(POSTER) Return on Investment On A University Education: Development of An Analytical Software Tool

Joshua Love
University of Indianapolis, lovejs@uindy.edu

Kristians Kanders
University of Indianapolis, kandersk@uindy.edu

Kinsey West
University of Indianapolis, westk@uindy.edu

Ante Lucev
University of Indianapolis, luceva@uindy.edu

Follow this and additional works at: https://docs.lib.purdue.edu/aseeil-insectionconference
Part of the Other Engineering Commons

https://docs.lib.purdue.edu/aseeil-insectionconference/2019/posters/8

This document has been made available through Purdue e-Pubs, a service of the Purdue University Libraries. Please contact epubs@purdue.edu for additional information.
Introduction

Universities have access to numerous amounts of student data, but do not have any analytical software that is able to analyze it.

Objectives

Develop an analytical software, known as University Analytics, that uses student and state employment data to compare the average salary of different majors.

Motivation

Motivation for the project originates from the amount of data that being collected but is going unused. The team wants to provide universities with a tool to utilize this data in order to make an influential impact.

Significance

University Analytics identifies the value and return of investment of a university education.

Customer Discovery

The team conducted interviews to gauge the likelihood of people being interested in implementing the analytical software. The BMC to identify the key aspects used to develop University Analytics.

Design Concepts

Database options:
- SQLite
- MySQL
- MongoDB
- Cassandra

Framework options:
- Flask
- PHP
- Java swing
- ASP.NET

The team decided on **SQLite and Flask** to develop University Analytics due to complexity and universality of the systems.

Market Analysis

The overall market University Analytics will enter is new and unestablished. The Market Size Analysis Model identifies potential markets differing in size that the team could enter, indicated by number of universities:

- **Total Available Market (TAM) = 4,140**
- **Served Available Market (SAM) = 2,441**
- **Target Market = 28**

Creativity in Design

- Use custom data
- Analyze multiple inputs simultaneously
- Segregate results by preference
- Display results in graphical formats

The System Architecture Diagram highlights the path of the data used in University Analytics.

Value Proposition

- Value of a university education
- Return on investment
- Nationwide usability
- Competitive factor for universities

Conclusion

The team developed and tested the minimum viable product of University Analytics. Next steps for the project are to implement more complex features to expand the capabilities and impact of the system.

Acknowledgments

Special thanks to our business mentors at Anthem and the faculty advisors of the R.B. Annis School of Engineering for their guidance and support throughout the project.