current is extremely sensitive to f , and a small
variation in the number of ionized atoms in the source and drain
extensions can determine variations of the current of almost
two orders of magnitude. However, as the channel length is
increased, such effect is weakened since the field generated
by uncompensated donors in the reservoirs is less effective in
lowering the channel barrier.

Since the number of donors is of the order of tens, current
dispersion due to random dopant fluctuations can be problem-
atic as shown in Fig. 12, where the current for a L = 7 nm (7,0)
CNT is shown. In this case, the number of atoms in the source
and drain extensions has been decreased by a factor of 11/7, and
the current in the OFF states varies in this case by almost three
orders of magnitude for the same range of f .

We now focus our attention on the switching and high-
frequency performance of CNTs. The typical figure of merit
for digital applications is the intrinsic device speed, defined as
τ = CGVDD/Ion, where VDD is the supply voltage and CG is
the differential gate capacitance for VGS = 0.8 V [Fig. 13(a)].
For our considered DG structure with common gate driving, if
stray capacitances are negligible, CG can be computed as the
derivative of the charge in the CNT with respect to the gate
voltage. This quantity is typically used to estimate the time
it takes an inverter to switch, when its output drives another
inverter, represented as a load capacitance CG, as shown in the
inset of Fig. 13(a). Compared to the ITRS requirements for the
hp22 technology node, the obtained τ is at least 12 times faster.

CNT-FETs also show good potential for terahertz applica-
tions [25], [26]. In Fig. 13(b), the cutoff frequency defined as
fT = gm/2πCG is shown as a function of channel length: fT

Fig. 13. (a) Inverse of the intrinsic device speed defined as τ = CGVDD/Ion
as a function of channel length for DG CNT-FET; VDD = 0.8 V, CG is the gate
capacitance. (b) Cutoff frequency as a function of gate length for DG CNT-FET.
tox = 2 nm,f = 5 × 10−3.

is of the order of tens of terahertz, and the values obtained by
simulations are larger than those found in [25], where the gate
capacitance is overestimated, since the electrostatic capacitance
has been modeled as that of an infinite metallic cylinder over
an infinite conducting plane. As a word of caution, we must
consider that additional stray capacitances could reduce the
estimated fT and τ .

IV. CONCLUSION

We have developed a novel 3-D NEGF-based simulation tool
for arbitrary CNT-FET architectures, which has enabled us to
investigate the performance perspectives of CNT-FETs from an
engineering point of view.

We have, in principle, demonstrated that random distribution
of dopants in the reservoirs can significantly affect device
performance and degrade current in the OFF state by several
orders of magnitude. We have shown that DG structures exhibit
very small short channel effects even with a rather thick silicon
oxide gate dielectric (5 nm), and still acceptable subthreshold
swing and DIBL for devices with the channel length down
to 7 nm.

The driving currents and transconductance are very good as
compared to the ITRS requirements, while Ioff may pose some
problems due to the presence of localized hole states in the
channel. However, good Ion/Ioff can be achieved by reducing
the tube density in the CNT-FET array, still satisfying ITRS
requirements.

We have also shown that DG CNT-FETs are very promising
for terahertz applications if stray capacitances can be main-
tained under control.
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