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each pair of corresponding vowels and their angles can be computed and stored in a
vector. This vector V; represents the difference from the accented language L; to the
standard one L.

To classify the test speech into one of the accent categories Ly, Lo, ..., Ly, where
N is the number of accent categories, the difference from V; to V;,i € [1, N] and V
(category of standard language) are computed, compared and classified to the nearest

category of accent.

Accentedanguage

Fig. 4.13. Comparison of 5 vowels locations in standard and accented language

4.2.3 Performance Measurement of Accent-adapted Phone Recognizer

with Text-independent Speech

As illustrated in Figure 4.11, the performance of the proposed accent-adapted
phone recognizer will be finally measured with text-independent data, which is the
case for customer calls. These test data are based on topic-oriented conversations and
hence will have different LMs and variations of accents, compared with the training

data.
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Test data with transcription is necessary to test the performance of accent de-
tection and classification. The following procedure will be used to convert text-
independent data from customer calls to text-dependent speech, and then to test the

performance of the proposed accent-adapted phone recognizers:

1. Perform speech recognition using standard LM on the text-independent call
data;

2. Select a subset of recognized speech with a certain level of confidence based on
the n-gram log likelihood of recognized speech, such as log likelihood (n-gram)>
0, where n > 5 and @ is the predefined threshold to ensure the confidence of

accuracy;

e this step converts text-independent speech to a subset of text-dependent

speech with a certain confidence level;

e appropriate threshold will be determined with text-dependent training

data.

3. Perform accent detection and classification using two types of proposed accent-
adapted phone recognizer. The results will be compared with human-labeled

customer data.

4.2.4 Data Preparation in Accent Classification

The database used for developing the accent classification system in this thesis is
Foreign Accented English (FAE) corpus with catalog number LDC2007508, purchased
from Linguistic Data Consortium (LDC). It was originally collected by the Center of
Speech & Language Understanding (CSLU) at Oregon Health & Science University
(OHSU). It contains 4925 accented English speech sentences about 20 seconds long
each, from speakers with 23 types of language origins, which are listed in Table
[1.17] These accented speech recordings are grouped into seven clusters based on the

relationship of the accents by a computational linguist from ININ. Dur.; and Dur.
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Table 4.17 Summary of the Foreign Accented English (FAE) corpus

ID Group Accent Abbr. i\;(zeccﬁ Prop.(%) Dur.; Dur.o rgt(:rz%)
1 1 Arabic AR 112 2.27 0:34:32 0:29:11 845
2 4 Brazillian Portuguese BP 459 9.32 2:34:24 2:09:58  84.2
3 3 Cantonese CA 261 5.3 1:17:34 1:05:59  85.1
4 5 Czech CZ 102 2.07 0:33:25 0:28:31  85.3
5 6 Farsi FA 261 5.3 1:18:56 1:03:21  80.3
6 2 French FR 284 5.77 1:31:05 1:18:44  86.4
7 6 German GE 325 6.6 1:36:04 1:22:18  85.7
8 7 Hindi HI 348 7.07 1:56:10 1:36:31  83.1
9 5 Hungarian HU 276 5.6 1:27:20 1:13:33  84.2
10 2 Indonesian IN 96 1.95 0:31:19 0:25:50  82.5
11 4 Ttalian 1T 213 4.32 1:04:07 0:53:30  83.5
12 3 Japanese JA 194 3.94 0:56:05 0:47:33  84.8
13 3 Korean KO 169 3.43 0:53:35 0:44:54  83.8
14 3 Mandarin MA 282 5.73 1:30:37 1:16:06  84.0
15 2 Malay MY 56 1.14 0:17:21 0:14:37  84.2
16 5 Polish PO 143 2.9 0:47:04 0:40:01  85.0
17 4 Iberian Portuguese PP 66 1.34 0:21:08 0:16:46  79.3
18 5 Russian RU 236 4.79 1:11:13 0:59:54  84.1
16 6 Swedish SD 203 4.12 1:07:37 0:58:14  86.1
20 4 Spanish SP 308 6.25 1:05:19 0:53:45  82.3
21 2 Swabhili SW 71 1.44 0:21:34 0:18:16  84.7
22 7 Tamil TA 326 6.62 1:06:29 0:54:31  82.0
23 3 Vietnamese VI 134 2.72 0:27:12 0:21:26  78.8

o denote the total duration of the speech per accent type before

and after the pre-

processing of speech with silence removal. The technique used for silence removal

includes the measurement of short-time energy rate and spectral centroids described

in [57]. After removing the silence, the duration of speech in each type of accent is

reduced to the range between 78.8% and 85.7%, of the original duration, as indicated

by the compression rate.

Figure is an example to demonstrate silence removal using short-time en-

ergy rate and spectral centroids on audio file FAR00042.wav in the speech database

with Arabic accents. The portion of speech is considered to be silence when either

the smoothed short-time energy rate and the smoothed spectral centroids are below
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certain thresholds. The short-time energy rate is used to remove the environmental
noise. While spectral centroids, can be used to remove non-speech noise, such as

coughing, due to its lower energy in the spectrum, relative to that of regular human

speech.
Short-time energy (original & filtered)
T T T T T T
0.08 - i -
0.06 - | [ A _ -
0.04} ; ML g % I T
0.02} W | /\ [\ /\(
© R W | WY eh) N Y 1
0 60 80 100 120 140 160
Spectral centroids (original & filtered)
T T T T T T
04 | -
gL L T | [ I I . ‘ | i | ¥ |
0 20 40 60 80 100 120 140 160
Wav file with silence/unsilence marker
1 T T T T T
L R '| i i (LA (I
Amya™ v ¥V N
-1 L |
0 0.5 1 15 2 25 3

4

x10

Fig. 4.14. Example of silence removal using short-time energy rate and spectral
centroids (FAR00042.wav in FAE corpus)

4.2.5 Accent Classification based on Pure Acoustic Information

The accent classification based on acoustic information is implemented using a
Gaussian Mixture Model (GMM) classifier with Perceptual Linear Predictive (PLP)
features discriminatively optimized by Heteroscedastic Linear Discriminant Analysis

(HLDA), similar to the methods described in [58|. HLDA is a generalization of Linear
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Discriminant Analysis (LDA), which allows features to have different variances in

different feature dimensions.

Introduction of GMM

Motivated by the success in modeling attributes of speakers using Gaussian Mix-
ture Models (GMMs) from [59], here we use GMMs to model the attributes of accents.
Gaussian mixture density models the feature distribution of each accent as a weighted
sum of multiple Gaussian distributions. For each feature vector x in the M x T feature

set X, the probability of x can be formulated by the equation

p(x[A) = sz'bi(x), (4.30)

where
b - 1 1 Ty-1 131
i(x) = WGXP{—g(X — i) By (% — ) ) (4.31)

N in Equation (4.30) is the number of mixture components, M in Equation (4.31) is
the dimension of the feature vector x, b;(x), ¢ = 1, ..., N, are the component densities,
piy © = 1,..., N, are the mixture weights and A\ = {p;, p;, 2;}, i = 1,2,..., N is the
collective representation of the parameters.

Given MFCC feature X (M x T') from accent type s, the Maximum Likelihood
Estimation (MLE) is used to maximize the GMM likelihood, which can be written as

T
A" = argmax p(X|\) = arg mapr(xt\)\). (4.32)
A A
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Since this expression is non-linear and direct maximization is difficult, the parameter
set A = {p,u, X} is iteratively estimated using a special case of the Expectation-

Maximization (EM) algorithm [60] and is summarized below:

L7
Di = T;p(ﬂxt,)\);

) 2%1 plilxe, A)x:. (4.33)
Zt:l p(Z|Xt), >‘)
=2 _ 2311 p(ﬂxtv )‘>Xf . ,1_112

' Zthl plilxe; A) Z

where p;, ji;, 57, 1 = 1,..., N are the mixture weights, means, and variances for the ith

component; p(i|x;, A) is the a posteriori probability for the i-th component given by

pibi (Xt)

= 4.34
Zkle Prbr(x¢) 434

pilxi, A)

These estimates are based on the assumption of independence among feature dimen-
sion, so for each accent type s, the non-zero values of the covariance matrix are only
on the diagonals. This algorithm guarantees a monotonic increase of the model’s
likelihood on each EM iteration.

After obtaining the GMM parameter set Ag for speaker class s € [1, S], the GMM-
based classifier, which maximize a posterior: probability for a feature sequence X,

(M x T) can be formulated as:

S = argmaxPr(\|X)
s€[1,9]
= argmax P(XIA)As
s€[1,9] p(X)
o argmax p(X|As)
s€[1,9]
T
x arg maleogp(xt|/\s). (4.35)

EIS O] ——
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The first equation is due to Bayes’ rule. The first proportion is assuming Pr(\;) = 1/5
and p(X) is the same for all speaker models. The second proportion uses logarithm

and independence between input samples x;, t € [1,T].

Introduction of LDA

Linear Discriminant Analysis (LDA) is a data dimension reduction technique that
maps data into a subspace while maximizing the discriminative information. For the
discussion of LDA, assume there are 1" = 25:1 T, number of M-dimensional data
vectors x; in S classes, where T} is the number of vectors in class s € [1,5]. Let the

global mean ® over all classes and the local mean ®, for each class s be

T
1
® = Zt: x, (4.36)
and
B, — (4.37)
s — m Ly, .
TS p PASE] t

by

T
1
Sp = = > (@ — @)z — ®)" or
t=1
1 s
= — . —P <I>s—<I>T, 4.
52 = gD (.- B2 ) (138)
and
1 S
Sw = S Z Z(mt — ) (x, — <I>S)T or
s=1 xE€s
S
1 1
Sw o= 3 > = > (@ — @) (@ — )" (4.39)
s=1 9% TLES



90

The first definitions of Equation and Equation (4.39) consider the class weights,
i.e. the sizes of each class s, while the second does not. The first definitions are used
in this work for the consistency with the LDA definition used in Kumar’s HLDA
work [61]. However, the second definitions [62] of both formulas are also provided for
completeness.

If we choose w from the underlying space W, then w! Spw and w!Syyw are the
projections of Sz and Sy onto the direction w. Searching the directions w for the
best class discrimination is equivalent to maximizing the ratio of (w? Spw)/(w” Syw)
subject to w'Syyw = 1. The latter is called the Fisher Discriminant Function and

can be converted to
Spw = ASyw, then S‘,’VlSBW = \w (4.40)

by Lagrange multipliers and solved by eigen-decomposition of Sy Sp.
By selecting eigenvectors associated with the most significant m eigenvalues of
SI;}S B, one can map the original M-dimensional data into a m-dimensional subspace

for discriminative feature reduction.

Introduction of HLDA

LDA is derived with the assumption that features in various dimensions have
the same variance, which may not be the case in the real problem. For example,
consider two classes of data with the Gaussian distributions shown in Figure [4.15
They have the same variance and slightly different mean in one direction, while same
mean and significantly different variance in the other distribution. LDA will project
the data to the first direction, since it maximizes the ratio of between-class scatter
Sp and within-class scatter Sy,. However, the other direction will lead to the best
discriminant information in this case.

This work uses Kumar’s method [61] to eliminate this assumption and generalize

LDA to HLDA using Maximum Likelihood Estimation (MLE) on Gaussian distri-
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butions. The improved version of Kumar’s HLDA implementation in MATLAB,
including GMM-HLDA classifier, is attached in Appendix

Projection using LDA

Projection with
best discriminant

Fig. 4.15. Illustration of how LDA fails with two Gaussian distributions

Implementation of Accent Classification based on Pure Acoustic Informa-

tion

The diagram of accent classification based on pure acoustic information is demon-
strated in Figure [£.16] Data from seven major types of accents, including AR, BP,
FR, GE, HI, MA and RU are used in implementation. They are divided into training
(70%), development (15%) and testing (15%) based on the numbers of recordings.
Features of 39-dimensional PLPs with Mean and Variance Normalization (MVN) are
extracted and further improved using HLDA with context-size 1 and reduced dimen-
sion 20. The context-size factor is used to duplicate features for potential performance
improvement. For example, with context-size 1, the original feature frame is elongated

with the concatenation from its 1 left frame and 1 right frame. Both the GMM classi-
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Improved GMM
PLPs features .
Training
speech | Feature l
Extraction| | -PA[T J
GM,M ——> Results
Testing

Fig. 4.16. Diagram of accent classification based on pure acoustic information

fier and the improved GMM-HLDA classifier trained with features of various types of
accents represent accents with GMMs of 256 Gaussian Mixtures. These parameters,
including GMM order, feature dimension in PLP and HLDA, and context-size are
tuned using development data set. The performance with the testing data set achieve

40% and 46% accuracies using GMM classifier and GMM-HLDA classifier.

4.2.6 Accent Classification based on Acoustic and Phonetic Information

In Section two methods of accent classification using phonetic information
are proposed. They are based on patterns of phoneme mapping and shifts of vowel
representation respectively. Currently, a modified version of the second method is
implemented. Instead of directly measuring the shifting of vowels, the same vowel of
various types of accents are trained as GMMs separately. Instead of using fundamental

five vowels, this method uses all fifteen vowels in Arpabet listed in Table [4.18 and

Table 4.18 Vowels in Arpabet

aa aec ah ao aw ay eh er ey ih iy ow oy uh uw

father fast sun hot how my red bird say big meet show boy book food

rank them based on their performance in recognizing accents. Given T types of

accents, a subset of vowels S; can be found experimentally for ¢th accents and form
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the GMM classifier as the combination of GMM classifiers of all vowels in subset S,

which can be formulated as:

GMM, = )  GMM(t, v;), (4.41)
i€S;
where v; is the ith vowels in vowel subset .S, of tth accent.

Adding this additional layer on the GMM classifier is critical to find the vowel sets
which preserve the accents and shown to improve on classifying accents. However, it
requires recognizing these vowels in the front end. During training and development,
the phoneme alignment based on the ININ phoneme recognizer is used to extract the
vowels. During testing, a subset of recognized vowels with certain level of confidence

are selected after phoneme recognition, based on the proposed method in Section

423l

Dictionary Preparation and Phoneme Alignment for FAE Corpus

Before extracting vowels using phoneme alignment, it is necessary to obtain the
transcription of FAE corpus which is originally absent in the LDC’s release. People
in ININ helped to partially transcribe the accented speech from major 13 out of 23
accents, including AR, BP, FA, FR, GE, HI, IT, KO, MA, RU, SP, TA, VI. Among
them, data from AR, BP, FR, GE, HI, MA and RU are used in this work. With
the output of dictionary preparation, such as dictionary file, word-level transcrip-
tion of accented speech and data list file, phoneme alignment for vowel extraction is
performed using HTK tools HVite.

Figure[d.17/demonstrates the process of dictionary preparation and phoneme align-
ment for FAE corpus. The dictionary file is a list of pairs of words and pronuncia-
tions in HTK format, which can be obtained through the process of word collection,
word-to-pronunciation conversion with ININ Lexicon Tester and HTK dictionary file
creation. In Phoneme alignment, the HTK configuration file, HMM model definition

and tired list are all trained using Fisher corpus.
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MFCC
HTK config. Files, HMM ‘

Lexicon macro def. files (macros, HVite \/ Feature
Cleaned Tester hmmdefs) tiedlist Extraction

transcription Word list Pronunciation list Dictionary Data¢
M Worq M Word-to-Pron. | \/ Dictior?ary \/ Phoneme S
Collection Conversion Creation Alignment |

Aligned phones

Data listed in file, word-level transcription

Fig. 4.17. Dictionary preparation and phoneme alignment for FAE corpus

Implementation of Accent Classification based on Both Acoustic and Pho-

netic Information

Here 39-dimensional MFCCs with MVNs are used in the implementation of accent
classification. After training GMMs on seperated vowels, GMMs of 7 vowels out of
15 of each accent are selected to form the mixed GMM classifer for that accent. The
overall classification accuracy is 51%, which gains 11% improvement from the GMM
classifer trained with PLP features. Table compares the performances of all
three methods, including GMMs with PLPs, trained per accent; GMMs with HDLA-
optimized PLPs, trained per accent; and GMMs with MFCCs, trained per accent and

per vowel.

Table 4.19 7-way accent classification with acoustic and phonetic features

Method GMM,.ccrnt GMM,ieens FtHLDA  GMM, e

Model GMM?*¢ GMM?*¢ GMM?*¢

accent accent vowel

Feature ~ PLP3},,  PLP3, ., +HLDAZ, MFCC3),
Accuracy  40% 46% 51%
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4.2.7 Summary and Future Work

The work in accent classification shows the performance improvement with HLDA
discriminative feature optimization and further selecting vowels over the whole ac-
cented speech for GMM classifer training and testing.

There are at least several areas that could be explored for further improvement:

1. Since the data for each accent is so limited (about 50 minutes per accent after
pre-processing), a universal classifier based on Restricted Boltzmann Machine
(RBM), instead of traditional GMMs for each accents, may be needed to explore
[63]. RBM is trained using data of all accents, with capability to deviate with

different accents.

2. Accent clustering based on certain distance measurements, such as Bhattacharyya
distance [56] can also be used to pre-classify accents into several clusters of ac-
cents, which may potentially help narrow down the search and improve the

classification accuracy.

3. In phoneme alignment and recognition based on tri-phone acoustic models, all
phoneme units with the same mid-phone are treated the same currently for
straight-forward implementation, the accent pattern may stay in the transition

of phonemes, which can be taken care of later.
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5. SUMMARY

In this thesis, we explore mispronunciation detection and classification in language
learning and speech recognition adaptation. Though the specific methods we de-
velop are different within these applications, the essential concept employed is the
same, which is using the information from the speaker’s own language to improve the
statistical models for better detection of mispronunciations.

In the application of language learning, each phone in the entire phonetic alpha-
bet is optimized to distinguish the correct pronunciation with all variations of that
particular phone, using the optimal frequency scale in generating cepstral coefficients.

In the application of speech recognition adaptation, two types of adaptation mech-
anisms are developed. One is adapting the grammar-based speech recognition engine
to variations in name pronunciation by learning additional but acceptable pronunci-
ations of the same name. The other is developing accent classifier to classify accents,
the classified accented speech can be used to adapt the speech recognition engine to
better recognizing speech with particular accents.

Here is a list of the work that has been completed thus far:

e Word-adaptive frequency scales have been optimized to maximize the separation

of two groups with correct and accented pronunciations respectively;

e PCA-based methods for mispronunciation detection and classification have been
implemented and have achieved competitive performance when the size of train-
ing data is limited;

e A phone-mapping method for designing accent-adapted phone recognizer has
been tested with Fisher (native) and WSJ (non-native) corpuses, and it shows

promising results for improving speech recognition results for non-native speech.

e A hierarchical pronunciation learning algorithm is designed and developed to

improve name recognition performance. This algorithm learns variation of name
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pronunciations and avoids overlap of pronunciations of different names in name

space through several effective and efficient pruning techniques;

e Several versions of accent classifiers were developed with discriminatively trained
HLDA acoustic features. The phonetic information was also utilized to improve
classification accuracy by extracting accent distinguishable vowels and build

classifiers with separated vowels.
Here is a list of future work that could be explored later:
e Find text-adaptive frequency scales of the phone-level based on two criteria:

1. maximize the separation of target phones and all other phones in the pho-

netic alphabet
2. maximize the correlation with human scoring of the target phone with

both native and non-native data

The first criterion requires larger native data and the second criterion requires
enough data in both native and non-native data to cover all variations of mis-

pronunciation and phone-level scoring on both corpuses.

e Explore both methods to improve speech recognizer to recognize accented speech:

1. develop phone mapping pairs sorted by contribution in speech recogni-
tion adaptation, and use these mappings to adjust standard LMs towards

accent-adapted LMs accordingly;
2. obtain the pentagon representation of 5 fundamental vowls in each accent-

adapted feature space, and classify the test speech into one of these cate-

gories using Vector Quantization (VQ) principles;

e Convert text-independent speech to text-dependent speech and construct a sub-

set of test data for accent-adapted phone recognizer performance tests:

1. current proposed method is based on LM log likelihood threshold;
2. modern data mining technique such as Latent Semantic Analysis (LSA)

will be explored to obtain better text-dependent subsets with high confi-

dence levels.
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The potential contributions of this thesis include:

e New language learning systems that will allow users to receive automatic feed-
back when mispronunciation errors are made. Once detected, these errors can
be corrected and played back to the learner — the same corrective principle
used presently by instructors but performed manually. Given that there are
millions of language learners, advancements in this area could potentially have

global impact.

e If we are successful, accents will be able to be detected in a short amount of
time and the speech engine will be able to be switched from standard to accent-
adapted. For the case of customer calls, more information may be recognized
and collected by the improved speech recognition engine and the call from the
accented speaker may be directed to an agent with the similar language origin
for better service. This technology could have widespread use by companies

operating in global markets.
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A. PHONEME CONFUSION MATRIX

Figure demonstrates the acoustic confusion matrix. It is symmetric and smaller
values indicate more similar the pairs of phones are. The value of ith row and jth
column is the average of the scaled “distances” of all samples of ith phone to the
acoustic model of jth phone based on Maximum Likelihood Estimation (MLE), and
the matrix is originally non-symmetric. Here it is averaged by its transpose to make
it symmetric for computation simplicity.

Figure demonstrates the linguistic confusion matrix which is also symmetric.
It indicates the phoneme clustering in Table [£.4] Value 0 indicate the pair of phones
belongs to the same cluster and linguistically confusable, and vise versa.

Figure demonstrates the union of both acoustic and linguistic confusion ma-
trices computed by Equation , which gives priority to linguistic confusion values.
Once the phones belong to the same linguistic cluster, the overall confusion values
will be 0 (most confusable), and acoustic confusion values are only considered when
the linguistic confusion values is 1.

Given the unioned confusion matrix in Table shows the first cluster of the
most similar phones of each target phone as its alternative candidates, by applying

k-mean clustering on the whole phone list sorted by similarity.

Table A.1: List of candidate phonemes for each phone

Phone | Thres- No. of Candidates
hold | Candidates (Confusion Value)
aa 6 7 aa(0), ae(0), ah(0), ao(0), aw(0), ay(4.5), ow(5.36)
ae 5 7 aa(0), ae(0), ah(0), ao(0), aw(0), eh(1.605), ih(4.915)
ah 4 6 aa(0), ae(0), ah(0), ao(0), aw(0), ih(3.585)
Continued on next page
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Table A.1 — continued from previous page
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Phone | Thres- No. of Candidates
hold | Candidates (Confusion Value)
t 2 3 d(0), t(0), k(1.97)
th 2 6 dh(0), th(0), s(1.295), £(1.49), p(1.49), 2(1.995)
uh 5 3 uh(0), uw(0), w(0)
uw 1 3 uh(0), uw(0), w(0)
v 1 2 £(0), v(0)
w 4 4 uh(0), uw(0), w(0), 1(3.305)
y 5 4 ay(0), ih(0), iy(0), y(0)
z 2 5 s(0), sh(0), z(0), zh(0), th(1.995)
zh 3 6 5(0), sh(0), z(0), zh(0), jh(2.02), ch(2.875)
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Fig. A.2. Linguistic confusion matrix with color Scales
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B. HLDA IMPLEMENTATION IN MATLAB

The implementation of HLDA in developing discriminatively optimized acoustic fea-
tures for accent classification is developed in MATLAB. The scripts are originally
from Dr. Kumar’s HLDA thesis [61], and are now improved in the following three
aspects:
1. simplify the original scripts by:
e combine similar scripts with different assumptions of data class covariance

matrices;

e reorganize routines in scripts by removing redundant variables and combine
similarly repeated routines;
e take advantage of new MATLAB version with cell structure and limit the

number of global variables.
2. generalize the code for classes with unequal number of data samples;

3. enable HLDA option such as frame size and deal with memory efficiency in

computing data global mean and between-class scatter.

B.1 Outline of the MATLAB scripts

1. main_setup.m and main_solve.m set up experiments to demonstrate the per-
formance of HLDA with two different assumptions of class covariances (type 1
and type 2), compared with LDA (type 1);

2. main_hlda.m is an example to transform original data to HLDA data using
HLDA,;

3. main_setup.m and main_solve.m are the simplified and re-organized version
from Dr. Kumar’s original MATLAB scripts, and main_hlda.m is my imple-

mentation using several scripts from Dr. Kumar.
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B.2 Detail Description of the MATLAB Scripts

1. main_setup.m: generate random Gaussian training and testing data and com-
pute the sufficient statistic for Heteroscedastic LDA (HLDA)

a. makedata.m: generate high-dimensional training (z) and testing (7)) data

(dimension p = 5) with uni-model Gaussian distribution with desired prop-

erties through classes:

i. type 1: equal covariance (could be full rank);
ii. type 2: unequal covariance, but diagonal;
iii. type 3: unequal covariance and full rank.

. initialize.m: compute sufficient statistic of the randomly generated train-

ing data x for HLDA [refer to Section 2.1 on Dr. Kumar’s thesis|:
i. X,: global mean;

ii. Xj: class mean;

iii. T'B: between-class scatter;

iv. W;B: within-class scatters for each class;

v. W B: within-class scatter for entire training data.

2. main_solve.m: using training and testing data generated in main_setup.m,

compute the HLDA transform matrix theta in each type and obtain the classifi-

cation performance for the case p = 2 and p = 5 (no dimension reduction)|refer

to Chapter 5 on Dr. Kumar’s thesis|

a. problem.m: find the HLDA transform matrix theta using Steepest Descent

(SD) optimization, based on the type of assumption in covariance matrices
of data in classes and various optimization options;

. fminsd.m(main Steepest Descent (SD) optimization script): use SD opti-
mization to find the minimum of the supplied function;

. loglik.m and gradient.m: compute log likelihood Lg(f|z) without the

constant terms and compute the gradient of —Lg(0|z).

3. main_hlda.m: main function to load feature and transform original feature to

HLDA feature using SD optimization with various assumptions in class covari-

ance and option settings in optimization

a. hlda.m: find the HLDA transform matrix using the original feature (a com-

bination of initialize.m and fminsd.m with loglik.m and gradient.m).



112

B.3 Structure of the MATLAB Scripts

makedata.m
main_setup.m <
initialize.m

loglik.m
problem.m [=| fminsd.m <

/ gradient.m
main_solve.m loglik.m
test.m
initialize.m
main_hlda.m hida.m < loglik.m
fminsd.m <
gradient.m

Fig. B.1. Structure of the MATALB scripts

B.4 Correspondences between the New HLDA Scripts and the Original
Scripts

1. main_setup.m = setup.m;

2. main_solve.m = solve.m;

problem.m = probleml.m, problem2.m, problem3.m;
loglik.m = ml.m, m2.m, m3.m;

gradient.m = gl.m, g2.m, g3.m;

test.m = testl.m, test2.m, test3.m;

I A

The remaining scripts share the same names as the original scripts.
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B.5 Examples of Data Generated and Used in Experiments

1. data_equall.mat(data_equal2.mat)/setup_equall.mat(setup_equal2.mat):

data with equally 200 samples in 4 classes;

2. data_unequall.mat(data_unequal2.mat)/setup_unequal2.mat
(setup_unequal2.mat): data with unequal number of samples in 4 classes: 200,
300, 100 and 200;

3. data_unequal3.mat/setup_unequal3.mat: data with unequal number of
samples in 4 classes: 200, 201, 199 and 200.

B.6 List of the MATLAB Scripts

The improved MATLAB scripts for HLDA listed below are included for reference:

1. main_setup.m; 5. problem.m; 9. test.m;
2. makedata.m; 6. fminsd.m; 10. main_hlda.m;
3. initialize2.m; 7. loglik.m;
’ & ’ 11. hlda.m.
4. main_solve.m; 8. gradient .m;
codes/hlda2/main _setup.m
1 % This program geneates random data and initializes all the wvariables for

% later use. You can use this program to generate a random problem .

% Children : makedata, initialize

5| %
% Variables :
1% — x{J}NJ(J),n]: training data

7% — Ix{J}[NJ(J) «50,n|: testing data

ol % — NJ: # of training data in each class
% — TNJ: # of testing data in each class
11| % — WB: global mean
% — Xjb: class means
13| % — TB: between — class  scatter
% — WjB: within — class scatters for each class
15| % — WB: within — class scatter for entire training data
Q
%

17| % Author: Nagendra Kumar
% Modified by Zhenhao Ge, 2012—12—09

clear all
global WjB WB TB Xjb Xb

N

3| % feature dimension
n = 5;

N
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69
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% The dimension of the sub—space that contains  discrimination  information
p0 = 2

9| % The random problem will correspond to one o f the three types :

% 1. All class variances are the same ( section 5.1.3)

% 2. Class variances are diagonalizable by the same transformation
% ( section 5.1.2)

% 3. Class variances are un—equal ( section 5.1.1)

35| type = 3;

gendata = 1; % option to use new generated data or existed data
useequal = 0;
if gendata ==
% set the points per class and total points for training and testing
NJ = [100; 150; 200; 250; 300];
J = length (NJ); % # of classes
N =sum(NJ); % total training points
TNJ= round(max (10000, N)+*NJ/mean(NJ)) ;
[x,Tx] = makedata (n,p0,NJ,TNJ type);
save (| data_’, datestr (now,30) ], 'x’, Tx’);
elseif gendata == 0
if useequal ==
load (7 data_equal2 ’,’x’,"Tx");
x = {x (1:200,:) ;x (201:400,:) ;x (401:600,:) ;x (601:800,:) };
Tx = {Tx (1:10000,:) ;Tx (10001:20000,:) ;...
Tx (20001:30000,:) ;Tx (30001:40000,) };
else
load (’ data_unequal3 200 —201—199—200", ’x’, Tx’);
end
end

%  Initialization

c = 1; % frame size factor

% [WB,WjB,TB,Xjb,Xb] = initialize (x);
[WB,W;jB, TB,Xjb,Xb] = initialize2 (x,c);

%% %% %% % % %0 %% % % % %o %o %6 % %6 % %o %o %o %6 % %6 %o %o %o %0 %6 % %6 % %o %o Yo
% These are Numerical optimization option %

options = foptions ;

% Provide a feedback every options (1) iterations

options (1) = 200;

% options (1) = 0;

% Minimum Step Size

options (2) = le—3§;

% Minimum improvement at every iteration

options (3) = le—8§;

options (6) = 1;
options (9) = 0;
% options (9) = 1;

options (13) = 0;
% Maximum number of iterations

options (14) = 1000000;
options (16) = le—11;

options (17) = le—3;

% Initial guess of step — size
options (18) = 0.001;
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%096%% %0 % % %% %0 %o %o 7 76 %0 Vo Yo T % 76 %0 Yo Yo Yo 7o %6 %0 Vo Yo To %o 6 %0 Yo Yo Yo o %o

5| save ([ "setup ', datestr (now,30) |, 'x’, Tx’, 'c¢’, ’p0’, ’type’, 'Xb’,

"Xjb’, "WjB’, *WB’, "TB’, ’ options ');
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codes/hlda2/makedata.m

function [x,Tx, theta ,mu] = makedata (n,p,NJ,TNJ,type)

% Program for creating random data, it assumes that you have specified your

% requirements using the "setup" script

%

% Variables :

% —n: feature dimension
% —J: # of classes

%

% Usage: makedata
% Programmar: Nagendra Kumar
% Modified by Zhenhao Ge, 2012—12—-09

% % save the current generator settings in s
% s — rng ( shuffle ) ;

theta = rand (n,n);
Ithetat = inv ( theta ’) ;

J = length (NJ);

mu = zeros (n,J);

% x = zeros (ppcxJ,n);
% Tx = zeros (TppexJ,n);

x = cell (J,1);
Tx = cell (J,1);
for j = 1:J

u(:j) = Ithetat (:,1: p)*randn(p 1) *2;
x{j} = ones (NJ(j) 1) s«mu (z, j)
Tx{j} = ones (TNJ(j), )*mu(,J)

en

% A way to decide the ratio of the variance between the rejected and
% retained sub— spaces

% alpha = rand (1,1) ;

alpha = 1;

beta = 5k alpha ;

Srej = betaxrandn (n—p,n—p);

if type == 3 % section 5.1.1 ( full rank)
for j = 1:J
Sj = alphaxrandn (p,p); % everytime  different
% every section of x =x ( orginal ) + variance around it
x{j} =x{j} + [randn (NJ(j),p)*Sj,randn (NJ(j),n—p)* Srej |« Ithetat ’;
Tx{j} = Tx{j} + [randn (TNJ(j),p)=*Sj, randn (TNJ(j) ,n—p)* Srej |« Ithetat ’;
end

elseif type ==2 % section 5.1.2 ( diagonal )
for j = 1:J
Sj = alphaxrandn (p,p);

diag ( diag (Sj));
x{j} =x{j} + [randn(NJ(j),p)=*Sj, randn (NJ(j),n—p)* Srej |* Ithetat ’;
Tx{j} =Tx{j} + [randn(TNJ( ),p)*Sj, randn (TNJ(j),n—p)= Srej |* Ithetat ’;
end
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elseif type == 1% section 5.1.3 (equal)
Sj = randn(p,p);
for j = 1:J

x{j} =x{j} + [randn(NJ(j),p)=*Sj, randn (NJ(j),n—p)* Srej |* Ithetat ’;
Tx{j} = Tx{j} + [randn (TNJ(j),p)*Sj, randn(TNJ(j),n—p)* Srej |* Ithetat ’;
end
end
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codes/hlda2/initialize2.m

function [WB,W;jB,TB,Xjbc,Xbc] = initialize2 (x,c)

% This program computes the  sufficient statistic =~ for = Heteroscedastic  Linear
% Discriminant  Analysis .

%

% The initial guess for theta can be Identity matrix .

%

% Imporved from initialize .m with 1) consideration of memory use and frame
% size ( results  slightly different in the computation of Xb and TB), and 2)
% add frame size factor ¢ to overlap data for potential accuracy

% improvement

%

2| % Variables :

% x{J}NJ(),n] — data

% xv[NJ{j},nc] — global mean centralized data for current segment

% ¢ — # of frames add on each side of original frame (frame size = 2xc+1)
% n — data dimension

% nc — data dimension with frame factor

% N — total # of samples

% Nc — total # of samples with frame factor

% J — # of classes

% NJ[J,1] — # of samples in each class

% Xjb[n,J] — class mean in columns

%  Xjbc[nc,J] — class mean in columns with frame factor

% Xb|n,1] — global mean

%  Xbc[nc ,1] — global mean with frame factor

%  Wij{J 1}[n,n] — overall within —class scatter for each class

% Wj2[n,n,J] — alternative Wj with different data format

% WjB{J,1}[n,n] — normalized within — class scatter for each class
% WBn,n| — within — class  scatter

% T[nc,nc] — overall between— class scatter

% TBIn,n] — between — class scatter

2| %

% Usage: Initialize
% Programmer: Zhenhao Ge, 2012—12—09
% Note: alternative  script of initialize .m from Nagendra Kumar

if nargin < 2, ¢ = 0; end

% # of total points for each classes ("NJ’) and # of classes
[NJ,n] = cellfun ( @size ,x);
J = length (NJ);

% feature dimension (’n’)
if range (n) "= 0, error (’ feature dimensions inconsistent among classes !’);
else n =n(l); end

% class means (’Xjb’)
Xjb = cell2mat ( cellfun (@mean, x, ’ UniformOutput’, 0))’;
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% global mean ( alternative approach , faster with ignorable computational
% truncation errors )
Xb = XjbxNJ./sum(NJ);

% extend frame with frame size (’fs’)
fs = 2xc+1;

nc = nxfs;

NJc = NJ—fs+1;

Nc¢ = sum(NJc) ;

Xjbc = repmat (Xjb, fs ,1) ;

Xbc = repmat (Xb, fs 1) ;

2| % find between — class & within — class  scatter TB & WB for each class (eq.

T = zeros (nc);
Wj = cell (J,1);
WjB = cell (J,1) ;
for j = 1:J

if fs ==

% Kumar’s approach to find between — class scatter
xv =x{j} — ones(NJc(j) ,1) *Xbc’;
T =T + xv’sxv;

% find within — class scatter
xj =x{j} — ones(NJc(j),1)*Xjbe (:, j)
Wili} = xj*xj;

elseif fs >1

nSeg = round ( linspace (1,NJ(j),fs));
nSeg (end) = nSeg(end)+1;
Wi{j} = zeros (nc);

for i = 1:fs—1

% find current overlaped data
xi = matola (x{j }’, fs, nSeg(i), nSeg(i+1)—nSeg(i))
lenSeg = size (xi,1); % segment length

% Kumar’s approach to find between — class scatter
xv = xi — ones ( lenSeg ,1) *Xbc’;
T =T + xv’«xv;

% find within — class  scatter
xj = xi — ones ( lenSeg ,1) *Xjbc (z, j)
Wili} = Wili} + xj 7 xj;

) y~

, num2str (nSeg(i)), ,

disp ([ *computed segments
" in class 7, num2str(j)]) ;

num?2str (nSeg (i)+lenSeg —1),
end

end

WiB{j} = Wi{j}/NJe(j);

117




108

110

112

114

'S

14

16

30

32

34

36

38

40

44

46

end

% sum them up for all classes
Wij2 = cat (3, Wj{:});

% normalization (not necessary since both TB and WB are normalized by the
% same factor )

TB = T/Nc;

WB = sum(Wj2,3) /Nc;
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codes/hlda2/main_solve.m

% Solves for the Optimal theta (s) for the case p=2, and displays the

% selected sub—space on the screen

% Then, computes the classification performances for the cases p—2, and p=>5
% under different models

% Assumes n>4, and J<17

% Assumes that the variables have been setup properly

% Set ccomp = 0 if you dont want to solve for theta

%

% Programmar: Nagendra Kumar

% Modified by Zhenhao Ge, 2012—12—09

%% Initialization
global p NJ

% load setting from setup
% load (* setup_equal2 ’) ;
load (’ setup 20121209T181021 *);

% % swith back to old format
% x — cell2mat (x);

% Tx — cell2mat (Tx);

% classes = |0; cumsum(NJ) |;
% Tclasses = [0; cumsum(TNJ)[;

% find n,N,J,NJ,TNJ
[NJ,n] = cellfun ( @size ,x);
if range(n) "=0
error (7 features of classes should have the same dimension !’);

else
n =n(l);
end
TNJ = cellfun ( @length ,Tx);
N = sum(NJ);

J = length (NJ);

% initialize  theta
fs = 2xc+1;
theta = zeros (fs*n, fs *n ,6) ;

% loglik in case(i,j), where i is case of subspace dimension (1 or 2), j is
% case of covariance matrix (1, 2, or 3)
m = zeros (2,3) ;

% specify color space and titil for each case
Xeol =000, 001, 01 0; 01 1;
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strTitle = {’1: Projection wusing LDA’;

"2 Projection with HLDA: unequal diagonal

’3:  Projection with HLDA: unequal S’ };

% option to compute theta
comp = 1;

%% subspace dimension 2

% subspace dimension
P =2

% compute transform matrix in each case
if comp ==

theta (::,1) = problem (TB,WB,1, options ) ;
theta (:,:,2) — problem (TB,WB,2, options , theta
theta (:,:,3) = problem (TB,WB,3, options , theta

end

% figure (4), hold on,

% for j = 1:]

% h = plot (X{] }(73) 7X{.j }(:74) 77+7) ;
% set (h,” col 7, Xcol (j ;1) );

% end

% title (° original data’), hold off ;

% 2D plot for demonstration
Xt = cell (J,6) ;

close all

for i = 1:3

figure (i), hold on,

for j = 1:J
% obtain the dimension —reduced feature
xi = matola (x{j }’, fs) ’;
Xt{j,i} = xi*xtheta (:,1: p,i);
% plot 2D data
h = plOt (Xt{.] 7i }(71) 7Xt{.] 7i }(72) ) ,J'J);
set (h,” col 7, Xcol (] ,:) );
end
title ( strTitle {i}), hold off ,
end
% compute the loglik and accuracy for each case
p2 = zeros (3,3) ;
for i = 1.3
m(1l,i) = loglik (theta (:: 1),1);
for j = 1:3

p2(i,j) = test (theta (:: 1),Tx,j);
end
end

% display accuracy
disp ("'p2 = 7); disp (p2);

%% subspace dimension 5

(1) )5
(1) )5

S’

3
J
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% subspace dimension

p = 5
% compute transform matrix in each case
if comp ==
theta (:,:,4) = problem (TB,WB,1, options ) ;
theta (:,:,5) = problem (TB,WB,2, options , theta (:,:,2) );
theta (:,:,6) = problem (TB,WB,3, options , theta (:,:,3) );
end

% compute the loglik and accuracy for each case
pb = zeros (3,3) ;

for i = 1:3
m(2,i) = loglik (theta (:: 1i),i);
for j = 1:3
p5(i,j) — test (theta (:: 143),Tx,j);
end
end

% display accuracy and loglik

disp ('p5 = 7); disp (p5);
disp ('m = 7); disp (m);

J
)

120

codes/hlda2/problem.m

function theta — problem (TB,WB,type, options , theta0 )
% This is a implementation of LDA

% Usage: thetal = probleml (TB,WB)

% Programmer: Nagendra Kumar

n = size (TB,1);

if type ==1 || nargin <4
[V,D] = eig (WB\TB);

% [V,D] = eig (TB,WB,/qz’) ; % from Ildatrace .m
% simplified but identical approach
[7,I] = sort ( real (diag (D)’) —1,” descend ’);
theta0 =V (;,1);
theta0 = real ( theta0O ) + imag( theta0 );

t = det ( theta0 ) ;
if t <0

thetaO (:, n) = —1lxtheta0 (:, n);
end

% % original  approach

% [7,I] = sort ( real (diag (D)’)—1);

% a = size (TB,1);

5| % for i =a:—1:1

% theta0 (a—i+1,:) =V (;,I(1)) 7

% end

% theta0 — real ( thetaO ) + imag( theta0 );

% t — det ( theta0 ) ;

% if t <0

% thetaO (n ;) = —1xthetal (n ;) ;

% end
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% theta0 = theta0 ’;
end

tt = fminsd ( thetaO , options , type ) ;
theta = reshape (tt,n,n);

% Following  normalizations make the matrix theta2 well scaled , and do not
% affect the log— likelihood

theta = theta /( diag ( sqrt ( diag ( theta * theta ’) )));

theta = theta /( det ( theta ) ~(1/n));
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codes/hlda2/fminsd.m

function [xc,OPTIONS] = fminsd (xc, OPTIONS, type)
% Uses steepest descent to find the minimum of the supplied function . Needs
% the gradients to be suplied  explicitly

%

% Usage : fminsd (FUN,xc, OPTIONS,GRADFUN)

% FUN : String argument — name of the function to be optimized
% xc . Initial Guess of the value

% OPTIONS: Various options on feedback and termination  confitions  follow
% the same format as MATLAB optimization toolbox

% GRADFUN: String argument — function that computes gradient of FUN

%

% Written by Nagendra Kumar

% Modified by Zhenhao Ge, 2012—12—09

xc = xc (3) ;

f = loglik (xc,type);
nn = length (xc);

n = sqrt (nn);

g = gradient (xc, type);
if OPTIONS(18) > 0

step = OPTIONS(18);
else

step = 0.01;

5| end

OLDX = xc;

OLDF = f;

OLDG = g;

nog = norm(OLDG);

ng — nogj;

tt = reshape (xc,n,n);
e = 0

OPTIONS(10)
OPTIONS(11)
status = —1;
improv = 0;
disp ([ f, improv, step, det(tt)]);
cnt = 1;

while status < 2

it (e < 1)

; % F cnt
; % Gradient Cnt

[
—
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status = —1;
end
e = 0;
x¢ = OLDX — stepxg;
f = loglik (xc,type);
OPTIONS(10) = OPTIONS(10)+1;
if f > OLDF

step = step /2.0;

if (step*ng) < OPTIONS(2)
disp ([ ’step ', sprintf (° %5.5e¢’, steps*ng) <,
sprintf (* %5.5¢’, OPTIONS(2))]);
status = status + 1;
e = 1;
end

if OPTIONS(10) < 80
status = —1;
end

if OPTIONS(14) < OPTIONS(10)
disp ([ 'Max # of iterations exceeded
sprintf (*%7.0f’, OPTIONS(10))]) ;
status = status + 1;
e = 1;

)

end
else

improv = OLDF — f;
g = gradient (xc, type);
OPTIONS(11) = OPTIONS(11)+1;
ng = norm(g);
% Now a Heuristic formula for Step Size
step = step x0.85%(140.6%( sum(OLDG.xg)/(nogxng)));
cnt = cnt +1;
if cnt > OPTIONS(1)
if OPTIONS(1) = 0
tt = reshape (xc,n,n);
fprintf (*%d %e %e %e %e\n’, OPTIONS(10),
f, improv, stepsng, det(tt));
cnt = 1;
end
end
OLDX = xc;
OLDF = f;
OLDG = g;

nog = ng;
if (stepx*ng) < OPTIONS(2)
disp ([ " step ’, sprintf (7 %5.5e’, step*ng) <7,
sprintf (* %5.5¢’, OPTIONS(2))]);
status = status +1;
e = 1;
end

if improv < OPTIONS(3)x0.2
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disp ([ ’Df’, sprintf (* %5.5e¢’, improv) <’
sprintf (* %5.5¢’, OPTIONS(3))]);
status = status +1;
e = 1;
end
if ng < OPTIONS(4)
disp (| ’G’, sprintf (° %5.5e’, ng) <7,
sprintf (7 %5.5e’, OPTIONS(4))]) ;
status = status +1;
e = 1;
end
if OPTIONS(10) < 80
status = —1;
end
if OPTIONS(14) < OPTIONS(10)
disp ([ 'max # of iterations exceeded
sprintf (*%7.0f", OPTIONS(10))]) :
status = status +1;
e = 1;
end
end
end
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codes /hlda2/loglik.m

function f = loglik (tt,type)

% Function Le( theta |x) without the constant terms (input is theta )

% Assumes that the necesseary  variables have been declared as
% It scales the likelihood wusing the MDL criterion
% Programmer: Nagendra Kumar

global p NJ WB WiB TB

N = sum(NJ);
J = length (NJ);
tt = tt (2) ;

n = sqrt ( length (tt));
theta = reshape (tt ,n,n);
theta p = theta (:,1: p);

5| theta _np = theta (i, p+1:m);

t1 = log (prod ( diag (theta np '« TBxtheta np)));

if type ==1

t2 = log (prod ( diag (theta p ’«+ WBxtheta p)));

npar = Jsp+(n—p)+(nx(n+1) /2) ;
elseif type ==

t2 = 0;

for j = 1:J

12 =t2 4+ (NJ(j)/N) *...
log (prod ( diag (theta p ’« WjB{j}«theta p)));

end

npar = 2+Jxp + 2x(n—p) + nx(n—1) /2;
elseif type == 3

t2 = 0;

for j = 1:J

global
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t2 =t2 + (NJ(j)/N) = ..
log (det (theta p ’« WjB{j}«theta p));
end
npar = J«p + (n—p) + (J=1D)xpx(p+1)/2 +n + (nx(n—1)/2);
end

f = 0.5%( t1+t2) — log (det ( theta)) + (npar /2) *(log (N)/N);
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codes/hlda2/gradient.m

function df = gradient (tt,type)

% Computes gradient of —Le(theta |x) (input is theta )

% Assumes that the necessary  variables have been declared as global
% Programmer: Nagendra Kumar

global p NJ WB WjB TB

N = sum(NJ);
J = length (NJ);
tt = tt () ;

n = sqrt ( length (tt));
theta = reshape (tt,n,n);
theta p = theta (:,1: p);
theta np = theta (:, p+1:n);

if type ==1
t1 = WBxtheta pxdiag (1./ diag (theta p ’x WBxtheta p));
elseif type == 2
tl = 0;
for j = 1:J
t1 =t1 + (NJ(j)/N)xWjB{j}«theta p ..
diag (1./ diag (theta p’« WjB{j}xtheta p));

end
elseif type ==
tl = 0;
for j = 1:J
t1 =t1 + (NJ(j)/N)xWjB{j}+theta p /(theta p’«+ WjB{j}+theta p);
end

end

t2 = TBxtheta npxdiag (1./ diag (theta np ’«+ TBxtheta np));
t3 = [t1,t2] — inv ( theta ’) ;
df =13 () ;

codes/hlda2/test.m

function [ accuracy , correct ,cr] = test ( theta ,xx, type)
% Program for testing on the test data
% Programmer: Nagendra Kumar

global p WB WjB Xjb

% find frame size
fs = size (Xjb,1) / size (xx {1},2) ;
if round(fs) "= fs

error (7 fs is mnot integer !’);
end
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J = length (WjB);
theta p = theta (:,1: p);

s5|mu_hat = theta_p’xXjb;

| lgs = zeros (J,1) ;
S_hat = cell (J,1);
o/ IS_hat = cell (J,1);
Xt = cell (J,1);
for j = 1:J
it type ——
S_hat{j} = diag ( diag (theta_p ’x WBxtheta_p));
elseif type == 2
S_hat{j} = theta p’«+ WjB{j}«theta p;
elseif type == 3

S_hat{j} = diag ( diag (theta_ p >« WjB{j}*theta p));
end

lgs () = log (det (S_hat{j H);
IS hat{j} = inv(S_hat{j});

xxi = matola (xx{j }’, fs) ’;
Xt{j} — xxixtheta p;

end

TNJ = cellfun ( @length ,Xt);
TN = sum(TNJ),

Dt = cell (J,J);

lgl = cell (J,J);
classif = cell (J,1);
correct = zeros (J,1) ;

for j = 1:J % jth model

lgl {j} = zeros (TNI(}) 1) ;
for i = 1:J % ith class of data
Dt{j,i} =Xt{i} — ones(TNJ(i),l) *mu_hat(:,j)
Dt{j,i} = (Dt{j,i}*IS_hat{j}) «Dt{j,i};
Dt{j.i} = sum(Dt{j,i }.2) ;
lgl {j,i} = —Dtfj,i} — lgs (j);
end

5| end

for i = 1:J
lgl2 = cell2mat (gl (:, 1)) ;
[T, classif {i}] = max(l1gl2 ;[] 2)
correct (1) = sum( classif {i}==i);
end

accuracy = sum( correct )/TN;
cr = correct ./ TNJ;
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codes/hlda2 /main _hlda.m

% Main function of transform original feature to HLDA feature using
% Steepest Descent (SD) optmization with various assumptions in class
% covarainces and option settings in optimization
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%
% Author: Roger Ge, roger . ge@inin .com
% Date created : 2012—12—03

global p NJ

% load setting from setup
load (’ data_unequal3 200 —201—-199—-200",’x’);

% set up numerical optimization option

options = foptions ;

% Provide a feedback every options (1) iterations
options (1) = 200;

% options (1) = 0;

% Minimum Step Size

options (2) = le—8;

% Minimum improvement at every iteration

options (3) = le—8§;

options (6) 1;

options (9) 0;
% options (9) = 1;
options (13) = 0;

5| % Maximum number of iterations

options (14) = 1000000;
options (16) = le—11;

options (17) = le—3;

% Initial guess of step — size
options (18) = 0.001;

) )

save (’ hlda_opts ’,’ options ’);

% find n,J,NJ
J = length (x);
[NJ,n] = cellfun ( @size ,x);
if range (n) =0
error (’ features of classes should have the same
else

n =n(l);
end
p = 2
c = 1;
type = 3;

theta = hlda (x,c, type , options ) ;

Xt = cell (J,1);
for j = 1:J

Xt{j} = x{j}*theta (:,1: p);
end

dimension !’);
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codes/hlda2/hlda.m

function theta = hlda (x,c, type, options , theta0 )

% Find the HLDA transform matrix using the original
%

% Reference : Thesis from Nagendra Kumar

%

% Author: Roger Ge, roger@inin .com

% Date created : 2012—12—03

feature
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global WB WjB TB Xjb

[WB,WjB,TB,Xjb] = initialize2 (x,c);

n = size (TB,1);
5| if type == 1 || nargin <5
[V,D] — eig (WB\TB);

[7, I] = sort ( real (diag (D)’) —1,’ descend ’);
theta0 =V (;,1);
theta0 = real ( thetaO ) + imag( theta0 );
t = det ( theta0 ) ;
if t <0
thetaO (:, n) = —1lxtheta0 (:, n);
end

% find theta wusing steepest descent optimization
tt = fminsd ( thetaO , options ,1) ;

theta = reshape (tt ,n,n);

% normalization of theta

theta = theta /( diag ( sqrt ( diag ( theta x theta ’) )));
theta = theta /( det ( theta ) ~(1/n));

end

% type 2 and 3

if type == 2 || type ==
% find theta wusing steepest descent optimization
if exist (7 theta ’,’ var’)
thetaD = theta ;
end

tt = fminsd ( thetaO , options , type);
theta = reshape (tt ,n,n);

% normalization of theta
theta = theta /( diag ( sqrt ( diag ( theta % theta ) )));
theta — theta /( det ( theta ) ~(1/n));

end
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