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ABSTRACT

The theoretical and experimental background for the

approximation of "real-world" functions is reviewed to

motivate the use of piecewise polynomial approximations.

It is possible in practice ~o achieve the results suggested

by the theory for piecewise polynomials. A convergent

adaptive algorithm is outlined which effectively and

efficiently computes smooth piecewise polynomial approxIma­

tions to any member of a broad class of functions. This

class includes all functions which are piecewise smooth

and have a fini te number of "algebraic ll singularities.

Theoretica.lly and experimentally determined properties of

this algorithm are indicated.



REMARKS ON PIECEWISE POLYNOMIAL APPROXIMATION

*John R. Rice

I. THE EXPERIMENTAL BACKGROUND. The advent of high speed

computers made it both possible and necessary to compute

approximations to a large variety of functions. The functions

involved are somewhat arbitrarily divided into two classes:

the mathematical functions (ex, rex), J1(x), etc.) and the

"real world" functions (shape of a turbine blade or air­

plane wing, specific heat versus temperature for titanium,

air pressure versus altitude, etc.) In this discussion we

consider only the real-world functions and the remarks do not

apply, in general, to the approximations of the elementary

and special functions of mathematics. The experience

of the 1950's was clear and convincing: classical linear

methods of approximation are inadequate for real applications.

We take ordinary polynomial approximations (say with L2 or

L~ norms) as the prime example of these classical methods.

Other methods involving trigonometric functions (Fourier

Series), Bessel functions, etc. are no better.

To make this position quantitative, we note that Rice

made an experiment in the early 1960's as follows. Several

dozen tabulated functions were selected at random from the

rrHandbook of Chemistry and Physics" which represent a

variety of relationships in the real world. All of the

*This work was supported in part by grant GP 32940X from
the National Science Foundation.
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functions were approximated by polynomials 'of increasing

degree until one of two things happened. First, the

approximation achieved adequate accuracy to represent the

physical process o~, second, the computation broke down

because the polynomial degree became too large. Note that,
straight forward computational methods using the powers

of x as a basis for the polynomials broke down for very

low degrees (6-10 on computers bf that time). However,

with a little thought one can compute with degrees up to

30 or 40 without difficulty. In only 50% of the cases could
,

a satisfactory approximation be obtained by polynomials.

Some other method of approximation was required

and two candidates were presented: rational approximation

with the Lm norm and spline interpolation. Both of these

candidates are still viable for this application although

the spline ideas are currently further developed in practice

and perhaps in theory. We do not discuss rational approxi-

mations further in this paper.

Spline interpolation was first done with equally

spaced knots but soon some people observed that variable

spaced knots improve things veTy much. Furthermore, it was

realized that splines are only a particularly interesting

case of general piecewise polynomials. From this evolves

the nonlinear approximation problem of determining optimal

or best knots for piecewise polynomial approximation. By

now some algorithms exist for this problem, the oldest and
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still widely used algorithm is that of deBoor and Rice

[8], [9] which computes best least squares cubic spline

approximations.

This algroithm has not, to the authors knowledge,

failed to obtain a satisfactory approximation for Teal

world functions. Note that the case of CO piecewise

polynomials is particularly easy. One can think of

algorithms, prove they converge and implement them on

computers without difficulty. These are quite useful

in many situations, but, unfortunately one often needs

smoother approximations.

2. THE THEORETICAL BACKGROUND. The classical degree of

convergence result for polynomial approximations may be

stated as follows.

THEOREM 1: Let f(x) have an (r-1)st derivative

which satisfies a Lipshitz condition. Further let

P
n

denote the polynomials of degree n or less.

Then the distance in the Lp-norrn satisfies

This result indicates how the approximation error for a

function f(x) of smoothness r should behave as the

degree n increases.

Early work on the degree of approximation by splines

was done by Hirkhoff and deBoor [lJ, Meir antl Sharma [llJ

and others and it culminated in the following result. We
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let s~ denote piecewise polynomials of order r(degree <

r-I) and with k knots; the case of splines comes from

also assuming that the (r-2)nd derivative of the piecewise

polynomial is continuous.

THEOREM 2: Let {ex) have an absolutely continuous

.l(",r.::-",lL),,-s.=.t.--:d~e"r~i~v,-,a~t",ic"v-"e~w=-i.=.t h~--,f=---(r_)-,(~x~),---~i~n,-~L p [ 0 •1] . Let

g~ be the subset of s~ of splines with uniformly

spaced knots (the spacing is 11k = W). Then we have

This result also indicates how the approximation error for

a function of smoothness r should behave as the number of

knots increase. We see that the number k of knots in

Theorem 2 plays the same role as the degree n of the

polynomials in Theorem 1.

We are, however, primarily interested in results fOT

optimal knots and the first result in this direction was

by Rice [13] as follows. Let f(x) have singularities at

the points. si' i = 1, 2, m and set

assume that there is a constant k so that

f(r-l) (x) ~ K[w(X)]~-r+l



for s ..
1

Then we have
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distp(f.S~) = @(k- r )

where the knots of S~ are variable. The imposition

of smoothness requirements on elements of

not change the result.

does

The important point, of course, is that the weakening the

hypothesis on smoothness is completely compen~ated by

allowing variable knots and the conclusion remains the same

as for Theorem 2.

The functions involved 1TI Theorem 3 include almost all-

(if not all) functions that arise in the real world. How-

ever, an examination of the proof of Rice immediately

shows that" functions with an infinite number of singularities

can be included by this method. This raises the important

quest.ion of- just what functions are included and this

question has been answered by the deep and difficult

results (independently of one another) of Brudny: [2],

Burchard [4], [5] and Peetre [12]. These results involve

rather complicated technical constructions whose implications

are not transparent, so we give instead a weaker and earlier

result of Burchard [13], de Boor [6] and Dodson [10] where

it is easier to see the nature of the functions involved.

For given values of p and r let

cr =
1

r+l/p
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and define the a-norm of f(x) as

II f II = [[1 If(r) lodxjI/o
° 0

We may summarize the results by

THEOREM 4. Suppose II fll < 00 and If(r)(x)1
°

is monotone decreasing in some neighborhood of each

singularity as one moves away from the singularity.

Then we have

The a-norm is something that one can calculate for many

interesting simple functions and one sees, for example,

that Theorem 4 includes Theorem 3 as a special case. Note

that the monotone condition on f (r) (x) in Theorem 4 may

be replaced by the assumption of a monotone bound such as

seen 1TI Theorem 3.

We also note that we h'IY€' -related the degree of the

polynomial pieces to the smoothness of f(x) in these results.

The degree may be increased and the same degree of convergence

is obtained.

3. THE PRACTICALITY OF COMPUTING APPROXIMATIONS. For

applications one needs an approximation method with the

following pruperties. It is efficient and reliable. It

gives smooth approximation if desired. It gives approxi­

mations whose complexity is consistant with that of the

function being approximated and the accuracy desired. The
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results on degree of convergence giyen above suggest that this

should be possible for polynomial or piecewise polynomial

approximation. We ask the question: Is it possible to

achieve the results suggested by the theory. The answer for

polynomials is no. The essential failure occurs on the

complexity issue; there are simple smooth functions where

the polynomial degree must be huge (thousands or millions)

to achieve approximations of modest accuracy (say 10- 2 ,

-4 -6In or 10 ). It is difficult to compute such approximations

r1~ lILt'! '"lllpIlIUllllll I~ III lCllldlllllllC'ld , hili IhCl 1'''~:IIII:1

obtained are) in any case) useless. On the other hand, the

answer for piecewise polynomials is~. The next two

sections describe how such computations may be made.

4. AN ADAPTIVE INTERVAL PARTITION ALGORITHM. The word

adaptive means that the algorithm automatically adjusts

itself to accomodate the special nature of the problem at

hand. The adaptive approximatjon algorithm discussed in the

next section depends heavily on an interval partition

algorithm [14] originally introduced for quadrature.

PARTITION ALGORITHM:

1. Initialization: We are given

A. Numbers y, 13<1 and e>O.

B. An empty set M' and- a set M of intervals I with

associated numbers nCI). M contains a distinguished

interval 1*.

c. A process P:I ~ CIL,IR) which divides an interval I
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into left and right subintervals such that

Ci) If I = 1* then nCIL) = nCIR) = a*nCI)

and 1* + IL or 1* + IR.

Cii) If I # 1* then nCIL) = nCIR) = Y*nCI)

2. Operation:

For rEM do

Poi • CIL,IR)

If CnCIL) < E) then ILEM' else ILEM

If CnCIR) < E) then IREM' else IREM.

We interpret this algorithm for approximation as follows:

The interval [0,1] of approximation is being partitioned

into subintervals and local polynomial approximations are

being computed on them. The variables in the algorithm are:

ncr) = aprroximation error on the subinterval I

1* = the interval containing the singularity of f(x).

E = the desired accuracy or a quantity closely related

to it.

y = the reduction factor in the approximation error

resulting from halving an interval which does not

contain the singularity.

a = the error reduction factor for the interval 1* with

the singularity.

In most applications one has y «~So

This algorithm generates a tree of intervals as illus­

tl':lt~ll ill I:iglll·~ 1.
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Figure 1. The tree of intervals generated

by the partition algorithm. The

dashed path is that of the disting-

uished interval.

9
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The branches of the tree are followed until the corresponding

interval can be discarded (i.e. the approximation is

acceptable in that interval). Naturally the branches

involving 1* (i.e. intervals near the singUlarity) are much

larger than the others. The key question is: how much

longer are they and what proportion of the entire tree are

they? This is answered by the following.

THEOREM 5. Consider the Partition Algorithm with B,

M and neil for 10M specified. Let F(y,o) be

the size of M' when .the algorithm terminates and then

we have

1

F(y,.) =

There are a number of variations and extensions of this

result given-in [14], one example is

COROLLARY. Consider a real valued function g defined

on intervals with the property that 11 <; I Z implies

g (I I) < g(lZ)' Suppose that in the interval division-
process P the factors y and S are replaced

by y"g(IR), y"g(IL), S"g(IR) and S"g(IL) as appropriate.

Then the conclusion of Theorem 5 remains valid.

The key point is that the result of theorem 5 is independent

of 6 and hence the presence of a singUlarity does not

affect the order of the overall amount of computation

required. The quantity in the conclusion of Theorem 5 is
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just the number of nodes of the tree if it were completely

uniform, that is, all the paths from the apex were the

5 arne length.

5. APPLICATION TO PIECEWISE POLYNOMIAL APPROXIMATION. An

adaptive approximation method involves a local approxima­

tion operator Tr which associates with f(x) an appro­

ximation Ar(f,x) on the interval I. l.e.

A simple example of this is linear interpolation at the end

points of the interval I. Associated with the adaptive

method is a tolerance E > 0 and an interval I is

discarded if

II f(x) - AI(f,x) III = /I (I-TI)f III < E

The subscript on the norm indicates restriction to the

interval I. The number E is not necessarily the desired

approximation accuracy.

When the adaptive method terminates. we know that the

local error of approximation on each interval is less than

£ and this allows one to estimate the global error depending

on the nature of the norm used. The global approximation

iS J of course J just the collection of local approximations

A1(f,x). For simplicitYJ we assume that each interval is

halved and thus each interval is of the form [xJx+Z- J ]

for some value of j and we may represent it by the pair

(x,j). For specific local approximation operators and suitable



w(x) =

12

functions f (x) we have a bound on the error II (l-TI) f II I

and we denote this by ERROR(x,j).

We consider functions such as those involved in Theorem

3 above. We have

ASSUMPTION 1. Assume f(x) has singularities

S = {sili = 1,2, ... ,m < co}

and set

m
IT (x- s" ) •

i=1 1

(i) If Xo i S then f(r) (x) is continuous in a

neighborhood of Xo with r > 1.

(ii) There are constants K and a so that

If(r) (x) I ~ Klw(x) I O-r

We consider local approximation operators Tr which

satisfy:

ASSUMPTION 2. Let 5 denote a point of singularity

of f(x) and set

max _" If(r)(t)1
tE[x,x+2 J] ,

There are constants r, K and a (the same as in Assumption

1) so that:

(i) ERROR(x,j) < KF (x k)2- j (r+l/p)
- r '

if

contains no singularity

(ii) ERROR(x,j) < K2-(o+1/p)j if sc[x,x+2- j J
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The rate of convergence of this algorithm has been

determined by Rice [15] as follows.

THEOREM 6. Let f(x) satisfy Assumption 1 with

a > -lIp for 1 S P ~ 00 Consider an adaptive

algorithm whose local operator satisfies Assumption 2.

Then the

obtained

Lp-error

when the

of the global approximation A(x)

algorithm terminates is of the order

where k is the number of pieces of A(x).

This result states that an adaptive algorithm achieves the

optimal rate of convergences provided the local approxi-

mation operators are suitably chosen.

There are two classes of operators which are known to

satisfy the assumptions of Theorem 6. These are the local

Hermite interpolation operators and the spline quasi-

interpolant operators of de300r and Fix [7]. The Hermite

operators are the simplest to analyze and use and they have

been incorporated into an actual algorithm (computer

program) for adaptive piece~ise polynomical approximations

[16]. The Hermite operators have the disadvantage that the

polynomial degree is at least twice the number of continuous

derivatives of the approximation. We present a brief outline

of the resul ting algorithm in a very· high level programming

language which is hopefUlly self-explanatory.
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A,B
ACCUR
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FUNCTION TO FIT
INTERVAL ENDPTS
ACCURACY DESIRED
POLYNOMIAL DEGREE

SMOOTH
NORM
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NO. CONT. DERIVS
MEAS. OF L-P ERROR

P IN (O,INFINITY)

ELSE
END PUT

PROGRAM ADAPT

••• LOOP OVER PROCESSING INTERVALS •••

CALL TAKE AN INTERVAL OFF THE STACK
CALL COMPUT AN APPROX ON THIS INTERVAL
CALL CHECK FOR DISCARDING OR DIVIDING INTERVAL
CALL PUT NEW INTERVALS ON STACK, UPDATE ALGORITHM STATUS
CALL TERMIN TEST FOR FINISH, PRINT INTERMEDIATE OUTPUT
IF NOT FINISHED - REPEAT LOOP

END ADAPT

SUBPROGRAM TAKE
MAKE THE TOP INTERVAL OF THE STACK AVAILABLE

END TAKE

SUBPROGRAM COMPUT
OBTAIN - VALUES OF F AND DERVIATIVES.
CALL NEWTON FOR DIVIDED DIFFERENCES OF INTERPOLATING

POLYNOMIAL FOR THIS INTERVAL
CALL ERRINT TO ESTIMATE LOCAL ERROR IN L-P NORM

END COMPUTE

SUBPROGRAM NEWTON - OF COMPUT
BUILD UP TRUE DIVIDED DIFFERENCE TABLE WITH MULTIPLE
POINTS AT THE INTERVAL ENDS PLUS INTERPOLATION POINTS

END NEWTON

SUBPROGRAM ERRINT - OF COMPUT
USES 4-POINT GAUSS QUADRATURE TO ESTIMATE ERROR NORM ON
INTERVAL. SPECIAL COMPUTATION FOR MAX-NORM, P = INFINITY.

END ERRINT

SUBPROGRAM CHECK
MAKE DECISION ON DISCARDING ThE INTERVAL

END CHECK

SUBPROGRAM PUT

CHECK FOR DISCARDING INTERVAL
IF s6 - UPDATE ERROR ESTIMATE

ADJUST STACK
CALL PTRANS - TO OBTAIN COEFS FOR THIS INTERVAL
UPDATE XKNOTS AND COEFS

SUBDIVIDE INTERVAL AND PLACE 2 NEW ONES ON STACK



pm ,
REPRESEN,ATION FROM NEWTON DIVIDED
POWER FORM WITH ORIGIN SHIFTED TO
LEFT OF INTERVAL. USES SYNTHETIC
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SUBPROGRAM PTRANS - OF
CHANGES POLYNOMIAL
DIFFERENCE FORM TO
THE XKNOT VALUE ON
DIVISION

END PTRANS

SUBPROGRAM TERMIN
STOP WHEN THE STACK IS EMPTY.

END TERMIN

This algorithm has been exten~ively .tested to see if

it does achieve the results suggested by theory. Part of

this work is reported upon in [17] and these tests

justify the statement that it does perform as hoped.

A number of other properties are observed in these tests

and mentioned in [11]

•
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