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ABSTRACT

Imberti, David M. Ph.D., Purdue University, December 2013. Methods for Increasing
Domains of Convergence in Iterative Linear System Solvers. Major Professors:
Ahmed Sameh and Jianlin Xia.

In this thesis, we introduce and improve various methods for increasing the

domains of convergence for iterative linear system solvers. We rely on the following

three approaches: making the iteration adaptive, or nesting an inner iteration inside of

a previously determined outer iteration; using deflation and projections to manipulate

the spectra inherent to the iteration; and/or focusing on reordering schemes. We will

analyze a specific combination of these three strategies. In particular, we propose to

examine the influence of nesting a Flexible Generalized Minimum Residual algorithm

together with an inner Recursive Projection Method using a banded preconditioner

resulting from the Fiedler reordering.
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1. INTRODUCTION

The performance of classical iterative schemes for solving sparse linear systems is

highly dependent on the spectra of the respective iteration matrices. Indeed, most

theoretical results for improving convergence, acceleration, or other influences on

an iteration necessitates pre-existing bounds of the spectral radius for the iteration

matrix to be properly analyzed. Furthermore, methods for improving previously

existing iteration methods typically rely on the following three approaches: making

the iteration adaptive, or nesting an inner iteration inside of a previously determined

outer iteration; using deflation and projections to manipulate the spectra inherent to

the iteration; and/or focusing on reordering the coefficient matrix. We will analyze a

specific combination of these three strategies. In particular, we propose to examine the

influence of nesting a Flexible Generalized Minimum Residual (FGMRES) algorithm

[49] together with an inner Recursive Projection Method (RPM) [7] using a banded

preconditioner resulting from the Fiedler reordering [17,35,38].

The strategy of nesting to improve performance of the outer algorithm is cer-

tainly not new [2, 3, 8, 18, 22, 24, 37, 42, 49, 59]. In particular, using the GMRES algo-

rithm as the outer iteration is also a popular choice, due to its superlinear convergence

and robustness [21]. Not even combining the GMRES algorithm with a Richardson-

like algorithm is new, as it is observed that using a Richardson-like scheme as the

inner iteration speeds initial convergence, while it is observed that we still maintain

a superlinearity property [3]. What we aim to do is to combine FGMRES and RPM

in order to use deflation in the inner step to improve the algorithm overall.

Further, the idea of using some form of deflation together with some form

of GMRES is not new [6, 8, 13–15, 43, 49, 50, 52, 59]. These algorithms focus on using

deflation directly with GMRES or the Conjugate Gradient method (CG). Thus in the

case of GMRES deflation tends to focus on removing “The smallest eigenvalues of A
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which are known to slow down the convergence of GMRES” [13]. Here we are looking

at an inner-outer iteration which incorporates deflation, more in the line of [59]. In

particular, because our deflation occurs in the inner-step by use of RPM, and RPM

is essentially a deflated Richardson iteration; we are concerned with deflating out the

largest eigenvalues of A (as opposed to the proposal in [13]). As will be shown in

chapter 8, this improves the degree of positive definiteness of A, and thereby speeds

up and can possibly guarantee convergence of the outer FGMRES step.

That we cast our outer step as FGMRES instead of GMRES remains tech-

nically accurate. As during each step of the outer iteration in FGMRES causes a

different initial vector to be passed to the inner step of RPM. Although theoretically

this results in a GMRES-RPM scheme, numerically the calculation of the projectors

in RPM depends on the initial vector, and therefore for reasons of stability this re-

quires us to couch our analysis in terms of FGMRES-RPM. However, as we will show

in chapter 5, such perturbations will still result in a convergent algorithm. More-

over, and of theoretical importance, the results we obtain for on FGMRES are useful

in their own right beyond the results in [8, 49]. We show the relationship between

FGMRES and GMRES, and lay the foundation for the relationship between the con-

vergence behavior FGMRES and the geometric mean of convergence behavior of a

collection of individual preconditioned GMRES algorithms.

We use RPM in the inner step in order to assume fast initial convergence in

the residual norm of a Richardson iteration. More importantly, this necessitates a

theoretical analysis of RPM, which we present in chapter 2. Although the majority of

these results are somewhat reflected in [7], we improve on these results by deriving an

explicit preconditioner expression of RPM. The use of this preconditioner expression

allows us to further examine the convergence rate behavior of RPM directly, and

permits the analysis of the convergence criteria needed for the inner-outer FGMRES-

RPM method presented in chapter 8.

Furthermore, the utility of RPM is directly tied to its underlying precondi-

tioner utilized in RPM (as opposed to the preconditioner expression of RPM referred
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to in the previous paragraph). For this purpose, we use a banded preconditioner,

which, in turn, necessitates a theoretical analysis of banded preconditioners presented

in chapter 6. We will show by use of Stein’s theorem [34] that convergence using such

preconditioners is dependent on the relative size of the extracted central band to the

rest of the matrix. As such, the utility of banded preconditioner is inherently tied to

the sparse matrix reordering scheme we use.

In order to maximize the size in terms of norm of the banded preconditioner

and minimize the norm and the rank of the matrix outside the band, we propose using

Fiedler (or spectral) reordering. This, likewise, necessitates a theoretical analysis of

Fiedler reordering presented in chapter 7. We review the literature and heuristical

results behind using Fiedler reordering in order to concentrate the heaviest elements

of the matrix within a central band. This results in introducing the importance of the

Hadamard product of A with itself, and the analysis of the Fiedler reordering using

the Hadamard product of A with itself as opposed to using the Fiedler reorering using

A itself.

In summary, there are a number of new theoretical results generated in this

dissertation. For RPM we generate a preconditioner expression and convergence

rate results, for FGMRES we produce new convergence results relating FGMRES

to certain characteristics of the underlying GMRES algorithm, and in addition, we

propose a convergence result for the resultant nested iteration. For the weighted

spectral reordering we propose a modified approach involving the Hadamard product

in order to improve the effectiveness of the banded preconditioner coincident with

a newly developed convergence criteria for banded preconditioning. With all these

results established, we can analyze the convergence behavior of the entire algorithm.

The rest of the dissertation is organized as follows. In chapter 2 we review basic

facts on stabilization methods, which we will then use in chapter 3 to enhance results

pertaining to RPM. In chapter 4 we review basic facts regarding the convergence of

GMRES, which we will then use in chapter 5 to enhance results pertaining to the

convergence of FGMRES. In chapter 6 we analyze generalized diagonal dominance
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criteria necessary for the choice of the banded preconditioner to be used for RPM.

In chapter 7 we review and propose a modified Fiedler reordering algorithm in order

to improve the diagonal dominance criteria formed in chapter 6. Finally in chapter

8 we discuss the theoretical properties resulting from nesting FGMRES with RPM,

propose the overall algorithm in its totality and conclude with numerical experiments

before giving a final summary in chapter 9.
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2. FIXED POINT ITERATIVE PROCEDURES

Consider a fixed-point iteration of the form

u(ν+1) = F (u(ν), λ) (2.1)

where F : <N ×< → <N is smooth, and N > 1.

Fixed-point iterations are often used to approximate solutions for nonlinear

problems. Here, we will borrow properties of this approach to aid in solving linear

systems. As such, we will first analyze the general abstract convergence properties of

fixed point iterative systems, and then succesively apply them to our projection-based

algorithm in later chapters.

We say that the above iteration has a solution in a given interval if there is

some {u(ν)(λ)} → u∗(λ) where

u∗(λ) = F (u∗(λ), λ) (2.2)

for some λ ∈ [λa, λb] [10, 19,56].

We first note the following

THEOREM 1 (Convergence Criteria for Fixed Point Iteration) [26,31,33,

36]Equation (2.1) converges locally in a neighborhood of a solution if the spectra of

the Jacobian matrix of F (J := Fu(u
∗(λ), λ)) lie within the unit disk.

Proof Let || · || be a norm so that ||J || is within a neighborhood of ρ(J) [34].

Since F is smooth, then ∃r(u) with ||r(u)|| < ε for |u − u∗| < δ, and F (u) =

F (u∗) + J(u− u∗) + r(u) where J is the Jacobian [5] [47].

We then show that ||F k(u)− F (u∗)|| ≤ ||J ||kδ + Σk
i=0||J ||iε by induction.

The base case is straightforward:
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||F (u)− F (u∗)|| ≤ ||J(u− u∗) + r(u)|| ≤ ||J ||δ + ε (2.3)

As for the inductive case:

||F k(u)− F (u∗)|| ≤ ||J(F k−1(u))− u∗) + r(F k−1(u))||

≤ ||J ||||F k−1(u)− F (u∗)||+ ||r(F k−1(u))||
(2.4)

Then by inductive hypothesis ||F k−1(u)−u∗|| ≤ ||J ||k−1δ+Σk
i=0||J ||iε, so if we

choose ε < (Σ∞i=0||J ||i)−1 (this is well-defined since ρ(J) < 1 (since ||J || is arbitrarily

close to ρ(J) via our choice of norm)) [23] then this gives ||F k−1(u) − u∗|| < δ;

therefore, ||r(F k−1(u))|| < ε by the smoothness of F . Thus using the inductive

hypothesis again, then:

||F k(u)− F (u∗)|| ≤ ||J ||(||J ||k−1δ + Σk−1
i=0 ||J ||iε) + ε (2.5)

Again, due to the choice of ε:

||F k(u)− F (u∗)|| ≤ ||J ||kδ + Σk
i=0||J ||iε (2.6)

Since ||J ||kδ → 0 as k → 0 and σki=0||J ||iε→ Cε given that ||J || < 1 [23], then

we have convergence within a neighborhood of the solution.

This scheme, in general, fails if the spectra of the Jacobian matrix lies outside

the unit disk (as a trivial example, consider F (x) = 2x).

Therefore, in order to stabilize the procedure, we first decompose the space

into P and Q, where P is the invariant eigenspace of J corresponding to the eigenvalues

of magnitude > 1 − δ, and Q is orthogonal to P (it will be theoretically important

later to note that Q is not necessarily an invariant subspace) [23,56].

Let the corresponding projectors for P and Q be P and Q, respectively. Then

note that PQ = 0, Q = I−P , which we will use implicitly (we will delay a discussion

on how these projectors are obtained until the next chapter).
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In order to describe the stablization procedure, we define:

p = f := PF

q = g := QF
(2.7)

With this, the central concept is to use the subspace decomposition to im-

prove the general procedure by applying a modified chord method on the system

corresponding to the P eigenspace. This leads to the following scheme:

(I − f (0)
p )(p(k+1) − p(k)) = f(p(k), q(k), λ)− p(k)

q(k+1) = g(p(k), q(k), λ)
(2.8)

(where fp is the derivative of f with respect to the subspace P)

In summary so far then, the stabilized iteration consists of

ALGORITHM 1 (Stabilized Iteration) p(0) := Pu(0)(λ), q(0) := Qu(0)(λ)

Do until convergence:

p(k+1) = p(k) + (I − f (0)
p )−1(f(p(k), q(k), λ)− p(k))

q(k+1) = g(p(k), q(k), λ)
(2.9)

u∗(λ) = p(kfinal) + q(kfinal)

(here we assume that 1 is not an eigenvalue of the Jacobian of F so that the

inversion is well-defined)

Now that this description is complete, we can provide some basic convergence

results for this algorithm.

THEOREM 2 (Stabilized Iteration Convergence Theorem) Let F be smooth

and 1 not be an eigenvalue of the Jacobian of F , then algorithm 1 above converges

for all initial values u(0) ∈ Bε(u
∗) for some ε
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[56]

Proof We define

v(k) :=

 p(k)

q(k)

 (2.10)

Then as in the previous convergence proof, by Taylor’s theorem:

v(k+1) − v∗ = J(v(k) − v∗) +O(||v(k) − v∗||2) (2.11)

Where J is the Jacobian of the stabilized iteration and, again, similar to

the previous convergence proof, || · || is a norm for which ||J || − ρ(J) is arbitrarily

small [34]).

Thus we need only show that the Jacobian has a spectral radius less than one,

from which the rest of the proof follows by application of the previous theorem 1.

By direct calculation:

J =

 ∂(p∗+(I−f (0)p )−1(f∗−I))
∂p∗

∂(p∗+(I−f (0)p )−1(f∗−I))
∂q∗

g∗

∂p∗
g∗

∂q∗


=

 I + (I − f ∗p )−1(f ∗p − I) (I − f ∗p )−1f ∗q

g∗p g∗q

 (2.12)

Note that g∗p = QJP , since P is an invariant space, JP ∈ P, but Q and P are

orthogonal, thus g∗p = 0.

It remains to show that g∗q = QJQ has spectral radius less than one. Using

Jordan Canonical Form, there exists a similarity matrix W = (W1,W2) so that:

J = W

 J1 0

0 J2

W−1 (2.13)

where J1 contains all the Jordan blocks associated to eigenvalues of norm < 1

and J2 contains all Jordan blocks associated to eigenvalues of norm > 1 (there are
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no eigenvalues = 1 by hypothesis). If we do this, note that the range of W1 is P, and

the range of W2 is Q; therefore, QW1 = 0 and:

QW2J2 = QJW2 = QJ(PW2 +QW2) = QJQW2 (2.14)

Thus, if we let V = (W1, QW2), then by a straightforward computation we

have:

QJQV = V

 0 0

0 J2

 (2.15)

Hence, if we can show that V is nonsingular, then g∗q = QJQ is similar to a

matrix with spectral radius less than one. But if V were singular, then for w 6= 0

either QW2w = 0, which can’t happen because if the range of W2 is Q, and Q surjects

onto Q, then this would imply that W2 would be linearly dependent, which would

imply that W is singular; or W2w is in the range of W1, which also can’t happen

because W is nonsingular. Thus V is nonsingular.

Therefore, g∗q has spectral radius less than one, and J itself has spectral radius

less than one. And since the Jacobian has spectral radius less than one, the stabilized

iteration converges by theorem 1.
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3. RECURSIVE PROJECTION METHOD

The Recursive Projection Method attempts to find the fixed points of

y = F (y, λ) : <N ×< → <N (3.1)

via deflating appropriate subspaces.

In particular, we apply the analysis of the previous chapter to a Richardson

scheme:

y(k+1) = M−1Ny(k) +M−1b (3.2)

In applying deflation to the above iteration, the fixed iteration functional is

given by

F (y) = M−1Ny +M−1b (3.3)

Applying this functional to the previous analysis yields:

p := Py ∈ P

q := Qy ∈ Q

f(p, q, λ) = PF (p+ q, λ)

g(p, q, λ) = QF (p+ q, λ)

(3.4)

(I − PFy(y(0), λ)P )(p(k+1) − p(k)) = f(p(k), q(k), λ)− p(k) (3.5)

q(k+1) = g(p(k), q(k), λ) (3.6)

Equation (3.5) is simplified to:

(I − PHP )(p(k+1) − p(k)) = P (Hy(k) −M−1b)− p(k) (3.7)
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Let Z be an orthogonal basis for P, then P = ZZT , I = ZTZ:

(I − ZZTHZZT )(p(k+1) − p(k)) = ZZT (Hy(k) −M−1b)− p(k)

(I − ZZTHZZT )p(k+1) = ZZT (Hy(k) −M−1b)− ZZTHPp(k)

(I − ZZTHZZT )p(k+1) = ZZT (Hy(k) −Hp(k) −M−1b)

(I − ZZTHZZT )p(k+1) = ZZT (Hq(k) −M−1b)

(3.8)

If this equation holds, then if we multiply through by ZT we obtain:

(ZT − ZTHZZT )p(k+1) = ZT (Hq(k) −M−1b)

(I − ZTHZ)ZTy(k+1) = ZT (Hq(k) −M−1b)
(3.9)

In order to simplify this expression and later implementation, we define u =:

ZTy.

(I − ZTHZ)u(k+1) = ZT (Hq(k) −M−1b) (3.10)

Furthermore, equation (3.6) can also be simplified as follows,

q(k+1) = g(p(k), q(k), λ)

q(k+1) = Q(Hy(k) +M−1b)
(3.11)

Using our previous notation, we get

q(k+1) = Q(Hq(k) +HZu(k) +M−1b) (3.12)

In summary, we obtain the following iteration:

(I − ZTHZ)u(k+1) = ZT (Hq(k) −M−1b)

q(k+1) = Q(Hq(k) +HZu(k) +M−1b)
(3.13)

(where we assume that (Ir − ZTHZ) is nonsingular)

In order to generalize our analysis further, we introduce i, j components into

the previous general RPM analysis and allow greater variability over the Jacobians:
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ALGORITHM 2 (RPM Iteration)

(I − ZTHZ)u(k+1) = ZT (Hq(i) −M−1b)

q(k+1) = Q(Hq(k) +HZu(j) +M−1b)
(3.14)

This is what we term the coupling factor (as defined in [7]). This is important

insofar as its influence on the Jacobian matrices associated upon each iteration.

i j coupling

k k Jacobi

k k+1 Gauss-Seidel (GS)

k+1 k Reverse Gauss-Seidel (RGS)

The only item needed for the description of RPM algorithm above to be com-

plete is a description of how the projectors P,Q are calculated. We do this in partic-

ular for the Jacobi coupling.

Note that

q(k+1) = Q(M−1b+Hq(k))

q(k+1) − q(k) = (QHQ)(q(k) − q(k−1))
(3.15)

Therefore, we can use the power method on the successive q vectors to pro-

gressively obtain the Q projector ( [11, 23, 58, 63]). The above equation can be used

to approximate the dominant eigenspace of QHQ by computing a small window of

q(k+1) − q(k) for k = j − wind + 1, · · · , j, computing an orthonormal basis S of this

space, and then using the Schur vectors T (i.e., the columns of the orthonormal ma-

trix of the Schur decomposition, which are needed to ensure that P is an invariant

subspace) of the dominant eigenspace STHS so that ST approximates the Schur

vectors of H [7].

However, in order to utilize parallelism, instead of using q(k+1)−q(k) so that we

may apply the power method to extract the necessary corresponding eigenspace, we
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suggest using a block of vectors so that we can use a subspace iteration (performed

similarly in [11, 43, 52]). This means that instead of needing the wind parameter

to obtain the corresponding eigenspace, one can use the block of vectors directly.

Further, all corresponding u vectors will also be block n×m matrices. And one can

use Hessenberg reduction followed by QR iterations to calculate the corresponding

Schur vectors [11,23,58].

The only other parameters in the algorithm left to describe as in [7], is the

maximal number of deflated eigenvalues (which we denote as numeig), and the num-

ber of eigenvalues deflated at each iteration (which we denote by def).

In total, then, this yields the following algorithm.

ALGORITHM 3 (Subspace Iteration RPM) Choose some random n × m

block of initial linearly independent vectors Y [48].

Let A = M − N,H = M−1N , and choose C to be a n × m matrix with

each column = M−1b

do k=0:freq-1

Y (k+1) = C +HY (k)

∆ = Y (k+1) − Y (k)

enddo

Z = ∅

u(0) = 0

q(0) = Y (0) − Zu(0)

T (0) = C +Hq(0)

k = 0

while not converged

if size(Z, 2) < numeig and mod(k, freq) = 0

Orthogonalize ∆

Perform QR iterations on STHS to obtain def schur vectors T
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Z1 = ST

Z = (Z,Z1)

Orthogonalize Z

W = I − ZTHZ

endif

q(k+1) = (I − ZZT )(T (k) + (HZ)u(k))

T (k+1) = C +Hq(k+1)

u(k+1) = W−1(ZTT (k+1))

∆ = q(k+1) − q(k)

Y (k+1) = Zu(k+1) + q(k+1)

k = k + 1

endwhile

Extract the first column of Y (k+1)

[7]

Furthermore, we can simplify the expression of the Jacobian for RPM, which

will be useful in later convergence analysis.

THEOREM 3 (The Jacobian of RPM) By denoting the error vector as the ap-

propriate difference in both projection P and Q, respectively, as

e(k) = (p(k)T − p, q(k)T − qT )T (3.16)

Each of the three couplings’ iterations can be expressed as Je(k) = e(k+1) [7]

where:

JJ =

 0 C

E B

 (3.17)

JGS =

 0 C

0 EC +B

 (3.18)



15

JRGS =

 CE CB

E B

 (3.19)

(note: the Jacobian for RGS is a correction on [7])

Where

E := QHP,B := QHQ,C := P (Z(I − ZTHZ)−1ZT )PHQ (3.20)

Proof We show the derivation of the Jacobi Coupling’s Jacobian, which we split

into two parts, the first to show that C(q(k) − q) = p(k+1) − p:

C(q(k) − q) =

P (Z(I − ZTHZ)−1ZT )PHQ(q(k) − q)

Z(I − ZTHZ)−1ZTHQ(q(k) − q)

Z(I − ZTHZ)−1ZTHq(k) − Z(I − ZTHZ)−1ZTHq

(3.21)

Using the iteration equation (I − ZTHZ)u(k+1) = ZT (Hq(k) −M−1b) (from

algorithm 2), then

C(q(k) − q) = Z(I − ZTHZ)−1(I − ZTHZ)u(k+1)

+Z(I − ZTHZ)−1ZTM−1b− Z(I − ZTHZ)−1ZTHq

C(q(k) − q) = Zu(k+1) − Z(I − ZTHZ)−1ZT (−M−1b+Hq)

(3.22)

We note that the solution satisfies the equation in algorithm 2 exactly, that is

(I − ZTHZ)u = ZT (Hq −M−1b):

= Zu(k+1) − Z(I − ZTHZ)−1(I − ZTHZ)u

= Zu(k+1) − Zu

= p(k+1) − p

(3.23)

And the second to show that E(p(k) − p) +B(q(k) − q) = q(k+1) − q:
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E(p(k) − p) +B(q(k) − q)

= QHP (p(k) − p) +QHQ(q(k) − q)

= Q(Hp(k) +Hq(k))−Q(Hp+ q)

= Q(HZu(k) +Hq(k) +M−1b)−Q(HZu+ q +M−1b)

(3.24)

We note that the solution satisfies the equation in algorithm 2 exactly, that is

that q(k+1) = Q(Hq(k) +HZu(j) +M−1b) from algorithm 2:

Q(HZu(k) +Hq(k) +M−1b)−Q(HZu+ q +M−1b)

= q(k+1) − q
(3.25)

A similar analysis applies to the other two couplings above.

For the Gauss-Seidel coupling, note that we have already shown that p(k+1) −

p = C(q(k) − q) in the above Jacobi Coupling case, since the (i) component is the

same for the Jacobi coupling as the Gauss-Seidel.

Therefore, we need only show that (EC +B)(q(k) − q) = p(k+1) − p, the proof

mimics the algebra for the Jacobi case with the following replacing E(p(k) + p) +

B(q(k) − q) in 3.24

EC(q(k) − p) +B(q(k) − q) (3.26)

We use what we have already shown for the Gauss-Seidel case, namely that

p(k+1) − p = C(q(k) − q):

= QHP (p(k+1) − p) +QHQ(q(k) − q)

= Q(Hp(k+1) +Hq(k))−Q(Hp+ q)

= Q(HZu(k+1) +Hq(k) +M−1b)−Q(HZu+ q +M−1b)

(3.27)

We note that the solution satisfies the equation in algorithm 2 exactly because

j = k + 1 in the Gauss-Seidel case:

Q(HZu(k) +Hq(k) +M−1b)−Q(HZu+ q +M−1b)

= q(k+1) − q
(3.28)
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A similar approach works for the reverse Gauss-Seidel case. Note that since

the (j) component is the same for the Jacobi coupling as the Reverse Gauss-Seidel

that E(p(k) − p) +B(q(k) − q) = q(k+1) − q.

All that remains to be shown is that CE(p(k) − p) + CB(q(k) − q) which we

already know is equal to C(q(k+1) − q) = p(k+1) − p. This follows nearly identical to

the C(q(k) − q) = p(k+1) − p case for the Jacobi coupling:

P (Z(I − ZTHZ)−1ZT )PHQ(q(k+1) − q)

= Z(I − ZTHZ)−1ZTHQ(q(k+1) − q)

= Z(I − ZTHZ)−1ZTHq(k+1) − Z(I − ZTHZ)−1ZTHq

(3.29)

Using the iteration from algorithm 2 again, (I−ZTHZ)u(k+1) = ZT (Hq(k+1)−

M−1b):

Z(I − ZTHZ)−1(I − ZTHZ)u(k+1) + Z(I − ZTHZ)−1ZTM−1b

−Z(I − ZTHZ)−1ZTHq

= Zu(k+1) − Z(I − ZTHZ)−1ZT (−M−1b+Hq)

(3.30)

We note that the solution satisfies the equation in the iteration exactly:

Zu(k+1) − Z(I − ZTHZ)−1(I − ZTHZ)u

= Zu(k+1) − Zu

= p(k+1) − p

(3.31)

Which shows that the above Jacobians are correct.

Note that throughout the rest of the analysis, since E = QHP = 0, these

Jacobians have the same spectra. Therefore, nothing changes in the following analysis

given different couplings.

In particular, this allows us to state and apply the result of theorem 2 from

the previous chapter that given 1 not an eigenvalue of PHP and ρ(QHQ) < 1, the
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above generalized coupling scheme converges. Since by using the Jacobian formulation

above, where E = QHP = 0 by choice of P, we have ρ(J) = ρ(B) = ρ(QHQ).

Moreover, this allows us to state an important motivating property regarding

this method, namely, with P,Q properly chosen then either this method can take

a divergent splitting and force it to be convergent (by projecting that part of the

eigenspace for which |λ(H)| > 1 onto P) or accelerate convergence (since either all

eigenvalues are < 1, in which case the method reduces to the original splitting) [7].

We illustrate the above remarks by the following examples.

Example 3.0.1 RPM Convergence and Divergence

First we show that using RPM to deflate larger eigenvalues (in modulus) does

indeed help speed up convergence. We do this in figure 1 below showing the residual

norm vs. iterations with the typical toy matrix setup, a Poisson matrix of size 100,

with the preconditioner being a simple band with bandwidth 21. The maximum

number of eigenvalues to be deflated is 4, the subspace size is 4, the frequency of

deflation is 1, and the number of eigenvalues deflated at each step is 2. The blue line

is RPM deflating 1 eigenvalue, and the green is RPM deflating 4 eigenvalues.
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Figure 1. Deflation speeding up convergence

It takes a few iterations for the convergence bound to ensure the speed-up

of RPM over traditional Richardson iteration. The following shows a blow-up of

convergence upon further iterations:
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Figure 2. Deflation speeding up convergence blowup

Further, this does not solely speed up convergence, but also can force divergent

iterations to become convergent. We show this by keeping all the parameters the same,

except we change the problem into a Helmholtz problem by decreasing the value of

the diagonal entries down from 4 to 3.6. Here, the blue line is RPM with only 1

eigenvalue deflated, and the green is RPM with the 4 eigenvalues deflated:
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Figure 3. Deflation preventing divergence

Finally, the following not only also illustrates the speed-up upon deflating more

eigenvalues, but also demonstrates algorithm 3 and the claim of parallelism underlying

the algorithm. The following system has dimension 4194304 with approximately 400

million nonzeros running on 8 cores. Here, the blue line is block Jacobi RPM with 2

eigenvalues deflated, and the green is block Jacobi RPM with 4 eigenvalues deflated.
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Figure 4. Parallel deflation speeding up convergence

However, the more important consequence of the previous Jacobian expres-

sions, is that it allows us to explicitly state RPM as a preconditioner.

THEOREM 4 (RPM Preconditioner) k steps of RPM is equivalent to precon-

ditioning the original system by:

M−1 = (I, I)Jk

 P

Q

+ (I, I)(I − Jk)

 P

Q

A−1 (3.32)

Assuming that J has no eigenvalues ≥ 1.

Proof The RPM iteration can be expressed via Jek = ek+1, where ek =

 P (xk − x)

Q(xk − x)


as in [7] and discussed above, thus:

v :=

 P

Q

x, vk :=

 P

Q

xk, ek = vk − v (3.33)

Jvk + (v − Jv) = vk+1 (3.34)
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Note that the actual error vector is obtained by premultiplying (3.34) by (I, I)

(since (I, I)

 P

Q

 = P+Q = I). Thus, after premultiplying and telescoping (3.34),

k steps of RPM is equivalent to:

(I, I)(Jkv0 + Σk−1
i=0 J

i(I − J)v) (3.35)

Therefore, in solving a systemAx = b, with v0 =

 P

Q

 b, and v =

 P

Q

A−1b,

we get that k steps of RPM is equivalent to preconditioning the original system by

(Since postmultiplication of (3.36) with b results in (3.35)):

M−1 = (I, I)Jk

 P

Q

+ (I, I)Σk−1
i=0 J

i(I − J)

 P

Q

A−1 (3.36)

Since J has no eigenvalues ≥ 1, then Σk−1
i=0 J

i = (Jk − I)(J − I)−1 [44]:

M−1 = (I, I)Jk

 P

Q

+ (I, I)(I − Jk)

 P

Q

A−1 (3.37)

Which is what we wanted to show.

By utilizing this preconditioner expression, we can also properly analyze the

convergence rate.

THEOREM 5 (RPM Convergence Criteria) The convergence rate bound of k

steps of RPM is determined by p(Q(H)), where p(x) = xk+1

Proof We denote the preconditioner inside RPM by Mrichardson, and the equivalent

preconditioner expression of k steps of RPM as denoted in the previous proof by

Moutside.

Without loss of generality, let the preconditioner inside RPM (Mrichardson) be

I. We may state that this is without loss of generality because using Mrichardson in
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RPM is equivalent to using this preconditioner initially on A (i.e., applying RPM to

the system M−1
richardsonAx = M−1

richardsonb) and letting Mrichardson = I in (3.35).

With this reduction we have A = I − Hrichardson (where Hrichardson := I −

M−1
richardsonA).

Using the k-step RPM precondioner expression constructed above (and noting

that theoretically E = 0 = C in the Jacobian J):

Houtside = I −M−1
outside(M

−1
richardsonA)

= I − (I, I)

 0 0

0 (QHrichardsonQ)k

 P

Q

M−1
richardsonA

−(I, I)

 P

Q

+

 0 0

0 (QHrichardsonQ)k

 P

Q


= −(I, I)

 0 0

0 (QHrichardsonQ)k

 P

Q

M−1
richardsonA

+

 0 0

0 (QHrichardsonQ)k

 P

Q


= (QHrichardsonQ)k(I −M−1

richardsonA) = (QHk+1
richardson)

(3.38)

With this we can exactly specify how deflating more eigenvalues leads to speed-

ing up convergence.

We will use these convergence results again in later chapters when we combine

RPM with FGMRES.
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4. GMRES

We first recall some basic facts about Petrov-Galerkin conditions in order to review

the minimum residual and GMRES algorithms which we will use and build upon in

the subsequent chapter on FGMRES.

In a Petrov-Galerkin algorithm, we wish to find an approximate solution x̂ ∈ K

(where K is a subspace with basis V = [v1, · · · , vm]) such that the residual r =

f − Ax ⊥ L, where L is a space with basis W = [w1, w2, · · · , wm]. In short, we wish

to make the residual continually orthogonal to a limiting sequence of subspaces (see

figure 5 below).

L

r

A=Pr

Figure 5. Galerkin Projection

In summary, this algorithm consists of

ALGORITHM 4 (Petrov-Galerkin)

Given kth iterate xk, search space Kk,Lk
Find xk+1 ∈ xk +Kk so that r0 − Aδ = b− Axk − Aδ ⊥ Lk, δ ∈ Kk
Repeat.

In particular, if we let L = AK, K = span{v = r}, L = span{w = Ar} we

recover the minimum residual algorithm:
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ALGORITHM 5 (Minimum Residual)

r = f − Ax, ρ = Ar

Do until convergence:

α = rtρ
ρT ρ

x = x+ αr

r = r − αρ

ρ = Ar

In particular, we will need the following result pertaining to the minimum

residual algorithm:

THEOREM 6 (Residual Minimization)

||rk+1||22 ≤ [1− µ2

σ2 ]||rk||22
where

σ := ||A||2 = ρ
1
2 (ATA)

µ := λmin(AS) = λmin(1
2
(A+ AT ))

(4.1)

[36,51]

Proof Let A = AS +ASS where AS := 1
2
(AT +A), ASS := 1

2
(A−AT ), with AS spd.

Notice that since ASS is skew-symmetric −uTATSSu = uTASSu, thus uTASSu =

0.

Therefore,

σ = ||A||2 ≥
||Au||2
||u||2

,
uTAu

uTu
=
uTASu+ uTASSu

uTu
≥ λmin(AS) = µ (4.2)

xk+1 = xk + αkrk and rk+1 = rk − αkArk (4.3)

So:
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||rk+1||22 = ||f − A(xk + αkrk)||22
= ||rk − αkArk||22
= ||(I − αkA)rk||22
= rTk+1(I − αkA)rk

(4.4)

Use the Galerkin condition (rk+1 ⊥ L = span{Ark}):

||rk+1||22 = ||rk||22[1− rTkArk
rTk rk

2

· 1

||Ark||22
] (4.5)

By (4.2):

||rk+1||22 ≥ (1− µ2

σ2
)||rk||22 (4.6)

Which is what we are trying to show.

Example 4.0.2 Minimum Residual Convergence

We illustrate the previous theorem by applying the minimum residual algo-

rithm to a linear system in which the coefficient matrix is a Toeplitz matrix of order

100 with diagonal elements 2.1 and super and sub diagonal elements −1.
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Figure 6. Convergence for the minimum residual algorithm

In the case of the minimum residual algorithm, the positive definiteness con-

dition is quite strong, if we reduce the diagonal down to 1.1:
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Figure 7. The minimum residual algorithm

applied to a system for which AS is not symmetric positive definite

Now, if instead we choose Kk := span{r0, Ar0, A
2r0, · · · , Ak−1r0}, i.e. a Krylov

subspace, we make two observations.

The first, and this is a point which we will bring up later during the convergence

proofs of GMRES, is that at step m, xm = x0 +qm(A)r0, where qm is some mth degree

polynomial.

The second, and the important heuristical reason for choosing this as our

search space, is that if one notes the characteristic polynomial, p(λ) = λn−Σn−1
i=1 piλ

i−

p0, it has A as a root, An − Σn−1
i=1 piA

i − p0 = 0.

Thus if we premultiply by A−1, we get an expression for A−1:

A−1 =
1

p0

(An−1 − pn−1A
n−2 − · · · − p2A− p1I) (4.7)

x = A−1f if x0 = 0, r0 = f , then this shows that such a choice for the

search space eventually converges to the solution. Further, for such a choice, this
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shows that there is a polynomial p (p(0) = 1) of degree not exceeding n for which

b− Ax = p(A)r0 [34, 36,51].

Now, in an attempt to simplify such a Krylov basis in order to create a prac-

tical Petrov-Galerkin algorithm based on the Krylov basis, we utilize a Hessenberg

reduction.

I.e., we find an orthogonal V so that AV = V H, with H being upper-

Hessenberg.

Moreover, if we choose ||v1||2 = 1, v1 arbitrary (typically v1 = r0
||r0||2 ), then

by analyzing the equality AV = V H, we must have that h11 = vT1 Av1, h21v2 =

Av1 − h11v1, h21 = ||Av1 − h11v1||2, v2 = (Av1−h11v1)
h21

, · · ·

Continuing in the manner, and generalizing this Gram-Schmidt procedure, we

obtain the generalized Arnoldi process.

ALGORITHM 6 (Generalized Arnoldi)

Pick v1 ∈ <n with ||v1||2 = 1.

For j = 1 : m

wj = Avj

For i = 1 : j

hij =< vi, wj >

wj = wj − hijvi
End

hj+1,j = ||wj||2
If hj+1,j = 0

m := j

break

vj+1 =
wj

hj+1,j

End
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Combining this Arnoldi process with the Petrov-Galerkin algorithm on a Krylov

subspace above, we obtain the GMRES algorithm.

ALGORITHM 7 (GMRES)

r0 = b− Ax0, β := ||r0||2, v1 = r0
β

For j = 1, 2, ...,m

wj := Avj

For i = 1, ..., j

hij := (wj, vi);wj := wj − hijvi
End

hj+1,j = ||wj||2
If hj+1,j = 0

m := j

break

vj+1 =
wj

hj+1,j

End



Arnoldi

Hm := [hij]

Find ym = min||βe1 −Hmy||2 via a Givens rotation QR process, keeping in mind

that H is Hessenberg.

xm := x0 + Vmym

[36, 51,53]

In case hj+1,j = 0 for both algorithms above, then we happen to hit the

minimal polynomial of A with respect to the vector v1, which is admittedly rare.

However, in such a case, this implies that the computed residual is 0, and that we

have obtained the exact solution.

With this description of GMRES, we can now outline the theoretical results

which we will need to compare with FGMRES.

The following lemma will be very similar to theorem 10 below.
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LEMMA 1 [36, 51] Let xm be the mth step approximate solution obtained by GM-

RES, and rm := b− Axm. Then

xm = x0 + qm(A)r0 (4.8)

and

||rm||2 = ||(I − Aqm(A))r0||2 = minq∈Pm−1||(I − Aq(A))r0||2 (4.9)

Where q is a polynomial of degree not exceeding m− 1.

Proof Denote the Krylov space by Km,Lm = AKm.

Then

miny∈Lm||b− y|| = minx∈Km ||b− Ax||

= ||b− Axm||
(4.10)

which is the case iff < b − Axm, v >= 0 for v ∈ Lm, but this is precisely the

condition for algorithm 4.

But Km is precisely the set of all vectors of the form x0 + q(A)r0.

With this lemma we have only to discuss two important convergence results

that can be compared with those of FGMRES.

THEOREM 7 [51] If A + AT is spd, then restarted GMRES converges for any

choice of k.

Proof GMRES uses the Krylov subspace Km at each restart of GMRES.

The minimum residual algorithm is equivalent to GMRES with K2.

By the previous lemma, therefore, restarted GMRES reduces the residual at

least as much as minimum residual.

Since the minimum residual algorithm converges if A + AT is spd by (4.1),

then GMRES converges as well for A+ AT spd.

Example 4.0.3 GMRES Convergence
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Just like with the minimum residual algorithm, we can illustrate the conver-

gence of GMRES for solving a Toeplitz tridiagonal system Ax = f of order 100, with

diagonal elements 4 and super and sub diagonal elements −1.

Figure 8. Convergence of GMRES

As with the minimum residual algorithm, the positive definiteness condition

is quite strong, if we shift the diagonal of A down to 1.9 to allow the eigenvalues to

lie on both sides of the imaginary axis, convergence is not assured, see figure 9.
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Figure 9. GMRES convergence without a symmetric positive definite part

THEOREM 8 [51]

Let A be diagonalizable, i.e. A = XΛX−1,Λ = diag(eigenvalues), then ||rm||2 ≤

κ2(X)ε(m)||r0||2.

Where ε(m) = minp(x)∈Pm,p(0)=1max1≤i≤n|p(λi)|

Proof As described in the theory of GMRES above, there is a polynomial p (p(0) =

1) of degree not exceeding m for which b− Ax = p(A)r0, thus

||b− Ax||2 = ||Xp(Λ)X−1r0||2 ≤ ||X||2||X−1||2||r0||2||p(Λ)||2 (4.11)

Since Λ is diagonal, then

||p(Λ)||2 = maxi=1,···,n|p(λi)| (4.12)

Since xm minimizes the residual norm over x0 +Km, then
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||b− Ax||2 = ||Xp(Λ)X−1r0||2 ≤ ||X||2||X−1||2||r0||2(minp∈Pm,p(0)=1maxi=1,···,n|p(λi)|)

(4.13)

Which is the desired result.

With this appropriate background of GMRES, we can now discuss the con-

nections between GMRES and deflation-based methods discussed in the previous

chapters. Like these deflation-based methods, GMRES also implements features that

mitigate detrimental influences on convergence via projection, albeit implicitly.

As FGMRES builds on GMRES, and because we will be incorporating FGM-

RES with an inner-projection based method, it will be important to conclude this

section by noting the following theorem which indicates deflation-like properties in-

herent in GMRES similar to what we previously analyzed for RPM in the preceding

chapter.

THEOREM 9 [21] Let A = I − B be non-singular, with p eigenvalues of B out-

side the open unit disk, and let Q be the projector onto the invariant subspace of B

corresponding to its p largest eigenvalues and P the projector corresponding to the

invariant subspace of the n−p smallest eigenvalues (e.g., let the Schur decomposition

of B = URU∗ with its eigenvalues ordered from largest in modulus to smallest, and

let Z be the first p column of U , then Q = ZZT and P = I−ZZT ), then for GMRES

and k ≥ p:

||rk|| ≤ K||rPk−p|| (4.14)

Where rPk−p corresponds to applying GMRES on the projected system according

to the projector P , and K a constant.

Proof As expressed in lemma 1 above, there exists a polynomial p ∈ Pk so that

deg(p) ≤ k, p(0) = 1, and p minimizes ||p(I −B)r0||.
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Let τ(z) = p(1− z), then:

||rk|| ≤ ||τ(B)r0|| (4.15)

Further, if we have such projectors P and Q, then due to the condition that

such projectors are constructed so that they are invariant under the appropriate

eigenspaces of B, then B = PBP +QBQ. Moreover, p(B) = p(PBP )P +p(QBQ)Q.

Now, suppose we construct the Lagrangian polynomial p1 so that it is of the

same degree as p, it vanishes at each eigenvalue λi not in the unit disk, and so that

p1(1) = 1. Then, using the Lagrangian polynomial construction:

p1(z) = Πλi 6∈{x∈C||x|<1}
z − λi
1− λi

(4.16)

Then by construction:

p1(PBP )P = 0 (4.17)

Let τ2 be defined as the GMRES polynomial corresponding to the k − p iter-

ation solving the projected system corresponding to the projector P :

(P − PBP )x = Pb

Qx = 0
(4.18)

Thus, rPk−p = τ2(PBP )Pr0.

Let q := p1τ2, then (using (4.17)):

q(B)r0 = q(PBP )Pr0 + q(QBQ)Qr0

= p1(PBP )τ2(PBP )Pr0 + p1(QBQ)τ2(QBQ)Qr0

= p1(QBQ)τ2(QBQ)Qr0

= p1(QBQ)rPk−p

= p1(QBQ)QrPk−p

(4.19)

Therefore, using (4.15), we established the proof with K = ||p1(QBQ)Q||.
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5. FGMRES

As outlined above for GMRES, the Arnoldi loop constructs the following orthogonal

basis of a preconditioned Krylov subspace:

Span(r0, AM
−1r0, · · · , (AM−1)m−1r0) (5.1)

In which the new vector is obtained from the previous vector in the process.

The last step is a linear combination of the previous vectors zi = M−1vi, i = 1, · · · ,m.

Here, we need only apply M−1 to Vmym. However, if we allow the preconditioner to

change at each step, we would have

zj = M−1
j vj (5.2)

If we do this modification, we can modify the above algorithm to create GM-

RES with flexible preconditioning, or FGMRES:

ALGORITHM 8 (FGMRES)

Let x0 be an initial vector, m a preset dimension of the Krylov subspace, and

define Hm ∈ <(m+1)×m.

Perform Arnoldi

1. Compute r0 = b− Ax0, β = ||r0||2, v1 = r0
β

2. For j = 1, · · · ,m do

3. zj := M−1
j vj

4. w := Azj
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5. For i = 1, · · · , j do hi,j :=< w, vi >,w := w − hi,jvi

6. hj+1,j = ||w||2, if hj+1,j = 0 break, vj+1 = w
hj+1,j

7. Zm := (z1, · · · , zm)

The approximate solution is then xm = x0 + Zmym, where ym is the solution to

the linear least squares problem Hmy = βe1.

It is clear that the above algorithm is mathematically equivalent to GMRES

when Mj = M for j = 1, · · · ,m. [8, 51,60]

In order to compare FGMRES with GMRES (before extending FGMRES re-

sults past the current literature), we note the following basic properties of FGMRES.

First, the following mimics lemma 1 above.

THEOREM 10 minx∈x0+span(Zm)||b− Ax||2 = ||b− Axm||

Proof Since in GMRES we are performing a modified Gram-Schmidt procedure on

Span(r0, AM
−1r0, · · · , (AM−1)m−1r0) (5.3)

We obtain the relation

(AM−1)Vm = Vm+1Hm (5.4)

Similarly, for FGMRES

AZm = Vm+1Hm (5.5)

Now let z = x0 +Zmy be an arbitrary vector ∈ x0 + span(Zm), then using the

above:
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b− Az = b− A(x0 + Zmy)

= r0 − AZmy

= βv1 − Vm+1Hmy

= Vm+1(βe1 −Hmy)

(5.6)

However, the final step of the algorithm minimizes ||βe1 − Hmy||2 = ||b −

A(x0 + Zmy)||2.

Likewise, the following mimics the breakdown case of GMRES.

THEOREM 11 [49] Assume that β = ||r0||2 6= 0 and that k− 1 steps of FGMRES

have been successfully performed, thus hi+1,i 6= 0, i < k, and that Hk is nonsingular.

Then xk is exact iff hk+1,k = 0

Proof Let hk+1,k = 0, then AZk = HkVk, and

||βv1 − AZjyj||2 = ||βe1 −Hkyk||2 (5.7)

Since Hk is nonsingular, then yk = βH−1
k e1 minimizes the above norm, and in fact

yields xk = x (exact solution). Likewise, if xk is exact, then:

0 = b− Axk = Vk(βe1 −Hkyk) + vk+1e
T
k yk (5.8)

If eTk yk = 0, then Hkyk = βe1. But since hi+1,i 6= 0, i < k, and yk = 0, then β = 0,

resulting in a contradiction. Thus eTk yk 6= 0. Premultiplying the above by V T
k and vTk+1

and noting orthogonality we conclude that βe1 = hkyk, and vk+1 = 0, respectively.

Thus hk+1,k = 0.

Now, in order to extend these GMRES results, and add to the results on

FGMRES, we note that FGMRES is equivalent to GMRES on a particular matrix.

THEOREM 12 FGMRES applied to a linear system Ax = b is equivalent to apply-

ing GMRES to a linear system Y x = b for some n× n matrix Y .
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Proof Notice that if FGMRES uses a sequence of preconditioners M−1
i A, then

FGMRES minimizes the residual over a polynomial of the vectors z0, z1, . . ., and

thus Y zi = zi+1 defines a matrix for which performing GMRES on Y is equivalent

to applying FGMRES on A with the sequence of preconditioners Mi. Specifically, Y

can be found algebraically as:

Y = (z1|z2|z3| . . .)(z0|z1|z2| · · ·)−1

= Z1Z
−1
0

(5.9)

In this way, FGMRES is equivalent to GMRES on Y , and Y describes the

convergence behavior of FGMRES.

Example 5.0.4

In particular, this shows the strong dependence of FGMRES on the initial test

vector.

Take as an example, an FGMRES algorithm which has M−1
i A is a matrix that

permutes rows i and i+ 1, r0 = ei, with M−1
n−1A an arbitrary matrix, and M−1

n A = I.

Thus since eTi ej = 0 (i 6= j), the Arnoldi process will trivially produce:

Y =
(
e1 e2 · · · en−1 a

)−1 (
e2 e3 · · · a a

)
= P1n

 In−1 C

0 B

 (5.10)

Where P1n is the permutation matrix the permutes the first and last rows,

and a can be made an arbitrary vector via appropriate choice of M−1
n−1A and r0.

Thus, in this simple example, the spectrum can depend wholely on r0 (because P1n

is nonsingular, then multiplication by it forms a homeomorphism; therefore, if B is

made to vary its eigenvalue in modulus from 0 to∞, then the same must occur under

the homeomorphism 1).

In order to use this expression for Y carefully, and establish very limited

convergence results to compare with the previously exhibited GMRES convergence

1The author would like to thank Kyle Kloster and Jake Noparstak for this argument
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results, we will need the following lemma. This is essentially a stability result of GM-

RES applied to FGMRES placing a restriction on the variation of the preconditioners

from one iteration to another (similar to some results in [24, 50]). A much stricter

bound can be found using [12], but for the purposes of this study we neither need such

strict results, and we will use the following result to build a connection between the

behavior of the residual norm of FGMRES and the geometric mean of the behavior

of the residual norm of the individually preconditioned GMRES iterations.

LEMMA 2 Assume that ||M−1
i −M−1

j || ≤ ε.

Let the initial vector be given as x0 and r0 := b− Ax0.

Let xk be the solution after k steps of FGMRES (xk 6= x) and Hk be nonsin-

gular.

Let a1 = M−1
1 r0, and define inductively ak = Σk

j=1M
−1
j (Σk−1

i=1 αi,j,kMiai +

γk−1,jAak−1) where αi,j,k, γk−1,j are given.

Define the Y -matrix so that Y ai = ai+1.

Let yk be the solution after k steps of GMRES on Y with M−1
1 r0 in place of

r0.

Then ||xk − yk|| ≤ Ckε for some constant Ck or ||b− Axk|| ≤ ||b− Ayk||.

Proof We leave the proof of this in Appendix A.

With this, we may now establish some basic results for FGMRES.

The following result parallels theorem 7.

THEOREM 13 (Y is Positive Definite) If each of the matrices M−1
i A has sym-

metric part positive definite parts and ||M−1
i −M−1

j || ≤ ε, then FGMRES converges.

Proof In lemma 2, let γ2,j = 1 for j = 1, · · · ,m, else α, γ = 0, let z0 = M−1
1 r0, then

a1 = z0, ak = M−1
k−1z0. Consequently, the residual rm resulting from using GMRES

on Y defined by ai is within a constant times ε of the actual residual term using

FGMRES or bounds it from above.
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Then by lemma 1:

||rm||m

= (minα||z0 − α1 ·M−1
1 Az0 − α2 ·M−1

2 Az0 − · · · − αm ·M−1
m Az0 − · · · ||)m

≤ Πm
i=1minαi

||r0 − αi ·M−1
i Az0||

(5.11)

With each item in the product is the minimum residual with respect to M−1
i A,

and thus by theorem 7:

||rm||m ≤ [Πm
i=1(1− µ2

i

σ2
i

)]||r0|| (5.12)

where µi = λmin(M−1A+ (M−1A)T )/2, σi = ||M−1
i A||2

Important Remark:

This result can be used to give some weak convergence bounds–even in the

case where not all of M−1
i A have symmetric positive definite parts (since the minimum

residual bound still holds).

That is to say, µi ∈ σ(I)− σ(Ji), and when we vary the stiff subspace, a weak

bound on when convergence still occurs can be thus given by the above result.

Example 5.0.5 Numerical Test: Convergence rate of FGMRES with components

that have symmetric positive definite parts

The following illustrates the above result and remark. To calculate the bound

it uses the minimum residual bound, and then uses the bound formed by the geometric

mean of the residual norm bound for each of the individually preconditioned GMRES

iterations as in equation (5.12), and compares it with residual norm of FGMRES.

Since the minimum residual bound is not tight, the overall bound is not tight.
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Figure 10. FGMRES bound for components

with symmetric positive definite parts

Of particular interest in theorem 13 is the appearance of the geometric mean in

equation (5.12). Following this theme, and recalling theorem 12, we wish to analyze

this matrix Y to see if this observation has further merit.

The result we obtain is very limited, but does indeed point to this behavior:

THEOREM 14 (Unit Disk Convergence of Y) If each of the matrices I−M−1
i A

has norm < 1, ||M−1
i −M−1

j || ≤ ε, and the right-hand side vector M−1b has all nonzero

entries under the Jordan basis of the matrix Y described below, then the residual norm

of FGMRES is identical to the residual norm of GMRES on a matrix Y whose spectral

radius is asymptotically bounded by the geometric mean of the norm of the matrices

I −M−1
i A.

Proof Let b ← M−1b, x0 ← 0, it will be useful to note a similar construction of

the FGMRES matrix that if we consider minimizing the residual over the polynomial
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of the vectors b, (I − AM−1
1 )b, (I − AM−1

2 )(I − AM−1
1 )b, . . ., then by theorem 12

performing FMGRES is equivalent to performing GMRES on a Y with

Y = [((I − AM−1
1 )b|(I − AM−1

2 )(I − AM−1
1 )b| · · ·)

(b|(I − AM−1
1 )b|(I − AM−1

2 )(I − AM−1
1 )b| · · ·)−1]

= Z1Z
−1
0

(5.13)

We will perform the rest of the analysis with this Y . The rest of the result

follows by applying the previous lemma 2 with pi chosen to give the matrix Y above,

namely, αi,i,i = 1 and γi,i = −1 (else α, γ = 0).

Assume that Y is nonsingular, and that λ1 is an eigenvalue corresponding to

the spectral radius, and if the Jordan canonical form of Y = XJX−1 then the right

hand side b is such that eTmX
−1b 6= 0 where m is the geometric multiplicity of λ1.

Hence,

(
b|Y b|Y 2b| · · ·

)
c = Y nb (5.14)

Let the Jordan form of Y = XJX−1 with J ordered so that the first Jordan

block contains λ1 with geometric multiplicity m. Further, since X is nonsingular, ∃xl
such that xTl X = eTm. Finally, let d = X−1b. With these simplifications, multiply the

above through by xTl :

(0, 0, . . . , 0,Σn
i=1ciλ

i−1
1 , 0, 0, . . . , 0)d = xTl Y

nb (5.15)

Since ci satisfies the minimal polynomial:

λn1di = xTl Y
nb (5.16)

By assumption di 6= 0, so then:

|λ1|n ≤
|xTl Y

nb|
||Y nb||
di
||b||

||Y nb||
||b||

(5.17)
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Using Bunyakovsky-Cauchy-Schwartz inequality together with the fact that

xTl X = eTm, then ||xl|| ≤ ||X−1||:

|λ1|n ≤
1
di

||X−1||||b||

||Y nb||
||b||

(5.18)

Let C := 1
di

||X−1||||b||

, then:

|λ1| ≤ C
1
n (
||Y nb||
||b||

)
1
n (5.19)

Now using the fact that Y nb = Π(I −M−1
i A)b:

|λ1| ≤ C
1
n (||Π(I −M−1

i A)||)
1
n (5.20)

Thus, after noting that C
1
n → 1, if the geometric mean of the norm corre-

sponding preconditioners (||I − M−1
i A||) are < 1, the spectral radius is also < 1.

Although this result does not show that in the unit norm case that the residual

norm of FGMRES asymptotically approaches the geometric mean of the residual norm

of each individual preconditioned GMRES (it only compares with GMRES performed

on the matrix Y ), this claim is backed by numerical experiments as shown below.

Example 5.0.6 Numerical Test: FGMRES with a family of matrices where ||M−1
i A|| <

1 v. a bound which is the geometric mean of the residual norms of the individually

preconditioned GMRES iterations

The following exhibits the tight bound the geometric mean of the residual

norm of the individually preconditioned GMRES iterations gives. The places where

FGMRES crosses the bound might be due to errors from the constant factor C in the

above proof.
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Figure 11. FGMRES residual norm v. geometric mean of GMRES residuals

In summary, the following results pertaining to FGMRES suggest even more

general results:

• FGMRES is equivalent to GMRES on a different matrix Y .

• In the case where the symmetric part of the matrices M−1
i A is positive definite,

the geometric mean of the positive definite bound obtained in theorem 7 in

equation (5.12) forms a bound for FGMRES.

• The bound on the spectral radius of Y follows a similar geometric mean property

as in equation (5.20).

• Numerical experiments also suggest an asymptotic bound which is the geo-

metric mean of the residual norms of the individually preconditioned GMRES

iterationswhere the preconditioned matrices have norm less than unity.

We would like to offer the following conjecture: that under some suitable

restriction on A and b (given example 5 above) that if each of the individual precon-
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ditioners of FGMRES converges, then not only will FGMRES converge; but its the

residual norm of FGMRES will be the geometric mean of the residual norm of each

of the individually preconditioned GMRES iterations.

It should be noted that this result exposes a flaw in the existing literature

on FGMRES. Namely, if this conjecture is true, then FGMRES can perform no bet-

ter than simply choosing the best preconditioner in the adaptive preconditioning in

FGMRES. There are two remedies for this. First is that there might be computational

advantages for not generating the preconditioner explicitly or fully in the first itera-

tion. Second, given the strong restrictions on the preconditioners placed in lemma 2,

the ’suitable restriction’ on A and b might be necessarily insignificant.



48

6. BANDED PRECONDITIONING

If we are utilizing a banded preconditioner inside of RPM, then the preconditioner M

inside RPM is a banded matrix. The main advantage of using a banded preconditioner

is the use of the SPIKE algorithm [39, 45] as a subroutine in backsolving systems

involving M , and thus this can be used as a computationally efficient subroutine

inside of RPM.

However, in order to complete our analysis, we need to analyze the spectral

properties of the iteration matrix M−1N inherent to this particular choice of a pre-

conditioner. In particular, we require a condition for banded matrices which is similar

to the conditions for generalized diagonal dominance. To help in this regard, we first

recall the following theorem due to Stein.

THEOREM 15 [34, 57, 61] For any matrix B, ρ(B) < 1 iff there exists a positive

definite matrix T s.t. T −BHTB is also positive definite.

Proof Suppose that T, T −BHTB are positive definite.

Then T−1 has a Cholesky decomposition and = PPH .

Consider the matrix norm ||A||P := ||P−1AP ||2.

Then note that ||B||2P = ||P−1BP ||22 = ρ(PHBHP−HP−1BP ) = ρ(PHBHTBP ).

Thus ||B||2P is the largest eigenvalue of PHBHTBP , i.e., ||B||2P is the largest

zero of det(λI−PHBHP−HP−1BP ) = det(P−H)det(λT−BHTB)det(P−1) = det(λT−

BHTB)det(T ), i.e., the largest zero of det(λT −BHTB).

Therefore, since this is the largest zero, then for λ > ||B||2P , λT − BHTB is

positive definite.

But since T − BHTB is positive definite, then λ can at least be 1, thus 1 >

||B||2P > ρ(B)2.
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Thus ρ(B) < 1, finishing the backwards direction.

Now assume that ρ(B) < 1.

Let V be the Jordan basis of B, define Λ = diag(1, ε, ε2, · · ·), and then let

P := V −1Λ−1.

Then ||P−1BP ||2 = ||ΛJΛ−1||2 < 1 for the correct choice of ε, because ΛJΛ−1

is the matrix of the eigenvalues of B along the diagonal, and ε along the subdiagonal

(and because ||X||2 is a continuous function).

But then ||P−1BP ||22 = ρ(PHBHP−HP−1BP ) < 1.

But if we let T = P−HP−1, then the above implies that I − PHBHTBP is

positive definite.

But I − PHBHTBP is similar to T − BHTB, thus T − BHTB is positive

definite.

And T = P−HP−1 is also positive definite because it has a given Cholesky

decomposition.

Now we may show a condition which ensures that the spectra of the iteration

matrix is contained within the unit disk.

THEOREM 16 If

||M ||22κ−1
2 (M) > ||N ||22 (6.1)

Then ρ(M−1N) < 1.

Proof Assume that

||M ||22κ−1
2 (M) > ||N ||22 (6.2)

Then MTM − (M−1N)TMTMM−1N = MTM −NTN is p.d., since

xMTMx− xNTNx > λmin(MTM)− ||N ||22 (6.3)
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= ρ(MTM)κ−1
2 (M)− ||N ||22 (6.4)

= ||M ||22κ−1
2 (M)− ||N ||22 > 0 (6.5)

Now if we apply theorem 6 with G = MTM and B = M−1N , we see that

ρ(M−1N) < 1.

What this theorem immediately implies is that, given that we do not have

too ill-conditioned a matrix or preconditioner, the heavier the elements along the

band, the better chance we have of ensuring a good spectrum of the iteration matrix.

Therefore, if we apply a reordering which brings heavily weighted elements into this

band, we can possibly guarantee convergence for a significant class of matrices.
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7. FIEDLER

In order to improve the weight of the central in accordance with equation 6.1 above, we

suggest to implement Fiedler reordering. However, due to considerations involving the

2-norm in equation 6.1, we will propose a modified Fiedler algorithm after introducing

the key heuristics behind its use.

We will assume in this section that A is symmetric and all entries are ≥ 0.

To extend to nonsymmetric general matrices, we apply the following section to the

symmetric part of |A| (the absolute value of the entries of A). Further, throughout this

section G = G(A) will be the weighted graph (with some given orientation) expression

given a matrix A (likewise, A(G) is the matrix corresponding to a weighted oriented

graph G), λi refers to the ith largest eigenvalue in modulus of A where λ∞ = λn is the

largest eigenvalue in modulus of A, V (G) is the collection of the vertices of the graph

(with vertices denoted as u or v), E(G) is the collection of the edges of the graph

(with individual edges denoted as f or as uv to denote the edge between vertices u

and v), ψ is a given labeling of V (G) where ψ : V (G)→ {1, 2, · · · , n}, n = |V (G)|, 1

is the vector consisting of all entries equal to 1, and finally p ∈ <, 0 < p ≤ ∞. We

will also assume that all graphs in consideration have only one connected component.

We first define the Laplacian of a graph. In order to motivate this definition,

and to aid in proving some essential properties, we first define a weighted incidence

matrix with orientation, D, of a given graph G.

DEFINITION 1 (Incidence Matrix) Given a weighted graph G with some given

orientation, define the (u, f) entry of D as the square root of the absolute value of the

given weight between vertex u and edge f , where the (u, f) entry is positive if vertex

u is the head negative if the tail and 0 otherwise. [28, 29, 41]

With this, we may now define the weighted Laplacian of a graph.
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DEFINITION 2 (Laplacian) Given a matrix A corresponding to a graph G, let

D be the weighted directed incidence matrix corresponding to G, then the Laplacian

is Q = DDT [28, 41].

We will use this interchangeably with the following equivalent definition of the

Laplacian:

LEMMA 3 [28]

Let ∆ be the vector of row sums of A and let A′ be the matrix A with diagonal

entries set to 0, then Q = diag(∆)− A′. [29]

Proof The inner product of any two distinct rows of D is the sum of the square of

the weights joining the corresponding vertices. However, since by definition the (u, f)

entry of D is the square root of the absolute value, this means that the inner product

of any two distinct rows of D is the weight joining the corresponding vertices.

Thus it is 0 or the negative of the absolute value of the weight according to as

the vertices are adjacent or not, or the sum of the weights of the edges connected to

a given vertex in the case where the two rows are the same.

But given this result for the inner product of the rows of D, we see immediately

that DDT = diag(∆)− A′, which is what we were trying to show.

We use this definition for practical computation of the Laplacian. As a further

immediate consequence of this alternative definition, notice that it is clear that λ1 = 0.

With this observation we define:

DEFINITION 3 (Fiedler Value) We call λ2 of Q(A) the Fiedler value of the

Laplacian, we also call the corresponding eigenvector, x(2), the Fiedler vector. [16,17,

29, 35, 41, 46]

With this terminology, we can define the original Fiedler reordering.
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ALGORITHM 9 Fiedler Reordering

Let λ2, x
(2) be the second smallest eigenvalue and corresponding eigenvector of

the Laplacian of a given weighted G associated with a matrix A.

Let ψfiedler : V (G) → {1, 2, · · · , n} be the labeling induced by sorting x(2) from

smallest to largest. The reordering induced by this labeling ψfiedler is the Fiedler

reordering.

Now we may introduce some basic preliminary results. [29, 35,41,46]

THEOREM 17 [28, 29, 35, 41, 46]

Let x be any vector and Q the Laplacian corresponding to the graph G corre-

sponding to the matrix A, then

xTQx = Σuv∈E(G)auv(xu − xv)2 (7.1)

[16, 17]

Proof We need only note first that by using the incidence matrix definition of the

Laplacian:

xTQx = xTDDTx = (DTx)T (DTx) (7.2)

And second that the definition of an incidence matrix is that if uv ∈ E(G),

then the entry of DTx corresponding to uv equals ±
√
|auv|(xu − xv).

With this, we can note the following due to Fiedler, which will be essential in

demonstrating useful bounds on the Fiedler values:
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THEOREM 18 [17, 28, 35, 40, 41, 46]

minx:x⊥1

Σuv∈E(G)auv(xu − xv)2

Σux2
u

= λ2 (7.3)

maxx:x⊥1

Σuv∈E(G)auv(xu − xv)2

Σux2
u

= λ∞ (7.4)

Proof If we apply Courant-Fisher [32], and use our a priori knowledge that the

eigenvector corresponding to λ1 of Q is 1:

λ2 = minx:x⊥1
xTQx
xT x

λ∞ = maxx:x⊥1
xTQx
xT x

(7.5)

Now we apply equation (7.1):

λ2 = minx:x⊥1
Σuv∈E(G)auv(xu−xv)2

Σux2u

λ∞ = maxx:x⊥1
Σuv∈E(G)auv(xu−xv)2

Σux2u

(7.6)

The central heuristical result behind the use of Fiedler is that it minimizes the

2-sum. In order to introduce this notion, we first define the minimum p-sum.

DEFINITION 4 (Minimum p-sum) mp,min(G) := minψmp(G,ψ) :=

minψ(Σuv∈E(G)auv|ψ(u)− ψ(v)|p)
1
p is the minimum p-sum.

mp(G,ψ) is simply the p-sum. [4, 9, 20, 35, 41]

We are concerned with the minimum 2-sum problem because if an algorithm

minimizes the 2-sum, we feel it should also minimize the norm outside the band in

some sense (we will make this more precise later). Unfortunately, the minimum 2-

sum problem is not solved. However, we can apply a heuristic to show that in certain

cases, Fiedler reordering will ’solve’ this. In order to show this, we discuss another

important theoretical property of the 2-sum. [4, 9, 35]



55

THEOREM 19 [35, 46]

Let ψ be a given labeling of a graph G

λ2(G)
n(n2 − 1)

12
≤ m2(G,ψ)2 ≤ λ∞(G)

n(n2 − 1)

12
(7.7)

Proof Consider

12m2
2(G,ψ)

n(n2 − 1)
(7.8)

If we define a vector x so that xi = ψ(i), then as discussed above in the

definition of the Laplacian, equation (7.1):

12m2
2(G,ψ)

n(n2 − 1)
= 2n

< Q(G)x, x >
1
6
(n− 1)n2(n+ 1)

(7.9)

Notice that Σu∈V Σv∈V (ψ(u)− ψ(v))2 = Σn
i=1Σn

j=1(i− j)2 = (n−1)n2(n+1)
6

, thus

12m2
2(G,ψ)

n(n2−1)
= 2n <Q(G)x,x>

Σu∈V Σv∈V (ψ(u)−ψ(v))2

= 2n <Q(G)x,x>
Σ1≤i,j≤n(xi−xj)2

(7.10)

In order to simplify the denominator, we first note Lagrange’s identity for

sequences [25]:

Σ1≤i<j≤n(aibj − ajbi)2 = (Σn
i=1a

2
i )(Σ

n
i=1b

2
i )− (Σn

i=1aibi)
2 (7.11)

If we let ai = xi, bi = 1, then:

Σ1≤i,j≤n(xi − xj)2 = 2Σ1≤i<j≤n(xi − xj)2 = 2n(Σn
i=1x

2
i )− 2(Σn

i=1xi)
2 (7.12)

Applying this to equation (7.10):

12m2
2(G,ψ)

n(n2 − 1)
=

< Q(G)x, x >

(Σn
i=1x

2
i )− 1

n
(Σn

i=1xi)
2

(7.13)
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And now we apply Fiedler’s bound discussed above (7.3) and note that (Σn
i=1xi) =

(x, 1), which since in equation (7.3) x ⊥ 1, this = 0, and thus we may take the mini-

mum over all x such that ||x|| = 1 and apply (7.3) directly to obtain:

12m2
2(G,ψ)

n(n2 − 1)
≥ λ2(G) (7.14)

If we instead take the maximum over all x such that ||x|| = 1 and apply

Fiedler’s other bound (7.4)

12m2
2(G,ψ)

n(n2 − 1)
≤ λ∞(G) (7.15)

Which solves both sides of the inequality.

With this result, we may now state why the Fiedler reordering algorithm may

be a good approximation to the optimal minimal 2-sum problem:

Example 7.0.7 [35]

Let x
(2)
u = u then we attain the lower bound in theorem 7 and m2(G) =

m2(G,ψ2)

Proof

m2(G,ψfiedler)
2 = Σuv∈Eauv(ψfiedler(u)− ψfiedler(v))2 (7.16)

Since x
(2)
u = u, then upon applying Fiedler reordering, x

(2)
u = ψfiedler(u), so by

(7.1)

m2(G,ψfiedler)
2 =< L(G)x(2), x(2) > (7.17)

Note that L(G) · 1 = 0

m2(G,ψfiedler)
2 =< L(G)(x(2) − n+ 1

2
1), (x(2) − n+ 1

2
1) > (7.18)

x(2) is an eigenvector
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m2(G,ψfiedler)
2 = λ2||x(2) − n+ 1

2
1||2 = λ2Σn

i=1(i− n+ 1

2
)2 = λ2

n(n2 − 1)

12
(7.19)

Which, as in theorem 7, is the lower bound for m2.

Although this theorem may describe a specific case in which Fiedler reordering

solves the minimum 2-sum problem, we have yet to formalize why solving the mini-

mum 2-sum problem will necessary minimize the weight outside the band, or tighten

inequality 6.1.

To formalize this, we use .∗ to denote the Hadamard product and notice the

following:

THEOREM 20

m2
2(A. ∗ A) ≥ k2||N ||2F (7.20)

Where k is the band of M .

Proof

m2
2(A. ∗ A) = Σuv∈Ea

2
uv|ψ(u)2 − ψ(v)|2

= Σ|ψ(u)−ψ(v)|>k,uv∈Ea
2
uv|ψ(u)− ψ(v)|2 + Σ|ψ(u)−ψ(v)|≤k,uv∈Ea

2
uv|ψ(u)− ψ(v)|2

≥ k2||N ||2F + ||M ||2F
≥ k2||N ||2F

(7.21)

Therefore, as a heuristic, if we minimize the 2−sum on the Hadamard product

of A with itself, we minimize the ||N ||2F , making the bound on equation 6.1 tighter.

We have stated the theoretical practicality for prefering Fiedler, and for prefer-

ing to perform Fiedler reordering based on A. ∗ A instead of A.

Example 7.0.8 Fiedler v. Fiedler with Hadamard product
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The following are tables of the ratio of the norms of the banded splitting

based on using A. ∗ A over using A respectively. I.e. the ratio

||M1||
2
F

||N1||2F
||M2||2F
||N2||2F

where M1, N1

is generated after reordering using A. ∗ A, and M2, N2 is generated after reordering

using A. Therefore, entries which are > 1 exhibit an improvement, and < 1 exhibit

that Fiedler on A is an improvement.

For random matrices, Fiedler is indifferent. Each row denotes a new test, and

the band on M increases with the column index.

1.01367890 0.98327923 0.97597267 0.98108477 0.98187655

1.02382458 1.03980065 1.02336333 1.00773469 1.00816982

0.97623039 0.96404522 0.98467241 0.99594981 0.98809953

0.97476808 0.97995002 0.99117464 0.99666846 0.99288300

1.00313377 1.00202641 1.00285440 1.00517144 1.00535496

1.00376078 0.99546630 0.99399239 0.98974273 0.99586203

1.01553252 0.99817853 0.98772906 0.99065682 1.00082871

0.97640874 0.98936266 0.99380882 1.00518412 1.00594349

0.98423665 0.98268294 0.97379794 0.98052245 0.98024990

1.00669753 0.99506844 0.99373479 1.00566246 1.00323247

The results are more stark for some structured matrices, the following are

for H-matrices (a matrix A is an H-matrix iff |A| is an M -matrix, a matrix A is

an M -matrix iff A ≥ 0 and A−1 has positive diagonal entries and all other entries

≤ 0 [1, 61]):
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9.16060078 9.05846885 8.96060377 8.86664360 8.77634841

9.17742213 9.07535723 8.97782361 8.88463509 8.79481588

9.07408310 8.97183841 8.87318352 8.77913526 8.68847686

9.07716016 8.97404380 8.87542453 8.78058420 8.69003904

9.14021404 9.03808256 8.94013399 8.84629755 8.75712904

9.17217142 9.07002305 8.97212042 8.87874805 8.78972264

9.25558807 9.15445936 9.05870793 8.96601325 8.87660927

9.11227978 9.01019182 8.91239345 8.81831376 8.72821406

9.11292266 9.01060356 8.91305532 8.81977192 8.73045933

9.07118181 8.96795405 8.86929883 8.77523760 8.68447626

This concludes the theoretical discussion of the benefits of using a modified

Fiedler reordering. One critical aspect of the above exposition is that all the above

results are essentially theoretically heuristical. However, if the goal is to create a test

which is of linear time (at least less than the amount of time necessary to solve the

original system), then this permits simple a posteriori tests to the utility of using such

a method to improve convergence of the overall algorithm. Put differently, because a

modified Fiedler reordering may be calculated in linear time, one can simply perform

an a posteriori check that the M and N norms satisfy 6.1.

However, this necessitates a discussion of how to achieve such minimal compu-

tation time. Because of this, we will now conclude this section with a brief overview

on the TRACEMIN-Fiedler algorithm.

We seek to solve

Lx = λx(L denotes the weighted Laplacian) (7.22)

For the Fiedler vector x2. We do this using TRACEMIN.

We know that:

minY TY=Itr(Y
TAY ) = Σp

i=1λi (7.23)
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Therefore, if we let Xk be an approximation where XT
k LXk = σk, X

T
k Xk =

I, σk = diag(ρ
(k)
1 , ρ

(k)
2 , · · · , ρ(k)

p ), we can update the approximation by noting that if

we find ∆k so that

∆k minimizes tr(Xk −∆k)
TA(Xk −∆k)

XT
k ∆k = 0

(7.24)

Then

tr(Xk −∆k)
TA(Xk −∆k) < trXT

k AXk

(XT
k −∆k)

T (Xk −∆k) = I
(7.25)

[54]

Finding such a minimum is equivalent to solving the saddle point problem:

 L Xk

XT
k 0

 ∆k

Nk

 =

 LXk

0

 (7.26)

[55]

This results in the following algorithm:

ALGORITHM 10 (TRACEMIN-Fiedler)

for k = 1, 2, · · · ,maxit do

1. Orthonormalize Xk to Vk

2. Hk := V T
k LVk

3. Find (Yk,Σk) the eigenvectors and eigenvalues of Hk in ascending order.

4. Xk := VkYk

5. If ||Lxk−XkΣk||∞
||L||∞ is less than a predefined tolerance for a vector, move this into

Xconv, set nconv = nconv + 1, and when nconv ≥ p, stop.

6. Deflate, if nconv > 1, Xk = Xk −Xconv(X
T
convXk)

7. if k = 1 then

Solve L̂Wk = Xk via PCG using diagonal preconditioner D̂, where L̂, D̂ are L,D
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only perturbed by an additional +||L||∞10−12I.

else

Solve LWk = Xk via PCG using D.

end if

8. Sk = XT
kWk

9. Solve SkNk = XT
k Xk for Nk directly (this is a small system).

10. Xk+1 = Xk −∆k = WkNk.

[38]

With two minor improvements in step 7 to ensure positive semi-definiteness,

and in the deflation process in step 6. It should also be noted that the size of the

system in step 9 is determined by the chosen number of vectors to be kept in Xk [38].

Further, this has important implications for the parallelism of the overall algorithm,

which will be discussed in the next chapter.
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8. BANDED FGMRES-RPM WITH SPECTRAL

REORDERING

To bring together the diverse topics discussed in previous chapters, we outline our

proposed algorithm in total, bring together and summarize our convergence results

of the preceding chapters before ending with some numerical experiments.

The algorithm is as follows:

ALGORITHM 11 (Banded FGMRES-RPM with Spectral Reordering) 1.

Perform TRACEMIN-Fiedler as described in algorithm 10 on the symmetric

part of the matrix |A. ∗ A|.

2. If computationally feasible, choose a band large enough to satisfy (6.1). Else

choose largest computationally feasible band.

3. Use band described in previous step to split A = M −N .

4. Perform algorithm 8 on original matrix A with a given number of outer steps

k.

5. In step 3 of algorithm 8, use algorithm 3 as a preconditioner.

6. For M,N,H in algorithm 3, use step 3.

7. The other parameters in algorithm 3 should be set as follows: the eigenvalue

deflation bound should be set as m =
√
k, the number of eigenvalues to deflate

at each step should be set as 2, frequency should kept at 1 or 2, the size of the

subspace to be iterated should be set as m, the number of steps of RPM should

be also set as m.
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With this background, we have introduced a number of individual properties

of RPM and FGMRES that can now be used in the analysis of the nesting of these

procedures as we are doing in the complete outline of the algorithm above. Although

we are looking at a nested iteration where-in the stiff subspace contains slight per-

turbations upon each iteration, it should be noted that a FGMRES-RPM nested

iteration will converge (this result is similar to [22, 37, 42], except the outer iteration

is not Richardson), as shown as follows:

THEOREM 21 FGMRES RPM Converges if the Jacobian of RPM has spectra < 1

Proof The RPM iteration can be expressed via Jek = ek+1, ek =

 Pxk

Qxk

 as

discussed above.

As discussed previously in theorem 4

k steps of RPM is equivalent to preconditioning by

M−1 = (I, I)Jk

 P

Q

+ (I, I)(I − Jk)

 P

Q

A−1 (8.1)

We note that the above preconditioned matrix has a symmetric part which is

positive definite.

1

2
(M−1A+ (M−1A)T ) (8.2)

We apply Rayleigh Ritz [32] as shown below.



64

1
2
(xTM−1Ax+ xT (M−1A)Tx)

=

1
2
(xT (I, I)Jk(P T , QT )TAx+ xTAT (P,Q)(JT )k(I, I)Tx

+xT ((I, I)(I − Jk)(P T , QT )T )x+ xT ((P,Q)(I − (JT )k)(I, I)Tx)

=

1
2
(xT (I, I)Jk(P T , QT )TAx+ xTAT (P,Q)(JT )k(I, I)Tx

−xT ((I, I)Jk(P T , QT )T )x− xT ((P,Q)(JT )k(I, I)Tx)

+2xT ((I, I)(P T , QT )T )x)

(8.3)

The first four components → 0 given that ρ(J) < 1 (which is true given that

RPM converges), and the last component is identically 2.

So, for sufficiently large k, (x, 1
2
(M−1A+(M−1A)T )x) > 0, is positive definite.

Therefore, even considering the slight numerical perturbations, by theorem 13

the outer FGMRES step converges.

The problem with removing ”the smallest eigenvalues of A” [13] (emphasis

added) are due to the inner nesting of a Richardson iteration (as compared to just

applying deflation with GMRES or preconditioned GMRES as in [6, 8, 13]), and the

guarantee of positive definiteness.

The central convergence result is theorem 21, which states that if the subspace

deflated in algorithm 3 is large enough, that this ensures convergence. However, as

discussed in the previous chapter, equation 6.1 and theorems 20 and 7.0.7 imply that

the Fiedler step will further improve performance.

Although more importantly, and finally referencing the title, is that each of the

key three subroutines of the algorithm (algorithms 10, 8, and 3) all include aspects

which improve domains of convergence. We have already stated how algorithm 10

improves the spectra of the iteration matrix inside algorithm 3. However, algorithm

3 reduces the number of eigenvalues outside the unit disk, as seen by theorem 5.
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Likewise, algorithm 8 extends the convergence domain as discussed in theorem 9.

Again, the central idea behind each algorithm is that they improve convergence by

in some way extending the convergence domain in the underlying algorithm.

Further, each algorithm chosen is highly parallelizable. Algorithm 10 [38] and

the SPIKE algorithm used in backsolving the underlying preconditioner [39,45] inside

algorithm 3 are both highly parallelizable algorithms. Algorithm 8 is also already

a highly parallelizable algorithm due to its critical use of matrix-vector products.

Finally, the minor addition of making algorithm 3 use subspace iteration was for this

very purpose of parallelizability in the overall algorithm as well.

The only item that remains to be discussed that has not been described pre-

viously is to explain the rationale for the parameter choices in expressed in step 7.

The eigenvalue deflation bound is based on a consideration of cost, since ide-

ally the eigenvalue deflation bound should be set as large as possible. However, since

the most feasible application is to use this algorithm because of a failure from simply

increasing the number of steps of GMRES, then this suggests a bound for the eigen-

value deflation bound. In particular, since k steps of GMRES is roughly O(kn), the

reorthogonalization step in the subspace iteration would cost O(m2n), and m << n

so that the cost of the eigenvalue problem inside RPM is marginal; then in order to

force the cost of RPM to not exceed the order GMRES step we set m =
√
k.

The number of eigenvalues to deflate at each step is set as 2 because if it were

larger, then it would necessitate counterbalancing higher frequency, more steps of

RPM in the inner iteration, or an even larger subspace size. If it were smaller, then

it introduces numerical issues from the necessity of deflating out complex eigenvalues

pairs.

The frequency is determined as part of a balance between frequency and the

subspace size. Part of this balance needs to take into account the number of nodes (if

the algorithm is implemented in parallel) and the distribution of the spectra of the

iteration matrix. However, one of the advantages to utilizing a subspace size that is

larger than the number of eigenvalues to be iterated is that further iterations smooth
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out errors apparent earlier in the iterative deflation process. Therefore, subspace size

is to be preferred over frequency (this assumes that the spectra of the matrix is widely

distributed enough that subspace iteration is a significant advantage over the power

method). Thus, frequency should be kept at 1 or 2. The subspace size is then to be

bounded by a consideration of a cost comparison to the outer GMRES steps, as was

done with the bound on the number of eigenvalues to be deflated, which is m =
√
k.

This leaves an analysis of the description for the number of RPM steps. Ide-

ally, this would depend on the particular spectral distribution of the iteration, like we

mentioned with respect to the balance between the frequency and subspace size. We

also set the number of steps of RPM to be the same m as the subspace size and bound

of the number of eigenvalues to be deflated in order that there are enough successive

iterations to accurately compute up to the bound of the number of eigenvalues. How-

ever, as per theorem 5, ideally either the number of RPM steps should be set at 0

depending on whether m is large enough to deflate out all eigenvalues larger than 1 in

norm. However, upon assumption that a full calculation or precise a priori knowledge

of the spectra of the iteration matrix would be computationally infeasible, and that

projection methods are computationally preferrable to Richardson-like methods; then

the ideal practical application would be linear systems in which GMRES is failing (as

noted above), but for which a modest amount of deflation may ensure convergence.

E.g., solving a set of linear systems dependent on some parameter l, A(l)x = b, under

which l undergoes a small perturbation at each step. In this way, we can be assured

that if, for example, vanilla GMRES converges for l < a, then at l = a + ε, the

spectra of the iteration matrix associated to A(l+ ε) will have only a modest number

of eigenvalues necessary to deflate.

Such an example is with the frequency parameter in solving Helmholtz prob-

lems, which we exhibit below by comparison with the standard comparison with

Poisson in examples 8.0.9 and 8.0.10 below. We will conclude this section by further

exhibiting some other examples along with other numerical experiments.
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In all the following examples we compare restarted GMRES (in blue) with

restarted GMRES-RPM (in green) as previously described.

Example 8.0.9 Poisson

In this example, we look at the canonical toy example for numerical experi-

ments: the Poisson matrix. The following is a size n = 1000000 Poisson matrix where

the preconditioner band was chosen as 10, the number of GMRES steps was 40, and

the number of restarts was also 40.

The overall convergence pattern matches that of just restarted GMRES.

Figure 12. GMRES-RPM on Poisson

However, the actual gain in accuracy was roughly two order of magnitudes.
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Figure 13. GMRES-RPM on Poisson blowup

Example 8.0.10 Helmholtz

Here we adjust the previous Poisson matrix into a Helmholtz matrix with the

frequency set to a low
√

5. The size is still n = 1000000, the preconditioner band was

chosen as 10, the number of GMRES steps was 40, and the number of restarts was

also 40.
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Figure 14. GMRES-RPM on Helmholtz

Likewise, there was a similar gain in accuracy, although not as significant as

in Poisson. However, this behavior does exhibit that such a procedure can extend the

domain of convergence over ordinary restarted GMRES.
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Figure 15. GMRES-RPM on Helmholtz blowup

Example 8.0.11 nd3k

Our next two examples come from the Tim Davis matrix collection.

The following is a 3D sparse problem ’nd3k’, size 9000 spd matrix, with roughly

3E6 nonzero entries. The preconditioner band was chosen at 200, the number of

GMRES steps at 30, and the number of restarts at 30.
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Figure 16. GMRES-RPM on nd3k

A similar pattern convergence pattern continues throughout:

Figure 17. GMRES-RPM on nd3k blowup
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Example 8.0.12 Thermal

The following is a steady-state thermal problem ’thermal2’, size 1, 228, 045,

with roughly 8.5E6 nonzero entries. The preconditioner band was chosen at 10, the

number of GMRES steps at 10, and the number of restarts at 30.

Figure 18. GMRES-RPM on thermal2

Not only does a similar convergence patten continue throughout, but the gain

in accuracy is similar as with Poisson.
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9. SUMMARY

We have analyzed various methods that can expand domains of convergence for itera-

tive linear system solvers, and combined these methods to create a parallel algorithm

that utilizes deflation, adaptive GMRES, multiple nesting layers, spectral reorder-

ing, and banded preconditioning. We made use of spectral reordering to improve the

banded preconditioner. We used this banded preconditioner to decrease the amount

of deflation necessary. The deflation was in turn nested inside of an adaptive GMRES

scheme to guarantee convergence.

In our analysis of RPM, we traced the theoretical dependence of this algorithm

from nonlinear stabilization procedures to the specific application of Richardson meth-

ods. This in turn created a simplified expression for the Jacobian of the algorithm.

From this, we developed a new preconditioner expression and convergence results

for RPM. With this background, we introduced a new block version of RPM, and

illustrated a parallel implementation of this algorithm.

Our discussion of adaptive GMRES, and FGMRES in particular, outlined the

dependence of FGMRES convergence results from underlying GMRES convergence

results. This included showing that FGMRES is in fact identical to GMRES on

certain systems. We illustrated the robustness of GMRES algorithms, particularly

on systems with symmetric part positive definite. Moreover, we were able to develop

new results which suggested a relation between the residual norm of FGMRES and

the residual norms of the individually preconditioned GMRES iterations.

We noted the relation between spectral reordering and banded preconditioning.

We illustrated how spectral reordering concentrates the heaviest elements of a matrix

along the central band, and introduced a new procedure to improve this reordering

in theory and practice. Using this result and Stein’s theorem, we were able to show

how this improves our choice for a banded preconditioner.
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Our analysis from RPM and FGMRES were consequentially used to show that

upon nesting convergence can be guaranteed. Our analysis from spectral reordering

and RPM were used to show that upon banded preconditioning, the performance of

RPM is enhanced. This resulted in a robust algorithm with the ability to be applied to

a wide range of linear systems, or to improve currently existing linear system solvers.



APPENDICES
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A. FGMRES DECOMPOSITION LEMMA

In this appendix, we restate and prove the lemma required to analyze the precondi-

tioner dependence of FGMRES.

LEMMA 4 Assume that ||M−1
i −M−1

j || ≤ ε.

Let the initial vector be given as x0 and r0 := b− Ax0.

Let xk be the solution after k steps of FGMRES (xk 6= x) and Hk be nonsin-

gular.

Let a1 = M−1
1 r0, and define inductively ak = Σk

j=1M
−1
j (Σk−1

i=1 αi,j,kMiai +

γk−1,jAak−1) where αi,j,k, γk−1,j are given.

Define the Y -matrix so that Y ai = ai+1.

Let yk be the solution after k steps of GMRES on Y with M−1
1 r0 in place of

r0.

Then ||xk − yk|| ≤ Ckε for some constant Ck or ||b− Axk|| ≤ ||b− Ayk||.

Proof We show this inductively.

k = 1:

Note that x1 minimizes the residual over x0 + Span(M−1
1 r0) by theorem 10

and y1 minimizes the residual over x0 + Span(M−1
1 p(r0)) = x0 + Span(α1M

−1
1 r0) =

x0 + Span(M−1
1 r0) by lemma 1.

Thus x1 = y1.

k = N :

Assume that ||xi − yi|| ≤ Ciε,∀1 < i < N .

Note that xi − x0 is a linear combination of z1, z2, · · · up to zi (where zi are

the same zi vectors in the FGMRES algorithm).

Thus xk minimizes the residual over x0 + Span(Zk) = x0 + Span({xi− x0|1 <

i < N} ∪ zk) = x0 + Span(X1) (by theorem 10 above).
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Note that yi − x0 is a linear combination of a1, a2, · · · up to ai.

Thus yk minimizes the residual over x0 + Span(z0, Y z0, · · · , Y i−1z0) = x0 +

Span({yi − x0|1 < i < N} ∪ ak) = x0 + span(X2) (by lemma 1).

By algorithm 8 above, we have

zk = M−1
k (Σk−1

i=1 βiMizi + ζk−1Azk−1). (A.1)

And because the spans are the same as shown above, then under a different

linear combination

zk = M−1
k (Σk−1

i=1 β
′
iMi(xi − x0) + ζ ′k−1A(xk−1 − x0)) (A.2)

Furthermore, by hypothesis of ak as a polynomial expression of the prior ai:

ak = Σk
j=1M

−1
j (Σk−1

i=1 αi,j,kMiai + γk−1,jAak−1) (A.3)

And because the spans are the same, then under a different linear combination

ak = Σk
j=1M

−1
j (Σk−1

i=1 α
′
i,j,kMi(yi − x0) + γ′k−1,jA(yk−1 − x0)) (A.4)

Note that γ′k−1,j 6= 0 as when this = 0 this corresponds to the breakdown case

of FGMRES, which can not happen since Hk is nonsingular. Now define z′k as:

z′k = Σk
j=1(

γ′k−1,j

ζ ′k−1

zk − Σk−1
i=1

γ′k−1,jβ
′
i

ζ ′k−1

(xi − x0) + Σk−1
i=1 α

′
i,j,k(xi − x0)) (A.5)

Further, if ||M−1
i −M−1

j ||2 ≤ ε then for any vectors p, q

||p+M−1
j Miq|| = ||y + (M−1

j −M−1
i +M−1

i )q||

≤ ||p+ q||+ ε||q||

= ||p+ q||+ C||ε||

(A.6)

We will use A.6 repeatedly in what follows.

Then, also recalling that ||xi − yi|| ≤ Ciε:



77

||z′k − ak||2 = ||Σk
j=1(

γ′k−1,j

ζ′k−1
zk − Σk−1

i=1

γ′k−1,jβ
′
i

ζ′k−1
(xi − x0) + Σk−1

i=1 α
′
i,j,k(xi − x0))− ak||2

(A.7)

By equation A.2:

= ||Σk
j=1(

γ′k−1,j

ζ′k−1
M−1

k (Σk−1
i=1 β

′
iMi(xi − x0) + ζ ′k−1A(xk−1 − x0))

−Σk−1
i=1

γ′k−1,jβ
′
i

ζ′k−1
(xi − x0) + Σk−1

i=1 α
′
i,j,k(xi − x0))− ak||2

(A.8)

By equation A.4:

= ||Σk
j=1((M−1

k (Σk−1
i=1

γ′k−1,jβ
′
i

ζ′k−1
Mi(xi − x0)

+γ′k−1,jA(xk−1 − x0))− Σk−1
i=1

γ′k−1,jβ
′
i

ζ′k−1
(xi − x0) + Σk−1

i=1 α
′
i,j,k(xi − x0))

−M−1
j (Σk−1

i=1 α
′
i,j,kMi(yi − x0) + γ′k−1,jA(yk−1 − x0)))||

(A.9)

Using A.6:

≤ ||Σk
j=1(((Σk−1

i=1

γ′k−1,jβ
′
i

ζ′k−1
(xi − x0)

+γ′k−1,jM
−1
k A(xk−1 − x0))− Σk−1

i=1

γ′k−1,jβ
′
i

ζ′k−1
(xi − x0) + Σk−1

i=1 α
′
i,j,k(xi − x0))

−(Σk−1
i=1 α

′
i,j,k(yi − x0) + γ′k−1,jM

−1
j A(yk−1 − x0)))||+ Cε

(A.10)

Algebraic simplification:

= ||Σk
j=1(((γ′k−1,jM

−1
k A(xk−1 − x0)) + Σk−1

i=1 α
′
i,j,k(xi − x0))

−(Σk−1
i=1 α

′
i,j,k(yi − x0) + γ′k−1,jM

−1
j A(yk−1 − x0)))||+ Cε

(A.11)

Triangle inequality:

≤ Σk
j=1(||γ′k−1,jM

−1
k A(xk−1 − x0)− γ′k−1,jM

−1
j A(yk−1 − x0)||

+||Σk−1
i=1 α

′
i,j,k(xi − x0)− Σk−1

i=1 α
′
i,j,k(yi − x0)||) + Cε

≤ Σk
j=1(||γ′k−1,jM

−1
k A(xk−1 − x0)− γ′k−1,jM

−1
j A(yk−1 − x0)||

+Σk−1
i=1 |α′i,j,k|||xi − yi||) + Cε

(A.12)
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Induction hypothesis:

≤ Σk
j=1(||γ′k−1,jM

−1
k A(xk−1 − x0)− γ′k−1,jM

−1
j A(yk−1 − x0)||) + Cε (A.13)

Matrix norm:

≤ Σk
j=1(||M−1

k ||||γ′k−1,jA(xk−1 − x0)− α′k−1,j,kMkM
−1
j A(yk−1 − x0)||) + Cε

(A.14)

A.6 again:

≤ Σk
j=1(||M−1

k ||||γ′k−1,jA(xk−1 − yk−1)||) + Cε (A.15)

Induction hypothesis:

≤ Cε (A.16)

Therefore, under the assumption that γ′k−1,j 6= 0 for some j, then span(X1) =

span(X ′1) where the last column of X ′1 is z′k and ||z′k − ak||2 ≤ Cε.

But since ||(yi−x0)−(xi−x0)|| ≤ Ciε, then ||X1−X2||2 ≤ ||X1−X2||F ≤ nCXε

Then by Wedin [11, 30, 62], we know that the forward error for a linear least

square problem is ||xk − yk||2 ≤ (1 + 2κ2(X1))nCXε = Ckε.

Should γ′k−1,j = 0∀j, then this corresponds to span(X1) ) span(X ′1) where

the last column of X ′1 is z′k and ||z′k − ak|| ≤ Cε. Therefore, if we let x′k correspond

to the solution using X ′1, then similar to the previous line ||x′k − yk||2 ≤ Ckε, and

||b− Axk|| ≤ ||b− Ax′k|| = ||b− Ayk + A(yk − x′k)|| ≤ ||b− Ayk||+ Ckε.
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