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ABSTRACT 

O’Connor, Kevin J. M.S., Purdue University, May, 2013. Examination of Stability in 

Fingerprint Recognition across Force Levels. Major Professor: Stephen J. Elliott. 

 

In this thesis, the instability of zoo animal classifications for individuals across different 

force levels are illustrated, which answered the question, “Is an individual’s performance 

unstable with regards to the covariate under study in a fingerprint recognition system?” 

The covariate for this research was force levels (5 N, 7 N, 9 N, 11 N, and 13 N), in which 

154 subjects interacted on a fingerprint device. The influence of applied force on the 

performance of a fingerprint algorithm was examined and supports in showing how zoo 

classifications change with the respected force levels. Zoo classifications have been used 

to group particular individuals as doves, worms, phantoms, chameleons, or normal. The 

purpose of the animal classifications was to determine whether subjects’ similarity score 

varies at different force levels and to quantify that instability by a score index. The 

stability score index formula (S.S.I) was used to calculate the stability for each individual 

from one force level to the next. This contribution can give researchers an idea of 

stability or instability for individuals performing on any biometric system. 
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CHAPTER 1. INTRODUCTION 

The chapter provides the framework for the study by including the following: the 

statement of purpose, significance of the problem, scope, research question, assumptions, 

limitations, delimitations, and key terms with their definitions. Providing these sections 

of the study gives a guide for the remainder of the thesis. 

 

1.1 Significance of the Problem 

Integrators and algorithm developers use multiple performance analysis tools to 

configure biometric systems. The value of these tools is the ability to determine the 

presence of individuals within the database that are causing errors impacting the 

performance of the biometric system.  

Current methods of classifying performance based on matching are prone to 

weaknesses. The receiver operating characteristic (ROC) curve and detection error trade-

off (DET) curves are used as overall illustrations of system performance, but they are not 

able to demonstrate good or bad individual performance. This prompts researchers to ask 

questions that are difficult (regarding ROC or DET curves) to answer such as: “If you 

were to remove a poorly performing individual, will the biometric system performance 

increase? How much does it impact the performance?”
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1.2 Statement of Purpose 

The variability in the matching scores of users is critical to integrators, 

researchers, and developers of matching algorithms who want to choose algorithms that 

yield distributions with short tails (Shuckers, 2010). Currently, commonly used biometric 

performance measurements are not capable of illustrating the variability amongst 

algorithms or different biometric systems at the individual subject level. The various 

methods that have been developed to classify performance, based on matching scores, all 

have weaknesses. Integrators and algorithm developers both use multiple performance-

analyzing metrics to configure and improve biometric systems. The underlying purpose 

of these tools is to distinguish which individuals within the database are inconsistent. 

Receiver operating characteristic (ROC) and detection error tradeoff (DET) 

curves are used to illustrate the overall system performance, but they are not able to 

identify the causes of good/bad performance or illustrate individual performance.  

 This research demonstrated the relationship between genuine and impostor scores 

of individuals over a particular covariate (time, force, device, algorithm, etc.) and 

proposed a stability score index to quantify and resolve the weakness of the ROC/DET. 

The stability score gives algorithm developers insight into particular users who perform 

poorly or exceptionally well in a particular dataset. The output of this research will 

explain why users only perform poorly in a certain biometric modality or at a specific 

covariate level, such as fingerprint force, or why one algorithm can be more sensitive to a 

covariate than others. The research can also determine the modalities or covariate rates at 

which individuals perform well. The metric developed for this thesis is a stability score 

index that quantifies user instability. 
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1.3 Scope 

Data were collected in the fall of 2009 that measured the impact of force (one 

covariate) on image quality and performance, using the Crossmatch L- Scan Guardian 

10-print scanner. This dataset was chosen because the variable of interest was force; thus, 

changes in performance could be attributed to the measured variable.  

This research determined the performance stability of individuals when exposed 

to different force levels. Zoo plots, described in Yager and Dunstone (2010), were used to 

determine individual performance, as well as the classification of animals in the dataset. 

Individuals are classified by different types of animal names, depending on their 

performance scores in relation to others in the dataset. For this thesis, Dunstone and 

Yager’s animal classifications are used. Individuals are classified as normal, doves, 

chameleons, worms, and phantoms. These were used to determine whether the animal 

classification assigned to the individual changes, and their resulting stability score index 

(see chapter 4). These descriptions help to assess the stability of the individual’s 

performance; the degree of change that occurs over the different force levels. 

 

1.4 Research Question 

The question posed concerns a single primary problem: Is an individual’s performance 

unstable with regards to the covariate under study in a fingerprint recognition system? 

 

1.5 Assumptions 

The assumptions in this project included: 
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1. Subjects performed to the best of their ability during the presentation of their 

fingerprints. 

2. All subjects presented the hand of interest in the correct order. 

3. Each subject was tested using five force levels (5 N, 7 N, 9 N, 11 N, and 13 N) for 

each hand. 

4. Three samples were taken for each finger position for each force level (right 

index, right middle, right ring, right little, left index, left middle, left ring, and left 

little). 

5. Force levels were randomized for all subjects to account for habituation to the 

device. 

 

1.6 Limitations 

The project was limited by the following: 

1. The results are limited to the performance of the 2009 DHS Force Level dataset, 

which was collected on a single fingerprint sensor in a lab environment. 

2. The study was limited to the number of fingers the subjects had (a subject could 

have missing fingers). 

3. This study only examined the five force levels that were tested in the study. 

4. Habituation was not being measured, although the results of this research will 

guide other research in this area. 
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1.7 Delimitations 

The project was delimited by the following: 

1. The effect of habituation was not examined in this study. 

2. This study did not investigate the default auto capture mode. 

3. Testing multiple fingerprint sensors was beyond the scope of this study. 

4. Examining the impact of quality metrics on an individual’s performance was 

beyond the scope of this study. 

5. Only data for the right index finger were examined.  

6. Testing other modalities (iris, face, palm vein, etc.) was beyond the scope of this 

study. 

7. Testing performance on multiple matching algorithms was beyond the scope of 

this study. 

 

1.8 Definitions of Key Terms 

Biometric: is “a measurable, physical characteristic or biological characteristic used to 

recognize the identity or verify these claimed identity of an enrollee” (Association 

of Biometrics, 1999, p.2). 

Chameleon: “A person who is a chameleon matches well in general, both to themselves 

and to others. They are likely to cause false accepts but not false rejects” 

(Beveridgel et al., 2011, p.6). 

Detection error trade-off curve (DET curve): A “modified ROC curve that plots error 

rates on both axes (false positives on the x-axis and false negatives on the y-axis)” 

(ISO / IEC JTC 1 SC 37, 2005, p.7). 
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Dove: “A person who is a dove matches very well against themselves and poorly against 

others” (Beveridgel, Jonathon, Bolmel, & Draperl, 2011, p.6). 

False match rate (FMR): The “proportion of zero-effort impostor attempt sample features 

falsely declared to match the compared non-self” (ISO / IEC JTC 1 SC 37, 2005, 

p.5). 

False non-match rate (FNMR): The “proportion of genuine attempt sample features 

falsely declared not to match the template of the same characteristic from the 

same user supplying the sample” (ISO / IEC JTC 1 SC 37, 2005, p.5). 

Genuine attempt: A “single good-faith attempt by a user to match their own stored 

template” (ISO / IEC JTC 1 SC 37, 2005, p.2). 

Impostor attempt: An “attempt of an individual to match the stored template of a different 

individual by presenting a simulated or reproduced biometric sample or by 

intentionally modifying his/her own biometric characteristics” (ISO / IEC JTC 1 

SC 37, 2005, p.3). 

Matching score: “Measure of the similarity between features derived from a sample and a 

stored template or a measure of how well these features fit a user’s reference 

model” (ISO / IEC JTC 1 SC 37, 2005, p.2). 

Phantom: “A person who is a phantom matches poorly in general, both to themselves and 

to others. They are likely to cause false rejects but not false accepts” (Beveridgel 

et al., 2011, p.6). 

Receiver operating characteristic curve (ROC curve): A “plot of the rate of “false 

positives” (i.e., impostor attempts accepted) on the x-axis against the 

corresponding rate of “true positives”” (ISO / IEC JTC 1 SC 37, 2005, p.6). 
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Sample: A “user’s biometric measures as output by the data collection subsystem” (ISO / 

IEC JTC 1 SC 37, 2005, p.1). 

Template: A “user’s stored reference measure based on features extracted from 

enrollment samples” (ISO / IEC JTC 1 SC 37, 2005, p.2). 

User: The “person presenting the biometric sample to the system” (ISO / IEC JTC 1 SC 

37, 2005, p.3). 

Verification: The “application in which the user makes a positive claim to an identity, 

features derived from the submitted sample biometric measure are compared to 

the enrolled template for the claimed identity, and an accept or reject decision 

regarding the identity claim is returned” (ISO / IEC JTC 1 SC 37, 2005, p.4). 

Worm: “A person who is a worm matches themselves poorly and other people relatively 

well. They result in a disproportionate number of errors, both false rejects and 

false accepts” (Beveridgel et al., 2011, p.6).
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CHAPTER 2. REVIEW OF THE LITERATURE  

This study examined the stability of individual’s performance in a fingerprint 

recognition system and proposed a methodology to calculate the individual’s stability 

score. The literature review is separated into five different sections: an introduction to 

biometrics, a discussion of the existing performance metrics at the population level, ROC 

curve weaknesses, the biometric zoo menagerie, and the identification of difficult 

subjects. 

 

2.1 Introduction to Biometrics 

People are identified by what we have and how we act. What we have consists of 

traits that we have been born with and will always possess. These are referred to as 

biological characteristics. Behavioral characteristics are traits that we develop over time, 

such as writing our signatures. Either of these types of characteristics is considered a 

biometric property, but a biometric must contain universality, uniqueness, permanence, 

collectability, performance, acceptability, and circumvention (Jain et al., 2002). Other 

authors (Dunstone & Yager, 2009; Wayman, 2005) consider additional characteristics 

that can define a biometric. All of these characteristics are important when examining a 

biometric modality system. 
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There are three primary ways to authenticate individuals: by what they have, by 

what they are, and by what they know. For example, in an access control scenario a 

person may have a key or a magnetic stripe card to gain access to a room. This is an 

example of “what they have”. San Francisco Airport uses a hand geometry device to 

restrict access to their employees to certain areas of the facility. The hand geometry 

device combines a biometric modality and a PIN (personal identification number) that is 

associated with the individual. This would be an example of “what they are” combined 

with “what they know”. Biometric applications answer “who I am” and passwords, pins, 

etc., are gathered from the individual’s knowledge, something they know. When 

presenting biometric samples to a particular biometric system, either one of the two 

following questions are asked and answered: “Who am I”? or “Am I who I say I am?” 

The first question, “Who am I?” is used to verify an individual using one already known 

in the dataset. An example of this could be described in a hand geometry system. The 

user enters a PIN which verifies the individual so that the system knows that he/she exists 

(assuming they take on the role of the genuine user) (Jain, Bolle, & Pankanti, 2002). 

 Commonly implemented and currently researched modalities include voice, 

fingerprint, face, iris, ear, gait (how one walks), keystroke dynamics (how one types), 

deoxyribonucleic acid (DNA), signature, odor, retinal scan, and hand and finger 

geometry. Each of these modalities has particular applications, depending on their 

relative strengths and weaknesses at the point of deployment. This is important when 

using biometrics because there is often a trade-off between accuracy and efficiency when 

high throughput is required.  
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The general biometric model  gives an overview of the commonalities between 

different modalities. Each biometric modality falls within the model, providing an 

understanding of the most important components. For example, the general biometric 

model can be related to fingerprint recognition. The user presents their finger to the 

sensor, and the image is captured. Once the image is captured, it is examined to see if it 

needs to be recaptured due to low quality, for example. If not, it is passed through to 

create an individual’s template. This template is based on features extracted from 

enrollment samples (ISO / IEC JTC 1 SC 37, 2005). For verification authentication, if the 

new sample is passed through, it is compared to its template, and a similarity score is 

generated. Depending on the threshold of the system, a determination of the individual’s 

identity is provided. This distribution is shown in Figure 2.1. 

 

 

Figure 2.1 Distribution of impostor and genuine scores 

Genuine Impostor 
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The distributions of genuine and impostor scores help determine the performance 

level of the biometric system. The similarity score (sometimes referred to as match score 

in the literature) is determined by how similar the sample that was presented at the time 

of identification (or verification) is to the compared template. Examining these scores 

determines where the integrator needs to set the threshold. 

Failure to ground-truth is a particular error that can occur with a data collection or 

access control system and can affect the performance. It can be caused by incorrectly 

labeling images. For example, suppose that fingerprint images are collected with a 

particular sensor, and the subject or individual is asked to present their right index finger. 

The subject may be distracted and present the left index finger, which is accepted by the 

test administrator as the right index finger. When examining the genuine comparisons of 

right index samples for this user, this subject will receive a low genuine score due to the 

image not being of the right index, thus yielding an inaccurate result. As the database or 

dataset increases in size, the potential for these errors rises, which can decrease the 

precision of the results. In biometrics, we encounter these errors and others when 

examining performance. The next section provides an overview of definitions and 

provides examples for the metrics. 

 

2.2 Population level metrics 

In the biometric literature (Dunstone & Yager, 2009; ISO, 2005; Wayman, 1997), 

there are four primary methods of displaying and discussing performance. They are 

typically based on the tradeoffs between false match rates (FMR) and false non-match 
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rates (FNMR), between the false accept rates (FAR) and false reject rates (FRR) that are 

graphically displayed on score histograms, the ROC curves, and the DET curves.  

 

2.2.1 Score Histograms 

Score histograms graphically represent the frequency in which the genuine and 

impostor scores are displayed. Below is an example that shows the overlap between the 

frequencies of both the genuine and impostor distributions. 

 

 

Figure 2.2  Score histogram 

 

2.2.2 Receiver Operating Characteristic (ROC) Curves 

 Receiver operating characteristic (ROC) curves graphically show the tradeoff 

between the verification rate and the false match rate (FMR). ROC curves are also used 

in the medical field to determine medication dosage. The FNMR is the percentage of 
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genuinely attempted samples that are falsely denied from the same correct individual. 

The FMR is the proportion of impostor-attempted samples that are accepted as genuine 

matches. The verification rate represents the likelihood of accepting genuine users into a 

biometric system. The false-match rate represents the chance of allowing access to an 

impostor. The tradeoff can also be displayed as the false accept rate (FAR) on the y‐axis 

vs. true acceptance rate (TAR) on the x-axis. Maximizing the true acceptance rate 

corresponds to a large y value on the ROC curve. Maximizing the true acceptance rate 

corresponds to a small x value on the ROC curve. The value nearest to the top left corner 

of the ROC graph is a good initial choice as the threshold value. Figure 3 is an example 

illustrating the tradeoff when examining the match and non-match scores in a biometric 

system. 

 

 

Figure 2.3  Receiver Operating Characteristic (ROC) Curve 
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2.2.3 Detection Error Trade-off (DET) curves 

The detection error trade-off curves are similar to ROC curves. Instead of the 

verification rate represented on the y-axis, the DET curves use the false non-match rate. 

This shows both error rates on a logarithmic scale. Their use depends on the preference of 

the individual assessing the performance, as the ROC and DET curves represent the same 

information but are displayed slightly differently. 

 

2.2.4  Other Metrics 

Other metrics used to visualize the performance of biometric systems include the 

failure to enroll (FTE) rate, the failure to acquire (FTA) rate, the equal error rate (EER), 

false accept rates (FAR), and false reject rates (FRR). The FTE rate is the percentage of 

the individuals that the system fails to complete the enrollment process. The FTA rate is 

the rate of acquiring biometric samples with such poor quality that no match scores can 

be associated with the image. The FRR are the percent of verified transactions that have 

been genuinely identified but are denied, i.e., an incorrect rejection by the system. The 

FAR are the percent of verification transactions with wrongful claims of identity that are 

incorrectly confirmed.  

These metrics report on a particular biometric system’s performance. They help to 

determine the value of a threshold, why errors may be occurring, but not which 

individuals are troubling the system. This is important to know when dealing with a 

particular system in order to provide correct security for the majority of the population.  
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2.3 Weaknesses of ROC/DET curves 

The bulk of the literature in performance analysis addresses DET and ROC 

curves. These curves show the relationship between sensitivity (the number of true 

positives divided by total number of ground-truthed positives) and specificity (true 

negatives divided by ground-truthed negatives) (Park, Goo, & Jo, 2004). Another 

important metric is the area under the curve (AUC). The AUC metric provides an 

indication of performance across all values of specificity. That is, if the AUC is higher, 

the performance of the test is more accurate. If the AUC is equal to 0.5 or higher, then the 

performance is better than relying on pure chance, which is a result of the ability of the 

algorithm to discriminate between subjects. The AUC typically has a series of 95% 

confidence interval bounds for a test population, which shows the potential statistical 

error. Thus, if we compare more than one ROC curve with the exact same AUC, the 

curves may not be identical. This lack of consistency is a weakness. The curve is simply a 

snapshot of the data treated as a whole. If the bottom 10% of the poor (or well) 

performing subjects are removed, will the AUC increase?  

Rodenberg and Zhou (2000) stated that other variables can be overlooked when 

considering the accuracy of the ROC curve. These include covariates such as gender, age, 

and quality, which should be included in the test design and analysis. 

 

2.4 Zoo metrics 

ROC and DET curves are graphical representations of performance using the 

tradeoff between verification rate and FMR. However, these curves do not show detailed 

information about individual performance. This weakness is important because the curves 
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may not provide the whole story; the data cannot be fully interpreted. The biometric zoo 

menagerie provides additional clarity by classifying individuals by their performance. 

This is important because some may contribute more error to the system than others. The 

zoo menagerie classifies and visualizes the individuals. The zoo menagerie was 

popularized by Doddington, Liggett, Martin, Przybocki, and Reynolds (1998) who coined 

the following animals: sheep, wolves, lambs and goats. Others have suggested 

alternatives, e.g., Yager and Dunstone (2010), who characterized the relationships 

between genuine and impostor into the following: chameleons, worms, doves, and 

phantoms. Tabassi (2010) also proposed different metrics based on the image as opposed 

to the subject: blue wolves, clear ice, blue goats, and black ice. The zoo philosophy is not 

well-accepted in the community because it has not been proven significant.  

Doddington et al. (1998) served as a foundation for later literature that examined 

individual performance in the biometric menagerie. They performed a meta-analysis 

using tests from a 1998 speaker evaluation test that determined the matching relationships 

between individuals when assessing performance. The paper examined how different 

speakers could be recognized, based on their behavior. The authors created a biometric 

menagerie that highlighted a method to categorize an individual’s ability to perform. The 

zoo menagerie classified these individuals to provide a deeper understanding of the 

likelihood of false accepts and false rejects. The four classifications were goats, sheep, 

lambs, and wolves. A goat is an individual who is particularly difficult to match. Goats 

are defined as below the 2.5 percentile of average score. Wolves had match scores above 

the 97.5 percentile. A lamb is an individual who is particularly easy to imitate and has 

characteristics similar to others in the dataset. These animals generate scores similar to 
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everyone, which could lead to false accepts. Sheep are individuals who have high 

genuine scores, and low impostor scores, resulting in low false match rates and low false 

accepts. Wolves are successful at imitating other speakers, receive high match scores, and 

provide high false accepts (Doddington et al., 1998). 

Yager and Dunstone (2010) posed the following research questions: What is the 

relationship between a user’s genuine and impostor match scores? Does this relationship 

exist across different biometric modalities such as the fingerprint and iris? Is there a 

possibility of exposing weaknesses in the biometric algorithms (i.e., comparing one 

algorithm with another) to see their different match rates? The average genuine and 

impostor score was established across the different modalities in order to assess the 

likelihood of appearance in the zoo classifications. These relationships are classified by 

four new animals in the zoo menagerie. Doves, the best performing individuals, will be in 

both the top 25% of the genuine distribution and the bottom 25% of the impostors. 

Chameleons will be in the top 25% of the genuine distribution and the top 25% of the 

impostor distribution. This means they will look similar to others in the dataset, as well as 

to themselves. Phantoms are in the bottom 25% of the genuine and impostor 

distributions. These individuals are not easy to match against anyone in the dataset, 

including themselves. Worms, which are the worst performing, are in the bottom 25% of 

the genuine matches and in the top 25% of the impostor matches, indicating they do not 

look similar to themselves but look similar to others. Yager and Dunstone (2010) 

conducted an existence test that showed that the animal’s classifications are significant 

(not just visible in the plots). In Figure 2.4, a zoo plot was produced using the Yager and 

Dunstone methodology. Each red shaded area represents a different classification with 
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corresponding dotted colors as seen at the bottom. Doves are in the top right, worms are 

in the bottom left, chameleons are in the bottom right, phantoms are in the top left, and 

the non-classified are in the middle white section. The y-axis locates the average 

impostor score for each individual, and the x-axis locates the average genuine score for 

the individual. This provides an illustration of how actual data are represented in a zoo 

plot analysis.   

 

 

 

Figure 2.2 Zoo plot analysis of the DHS dataset showing individual performance 

 

There was some discussion concerning whether it was difficult for some 

individuals to use the biometrics and some discussion about whether it was subject 

specific vs. image specific. These questions were left open by the authors.  
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Others have also examined existence tests. Wittman, Davis, and Flynn (2006) 

examined the impact of covariates in face recognition to measure their impact on 

performance. The intent was to examine whether these covariates, lighting or facial 

expression, impacted the matching ability of the individual. The authors showed that 

covariates may result in classification changes from one animal to another. 

Another study, by Beveridgel, Jonathon, Bolmel, and Draperl (2011), studied the 

existence of the zoo. They presented several zoo orders. Zeroth order was the genuine 

and impostor scores from one modality and one test database. First order was described 

as the randomized sampling of genuine and impostor scores from within the test database. 

Second order showed the covariates, both controlled and uncontrolled capture. Third 

order showed algorithms and covariates, and fourth order was defined by other, different 

modalities. Their analysis followed the same methodology used by Doddington and 

Dunstone. Two methods were used to find the existence of a biometric zoo. The first was 

the method proposed by Doddington et al. (1998), and the second was that proposed by 

Yager and Dunstone (2010). They found strong evidence of the first order zoo in 

Doddington animals but not in Dunstone and Yager’s menagerie. The majority of cases in 

the rest of the hierarchy of zoo classifications did not exist. Tabassi (2010) examined the 

performance of a particular image as a metric for further biometric performance analysis. 

The study concluded that there was a difference in comparing the correlations of quality 

with image error for the three different algorithms. This could mean that another variable 

other than the image itself is causing errors. The author suggested four new metrics to 

examine biometric images. Clear ice, the image false non-match rate, is less than the 

minimal false match rate. These images would be in the lower left quadrant of the plots, 
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similar to the zoo animal phantom. Black ice, similar to the chameleons, would be in the 

upper right portion of the plots because they have a higher matching ability to others as 

well as to themselves. Blue goats are the images that would be in the top left quadrant 

because they have an image false non-match rate greater than the nominal false non-

match rate. Blue wolves are images in the bottom right of the plots because of their 

ability to produce higher false matches and be easily identified.  

 The above studies are the main sources of preliminary research in establishing the 

existence of the zoo. Other studies have alluded to its existence or challenged it (Paone, 

Biswas, Aggarwal, & Flynn, 2011; Tabassi, 2010; Wittman et al., 2006; Yager & 

Dunstone, 2010). Wittman et al. (2006) indicated that the majority of errors were to 

image quality or data collection mistakes, as opposed to the individual. Paone et al. 

(2011) also alluded to the impact of covariates, as well as to the environment in which the 

data were collected (they separated out covariates and environment). The zoo 

methodology has been tested on a number of different modalities, such as face (Paone et 

al., 2011), fingerprint, keystroke dynamics, voice (Doddington et al., 1998), and iris 

(Yager and Dunstone, 2010 and Tabassi, 2010). The harshest critique of the zoo was 

from Shuckers (2010), who theorized that the zoo does not need to be considered because 

the collected data are what have been analyzed. According to Shuckers, “The variability 

in matching scores of subjects is of critical importance to developers of matching 

algorithms who would be wise to choose algorithms that yield distributions of short tails” 

(p. 300). This being said, the universality of the biometric sensor is important to 

determine if subjects remain consistent in their classification over different modalities 

and different sensors or if they exhibit universality. 
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2.5 Difficult subjects 

Errors that can occur between the subject and sensor can result from 

environmental factors, personal characteristics, or the biometric system itself. When 

determining a method to evaluate performance, errors should be identified using 

statistical tools, but unfortunately, they are not. The development of the Human-

Biometric Sensor Interaction (HBSI) model has helped by classifying every human-

sensor interaction “event” with a resulting biometric system “reaction.” This has 

increased our understanding and provided a method to classify all 

interactions/movements/behaviors that occur with a biometric device, thus improving 

performance, quality, and usability (Kukula, 2010). 

Biometric systems always encounter outliers in the population that are difficult to 

identify. The majority of the human population can be classified with enough certainty to 

determine who they are, but difficult individuals are the ones that must be explained. 

Different researchers have proposed a variety of ways to approach difficult subjects. 

Shuckers (2010) challenged the existence of the zoo with respect to covariates. Wittman 

et al. (2006) stated that the ability to identify the outliers in the dataset means that 

biometric systems can adapt to account for these difficult individuals. Dunstone and 

Yager (2009) segment difficult subjects into those that have low genuine scores and those 

that have high impostor scores. Low genuine scores can be attributed to time difference, 

poor quality, poor distinguishing features, or the environment. Those with high impostor 

scores can result from fraud, mislabeling (incorrect or non-existent ground truth), weak 

templates, or the sensor environment. The problems some users have in matching their 

own templates have been difficult to explain. The above authors have made 
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recommendations regarding what can cause the struggle in a subject’s ability to perform 

well in a biometric system.  

2.6 Chapter Summary 

 The goal of a biometric system is to uniquely identify each individual based on 

their personal characteristics. We have found that it can be difficult for some individuals 

to be identified by a biometric system for many reasons. It is critically important to 

understand the nature of the difficulty. Therefore, the following questions arise: Is it the 

subject? Is it the algorithm? Is it the image? Or is it a combination of these factors? 



23 

 

CHAPTER 3. METHODOLOGY 

The purpose of this study was to determine whether subjects’ similarity score 

varies at different force levels and to quantify that instability by a score index. To 

visualize the stability or instability of individuals, the first part of the experiment 

established if instability exists. If instability was present, then the next stage quantified 

the instability. The following sections discuss how and why the data were originally 

collected and the process of calculating the stability score index.  

 

3.1 Previous Data Collection 

Data were collected from a previous study that examined the impact of different 

force levels (5 N, 7 N, 9 N, 11 N, and 13 N) on fingerprints collected using a 10-print 

capture device in order to determine the optimal force level for automated capture of high 

fidelity fingerprints. This work was sponsored by the United States Department of 

Homeland Security S&T Directorate. The following metrics were used to report the 

optimum pressure for the thumb and four fingers: 

• Capture time; 

• Failure to acquire rate; 

• Fingerprint fidelity; 

• Number of incorrect matches;
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• Number of incorrect non-matches; 

• Dunstone’s zoo analysis; 

• Number of human biometric sensor interaction errors; 

• Variability in the population (age, finger moisture level, etc.) 

The previous research studied the impact of the efficiency and effectiveness on 

the collection of high quality fingerprint images at pre-established force levels. The 

following metrics were evaluated for efficiency and effectiveness: 

• Reduction in capture time; 

• Reduction in failure to acquire; 

• Improvement of fingerprint fidelity; 

• Reduction in number of incorrect matches; 

• Reduction in number of incorrect non-matches 

 

3.1.1 Previous Data Collection Methodology 

A 10-print device required the subject to first place their four fingers on the platen 

from the right hand, then place their right thumb, and then the left hand and left thumb. 

The placement of the four fingers and thumbs was evaluated using the following 

methods: default auto capture mode and auto capture at 5 N, 7 N, 9 N, 11 N, and 13 N. 

To quantify the improvement in the fidelity of the fingerprints, the same subject group 

was required to undergo all tests. This data collection process is represented in Figure 

3.1. The fingerprints collected from each individual at the different force levels were 

separated into datasets by force levels and fingers or thumbs. 
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Figure 3.1 High-level Data Capture Process 

 

3.1.2 Volunteers 

A call for volunteers was issued by e-mail and posted in the local newspapers, 

online in the University daily email letter (called Purdue Today), and on Craigslist. A 

representative sample of the West Lafayette and Lafayette populations was sought. 

Before commencing the study, subjects filled out a form providing consent to participate 

in the study. Subjects were paid for their time and also for completing the study. The 

volunteer pool was thus self-selecting.  



26 

 

3.1.3 Subject Information 

Demographic information was collected for each individual. Of the 246 subjects, 

241 reported their age, and 243 reported their gender, i.e., not all of the subjects reported 

all of their demographics on the survey. In this study, a re-defined population of the total 

dataset was used because of the constraints in calculating the zoo classification (see 

below).  

 

3.1.4 Testing Environment 

The test environment was set up in a dedicated laboratory as shown in Figure 3.2. 

The room was illuminated using florescent lighting and remained lit throughout the 

study, as monitored by a photometer device. There were no windows in the room; 

therefore, no daylight/sunlight variations existed. The temperature and humidity were not 

controlled by the test administrators; instead, these were centrally controlled by the 

University Physical Facilities plant. The temperature and humidity were measured using 

an Extech Temperature and Humidity device during data collection. The time between 

the start and end of data collection was kept minimal to prevent drastic weather changes 

or any other time-related factors that could affect the subjects or their perspective 

regarding the fingerprint system. 
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Figure 3.2 Testing Area Layout 

 

3.2 Data Cleaning 

Individuals were identified by a Subject Identification Number (SID). Each SID 

needed to have 150 images (10 fingers, 3 placements, 5 force levels) to be used in the 

study. Although the analysis only used the right index finger, if the count of images was 

not 150 for an individual, that data were removed. This was done in order for future 

studies to have the same subjects examined for the finger location of interest. After 

discarding subject data that contained missing prints or incorrect hand placement, the 

pool of individuals was reduced to 154.  
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3.3 Calculation Methodology 

The main focus of the research was to examine the stability of individual’s 

recognition performance with respect to force. When the presence of instability was 

established, a calculation of a score was determined.  

Initially, genuine and impostor scores were calculated to understand the 

performance of individuals. A commercially available software package, Megamatcher 

version 4.3, was used to determine the genuine and impostor scores for each individual at 

each force level, under the constraints of exhaustive matching (all possible matches, i.e., 

Subject 1, image 1 versus Subject 2, image 1 and then Subject 2, image 1 versus Subject 

1, image 1).  

All of the scores were calculated by the matching algorithm; another 

commercially available software package calculated the number of genuine and impostor 

scores for each individual. After inputting all of the genuine and impostor scores, the 

genuine and impostor distributions were averaged for each individual. The results were 

then plotted as the X and Y coordinates on the zoo plots. The genuine scores are on the x-

axis and the impostor scores are on the y-axis. This process was performed on the data at 

each force level to create plots similar to Figure 2.6. 
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Figure 3.3 Zoo analysis of the DHS dataset showing individual performance 

 

To determine stability, the five force level zoo plots were normalized. Each force 

level can differ in the actual value of scores. Therefore, each dataset must be standardized 

on the same coordinate system for all of the force levels to allow calculation of a 

universally applicable stability score.  

 

3.4 Threats to Internal Validity 

There are seven threats to internal validity: history, maturation, testing, 

instrumentation, selection bias, statistical regression, and mortality effects (Sekaran, 

2003). Of these threats, instrumentation and statistical regression cause the most concern. 

Statistical regression was minimized by using a large sample size, thereby decreasing any 

one sample’s effect on the dependent variable, force. Instrumentation could have affected 
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the study if the performance analysis and zoo plot software did not work properly. In 

such a case, a new algorithm would have been chosen after the study had begun. 

 

3.5 Threats to External Validity 

“External validity raises issues about the generalizability of the findings to other 

settings” (Sekaran, 2003, p. 158). The study contains samples that represent the 

operational, electronically stored fingerprint images from the previous study only. The 

study can only be generalized to images captured at Purdue University, West Lafayette.
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CHAPTER 4. RESULTS AND ANALYSIS 

The analysis is divided into two main sections: identification of the movement of 

individuals across zoo plots and quantification of the movement using a stability score 

index method.  

 

4.1 Population Demographics 

Demographic information was collected (Table 4.1). Not all of the individuals 

reported gender; those that did not were eliminated from the study. 

 

Table 4.1. Distribution of Subjects Reporting Gender 

Gender Count Total % 

Male 81 52.6 

Female 73 47.4 
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Figure 4.1 Distribution of Subjects Reporting Gender 

 

 An L SCAN Guardian 500 fingerprint scanner, manufactured by CrossMatch 

Technologies, was used in this study. Its specifications are shown in Table 4.2.  

 

Table 4.2. CrossMatch L SCAN Guardian 500 Specifications 

Dimensions 152 mm x 152 mm x 120 mm 

Weight 4.0 lbs 

Resolution 500 ppi +/- 1% 

Capture Speed  15 fps 

Linearity and Rectilinearity Less than one pixel (average) 

Image Area 81 mm x 76 mm, single prism, single image, 

uniform capture area 

 

4.2 Standardization of Zoo Plots 

The scores for all zoo plots were standardized across all five force levels, and 

demonstrated the instability amongst individuals (Figures 4.2- 4.6). The following 

parameters are the standardized maximum and minimum coordinates for the zoo plots: 

F

M

Category

52.6%

47.4%

Distribution of Subjects Reporting Gender
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 Minimum Genuine (X-axis): 44 

 Maximum Genuine (X-axis): 1950 

 Minimum Impostor (Y-axis): 2.4 

 Maximum Impostor (Y-axis): 10.3 

 

4.2.1 Zoo Plots Analysis 

In the following sections, the instability, as shown in the zoo plots, is discussed. 

The instability of individuals can be visually inspected by examination of particular 

individuals or by examination of the dataset. A breakdown of each animal classification 

for each force level is also provided for reference. 

4.2.1.1 5 N Results 

 

Figure 4.2 5 N Zoo Plot 
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Figure 4.2 shows the distribution of the 5 N zoo plot. This is the baseline data 

used for the stability scores. There is a dispersed population across the impostor and 

genuine scores, varying for each classification. Table 4.3 shows the classification, and the 

animal type showing the lowest number is dove. This could be for a number of reasons: 

the quality of images from the variable force, subject familiarity with the fingerprint 

sensor, or randomization of the force levels used to test the individual. The animal 

classification breakdown is shown in Table 4.3.  

 

Table 4.3. 5 N Animal Classification Breakdown 

Animal Classification 5 N Count 

Chameleons 11 

Doves 5 

Normal 119 

Phantoms 12 

Worms 7 

Total 154 
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4.2.1.2 7 N Results 

 

Figure 4.3 7 N Zoo Plot 

 

Figure 4.3 shows the zoo plot for the 7 N force level. The data show that there is a 

shift in classifications from the 5 N zoo plot. This is also shown in the animal 

classification breakdown in Table 4.4. Even though the aggregate counts are the same 

(e.g., 5 doves in both cases), these may not represent the same individuals. Only subject 

155 was classified as a dove in both force levels. Thus, the data show instability for all 

other individuals.  
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Table 4.4. 7 N Animal Classification Breakdown 

Animal Classification 5 N Count 7 N Count 

Chameleons 11 16 

Doves 5 5 

Normal 119 114 

Phantoms 12 16 

Worms 7 3 

Total 154 154 

  

4.2.1.3 9 N Results 

 

Figure 4.4 9 N Zoo Plot 

 

In Figure 4.4, the number of individuals in each animal classification increases or 

stays the same compared to the previous force levels (5 N and 7 N). Table 4.5 shows the 

classification data at 9 N. 
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Table 4.5. 9 N Animal Classification Breakdown 

Animal Classification 5 N Count 7 N Count 9 N Count 

Chameleons 11 16 22 

Doves 5 5 9 

Normal 119 114 102 

Phantoms 12 16 16 

Worms 7 3 5 

Total 154 154 154 

 

4.2.1.4 11 N Results 

 

Figure 4.5 11 N Zoo Plot 

 

The results in Figure 4.5 show only one individual classified as a worm, 135RI. In 

the previous three force levels, individual 135RI was classified as normal in the zoo plots. 

Table 4.6 provides the breakdown of animal classifications for the 11 N test.  
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Table 4.6. 11 N Animal Classification Breakdown 

Animal Classification 5 N Count 7 N Count 9 N Count 11 N Count 

Chameleons 11 16 22 15 

Doves 5 5 9 6 

Normal 119 114 102 119 

Phantoms 12 16 16 13 

Worms 7 3 5 1 

Total 154 154 154 154 

 

4.2.1.5 13 N Results 

 

Figure 4.6 13 N Zoo Plot 

 

Figure 4.6 shows the instability in the zoo plot for at 13 N. The change in the 

counts shown in Table 4.7 and the shifts on the zoo plots supports the presence of 

instability in the dataset. 
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Table 4.7. 13-N Animal Classification Breakdown 

Animal Classification 5 N Count 7 N Count 9 N Count 11 N Count 13 N Count 

Chameleons 11 16 22 15 16 

Doves 5 5 9 6 6 

Normal 119 114 102 119 117 

Phantoms 12 16 16 13 11 

Worms 7 3 5 1 4 

Total 154 154 154 154 154 

 

4.3 Instances of Instability from Zoo Plots 

In Section 4.2.1, the movement of subjects was established. Thus, different 

instances of instability exist across force levels for certain individuals because some 

change classifications and others do not. This section quantifies the movement by 

illustrating cases of instability from the zoo plots. The four cases that are discussed in this 

section are the following: instability within the normal classification, intra-animal 

instability, inter-animal instability, and borderline cases. 

 

4.3.1 Instability within the Normal Classification 

In the literature, authors have tended to ignore instability in the normal 

classification. For example, Yager and Dunstone (2010) describe the new animal 

classifications but ignore the normal classification, referred to in their papers as the 

“none” classification. However, the majority of individuals are present in this 

classification, which creates the opportunity for the individual to move significantly 

without changing. Thus it is an important classification to examine. 

The normal classification of individuals lies in the 2
nd

 quartile of at least one of 

the score distribution in the dataset. If an individual performs consistently in this normal 
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classification, it should not be ignored. This shows that the current animal classification 

is not adequate because the normal classification comprises the majority of the zoo plot, 

there can be some instability within this classification. This is an apparent weakness 

shown by the zoo plots in Figures 4.7- 4.11.  

In Figure 4.7 through 4.11, individual 135 moves from left to right as the force 

levels change. The subject is highlighted with a circle in the figures.  

 

Figure 4.7 Zoo plot at 5 N showing individual 135 classified as normal 
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Figure 4.8 Zoo plot at 7 N for individual 135 classified as normal 

 

 

Figure 4.9 Zoo plot at 9 N for individual 135 classified as normal 
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Figure 4.10 Zoo plot at 11 N for individual 135 classified as normal 

 

 

Figure 4.11 Zoo plot at 13 N for individual 135 classified as normal 
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4.3.2 Intra-Animal Instability (excluding “normal”) 

Another instance of instability is that within the same animal classification, as 

shown in Figures 4.12- 4.16. Individual 34 was classified as a chameleon across all five 

force levels. The genuine and impostor scores differ between the force levels for 

individual 34, but remain in the same classification. This illustrates instability within the 

same animal classification.  

 

 

Figure 4.12 Zoo plot at 5 N for individual 34 classified as a chameleon 
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Figure 4.13 Zoo plot at 7 N for individual 34 classified as a chameleon 

 

 

Figure 4.14 Zoo plot at 9 N for individual 34 classified as a chameleon 
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Figure 4.15 Zoo plot at 11 N for individual 34 classified as a chameleon 

 

 

Figure 4.16 Zoo plot at 13 N for individual 34 classified as a chameleon 
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4.3.3 Inter-Animal Instability 

The most drastic instability involves a change in animal classification. Individual 

117 is highlighted because of movement between animal classifications. Figures 4.17, 

4.18, and 4.21 show a normal classification for individual 117. Figures 4.19 and 4.20 

show the inter-animal instability. In Figure 4.19 (force level 9 N), individual 117 is 

classified as a dove. In Figure 4.20 (force level 11 N), another change of classification 

occurs, as individual 117 is classified a phantom.  

 

 

Figure 4.17 Zoo plot at 5 N for individual 117 classified as normal 
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Figure 4.18 Zoo plot at 7 N for individual 117 classified as normal 

 

 

Figure 4.19 Zoo plot at 9 N for individual 117 classified as a dove 
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Figure 4.20 Zoo plot at 11 N for individual 117 classified as a phantom 

 

 

Figure 4.21 Zoo plot at 13 N for individual 117 classified as normal 
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4.3.4 Borderline Case 

Within the zoo plots, cut-off values are visible by the shaded (red) areas for each 

classification. Some individuals miss a classification by a marginal amount as they are 

adjacent to the border. The issue with borderline cases is they can be stable but do not 

reflect the characteristics of the animal classification to which they are assigned well.  

In Figure 4.22, some borderline individuals are shown. Individual 172 is classified 

as a chameleon, and individual 140 is classified as normal. This is because they have 

slightly different impostor scores. In this case, their genuine scores do not need to be 

examined because both of their genuine scores are in the top twenty-five percent. Their 

impostor scores need to be examined because these scores result in the change in 

classification. Individual 172 has an impostor score of 9.0675, and 140 has an impostor 

score of 9.0661, a difference of .0014. If these individuals were to take each other’s 

impostor scores at the next force level they would change classifications, which would 

not be the case if they are moving an insignificant amount. This difference shows the 

importance of calculating individuals’ movement independent of their animal 

classification. 

 

 

Figure 4.22 Borderline case at 13 N for individuals 172 and 140 
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4.3.5 Conclusions 

Multiple cases have supported the presence of instability. Instability in the normal 

classification, intra-animal instability, inter-animal instability, and border-line cases show 

the weakness of zoo plots and the movement caused by changing force levels. The reason 

for instability across the five force levels remains to be determined, but importantly, the 

presence of instability has been confirmed. 

 

4.4 Stability 

Not all subjects exhibit instability or are borderline cases. An example of an 

individual showing small deviations in instability is provided in this section. No subjects 

were able to obtain the same genuine and impostor scores across force levels but some 

showed significantly smaller movements in the zoo plots.  

All individuals move differently across force levels. As indicated, there are 

different cases of instability for individuals of a biometric system. In some cases, 

individuals performed consistently across the five force levels.  

For example, Figures 4.23 and Figure 4.24 show that individual 178 has relatively 

similar genuine and impostor scores across the 7 N and 9 N zoo plots. The weakness by 

just examining the animal classification is the individual would appear to have an 

unstable performance, due to being classified differently. Individual 178 is relatively 

stable and can be shown later in section 4.6 with a stability score. 
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Figure 4.23 Zoo plot at 7 N for individual 178RI classified as a phantom 

 

 

Figure 4.24 Zoo plot at 9 N for individual 178RI classified as normal 



52 

 

4.5 Stability Score Index 

The presence of instability as well as the weakness of the zoo menagerie plots has 

been shown. The proposed method to calculate the instability of an individual can better 

illustrate an individual’s performance using a particular biometric system.  

The stability score index formula (S.S.I), shown in Figure 4.25, was used to 

calculate the stability for each individual (i) from one force level to the next. X1 and X2 

represent the genuine scores for the two force levels examined. Y1 and Y2 represent the 

individual’s impostor scores from each force level. Xmax and Xmin represent the maximum 

obtained genuine score and minimum possible score that was seen in all force levels. 

Ymax and Ymin represent the maximum obtained impostor score and minimum possible 

score that was seen in all force levels. The numerator value will represent the individual’s 

movement over the two force levels and the denominator will be the maximum possible 

movement amongst all force levels. Again, force level can be substituted for other 

variables such as time, multiple sensors, or multiple modalities. In this case, force was the 

variable that was systematically changed in the dataset.  

 

       
√(        )

 
   (       )

 

√(          )    (         ) 
 

Figure 4.25 Stability Score Index Formula 

 

The graphs were standardized; giving all individuals the same chance of 

movement. Because the minimum and maximum coordinates were established, the 

maximum possible movement across the zoo plot graphs was determined. The maximum 
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movement is 1906.0164. This is the maximum possible movement that can be obtained 

from one zoo plot to another (such as 5 N7 N or 7 N9 N). This value was used to 

normalize a particular individual’s movement. The stability score index ranges from 0 to 

1. Zero indicates perfect stability from one zoo plot to another, and one indicates the 

maximum possible movement. To compare the scoring results with observation, the 

previous cases were scored. 

 

4.5.1 Stability Score Index for Subject 135 

In section 4.3.1, individual 135 was examined for instability within the normal 

classification. The zoo plots are shown to demonstrate how the stability score index is 

conceptualized. The stability score and related coordinates for the 5 N and 7 N levels for 

individual 135 are shown in Figure 4.26 and Figure 4.27. In Figure 4.27, a star shows the 

placement of individual 135 on the 5 N force level. This shows the instability established 

earlier. To calculate the stability score, the genuine and impostor coordinates for each 

force level were inputted into the formula as follows: the 5 N genuine score is X1 

(485.6666), the 5 N impostor score is Y1 (7.0901), the 7 N genuine score is X2 (1155), 

and the 7 N impostor score is Y2 (8.6005). The value thus obtained is 669.335, which is 

divided by the maximum movement of 1906.0164 to give a stability score index of 

0.3512. 
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Figure 4.26 Zoo plot at 5 N for individual 135 classified as normal 

 

 

Figure 4.27 Zoo plot at 7 N for individual 135 classified as normal 
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4.5.2 Stability Score Index for Subject 34  

Section 4.3.2 examined the instability of subject 34 within the same classification 

at all five force levels, showing that classification from the zoo plots can be misleading. 

Instability can occur within a classification at different force levels. An individual is 

capable of moving ¼ of the maximum possible movement and remain in the same 

classification. In the examined data, the maximum movement was not observed, but an 

instance of smaller movements showed that the possibility exists. Figure 4.28 shows 

individual 34 moving within the chameleon classification. The star represents the 

individual’s coordinates on the 7 N zoo plot. The arrow points to the coordinates on the 9 

N zoo plot, which results in a stability score of 0.1296. 

 

 

Figure 4.28 Zoo plot at 9 N for individual 34 classified as a chameleon 
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4.5.3 Stability Score Index for Individual 117 

Section 4.3.3 examined individual 117, whose classification changes from a dove 

to a phantom at different force levels. For individual 117, both the zoo plots and the 

stability score reflect a high level of instability. As shown in Figure 4.29, individual 117 

is classified as a dove at 9 N and as a phantom at 11 N. The stability score should reflect 

the great movement at different force levels. By using the coordinates to calculate the 

stability score index, a value of 0.5537 is obtained. 

 

 

Figure 4.29 Zoo plot at 11 N for individual 117 classified as a phantom 

 

4.5.4 Stability Score Index for Individual 178 

In Section 4.4, individual 178 was examined as a similar performance across force levels 

was seen while being assigned different classifications. This weakness of the zoo plot is 



57 

 

compensated for with the stability score index. Figure 4.30 shows the small deviation 

from the 7 N results to the 9 N results. Regardless the classification for individual 178 in 

the zoo plots, the stability score remains the same, close to zero, indicating stability. 

Inserting the coordinates into the formula, a stability score of 0.0308 is obtained.  

 

 

Figure 4.30 Zoo plot at 9 N for individual 178RI classified as normal 

 

4.6 Conclusions 

An individual who performs consistently but is labeled a “bad performer” should 

not necessarily be viewed negatively. Individuals often cannot choose the nature of their 

biometric samples. For example, elderly people often have poor fingerprints (from scars, 

wrinkles, creases, etc.) that cannot easily be altered. However, if these individuals 

consistently perform badly, experts can determine their actual performance and predict 
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their future performance. The stability score index does not use the classification methods 

that have been proposed in the literature, but focuses on individual performance from a 

discrete perspective.  

The remaining stability scores, which were not analyzed in depth, are listed in 

Appendix A. These data describe how each individual performed across the five force 

levels in the following manner: 5 N to 7 N, 7 N to 9 N, 9 N to 11 N, and 11 N to 13 N. 

There can be numerous additional combinations, but this research is limited to the 

described relationships. A graphic representation of these relationships is also given in 

Figure 4.31. 

 

 

Figure 4.31 Scatterplot of stability scores for each individual
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CHAPTER 5.  CONCLUSIONS, RECOMMENDATIONS, AND FUTURE WORK 

This study examined the stability of fingerprint recognition performance across 

five force levels for individuals, including a method to quantify the stability. Much 

research has gone into challenging the existence of the zoo (Paone, Biswas, Aggarwal, & 

Flynn, 2011; Tabassi, 2010; Wittman et al., 2006; Yager & Dunstone, 2010), but no 

research had examined the zoo menagerie for stability of individual performance. 

 

5.1.1 Conclusions 

The results of this research show the presence of instability in the performance of 

individuals in fingerprint recognition for the right index finger. The five force level zoo 

plots provided evidence that the majority of individuals are unstable. This instability can 

result from the quality of images because of the force, subject familiarity with the 

fingerprint sensor, or randomization of the force levels at which the individual was tested. 

Investigation of these causes is left for future work. This thesis developed a stability 

score index and demonstrated its use with a representative sample of data.  The results 

indicate there are adjustments to be made to obtain stable matching scores from 

individuals, which should improve the performance of biometric systems.
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5.1.2 Future Work for Research 

During the study, a number of additional questions and observations were raised, 

that would be useful for others to investigate. 

1. This study only examined the right index finger of individuals. Further studies 

could observe other digits of the hand (left index, left middle, right middle, etc.) 

to see whether the stability scores are similar to the findings in this thesis. 

2.  Only five force levels were examined (5 N, 7 N, 9 N, 11 N, and 13 N). Future 

research could examine other force levels to determine if the conclusions for the 

individuals remain unchanged. There have been other studies undertaken in the 

lab that relate to fingerprint force that would also be interesting to review with the 

stability score methodology. 

3. Only one matching algorithm was implemented. Further studies can examine 

other matching algorithms to determine how stability of the results may be 

affected by the choice of algorithm. 

4. Only one sensor was used, and it would be interesting to examine other sensors to 

establish whether there was interoperability of stability. 

5. Only the fingerprint modality was chosen. It would be interesting to examine 

whether the stability score was appropriate for other modalities 

6.  Force was the only variable changed in the study. As stated earlier in Section 4.5, 

time, multiple sensors, multiple modalities, etc. could be analyzed.  

7. If subjects use a particular biometric device multiple times, do they start 

performing consistently over time as they become more habituated to the device? 
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Does the individual perform differently over different sensors using the same 

modality?  

 

5.1.3 Future Work for Practice 

The recommendations here are based on the research in 5.1.2 being completed. 

The stability score methodology as well as the zoo analysis outlined in this thesis may 

have some applicability for practice. The concept of stability, as noted above, could be 

used for habituation, and perhaps limiting the number of enrollment attempts when a 

subject is having problems with the sensor. It also could provide guidance for algorithm 

developers to examine how their algorithm performs against others, and whether the 

movements shown by some subjects are replicated on different algorithms. This would 

also be useful for integrators. There could be other analysis techniques not discussed in 

this thesis that could adopt this methodology. For example, the stability score index could 

be adjusted to see where the individual should land in the zoo plots, due to their previous 

performance in the biometric system.
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APPENDIX : STABILITY SCORE INDEX VALUES 

Table A 1. Stability Score Index of all individuals for each force level relationship (5-7 

N, 7-9 N, etc.) 

SID 5-7N 7-9N 9-11N 11-13N 

7 0.0086 0.2959 0.1936 0.0210 

18 0.0243 0.0703 0.1628 0.0269 

20 0.0533 0.3111 0.0955 0.2574 

24 0.4788 0.0990 0.1100 0.0505 

26 0.0612 0.0719 0.1329 0.0859 

27 0.2060 0.1969 0.1707 0.1385 

28 0.0967 0.0915 0.1630 0.2629 

31 0.0178 0.1721 0.1378 0.4860 

32 0.0586 0.0093 0.1434 0.2968 

34 0.0264 0.1296 0.0175 0.0462 

37 0.2557 0.1698 0.3347 0.0306 

39 0.1006 0.1494 0.0105 0.2601 

40 0.0647 0.0367 0.1516 0.0369 

41 0.2083 0.0091 0.1674 0.1163 

45 0.0065 0.1221 0.1626 0.1789 

46 0.3557 0.1464 0.3097 0.0220 

47 0.2789 0.1247 0.3529 0.2761 

49 0.3316 0.1133 0.0563 0.0902 
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50 0.3158 0.3631 0.2249 0.1973 

51 0.0437 0.0719 0.1833 0.0742 

52 0.0460 0.1695 0.2100 0.4954 

53 0.0542 0.0880 0.1626 0.0603 

54 0.3206 0.1997 0.0563 0.0675 

56 0.0554 0.0026 0.0747 0.0738 

59 0.1747 0.2123 0.0077 0.0192 

60 0.2487 0.1396 0.1067 0.2294 

62 0.1343 0.0049 0.1870 0.1429 

66 0.1238 0.0672 0.2312 0.1184 

68 0.1719 0.0476 0.1572 0.0754 

69 0.1256 0.2504 0.0010 0.0796 

71 0.4528 0.3176 0.0161 0.3676 

73 0.2884 0.1219 0.1352 0.0229 

74 0.1212 0.0276 0.1705 0.3744 

78 0.2413 0.0006 0.1373 0.0299 

79 0.0414 0.2141 0.0021 0.0908 

80 0.0946 0.0568 0.0908 0.0708 

83 0.0675 0.0577 0.0838 0.1431 

87 0.0427 0.0119 0.1261 0.1041 

90 0.3659 0.3260 0.2399 0.0855 

91 0.3989 0.0565 0.2831 0.3779 
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92 0.3606 0.0061 0.0341 0.1158 

94 0.1401 0.0178 0.2469 0.3660 

97 0.1154 0.0058 0.0955 0.0437 

99 0.0366 0.3667 0.4402 0.0735 

100 0.0628 0.2258 0.0756 0.1417 

102 0.0829 0.3526 0.0993 0.0937 

103 0.0278 0.0042 0.3541 0.2142 

104 0.0150 0.0442 0.0665 0.0766 

105 0.1898 0.0030 0.0948 0.1981 

108 0.4939 0.1532 0.2534 0.1581 

112 0.0453 0.0731 0.0369 0.1898 

113 0.2824 0.0876 0.0462 0.1614 

114 0.1593 0.1408 0.2044 0.1072 

116 0.0953 0.0033 0.0857 0.0442 

117 0.2006 0.1995 0.5537 0.1658 

118 0.1161 0.0222 0.0013 0.0128 

119 0.3436 0.2690 0.1539 0.0245 

120 0.0710 0.0157 0.0058 0.0456 

121 0.1948 0.0911 0.0551 0.4517 

122 0.1899 0.2719 0.2405 0.1186 

123 0.0766 0.0013 0.0584 0.3197 

125 0.0196 0.0972 0.0012 0.0407 
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126 0.1317 0.1787 0.0157 0.1443 

127 0.0346 0.0059 0.1957 0.0348 

129 0.2643 0.5628 0.1955 0.1696 

131 0.0425 0.0371 0.4421 0.3127 

132 0.0582 0.0074 0.2239 0.1406 

133 0.1221 0.1819 0.1868 0.0675 

134 0.5096 0.0306 0.0944 0.0782 

135 0.3512 0.0065 0.0633 0.0275 

136 0.1628 0.1918 0.3349 0.0906 

137 0.0936 0.2805 0.0570 0.2041 

138 0.2317 0.0773 0.2074 0.0934 

139 0.1058 0.2749 0.3033 0.0261 

140 0.2342 0.0971 0.2716 0.1201 

141 0.0122 0.0535 0.1063 0.1508 

142 0.1988 0.0951 0.0315 0.0154 

143 0.4244 0.4115 0.3463 0.1508 

144 0.0876 0.0514 0.0850 0.0490 

145 0.0413 0.0163 0.1577 0.1612 

146 0.0138 0.0311 0.0338 0.0150 

148 0.1812 0.4285 0.2938 0.2032 

150 0.1187 0.3169 0.0359 0.0649 

151 0.2153 0.0944 0.0136 0.1250 
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154 0.2151 0.1611 0.0290 0.0686 

155 0.0997 0.0065 0.2240 0.0355 

157 0.0950 0.3704 0.2973 0.0096 

158 0.0325 0.0416 0.0533 0.0392 

160 0.1166 0.1214 0.0175 0.0283 

162 0.0266 0.1744 0.0589 0.3433 

164 0.2216 0.3220 0.1013 0.1946 

165 0.4150 0.2030 0.1352 0.0203 

171 0.1002 0.1233 0.1042 0.1436 

172 0.0280 0.1626 0.0950 0.0971 

174 0.0491 0.0343 0.4509 0.1849 

175 0.0133 0.0554 0.2513 0.1261 

176 0.0276 0.5152 0.1485 0.1548 

177 0.4510 0.0414 0.0135 0.2459 

178 0.0967 0.0308 0.2723 0.0894 

179 0.2877 0.1455 0.2053 0.0960 

180 0.1259 0.2233 0.2793 0.1105 

181 0.0248 0.3569 0.0378 0.0827 

182 0.1464 0.2039 0.4187 0.0297 

183 0.0920 0.0463 0.0964 0.0715 

184 0.3382 0.3078 0.0397 0.2053 

187 0.0343 0.2702 0.1995 0.0262 



69 

 

188 0.0343 0.1263 0.0276 0.1411 

190 0.0285 0.4612 0.1763 0.2548 

191 0.1569 0.2412 0.3067 0.1807 

192 0.0820 0.0350 0.0271 0.1632 

193 0.0073 0.1887 0.0547 0.0366 

194 0.0004 0.1539 0.0565 0.0136 

197 0.1145 0.0392 0.0742 0.0446 

198 0.0476 0.2569 0.2658 0.1532 

200 0.1020 0.1175 0.1095 0.0437 

206 0.0449 0.0191 0.0609 0.1520 

207 0.5245 0.5411 0.2233 0.0427 

208 0.1962 0.0811 0.2597 0.1128 

209 0.0526 0.1126 0.0072 0.0834 

211 0.1229 0.1901 0.0094 0.2482 

212 0.1497 0.2698 0.3332 0.0526 

213 0.2137 0.0000 0.0792 0.3048 

214 0.0271 0.1203 0.2172 0.1035 

215 0.0563 0.0965 0.0157 0.0616 

216 0.0290 0.1333 0.0787 0.0822 

217 0.0257 0.0572 0.0252 0.1272 

218 0.1488 0.0603 0.0906 0.1812 

220 0.3625 0.3097 0.2914 0.2541 
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222 0.1238 0.0846 0.0084 0.0565 

224 0.1488 0.2875 0.0238 0.0631 

225 0.3636 0.3867 0.1763 0.0413 

226 0.3290 0.0233 0.0016 0.0532 

227 0.3449 0.1303 0.1256 0.1768 

228 0.0145 0.1656 0.0037 0.0509 

229 0.2249 0.1429 0.1214 0.1282 

231 0.3097 0.0089 0.3456 0.3155 

233 0.0691 0.0414 0.0978 0.0423 

234 0.0385 0.2389 0.3750 0.0946 

235 0.1308 0.0974 0.3237 0.5818 

236 0.0182 0.0782 0.0128 0.0846 

237 0.0694 0.1292 0.2106 0.0623 

239 0.4519 0.2146 0.1492 0.0679 

240 0.1562 0.1118 0.0495 0.3382 

243 0.5161 0.2550 0.1801 0.1469 

245 0.2016 0.1894 0.2088 0.1030 

246 0.1971 0.1055 0.0918 0.1320 

248 0.2041 0.0318 0.0341 0.4526 

250 0.0591 0.0212 0.1060 0.0465 

251 0.0483 0.1803 0.4727 0.2823 

252 0.1140 0.1298 0.0782 0.0395 
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253 0.1476 0.3360 0.1275 0.0371 

254 0.1541 0.1072 0.1628 0.1831 

257 0.1684 0.2335 0.0331 0.0364 

259 0.1469 0.0110 0.1572 0.1301 
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