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Abstract 

Simple tracking algorithms based upon nearest neighbor filtering do not correctly con- 

sider measurement origin uncertainty and, therefore, fail to  perform well in situations of 

high target density and clutter. The optimal tracking algorithm for commonly used target- 

clutter models computes the posterior density of the target state conditioned on the past 

history of' observations. This posterior density is a Gaussian mixture with the number of 

terms equal to the number of possible ways to associate observations and targets. Though 

a recursive algorithm may be developed for the optimal estimator, it requires exponentially 

growing rlemory and computation and is, therefore, unimplementable. In this paper a new 

suboptimal algorithm is proposed where approximation is done by naturally partitioning 

and grouping the target state estimates into a set of approximate sufficient statistics. A 

new critel-ion fu~lc t io~l  is iiltroduced in this approximation process. The well-known Proba- 

bilistic Data Association filter (PDAF) turns out to be a special case of the new algorithm. 

Comparisons are made for the proposed estimator versus the PDAF. 



Target tracking is an old problem with origins going back as far as eighteenth century 

astronom,ers who first attempted to determine the orbits of the visible planets. More 

modern work can trace its ancestry to the early 1960s where the problem was driven by 

applicaticms in ballistic missile defense, orbital vehicle tracking, and air traffic control. 

Certain applications of target tracking have become relatively more important in the last 

few years. These include air traffic control [I] fueled by large growth in civilian aviation 

and the resulting traffic congestion near major airports, and highway veh.icle surveillance 

[2], motivated by current interest in intelligent transportation systems. 

A major issue in the design of target tracking systems is the uncertainty associated 

with the origin of measurements. Such uncertainty arises due to the presence of clutter, 

receiver related false alarms, and other nearby targets. In many situations the measurement 

origin uncertainty is a far more important impairment to tracking performance than is 

the noise associated with the measurements themselves. The use of standard trajectory 

estimation algorithms where the measurement nearest (in some metric) .to the predicted 

measurement is chosen to  update a track can lead to very poor perfori-nance when the 

density o-E spurious measurements is high. Such an algorithm (the nearest. neighbor filter) 

does not properly account for the fact that the measurement chosen for track update may 

be unrelated to the target. The recent introduction of advanced sensors which capture new 

types of target information (target signatures, images, etc.) in addition to position and 

velocity have made advances in tracking algorithms possible. At the same time these new 

data collection possibilities complicate implementation by adding to the huge amount of 

data that must be processed. Processing power will therefore continue to be a bottleneck 

in the implementation of sophisticated tracking algorithms. 

Some of the earliest tracking research done in the modern spirit can be traced to the 

1964 paper by Sittler [3]. In order to account for measurement origin uncertainty, he pro- 

posed splitting the track whenever more than one observation was mad,e in the vicinity 

of a predicted measurement. A likelihood function for each trajectory was computed and 

those falling below a threshold were dropped in order to avoid an exponential growth in 

complexity. Sittler's work was done before the I<alman filter became popu~lar in trajectory 

estimation problems. Similar approaches were taken by Stein and Blackman [4] and Smith 

and Buechler [5] who modernized Sittler's approach and incorporated Kalrnan filtering and 



dynamic .modeling of the targets. In the same spirit Morefield [6] solved for the maximum 

likelihood data association hypothesis by formulating the problem using integer linear pro- 

gramming. Though the algorithm is a batch processing method, it can be reformulated in 

a recursi~.e way with a loss of global optimality. 

The tracking algorithms mentioned above are all based upon finding the maximum 

likelihood. data association. Once measurements have been grouped into individual tracks, 

state estimates and error covariances are computed from a standard set of Kalman filters. 

In this sense they are basically non-Bayesian methods because the estimated trajectories 

are computed assuming that the maximum likelihood data association is correct. The 

resulting state estimates and covariances do not account for the possibility that the data 

association is incorrect [ 7 ] .  

Bayesian approaches to target tracking were first developed using the nearest neighbor 

filter and a modification to the Kalman filter which accounted for the a priori probabil- 

ity that -;he measurement used for state update was spurious [8, 91. Later, Jaffer and 

Bar-Shalom [lo] modified the filter to use posterior statistics on the correctness of the 

measurement used in the nearest neighbor filter. More recent work has focussed on the 

incorpora,tion of all validated measurements into the target trajectory estimate using a so- 

called "all neighbors" filter. The optimal algorithm in this Bayesian setup was derived by 

Singer, Sea and Housewright [l:I.] and involves a. geometrically expanding tree of tra,jectories 

which account for all possible data associations. For a single target in clutter, the minimum 

mean squared error estimate of the state is a 1inea.r combination of all trajectory estimates 

in the tree weighted by the posterior probabilities of each corresponding data association. 

Since this procedure involves an exponentially growing memory, suboptimal algorithms are 

required for implementation. One suboptimal algorithm, known as the N-scan filter [I].], 

involves splitting tracks back only N scans in time. This prevents memory requirements 

from growing. In the examples included in [ll] it was noted that near optimal performance 

was obtained for N as small as one. 

The nlost successful algorithm in the class of Bayesian all-neighbors fil.ters is the prob- 

abilistic data association (PDA) filter of Bar-Shalom and his collabora1,ors [12, 131. It 

corresportds to  an N = 0 scan filter in the terminology of Singer et al. Tlie algorithm up- 

dates the target state estimate using all validated measurements and posterior probability 

weightings. The PDA algorithm is derived by making the assumption that the one step 



prediction density of the state given all past observations is a Gaussian density (strictly 

speaking it is a Gaussian mixture). From this assumption the PDA algorithm is derived. 

It achieves good performance with complexity only moderately greater than that of the 

standard nearest neighbor filter. 

The outline of the paper is as follows. The basic modeling assumptions used are given 

in Sectiori 2 followed by a brief discussion of the optimal algorithm. Section 3 develops the 

hypothesis clustering approach and summarizes the new tracking algorithm for the case of 

one target in clutter. Simulation results are presented in Section 4 and the paper ends with 

a short conclusion. 

2 Model for Target and Clutter 

In the following we outline our model for tracking a single target with nodsy observations 

of the state tra.jectory embedded in clutter. The model we use here will apply to  a variety 

of tracking algorithms including: the optimal linear filter, the nearest neighbor filter, the 

optimal nonlinear filter, and the probabilistic data association filter. For simplicity, we 

will consider only linear dynamic models for the state. Nonlinear models arise naturally 

from physical considerations in tracking problems but: (1) the fundamental problem in 

target tracking in clutter is the nonlinearity due to unknown data association rather than 

nonlinearities due to state dynamics, and (2) the usual approach to nonlinear dynamics is 

linearization about a known trajectory anyway. 

2.1 Target dynamic model 

The state of the target at discrete time k is represented by an n, x 1 vector xk which is 

assumed to satisfy a dynamic model of the form 

where the initial sta.te xo has a Gaussian distribution with mean po and covariance Po and 

the process noise w is an independent sequence of zero mean Gaussian random vectors 

with covitriance matrix Q. As usual, we assume that the initial state and the noise are 

statistically independent. Note also, that we may allow F and Q to depend upon the time 

index k.  This is not explicitly indicated in the interest of a simpler notation. 



State observations for such a model are written 

where H is n, x n, and the measurement noise v is a sequence of independent Gaussian 

random \.ectors with zero mean and covariance R. The matrices H and R may be allowed 

to depend upon the time index k. Finally! it is assumed that xo, w, and v are statistically 

independent of each other. 

While there is no need to restrict the structure of the matrix F above, the canonical 

tracking (example is the constant velocity model where (for one dimensional motion with 

uniform s.ampling of a continuous state model with rate 1/T), xk = [ tk ik I T ,  

F = [ b ] ? and Q = [ ;:\: 'y2 ] q. 

If the measurement consists of position only, then one would have z k  == + vk, H = 

[ 1 0 ] , and R would be a scalar. In simulations we will usually use a normalization of 

the state and output equations which amounts to using T for the unit of time and for 

the unit d distance. The new state is zk = [ &/a &T/O I T ,  the new observation is 

.v7k = ~ k / l h ? ,  and the model matrices become 

H = H, and R = 1. The advantage of the normalized model in simulations is that it 

contains but a single parameter q = qT3/R controlling the "tracking difliculty [13]." By 

adding more components to the model above, we can consider target motion in two or three 

dimensio-ns. 

2.2 R.emark on notation 

To denote the probability of an event E we will write P(E) .  Probability mass functions 

will be denoted by p and continuous probability density functions by f .  For joint density- 

mass fun~ztions we will also use .f. If S is a discrete random variable, we nlay use either of 

the follov~ing to indicate its mass function: ps(.) or p(S). In addition, we may write ps(0) 

or p(S = 0) to indicate the same thing. Similar notation is used for continuous random 

variables. 



2.3 Measurement model for clutter 

Many difl'erent models for clutter in target tracking problems have been proposed. It seems 

clear that a reasonable model for clutter should (1) be independent of the target state, and 

(2) be dependent upon the volume observed by the sensors which produce target state 

observations. If we wish to model clutter which arises (as in a radar tracking problem) 

from fixed objects on the ground (trees, tall buildings, etc.) or from thermal noise in the 

radar receiver, then a reasonable approach would say that clutter locations are a realization 

of a spatial Poisson process taking values in the n, x 1 observation space. Associated with 

the process is a density A, with the inter~reta~tion that if a region in the observation space 

has volunle V, then the number of clutter centers located in that region is a Poisson random 

variable with parameter X,V. Furthermore, conditioned upon the number of clutter centers 

in a region, the locations are independently and uniformly distributed. 

Most tracking algorithms contain an observation preprocessing stage where candidate 

measurernents are validated before use in track update. Thus, a tracking algorithm would 

 recursive:.^ generate a sequence of validation gates Gk ,  k 2 0, which are subsets of the 

n,-dimerlsional observation space. The idea being that a measurement received in scan k 

is ~~~~~~~~~ed for track update only if it falls inside Gk. Since the tracking algorithm must 

 recursive:.^ generate the gates, Gk must be a function of all past (i.e., up to scan k - 1) 

validated measurements. We will suppose that an observation vector 

of size nzmk x 1 (mk > 0 is the number of validated measurements) is produced by the 

sensor at time k. If the target measurement is detected, then it is one of the measurements 

yk,i and any others are due to clutter. Note that the ordering is assumed to be random. 

Let T/i, be the volume of G k  and let nk be the number of validated clutter measureineilts 

in scan 1: (0 5 7zk 5 mk).  Using the spatial Poisson model for clutter generation, it 

follows that the conditional distribution of nk given Ifk is Poisson with parameter XcVk. 

Furthermore, if (assuming nk > 0) 

denotes the vector of clutter measurements validated in scan k, then the probability density 

of c k  given nk and G k  is specified by noting that the ck.i are independently and uniformly 

distributed over the gate Gk. 



At a :particular scan time k, the target related measurement z k  will be present in the 

observation set only if the target is actually detected. To model the detection process let 

{ d k  : k I? 0) be an i.i.d. sequence taking values 0 and 1 with the interpretation that 

the target is detected at time k if and only if dk = 1. Define the detection probability 

to  be Po = pd(l).  We include the possibility that z k  will fall outside of the gate in the 

detection probability. Of course, the validation gates are designed to contain the target 

related rr~easurement with high probability. 

The clbservation process is of varying dimension depending upon the detection of the 

target and the number of clutter measurements. The observation at scan time k has the 

form ( m k ,  y k )  where mk is a non-negative integer indicating the number of measurements 

and y k  is a real vector of dimension mkn,. This notation is used to emphasize the fact the 

observation contains the number of measurements information. 

To co-mpletely specify the measurements in an observation scan we need to know if the 

scan contains a target related measurement, and, if so, where that measurement is located 

in the observa.tion set. To keep track of the actual measurement situation. we hypothesize 

a data as.sociation random process { rk  : k 2 0). Define rn. as a random function of the 

random va.riables dk and nk in the sense that 

The first component jk indicates the position of the target related measurement in the 

vector y k ;  it may take values between 0 and mk = nk + d k .  If dk  = 0, then j k  = 0 and (for 

If dk = 1: then jk  takes a value between 1 and mk = nk + 1 and 

in otherwords, zn. appea.rs a.s the element y k , j k  in the vector y k  of dimension nzkn., = 

(nk + dk)n, .  If nk = 0, then yn. consists of the single measurement z k  when dk = 1, or 

is empty when dk = 0. 

The ~narginal distributions of the jk  will be specified in such a way that they are 

identically distributed, and, in addition, we will assume that they are independent. The 

distribution of jk  is specified by conditioning on dk and nk. If no target detection is made 



p ( j k  = O ( l &  = 0 ,  n k )  = 1  regardless of the value of nk while if the target is detected 

p( jk  Idk = 1 ,  nk) = 
l / ( n k  + 1 )  for 1 5 j k  5 nk + 1  

otherwise 

As specified above the data association process 7rk is iid. Each must take values of the 

form 7rk == ( j k ,  mk) where mk > 0 and 0 5 jk  5 mk. The unconditional distribution of 7rk 

is found from the work given above as 

2.4 The Optimal Single Target Tracking Algorithm 

For tracking a single target in clutter it is natural to  choose the mean-squa.red error ( M S E )  

as the criterion for optimality. In this section we summarize the M M S E  estimator and 

illustrate a recursive algorithm for its computation. The goal is the conlputation of the 

estimate of the state a t  time k given the sequence rk = { Y ~ ,  . . . , ~ k }  of observations up 

to  time k:. The algorithm which results is not practical because it requires exponentially 

growing memory and computation. By conditioning on the past data association sequence 

we can write 

E { x k  I r k )  = E { x k l r k ,  n k } p ( n k  I r k )  

n k 
where the sum is over all lIk compatible with rk .  Recall that rk contains the information 

on past numbers of validacted measureillents Mk = { m o ,  . . . , m k } .  Given this we may just 

as well index the data association nk using Jk = { j o , .  . . , j k )  the sequence of locations of 

the target related measurements. 

The optimal algorithm [ l l ,  1 4 1  computes the estimate in Equation ( 4 )  by setting 

up recursive equations based upon the Kalman filter for the computation of the terms 

E { x k l r k ,  n k }  and p(nklrk). At the end of the processing of the measurements in observa- 

tion scan k, there is a term in the sum (4) for every possible data a~soci~ation hypothesis 

Ilk given Mk.  In all, there are flf",o(nzl + 1 )  terms. 



3 Hypothesis Clustering for Tracking 

3.1 Background on Hypothesis Clustering 

A variety. of techniques have been proposed in the literature for dealing with the central 

problem in target tracking in clutter: the exponentially growing memory and computa- 

tional requirements of the optimal algorithm [ 7 ] .  All such methods involve a combination 

of validation gates, pruning of extremely unlikely hypotheses, and the cornbination of hy- 

potheses with similar trajectory estimates. These operations may be viewed as a type 

of clustering algorithm [15] applied to  the individual trajectory estimates. Though such 

notions are central to a tracking algorithm and its performance, the deta~ils of individual 

algorithms are often not precisely laid out in the literature. 

Since hypotheses may be viewed as branches on a tree, hypothesis reduction techniques 

are often viewed a.s either branch pruning or branch combination. Many i~lgorithms use a 

combination of both techniques. A typical approach [14] uses a threshold on the proba- 

bility of each data association hypothesis, only those with sufficiently large probability are 

retained. The same pruning technique has been proposed for the N-scan filters. Pruning 

with a fixed threshold is not enough by itself to  eliminate all complexity problems. Neither 

is pruning enough to ensure good performance. Hypotheses must also be combined either 

using the method of Singer [ll] to coillbiile data association hypotheses having the last 

N scans in common or by combining hypotheses which have "similar effects" as in Reid's 

paper [14]. The former is really a method ba.sed on clustering. This is the approach taken 

in this pa.per. 

3.2 A Tracking Based Clustering Criterion 

The structure of computation for the proposed tracking algorithm (one ta.rget case) is 

shown in Figure 1. In the same spirit as was done for the PDA filter [12], we derive the new 

algorithm based upon the assumption that the conditional density of the state xk given 

the observations l?k-I up to scan time k - 1 is an L component Gaussian mixture. In this 

paper the number of terms L in the mixture is considered to be fixed from scan to scan. 

Varying i; allows a tradeoff between performance and complexity; the case L = 1 actually 

corresponds to the PDA filter. With the notation n/(xl/r? P) to denote the multivariate 

Gaussian density with inean p and covariance P, the assumption on the posterior density 



of the state xk can be written 

Let the statistics parameterizing the terms in the mixture above be denoted by 

for 1 I i  I L. Then the algorithm shown in Figure 1 processes the input statistics 

{Uklk-l(i))f=l and the scan k observations {yk,,);"=: to produce: 

1. The filtered state estimate iklk and the error covariance Cklk .  

2. The statistics needed to propagate the solution to the next scan {UkS.l lk(i))~=l ,  where 

u k + , l l k ( i )  = (?k+llk(i), xk+l,k(i), ~ k + l ( i ) ) -  

The details concerning each block in Figure 1 are presented in the fol1owi:ng sections. 

3.3 H[ypothesis Tree Construction 

Given the validity of the assumption in Equation (5),  the one step prediction density 

f(xklrk-.[) is updated by the processing of the scan k observations {yk,,);"=*l to give the 

posterior density f ( x k ) r k )  as an L(mk + 1) component Gaussian mixture. The details, 

which art: by now quite standard [ l l ,  14, 71, are illustrated by the diagram of Figure 2. 

Each component i  in the mixture (5) is the root of a tree formed from the scan k 

observati'm ~k and the possible data association hypotheses. These are indexed by 0 < j < 
mk where j = 0 corresponds to the hypothesis that the target was not detected in scan k 

and j > 0 corresponds to the hypothesis that the target related measurernent is yk,j. The 

Kalman lilter is applied yielding L(mk + 1) trajectory estimates 

f i k ~ k ( ~ , j )  = ?klk-l(i) + G(i, j)(yk,j - H?klk-l ( i ) )  

Sklk = xklk-l(i) - G(i,  j )Hxk(k- l  ( i )  

where 1 :i i  5 L, 0 < j 5 mk, and the gain term is given by 



A probability a k ( i ,  j) is associated with each branch in the tree. These are calculated 

from the measurement model and the data association hypothesis by defining 

and 

for j > 0. The parameters above are as defined in Section 2 on the measurement model. 

The probability calculation is finished upon normalization 

For siinp:.icity in referring to  the above statistics we define 

for 15 i < L and 0 < j < mk. 

3.4 Calculation of the Filtered Estimate 

Given the assumption in ( 5 ) ,  the filtered density f (xk Irk) is an L(mk .f 1) component 

Gaussian mixture. The means, covariances, and weighting probabilities are computed as in 

Equations (6) and (7). For the filtered state estimate and error covariance we simply take 

the mean and cova.riaace of the density f ( z k l r k ) .  This is the natural generalization of the 

PDA [7]. Thus, the filtered estimate at time k is given by 

and the error covariance is computed from 



Intermediate statistics Tklk = (bklk(i,j), sklk(i , j ) ,  a k ( 2 , j ) )  

(after filtering) 

Intermediate statistics + I  = ( +  + ( )  a , )  
(after model propagation) 

Statistics a t  k + 11 k u k + ~ l k ( i )  = (;k+llk, Ck+llk(i), a + l ( ; ) )  

Table 1: Summary of Statistics 

3.5 Computation of New Statistics 

In order that the tracking algorithm continues to operate with a fixed memory, it is neces- 

sary to reduce the L(mk + 1) terms in the density f (xk Irk) back to L components. In this 

paper we take the viewpoint that the approximation to  reduce the collection of statistics is 

a type of clustering problem. This has two facets: the first is the criterion u:jed to determine 

the best grouping of statistics, the second is the choice of representatives :€or each cluster. 

Befort: application of the clustering algorithm the model is used to  propagate the statis- 

tics according to  

for 1 5 i 5 L and 0 5 j 5 mk. The branch probabilities remain unchanged during 

the modem1 propagation operation. See Figure 2. At this point the set of statistics which 

summarixes tracking information is 

where Tk+llk(i,j) = (bk+llk(i,j), Sk+llk(i,j), ak ( i , j ) ) .  

In order to reduce complexity it is necessary to replace the set of L(mk + 1) statistics 

above by a set {Uk+llk(i))f=;=, of L statistics. This is done by introducing a clustering 

criterion in the next section. The situation is summarized in Table 1. 

3.5.1 CYustering Criterion 

Many target tracking algorithms employ some form of hypothesis reduction techniques for 

comp1exii;y reduction. These methods often amount to hypothesis combination where the 



idea is to combine hypotheses having similar effects. According to Reid [14] the metric used 

is that the means and variances of the estimates corresponding to combined hypotheses be 

"sufficiently close." No further details regarding this suggestion were given in [14]. In this 

paper we interpret this idea. as a clustering problem applied to the hypotlleses themselves 

and then investigate the metrics used to define closeness. 

Let 2,; denote the index set {(i, j) : 1 5 i 5 L, 0 _< j 5 mk)  of the statistics (hypotheses) 

in Equation (10). Let 
L 

Zk = U I k  (I)  
1=1 

be a part.ition of the index set. Each such partition corresponds to  a proposed grouping 

(c1usterin.g) of the hypotheses represented by the statistics Tk+l lk ( i , j ) .  The quality of 

a clusteri.ng is mea.sured by a function of the form (i.e., good clusterings minimize this 

measure) 

where two things need be specified: 

1. The metric D(-,  .) 

2. The calculation of the cluster representative Uk+llk(l) which is specified to be a func- 

tion of Tk+llk(i,  j), ( 2 ,  j) E Ik(l). 

Since we are concentrating on a particular scan time in Equation (1 1) we will drop 

the subsc:ripts k + Ilk, k + 1, and k in the statistics Tk+l lk( i , j ) ,  Uk+lJk~:l), and in their 

compone.nts. This will considerably simplify the notation. Then some pclssible clustering 

criteria might be: 

(A) DA(T( i , j ) ,  lJ(1)) = [[fi(z,j) - ?(l)l12 + llS(i, j) - Z(l)ll$ where ll(1) is given by 



(B) DB the same as DA but with U(1) defined by 

Note that in case A the probabilities will not influence the desired optimal grouping while 

in case B they will. 

One nnight expect better results if a tracking performance-based clustering criterion is 

used. In order to evaluate the cost of placing index (i, j )  E Z into the group represented 

by I(1) c Z we consider the effect of filtering the target related measurement in the next 

scan (i.e. scan k + 1) starting from statistic T(i ,  j )  as opposed to startirig from statistic 

U(1). Let y denote the unobservable target related measurement which will be available in 

the next scan. Starting from T(i ,  j )  the filtered estimate would be 

j l ( i , j )  + ~ ( i ,  j )HT(HS(i ,  j ) H T  + R)-'(Y - Hjl(i, j ) )  (12) 

and starting from U(1) the filtered estimate would be 

Our goal is to minimize the mean square difference between the filtered estimates in (12) 

and (13). Since the next scan observation is not yet available, the expectiztion is over the 

(approxirnate) joint distribution of (i, j ,  y )  given rk and given that y is target related. Since 

the joint distribution of ( i , j ,  y) is given by f ( i , j ,  y Irk)  = f (yl i , j ,  rk)a(2,;i), the metric in 

the new clustering criterion is specified by 

where the gains are given by 



As shown in Appendix A the clustering criterion above may be equivalent,ly written as 

where 

Given the clustering criterion of Equation (15) we also need to  specify the calculation 

of the cluster representatives U(1) = (?(l), C(1), P(1)). For any fixed partition, it is shown 

in Appendix B that the set of U(1) minimizing the criterion has 

Note tha.; the probability terms in U(1) play no role in the clustering at this stage (they 

would, however, play a role in subsequent stages of the algorithm). Therefore, we pick 

them such that 

3.5.2 Iterative Optimization 

Given the work above, the clustering criterion is completely specified, and all that remains 

is the method to compute the optimal partition of the hypotheses. Let c(i, j) denote the 

label (1 :g c(i, j) 5 L) assigned to the hypothesis indexed by ( 2 ,  j) E Z and rewrite the 

criterion in (15) as 

In this way the clustering process becomes a well-defined problem in discrete optimization: 

find c such that (17) attains its global minimum among all possible partition functions c. 

In theory, the optimal way of solving this discrete combinatorial problem is to compute the 



cost for all possible groupings. However, this is not feasible because there are approximately 

LN/L! w'sys of partitioning a set of N = (mk + l ) L  elements into L subsets. Therefore, 

we result to a suboptimal algorithm (coordinate descent [15]). The basic idea is to find an 

initial partition and to "move" estimates from one group to another if such a move will 

improve .;he value of the criterion function. In general, the procedure only guarantees a 

local minimum of the criterion function. 

The criterion function (17) can be viewed as a function of the N variables {c(i, j) : 1 < 
i 5 L,  0 5 j 5 m k )  which take values in the set {1,2,. . . , L).  In applying this method, 

an estimate sta,tistic or "point" is "moved" from one group to another if the value of the 

criterion function decrea.ses. As the va.lue decreases after each iteration a.n.d there are only 

a finite number of "points", at least a local minimum can be located. 

Let's consider the function c as a vector in the space Z N  where Z = {I!, 2 , .  . . , L). The 

iterative optimization algorithm is then: 

1. Choose a starting point c = ( c l , .  . . , cN). 

2. Set i =  1. 

3. Find 2; such that 

xi = argmincZEZ f (cl, . . . , c,, . . . , CN) 

4. Replace c by c = (cl , .  . . , xi,.  . . , CN). 

5 .  Set i = i + 1 (mod N) .  

6. Repeat from 3 until done. 

Simulation Results 

For the computer simulations reported here we used a state vector consisting of four compo- 

nents (pc'sition and velocity in the x- and y-directions) which was normalized as described 

in Section 2.1. The parameters of the simulations below were the target maneuvering index 

and the clutter density. Two quantities were computed in order to coinpare the performance 

of the va-rious algorithms: the position RMS error and the lost track probability. In all of 

the simulations, the target detection probability was set equal to  0.99 and the gate constant 



was equa:! to 4. In otherwords, provided that a track was not lost, the probability of having 

a target related measurement in the gate was nearly equal to one. Clutter was generated 

according; to the method described in [12]. Each run consisted of 100 scan:; and the results 

were aver,aged over 200 independent trials. 

4.1 Comparison of Position RMS Error 

Let the first and third components of the state vector be denoted by x(k) and y(k), respec- 

tively (the position components). The RMS position error for each tracking algorithm was 

computecl from 

This was computed as a function of the maneuvering index for two different values of the 

clutter density. Three tracking algorithms were compared: the PDA, the 1-Scan Back 

filter of [ l l ] ,  and the algorithm of this paper with L = 2 (2-GPDA). The result is shown 

in Figure 3. 

4.2 Comparison of Lost Track Probability 

In this study we use the following definition of a lost track [16]: a track is considered 

lost when the correct measurement is not in the validation region of at least the last 20 

scans. The simulation parameters and the algorithms compared are the same as in the 

previous section. Simulations were done comparing lost track probability as a function 

of maneuvering index for two different values of the clutter density (Figure 4), and as a 

function (of clutter density for two different values of the maneuvering indlex (Figure 5 ) .  

5 Conclusion 

A new algorithm for tracking a single target in clutter has been presented vvhich generalizes 

the well-known PDA method. A new criterion function for specifying the diljtortion measure 

was derived in the approximation process. Estimate points were merged together in the 

fashion that the criterion function was minimized. This process was done by a clustering 

technique which naturally groups the estimates and choses the centroid as the representative 



for those estimate points in that group. It was shown that the PDAF is a special case of 

this proposed algorithm. The new algorithm exhibited better performancce at the expense 

of a small increase in complexity compared with the PDAF. 



A Simplification of the Clustering Criterion 

First, we rewrite the integral in the criterion of (14)  with a minimumof indices for simplicity 

J N ( ~ I H B ,  HSH' + R)lla + G l ( y  - H a )  - i - G 2 ( y  - H i ) 1 2 d y  (18)  

where the gains are given by 

G1 = S H ~ ( H S H ~  + R ) - I  

G2 = C H ~ ( H C H ~  + ~ ) - l .  

Then, the norm in the integral can be writt,en as 

JIA + BY1I2 = A ~ A +  2 A T B y  + y T B T B y  

where A = ( I  - G1H)F - ( I  - G 2 H ) i  is not a function of y and B = G 1  - (72. Substitutiilg 

this form into the integral (18) results in 

A T A  + 2ATBHf i  + J y T ~ T ~ y ~ ( y l ~ a ,  H S H T  + R)dy .  (19)  

Now the last integral above is simply E{IIByJ12} given the indicated distribution for y .  We 

have for 1;his distribution 

E{llBY 112} = T ~ E { ( B Y ) ( B Y ) ~ )  

= T ~ { C O V ( B Y )  + E ( B ~ ) E ( B ~ ) ~ }  

= T r { B ( H s H T  + R ) B T }  + , i iTHTBTBHb. 

With this result, the integral in (18)  becomes 

A T A  + 2ATBj i+ j iTHTBTBHb + T r { B ( H s H T  + R)EIT} 

where the trace term above is precisely that in Equation (15) .  Thus, i t  only remains to 

show tha.; A T A  + 2ATBji  + j iTHTBTBHfi  = II(I - G 2 H ) ( b  - 2)112. Expancling by replacing 

A and B we obtain 

ATA = j i T ( ~  - G ~ H ) ~ ( I  - G I H ) j i  - 2 i T ( I  - G ~ H ) ~ ( I  - G 2 H ) i  

+ i T ( ~ - G 2 ~ ) T ( ~ - G 2 H ) i  

ATBHf i  = f i T ( ~  - G ~ H ) ~ G ~ H ~ ~  - jiT(I - G 1 ~ ) T ~ 2 ~ j i  

- i T ( I  - G ~ H ) ~ G ~ I I ~  + j . T ( ~  - G 2 H J T G 2 H b  
T T T  j i T ~ T ~ T ~ ~ j l  = j iTHTGTG1H~ - 2ji H G2  G I H j i  

+ jiTHTG;G2H$. 



Substituting the above and cancelling terms results in the criterion of Equation (15). 



B Choice of Minimizing Cluster Represent i3 t'  lves 

Consider a scalar version of our clustering problem for simplicity. We then write the 

clustering criterion as a function of the partition of the index set Z as a union of the 

disjoint sets {I (l))f=], and as a function of the cluster representatives1 {U(:l))fzl according 

where 

and the gains are given by 

I ( , )  = S ( i , j ) / ( S ( i , j )  + R) 

Gz(1) = C(l)/(C(l) + R).  

Note thal; in the scalar problem we may set H = 1 without loss of generality. 

For a fixed partition we wish to solve for the representative U(1) whic:h minimizes the 

criterion C. Note first that solving for the best U(ll) only involves the term 1 = 1' in the sum 

above. Thus, the individual terms are decoupled and we may consider them separaiely in 

the minimization. For simplicity, we will drop reference to the index 1 in a,ll of the following 

equations. Secondly, we note that the component /3 in U = (5, C, /3) does not enter into 

the crite~ion C and for the moment we will therefore not consider the proper choice of /3. 

The problem we consider is reduced to the following 

(i*, C*) = arg inin C1(?, C) 
2 .C 

where 

Gl(i,  j) == S(i ,  j ) / (S ( i ,  j) + R),  and G2 = C/(C + R). Because C enters t:he criterion only 

through r f 2  we will actually consider C1 as a function of ? and G2 when we perform the 



minimiza.tion. To get the necessary conditions for a critical point, we tak:e the partials of 

the form C' with respect to the variables i and G2 and set them equal to zero. 

For i we obtain 

Setting the above equal to zero and noting that the factor -2(1 - G2)2 inay be canceled 

(providecl that G2 # 1) we obtain the following candidate solution 

For GI2 we have 

Setting t:he above equal to zero, solving, a,nd substituting i = i* we obtain the candidate 

solution 

To verify that the critical point (i*, G;) is a minimum of the form C' we need to show 

that the Hessian is positive definite when evaluated at the critical point. To do this we 

compute the matrix of second partials: 

Since the diagonal terms in the Hession a.bove are strictly positive (assum:ing that G2 # 1) 

and since the off diagonal terms are equal to zero at (i*, G;), we see that the Hession is 

indeed positive definite. 



With the exception of the points G2 = 1 and C = -R, we have a one-to-one corre- 

spondence between G2 and C. Thus we may solve C = G2R/(1 - G2), ancl write down the 

solution 

Note thxt C 2 0 corresponds to 0 < G2 < 1 and note that this is always satisfied by the 

gains here. 

Finally we pick 

which colnpletes the specification of the minimizing cluster representatives 

u* = (?*, c*, p*)  . 
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Figure 1: Summary of computation in the generalized PDA algorithm of this paper. 

I) 

Figure 2: Structure of the Hypothesis Tree. For the case illustrated L == 2 and rrzk = 3 
observations a.re made at scan time k. 
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Figure 3: Comparison of position RMS error versus maneuvering index for three tracking 
algorithms (PDA - solid line, 1-Scan Back - dashed line: 2-GPDA - dotted line). In (a) 
X = 0.01 and in (b) X = 0.05. 
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Figure 4: Compaaison of lost track probabili 
algorithnls (PDA - solid line, 1-Scan Back 
X = 0.01 and in (b) X = 0.05. 
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Figure 5: Colnparison of lost track probability versus clutter density for three tracking 
algorithms (PDA - solid line, 1-Scan Back - dashed line, 2-GPDA - dottted line). In (a) 
the manec.vering index is 0.15 and in (b) the maneuvering index is 0.25. 
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