Purdue University

Purdue e-Pubs

Department of Computer Science Technical

Reports Department of Computer Science

1975

One Address Computers are Faster and Use Less Memory Space
to Execute Arithmetic Assignment Statements

Victor Schneider

Bradford Wade

Report Number:
75-149

Schneider, Victor and Wade, Bradford, "One Address Computers are Faster and Use Less Memory Space
to Execute Arithmetic Assignment Statements" (1975). Department of Computer Science Technical
Reports. Paper 95.

https://docs.lib.purdue.edu/cstech/95

This document has been made available through Purdue e-Pubs, a service of the Purdue University Libraries.
Please contact epubs@purdue.edu for additional information.

https://docs.lib.purdue.edu/
https://docs.lib.purdue.edu/cstech
https://docs.lib.purdue.edu/cstech
https://docs.lib.purdue.edu/comp_sci

ONE ADDRESS COMPUTERS ARE FASTER AND USE
LESS MEMORY SPACE TO EXECUTE ARITHMETIC
- ASSIGNMENT STATEMENTS

Victor Schneider
Bradford Wade

Computer Sciences Department
Purdue University
West Lafayette, Indiana 47907

CSD TR 149

One Address Computers Are Faster and Use
Less Memory Space to Execute Arithmetic
Assignment Statements

Viector Schneider
Bradford Wade

Computer Sciences Department
Purdue Univeraity

West Lafayetde, Indiana
47906

Work on this paper was supported by NBP Grant GJ-31572
to Purdue University and by IBM Corporation graduate
fellowships,

One Address Computers Are Faster and Use Less
Memory Space to Execute Arithmetic
Assignment Statements

Index Terms: computer instruction sets, machine architecture, code
size minimization, minimization of execution time

C. R. Categories: 4.12, 4.22, 4.6, 6.21

Abstract

A notation is developed which permits space and time efficiency
comparisons of four basic computer architectures in use todey for
executing Fortren-style assignment statements. From the com arisons,
we discover that a suitably designed l-address architécture (one
accumulator machine) outperforms the other architectures in speed
of execution and in encoded size of compiled Fortran statements.

The comparisons are valid for CPU's ranging fron very inexpensive
designs with few registers to the most expensive designs having
many registers and employing "pipelining" techniques or lookahead
fetches of operands or instructions into fast cBche memories,

Introduction

This paper provides some answers to questions of what
sort of a computer instruction set will give best execution-
time performance for simple Fortran assignment statements (or
Algol or PL/1, for that mabter) such ap those considered in
Knmath's statistical study of Fortran program characteristics (3).
We compare four different computer erchitectures with respect to
the number of bits needed 4o represent the object code of
selected Fortran assignment statemente and the execution time
in microseconds for the object codes. The four architectures
are
(a2) The stack machines, notably the ICL KDF9 and the Burroughs
5000 and 6000 series computers,
(p) The l-address machines, as implemented in numerous 16—
bit minicomputers, such as the IBM 1130 and 1800, the
Varian 70 series, and many others,
(¢c) The 2-address wachines, most well known of which is the
IBM 360/370 series, but also represented in the Data
General minicomputers, and in computers made by
companies like XDS and Interdata.Corporetion,
(d) The 3-amddress machines, currently exemplified by the
CDC 6000 and Cyber 70 series of computers. These
machines are not strictly 3-address, in the sense that
only the register-to-register operations actually involve
three independent addresses (namely, two source registers
and a destination register). But, since these machines
are so widely used for scimntific computing by universities
and government research laboratories, we include them for
sake of comparison.
Our method of comparison involves comparing the effects of
implementing the four architectures on & selected CPU. Thus,
we are not comparing Burroughs computers with CDC equipment,
but rather Burroughs machines wired into CDC equipment or CDC
machines wired into Burroughs eduipment. Another way of looking
at this is to talk about implementetions of the four architectures
on 2 CPU using emulation techniques, posaibly assisted by hard wired

-2

decoding circuits and specifilly designed fast odche memories,
In this way, we compare apples with applea, rather than apples
with coconuts or banenzas.

Another point we should make is thaet the l-address architecture
is essumed to include "reverse sub¥ract" and "reverse divide®
operations, so that the noncommutative nature of these operations
can be disregarded in our comparisons, (4) Finally, the "paper
and pencil" results obteined in this study have been confirmed
empirically through emulations on a microprogrammed minicomputer
and through simulations and timings run on IBM 370 equipment., (6)

For standerd definitions of the four architectures, the reader
is referred to a textbook, such as Gemr's. (1)

Notation

Let x be the number of bits used to represent the "opcode™,
or machine pperation, portion of an instruction in any of the
architectures to be compared. Then, y is the number of bits used
to address source and destinetion registers in both the 2-address
and 3-address architectures, w 1s the number of bits used for
short addresses of operands stored in some region of main memory,
and v is the number of bits used for a "long eddress" of operands
stored anywhere at all in main memory.

If anyone reproaches us for not considering variable-length
¢ncoding of opcodes, we will respond by letting x be the average
number of bits used to represent an opcode, or, for a persistent
eritic, we would let x be the minimum number of bits needed %o
represent an opcode in the encoding, The point is to select some
value for x that quiets the opposition, end then show that the
results still hold,

In most contemporary architectures, x varies from 5 t0 8
bits, y is 3 or 4 bits, and we will endow our 2-address
architecture with the same number of software registers as the
3-address version, In machines having & short addressing schene,
w 1s typically 8 bits, or 7 bits signed, and is oftem treated
(unwisely, we believe) as an offset from the program counter,
thus mixing alterable operands with executable instructions in
the object code, The approach that we advocate is to use an
implicit base register containing the (steck pointer to the)
beginning address of the currently used teble of program variables,
Typical values for v range from 15 bits to 22 or even 24 bits.
For our purposes,

VX wh vy
a feet that we will use later in comparisons of space needed to
store algorithms for different architectures.

An interesting question that arises next is "what can we say
about the contribution of each portion of & software instruction
to its total execution time?™ In expensively designed CPU's
having an abundant supply of intermal registers or fast seratchpad
memory, it is spperemt that the operations on register data must

-

be included in the time estimate for executing an operation on
the expensive e-CPU; namely,
tg(x) = t,(x) + 2g.(y) = t,(x) + 3g.(y).

At the other extreme, tn a very inexpensive c-CPU there may be
so few registers available that the software registers are
implemented &s special locations in mein memory. For this cheap
¢~CPU, '

to(x) + 3g,(3) > tplx) + 2g,(3) 5 t,(x).

A fé%eh to or store from & long address should take the
seme time in en e-CPU as the corresponding operations on a
short address; %, e,,

fe(V) = fe(W) L)

For the ¢-CPU, however, there are usually problems caused by the
inexpensive main memory used, in which the memory word width in
bits is less than the wordt width implemented in the software
instruction set. In this sitﬁation,

fc(v) > fc(w) .

Because the ¢-CPU, e-CPU, and any intermediete price CPU's
all emulate the same software instruction set in each architecture,
all sequences of instructions fit the seme number of bits in
abin mempry-for-all CPU's emulating the same architecture.

5=

Timing and Space Comparisons

Knuth's study (3) found that the simple Fortran assignment
statement of the form

A =8B
constituted 68% of the statically measured corpus of programs that
was analyzed., Table 1 below presents the compiled code and
corresponding space requirements of this statement for all four
architectures.

Table 1: A =B

Stack 1-Address 2-Address

Addr(A) x+v ' Toad B x+v Toad B in Rl x+Vva+y
velue(B), x+v Store A =x+v Store Rl in A x+v+y
ggore i Space: 2x+2v Space: 2X+2v+2y

p x_ Time: 2¢(x)+2f(v) Times 2t(x)+2f(v)+2g(y)

Space: 4x+2v
Time: 4t(x)+2f(v)
3-Address

Load B in R1 X+V+y
Store R1 in A I+V+Y

Space: 2x+2v+2y
Time: 2t(x)+2f(v)+2g(y)

In the Knuth study, epproximataly 70% of the remaining
assignment stetement statoments (I1hose In whch arithmetic was
performed) had the gemeral fomrm .

A = B operatog C. E
The comparison of the four architectures for the compiled code -
of such a statement, with "+" taken as the operator, is given in
Table 2.

Table 2: Statement A =B + C

Stack l-Address 2-Address

Addr(A) x+v Load B x+v Load B in Rl X+V+y
Velue(B) =x+v Add C X+V Add C to Rl X+V+Y
Value(#) x+v Store A X+v Store R1 in A x+V+y
Ada X

Store x Space: 3x+3v Space: Jx+3v4ly

Pop x Time: 3t(x)+3f(v) Time: 3t(x)+3f(v)+3g(y)

Space: 6x+3v
Time: 6t(x)+3f(v)

Table 2 (continued)
3-Address

Load B in R1 X+V+Y
Load C in R2 X+V+Y
R3 = R1 + R2 x+ 3§
Store R3 in A X+V+y

Bpace: 4x+3v+by
Time: 4t(x)+3*‘(v)+33(y)

In Tables 1 and 2, it is apparent thet the l-sddress machine
is superior to the other architectures in terms of gpace &nd
time.requirements for the two statements considered. These two
atatements represent 90% of all statiocally measured assignment
statements in the Knuth study. It could be argued that the
remeining 10% of asgignment statements are probebly executed
with much greater frequency than their stetic fraction of all
code would indicate, As an example of one such more complex
staetement that requires no use of {emporaries to store intermediate
values during the computation, consider the statement of Table 3:

Table 3: Statement A = Bl + B2 + B3 + B4

Steck l-Addrees 2=-Address

Addr(h) x+v Load Bl ~ x+V Tioad Bl in Rl X+V+y
VaZie(Bl) x+v Add B2 X+V Add B2 to R1 X+V+y
Value(B2) x+v Add B3 X+V _Add B3 to Rl X+V+Y
Add x Add B4 X+V Add B4 to R1 X+V+y
Valbe(B3) x+v Store A X+V Store R1 in A X+V+y
Add X

Value(B4) x+v Space: 5x+5v Space: 5x+5v+5y

Add x Time: 5t(x)+5f(v) Time: 5t(x)+5f(v)+5g(y)
Store x

Pop X

A ———

Space: 10x+5v ;
Time: 10t(x)+%f(v) _ i
3-Address |

‘Load Bl in Rl X+V+y
Load B2 in R2 X+VHY

Rl = R2 + R3 x +3y
Load B4 in R2 X+V+Y
R3-= Rl + R2 x +3y

Store R3 in A I+V+y

Space: Bxa 5v +14y
Time: 8t(x)*5f(v)+14g(y)

-7-

From inspection of Tables 2 and 3, it is clear that increasing
the length of the assignment statement of Table 3 s4ill leaves the
l-address machine in the position of consuming less memory space
and running as fast or faster than the other architectures. The
agssignment statements in Tables 2 and 3 generate no intermediate
values that must be stored temporarily during a computation (5).
%hat happens when intermediate resulte are generated Ly a computation?
Consider the assignment statement of Table 4, th®t generates one
intermediate result. (Since the 3-eddress machine obviously will
not compete at this and further levels of complexity, we omit it
from subsequent tables and discussion.)

Table 4: Statement A « B ¥ 8 + D * E

Stack ladddress 2-Address

Addr{A) X+V Loed B x+v Load B in Rl X+Vv+y

ValueEIQ X4V Mpy C X+V Yipy C by R} x+v+y

Value(C) x+v Store Tl x+w Load D in R2 x+v+y

Hultiply x Load D x+v Mpy E by 8@ x+vey

Value?D{ xX+V Mpy E X+V Add R2 to R1 =x+ 2y

Value(B) x+v Add 1 x+w Store R1 in A x+v+y

ggiﬁzply : Store A XtV Space: 6xX+5v+6y

Po x Space: Tx+5v+2w Time: 6t(x)}+5f(v)+6g(y)
3 = Pime: TH({x)+5f(v)+2g(w)

Space: 9x+5v
Time: 9t(x)+5f(v)
At thisupoint, the l-address architecture begins to lose ground.
In particular, we have to provide a short-address format for
storage of intermedizte values in order to retain the l-addreas
space advantage., We also have to note that a modified stack
architecture that provides a Store(f) instruction to store the top
of the stack in A and pop the stack definitely takes less mpace
and executes the statement in Teble 4 in time comparable to the
l-address mechine, Another point to note is thet the 2-address
machine will execute this statement more rapidly than the others
on an expensive CPU in which g(y)=0 and only requires 6y-x more
bits to encode than the modified stack machine.
It becomes interesting then to see what happens when more
than one intermediate resul® is generated in the course of executing

-8-

an assignment statement. The example that we use is of an

assignment siatement written so as to be impervious to the complexity-

reducing manipulations of en optimiging compiler (5). Baeause of
ite speeial form, it tends to penalige thp l-address architecture
(there are no sequences such as A*B*(*D that would favor the
mechine) in favor of other arghitectures.

Table 5: Statement A = ((B*¥C + D*E)} * (P*G + H*J))

Stack l-Address 2-Address
Addr(A) x4v Toad B X+V Load B in R1 x+v+y
Value(B) X+v Mpy C X+v Mpy C by R1 X+v+y
Value(C) =x+v Store T1 x+w Load D in R2 x+v+y
Multiply =x Load D X+V Mpy E by R2 X+V+Y
Valuefng X+V Mpy E X+v Add R2 to Rl x +2y¥
Vvalue(E) x+v Add T1 X+W Load F in R2 xX+V+y
Nultiply x Store T1 =x+w ¥py G by R2 x4v+y
Add x Load F xX+v Load H in R3 =x+v+y
Value(PF) x+v Mpy G X+V Mpy J by B3 X+v+y
¥alue(G) =x+v Store T2 x+w Add R3 to R2 x 42y
Malsiply =x Load H X+V Mpy R2 by R1 x +2¥%
Yalue§H¥ X+V Mpy J2 X+V Store Rl in A X+V+y
Value(J) x+v Add T X+W .
Multiply x Mpy T1 X+W gpac?.l%$?+?v;%?y) 152(y)
Add x Store A x+v imes: XI+31vIr o8y
%gore : Space: 15x+9viow

p — Time: 15t(x)+9f(v)+6g(w)

Space: 18x+9v

Time: 18%(x)+9f(v)
On the essumption that wey, the 2-address machine requires 9y-3x
more bits to encode the Table 5 algorithm, and takes 9g(y)-3t(x)
microseconds more time to execute than does the l-address veesion.,
For a very inexpensive CPU, in which g(y)) t(x)/3, the l-address
machine is slightly faster; but, for 2ll other situations, the 2-
address architecture is uniformly superior in speed of execution.

The space estimate only slightly favors the stack architecture for

this algorithm.

As a final example, we can consider the statement in Table 6
that calls for only one intermediate value, but "favors" the 1-
address machine by providing more than tle minimum of operations
to force an intermediate value in the object code:

-9-

Table 6: Statement A = B*(C%*D + Ex*P

Stack l-Addreas 2-Address

Addr(a) X+V Loed B X+v Load B in Rl x+Vv+y
Value(B) =x+v Mpy C X+V Npy C by R1 x+v+y
value(G) x+v Myy D X+V Mpy D by Rl xX+v+y
Multiply x Store Tl x+w Load E in R2 x+v+y
Value(D) x+v load E x+v Mpy F by R2 X+v+y
Multipl X Mpy F X+V Add R2 to R1 x +2y
Value?E X+V Add T1 X+W Store R2 in A xX+v+y
;iigf E) §+v Store A X+¥ Space: Tx+6v+8y

Ada ply . Space: 8x+6v+2w Pime: Tt(x)+6f(v)+8g(y)
Store x Pime: Bt(x)+6f(vir2g(w)

Pop X

Space: 12x+6v
Time: 12%{(x)+6f(v)

Here agein, if we allow wey (a limiting case), then the
l-address machine requires 6y-x less bits of space than the 2-
address machine, an improvement in space usage over the Table 4
example, and the execution time comparisons improve slightly for
the case of the inexpensive CPU.

=10

Conclusions

Thig paper has demometrated that, for all but the most
expensive CPU's, a CDC-style 3-address architecture is least
efficient for executing simple assignment statements, both in
terms of bits needed to encode the algorithme and times of
execution, A 2-address machine compares most advantageously in
a CPU having an operand cache-i. e., high-speed hardware for ore-
fetching operands., With such hardware, the 2-address machine
is uniformly as fast or faster than the competition. For a
simpler CPU, or one with am instruction cache, however, the 1-
address architecture will outperform its rivals in speed of
execution, and will on the average require fewer bits to encode
its assignment statements. The stack machine, even in & modified
version that performs l-address stores from the stack into main
me¢mory, offers no advantages, either in execution time or in bits

required to enccde algorithms,

-1l

References

l. Gear, William C,, Computer Orgenization end Programming,
McGraw-Hill Book Co., New Yo;ﬁ, 1369.

2. Heger, K., "Die Bewertung einiger Rechnerkerntypen fuer
des Verarbeiten von arithmetischen Ausdruecken,"
Elektronische Rechenanlagen 13, 6 (Dec., 1971), pp. 241-
249,

3. EKnuth, D, E., "An Empirical Study of FORTRAN Programs,"
Stanford University, Computer Science Department Report
No. C5-186,

4. Lindsey, C. H.,, "Maeking the Hardware Suit the Language,"™
in ALGOL 68 Implementation (f. E. L. Peck, ed.), Ameterdam;
North-HolTan biishing Co., 1971, '

5. Schneider, Victor B., "On the Number of Registers Needed to
Evaluate Arithmetic Expressions,” BIT 11 (1971), 84-93,

6.

Wade, Bradford W,, A General-Purpose High-Level Langggge
Machine for Minicompufers, Doctoral Dissertation, rdaue
University, August, 1975.

	One Address Computers are Faster and Use Less Memory Space to Execute Arithmetic Assignment Statements
	Report Number:
	

	tmp.1307986960.pdf.4B2tc

