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ON THE COMPUTATIONAL COMPLEXITY OF APPROXIMATION OPERATORS I

John R. Rice*
Purdue Unlversity

INTRODUCTION. Computational complexity Is a measure of the number of

operations that some abstract machine requires to carry out a task. The
task considered here is to compute an approximation to a real function fx)
and the only operations that we count are evaluations of f(x). -Thus, we
consider all other arithmetic performed to be neglligible. We have already
considered this toplc in a previous paper [7], but we recast the terminology
and notation to be more natural. We also sharpen many of the results of
[71, and establish some new results.

We consider approximation by polynomials and plecewlse polynomials in

some norm (prlmarlly L2 and L ) For a given number N of parameters
(coefficients or knots) let PN(x) denote the best approximation and let

*
€(N) denote its error llf-PNII. Throughout we assume the approximation Is

on a standard interval. Note that Pﬁ and £(N} depend on the norm, but the
norm used is always clear from the context. It Is generally Impossible to
compute pi (x) exactly, so we must consider estimates of P*(x) These estimates
are produced by various computational algorithms and we have

Definition 1. An algorithm A which produces an estimate P (x) of

“(X) so that, as N and L(N) + @

]|f‘PLI| = & (e(N))
is called an optimal order L-parameter algorithm. The letter M = M{A,N)
denotes throughout the number of f(x) evaluatlons required by A to
compute P|l§l' If L=Nand M(A,N) = & (N) then A is simply cailed an
optimal algorlthm.

The complexity of the algorithm Is measured by M.

*This work was partially supported by NSF grant GP32940X




We denote the best approximation operator by TN: Fx)+ P:(x) and
we measure the complexity of TN for a class C of functions by

M:(N,C) = Inf sup M(A,N)
A feC

It is easy to believe (but not proved here) that M# cannot be less than
@(N) for any interesting class of functlons. _

Our ideal objectlve is to show that M*aN for various norms (e.q.,
Ly L, and L), approximation forms (e.g., polynpm]aTs, splines) and classes
of functions (e.g., cP[-1,11, analytic In |z] < 2). OFf course, we also
wish to identify a corresponding optimal algorithm. We arle able to do this
in some cases and to come close in others. A slgnificant conclusion derived
from the results ﬁere is that asymptotlcafiy It Is as easy to compute
L_ approximations as L2 approximations for most functlons. A second slgnifi-
cant conclusion is that, for a wide class of functions, plecewlse poly-
nomial approximations are no more complex to compute (even perhaps less
complex) than ordinary polyromial approximatlons of comparable accuracy.
We note that piecewise polynomlals ére much less complex to use than ordinary

polynomials,

2, DISCRETIZATION. The first algorithm we conslder Is

Algorithm 1 (Discretization) Set X = {th|I=0, 1, 2,...,1/n},
evaluate f(x) on X and then compute P, {x} as the best approximation

to f{x) on X.

Thls algorithm is dlrectly applicable to LI' L2 and L_ approximatfons. 1t
was pointed out in [7] that a minor variant algorlithm Is not very useful
for smooth functions and that_one obtalns M= NP for the class CPIO,I].
Since then, Duﬁham [3} has shown that If thg'end polnts 0 and 1 are in-

cluded in X (as they are) then a better results holds. Welhave

']
Theorem |. Consider the class Cplo;I]. p > 2, and polynomial

approximatlen In the LI' L2 or Lm norms. Then discretization

(Algorithm 1) is an optimal order N-parameter algorithm with
M = NP/2




Proof. let PN(x) be approximation produced by Algorithm 1. Dunham
has shown [3] that ][PN-Pﬁ|| =& (h?). Ve have then that (N} = NP and
M = 1/h and we may eliminate h from the relation h2 = NP to obtain the
conclusions stated.

Corollary. Algorithm | is an optimal a]gorlthm for L]. L or L

approximation by polynomials for the class C [O 1].

3. LEAST SQUARES APPROXIMATION BY POLYNOMIALS. There appear to be two
main algorithms for estimating least Squares approximations by polynomials.

For convenxence we do least squares approxImation with respect to the weight
function (I-x ) I/2 n [-1,1]1. They are
Algorithm 2 (Gauss Quadrature for Fourler Coefficients). Estimate

the coefficients

1 £{x) Tk(x) dx
L VT

J-x

by the Gauss guadrature formula:

fem)y 1 (g, ™)

- 2
M=

da

k

N

i

Thus a: is the coefficient of the k-th Tchebycheff polynomial Tk(x)
the Tchebycheff expansion of f{x). The polnts EI(m are the m-point
Gauss quadrature abscissa. The use of this algorithm and closely related

ones is discussed in some detail by Rivlin [11, Section 3.5].

Algorithm 3 (Interpolation at the Tchebycheff polnts). Determine

the polynomial PL(x) so that

3 ('-'H))=f(si("+”) I= 1, 2,..., L+

P, (g;

It is wgil known that for PL determined by Algorithm 3 we have

E e 0l < IIf - PrINL, (2/7 Yog L+1)

We note that if m = L, then the polynomials obtained by Algorithms 2 and

3 are the same [11].




Our first result on least squares |s

Theorem 2 Consider. the class CP[ 1, 11 p>3 and least squares

approximation by polynomials. Then Algorithm 2 Is an optimal

order N-parameter algorithm with
P

M= NP1

Proof: We restrict our attention to m > N and we have from [11,
Theorem 3.12] that

ey -pll < 5 50 e ,
J=1 i=2 im-N

Now if f(x) eCP[-1,1] we have that la;] = #(17P) and we may estimate the

inner sum, for some constant c, by

2 kN 2)mtN c (21-1)m+2N c
z |a.| < I —B- < L —F
i=2jm~-N ! i=2jm-N i I=(2j-)m |
C

| A

(p-1) [ (2J-1)m]P"!

For p > 3 we then have that, for some constant c',

C < C
3= (-1 (2]-NaPt = P!

[1Py = Pyll <

We now choose m= M = Np to obtain the correct order In the error
||F-PN|[ and this concludes the proof. . ‘
We note that the previous result In [7] corresponds to obtaining

M= Np"]'5 and thus thls sharpens that result. It seems likely that slightly
more care in the proof would allow one to include the case p = 2, but then

2
Algorithm 1 is already known to optimal for the class ¢“[-1,71].



Theorem 3. Consider the class Cp[-l.lj and least squares approx-

imation by polynomials. Then Algorithm 3 is an optimal order

L-parameter algorithm with

L=#=NMog N

Proof. We have already noted that ||f-PL“m = & (e(L) log L) and
we also have that ]|f-PL||2 E.’lf'PLllm . We have that (L)} = L P ang

e(N) = NP, We claim that if L = N %/ Tog N then e(L) log L is SNP)
because

(N %109 N)™P Tog (N ¥1og N) = N"P(10g M)~} [10g N + 1/p tog N]

= N P(1+1/p)

This concludes the proof.

We see that Algorithm 3 uses fewer ?(x) evaluatlions than Algorithm 2,
but it does not result in an Nth degree polynomlal.

The non-optimality in Theorems 2 and 3 arises from functions in
Cp[-],I] where the Tchebycheff expansion coefficients a* are the order of

k
kP, These functions are rather special since we must also have

£ |aE| the order of k' P. Thus these functions have a very few large
i=k

coefficients and the rest are comparitively negligible. The bulk of the

funtions in Cp[-l,l] would seem to be covered by the next Theorem.

-p~1
Theorem 4. Consider the subclass of CP[-1,1] which has la, ] = #(P"")
and teast squares_approximation by polynomials. Then Algorithms 2
and 3 produce EN(x) with |[f-P || = @&(N"P) and M = N.

Proof. We must, of course, take m = N in Algorithm 2 and L = N in
Algorithm 3. We have already noted that the two algorithms produce the
same polynomial in this case, so we may restrict our attention to Algorithm
2. |If we repeat the proof of Theorem 2 wlth laI] = &Py instead of
g?(i-p) we see that the final estimate turps out to be



]

g - Pl < &
N NP — P

and the cholce m = M = N produces the specified order in the error which

concludes the proof.
Note that Theorem 4 does not state that Algorithms 2 and 3 are

optimal for the subclass considered. They are not optimal because one

sees that
%112 e 2 = | c
]|f—P*]| = I a' < ¢ 5 v
N [ Jul+] ‘2lp+]i Np+l/2

and hence (N} is not N P,
There are classes of smoother functions where Algorithm 2 and 3 are

optimal. We have

Theorem 5. Consider f{x)} analytic in a reglon containing [-1,1]
and least squares polynomlal approximatlon. Then Algorlthms 2

and 3 are optimal.

. i
Proof. 1t is known that the hypothesis on f(x) impiies that |a.|< cp
for some constants p < 1 and c. Of course, we have agaln taken m = L = N

in these algorithms. We use the same estimate as In the proof of Theorem 2

to obtain that

(2j+1)N
~1}N
z la,] < ﬁp(ZJ )
i=(2)-1)N
and hence we have
N
|19 - pyll = —2—p
NooON (1-p) (1-p2)

It is well known that ¢{N) = d?(DN) and hence we have established that
[|f - PN|| = @& {(c(N)} with M = N. This concludes the proof.

L. TCHEBYCHEFF APPROXIMATION BY POLYNOHIALS: We first note that Algorithm 3
(Interpolation at the Tchebycheff polnts) is equally applicable to Tchebycheff

approximatlon and, In fact, we have
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Theorem 6. Consider the class Cp[-l,l] and Tchebycheff approximation
by polynomials. Then Algorithm 3 Is an optimal order L~parameter
algorithm with

LeM=N¥Tog N

The proof is essentially identical wlth that of Theorem 3.

It is well known [11] that the best least squares approximatlon is
asymptotically as good as the best Tchebycheff approximation for analytic

functions. Thus we immediately obtain from Theorem §

Theorem 7. Conslder f(x) analytic in a reglon containing [-1,1]

and Tchebycheff approximation by polynomials. Then Algorithm 3
is_optimal,

We now turn to the most common algorithm for computing Tchebycheff
approximations:

Algorithm 4. (Remes Algorithm). Take a large number (say 2N) of
points in [-1,1] and apply Algorithm ! to obtain the best Tchebycheff
approximation on this discrete set. Then apply the Remes algorithm

[5), with this as initial guess and use the Murnaghan and Wrench

procedure [4] to locate local maxima. Once convergence s achieved

within the specified tolerance, check the error curve for extrapeous

maxima that invalidate the approximation obtained. The check is

performed by sampling the error curve at a number of points proportonal
to N.

This statement of the Remes algorithm is one useful In practice. It Is

known [6], [12] that the Reémes algorithm is Newton's method for a particular
set of equations. As such it has two weaknesses: It might converge to a
local solution that is not a global one and we do not know the number of
iterations required before quadratic convergence sets In. 1In fact, the
latter number is unbounded on the set f(x) ecP[-1,1]. Its strength is that
it is quadratically convergent. In [7] we introduced-some rather abstruse
function classes in order to identify those f(x) where the Remes algorithm

(Newton's method) behaves well. The fact of the matter is that one cannot




identify such classes of functions with natural mathematical terms. The
followling definition allows us to make a more direct and intuitive pre-

sentation of the result.

Deflnition 3. Consider f(x) eC3[-1,1] with ||f]] < 1/2. Let péi)(x]
be the approximation obtalned by the algorlthm at the ith lteration
and set 8. = ]lPﬁ(x) - P£1)(x)||w. We say that the Remes algorithm

converges normally with constant o for f{x) if

i
(i) 5 j_u(ﬁo)z (quadratic convergence)

(ii) the a posterlort check valldates the approximation obtained

{convergence to the global solution)

With this we may reformulate Theorem 4 of [7] as follows:

Theorem 8. Consider the class of functions In Cp[-l,l] p > 3 where

Algorithm 4 converges normally with constant a < 8g-

Then, for Tchebycheff approximation by polynomials, Algorithm 4

is an optimal order N-parameter algorithm with

M= /(N log Tfog N)

This more direct reformulation allows us to give a simpler
proof than the one previously outlined.

Proof. The initial calculation of PN(O)(x) requives ¢7{N) evaluations
of f{x). Each iteration of the standard Remes algorithm requires 4N
evaluations {3N are for the Murnaghan-Wrench estimation of local maxima of
the error curve). The number of iterations required is determined by the
condition that &, g_N-p. Since §, < 1/2 we find that | = log log N + c is
a sufficient number where ¢ is constant depending on a, and p. The
validation check requies a further dy(ﬂ) avaluation of F(r) and the total
number required is &' (N log log N) as claimed.

Note that while Theorem 8 asymptotically specifies fewer evaluations
than Theorem 6 (or Theorems 2 and 3 for least squares), this relation does
not hold for problems |ikely to occur In practice. With the optimlstlic

assumptions that the initiallzation and checking only require N evalutlons



each and that 4 iterations are requlred (Independent of NI} we find that
the Remes algorithm leads to 18N f{x) evaluations. The values of N where
Theorems 2, 3 and 6 start to require more evaluatlions are, for p = 4,

N = 324 (Theorem 2} and N = 101*5590 {Theorems 4 and 6}.

In a similar manner we may establish

Theorem 9. Consider the class of functions analytic in a region

containing [-1,1] where Algorithm & converges normally with constant

g < e, Then, for Tchebycheff approximation by polynomials, Algorithm
L is an optimal order N-parameter algorlthm with

H= &N log N)

Proof. The proof Is the same as Theorem 8 except for bounding the
number of jterations in the Remes algorithm. The requirement that Gi f_pN
(where p < 1 Is associated with the size of the reglon of analyticlity of
f(x)} leads to i = log N + ¢ (c = constant depending on p and ao) as a

sufficient number of lterations. The theorem now follows Immediately.

5. PIECEWISE POLYNOMIAL APPROXIMATION. In our previous paper we proved
that the spline projection operator of deBoor [1] Is an optimal algorithm
for Cp[-I,l], for L_ approximation by plecewise pth degree polynomials with

N knots. A recent adaptive approximation algorithm of Rice [8], [9]
allows us to substantially enlarge the domaln of functions where an optimal
algorithm is known. We do not describe the algorithm here, but we do

define a class of functions for which thlis algorithm is applicable.

Definltion 4. The class Sp[-f,l] of functions has the following
properities: h
a) Each f(x) Is bounded In the Lq norm on [-1,1]
b) Each f(x) has a flnite number of singularities
s, i=1,2, ..., R '
R

We set wix) = 'I;II (x-si)

¢) f(p)(x) is contlnuous between the signularities
- d) There are constants K and o > -1/q so that |f(p)(n)l < K]w(x)

if 5

[P
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e) For any Interval [x,x+po] we let F_(x,p) demote the L _norm of
f(p)(x) on this interval. Let E{x,p) denote the error in the

quadrature formula used by the adaptive approximation algorithm.

This is typically a Gauss formula of preclslon p. There is a

number A = A(f) called the characterlstlic length so that if

B £ A we have
(1) Elx,p) < K Fp(x.p)p"*' If F(xp) <o

(i1) otherwlse E{x,p) _§_I<pl+‘s for some & > 0.

There are three pertinent remarks to be made about this deflnition. The
first is that S* contalns essentially all functions of prdctical interest
in approximation. The second Is that SE is a subset of the functions in-
volved in the work of Burchard [2]. Finally, the somewhat lengthly part
(e) of the definitlon is included to ensure that the algorithm is computa-
tionally effective. We note that none of the previous algorithms have this
feature and computationally effective versions of them must have at least
one additional fact about f(x), a fact analoguous to the characterlstic
length. The typlcal example of such a fact Is the actually numerical value
of the norm of f(p)(x}. These facts provide a priorl bounds on the
oscillations of f(x) and Its derivatives.

The work of Rice [10] and Burchard [2] shows that e{N) = NP for the
class SP and it has been shown by Rice [8], [9] that his adaptive algorithm
achieves this degree of convergence. A simple inspection of that algorithn
shows that the number of function evaluatlons Is proportlional to the number
N of knots. The factor of proportionality is typlcally 8 or 10 although
this would grow with larger p. These result Imply

Theorem 10. Consider the class §:[-I,I] and L_q approximation, l<gq<e=, by

piecewise polynomials of degree p. Then the adaptive approximation

algorithm is optimal. ' i
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