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mblyopia is a common developmental disorder of the visual

system, which leads to decreased visual acuity in the ambly-
opic eye and impaired stereo vision. A key mechanism in amblyopia
is the suppression of signals from the amblyopic eye. How this
suppression develops is not fully understood. However, recent years
have seen substantial progress in theoretical accounts of the healthy
development of binocular vision in the context of the Active Effi-
cient Coding (AEC) framework. AEC is a generalization of classic
efficient coding theories to active perception. It describes the si-
multaneous learning of receptive fields and movements of the sense
organs to jointly maximize sensory coding efficiency. Along these
lines, computational models for the healthy development of active
binocular vision and active motion vision have been proposed (1, 2).
Here we investigate whether AEC can also account for the devel-
opemt of amblyopia in the case where the two eyes have different
refractive powers.

a) b)

obj. plane I. acc. plane verg. plane stdv. blur filter

obj. dist. to
I. acc. plane

'
H fixed offset
]

obj. plane

r. acc. plane

—
fixed refraction offset due to lens

simulated
anisometropia

Fig. 1. a) Object position, eye focus, and eye fixation at different distances are represented as
different plane positions. Vergence (verg.) errors are modelled by pixel shifts between the left (I.)
and the right (r.) eye input image. b) Accommodation (acc.) error is a function of the distance
between object (obj.) and the left or right accommodation plane, respectively. Defocus blur is
realized with a gaussian filter of variable standard deviation (stdv.).

Methods. We extend a previous model for the learning of active
binocular vision in two directions. First, in addition to vergence eye
movements the model also learns to control accommodation of the
lenses to focus on near and far objects. Second, we add a suppression
mechanism which allows the attenuation of signals from one eye by
neurons whose sensitivity is biased towards the other eye. The model
learns to control vergence and accommodation in an environment
where planar objects are presented at different depths. The control
can be thought of as the shifting of three different planes (Fig. 1a)
relative to the plane where an object is presented. The distance
between the object plane and the vergence plane determines the
disparity between left and right eye. The distance between object
plane and the two accommodation planes determines how sharp or
blurry the input to the two eyes is (Fig. 1b). The input is whitened
and encoded by sparse coding models at two scales (coarse and
fine) sensitive to different spatial frequencies. For this we employ
the matching pursuit algorithm (3) (Fig.2, right). Vergence and
accommodation commands are learned by two natural actor-critic
reinforcement learners (4) to maximize the overall coding efficiency
(Fig.2, left). We include within-scale interocular suppression by
introducing a mechanism where strong responses from monocular
neurons suppress input signals from the other eye.

Results. In the healthy condition without anisometropia, the model
learns to accommodate correctly and to perform precise vergence
eye movements. Most neurons develop binocular receptive fields.
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Fig. 2. Model architecture with solid arrows representing the flow of sensory information and dashed
arrows representing the flow of control commands. Only the fine scale is shown. Sampled input
images with given blur and disparity are whitened (right). Thereafter, they are sparsely encoded
by a set of binocular bases in analogy to V1 simple cells (center). The average sparse activity
(of both scales) serves as state information for two reinforcement learners (left) which control
vergence (verg.) and accommodation (acc.) commands, respectively. Accommodation commands
are learned to maximize the mean squared response after whitening (avg. white response). The
vergence learner reward is the negative reconstruction error of the sparse encoding stage, which
can be read out as the average squared sparse response. Together this can be understood as
maximizing the mutual information between the whitened and sparse representation. Finally, if
mostly left(right)-monocular bases are used to encode the whitened input, the right(left) eye input is
suppressed in the next time step. Here, suppression is scale specific, i.e., when the left eye in the
fine scale is suppressed, the left eye in the coarse scale may still provide unattenuated input.

In an anisometropic case where the ranges over which the two
eyes can focus differ, an amblyopia-like state develops. As one eye
more consistently suppresses the other, the receptive fields become
increasingly monocular, favoring the suppressing eye. Visual acuity
decreases for the suppressed eye. However, by recruiting neurons
tuned to lower spatial frequencies that retain binocular receptive
fields, the system maintains a certain level of vergence control.
Interestingly, for one myopic and one hyperopic eye, the model
develops monovision, i.e., it learns to focus on close objects with
the myopic eye and on distant ones with the hyperopic eye.

Conclusion. In conclusion, we demonstrate an Active Efficient Cod-
ing model that a) describes the development and self-calibration of
active binocular vision and accommodation control under healthy
conditions and b) explains how anisometropia might lead to ambly-
opia by recruiting interocular suppression mechanisms. Future work
should address if interocular suppression can also be understood as
a result of generic learning mechanisms.
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