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ON THE COMPUTATIONAL COMPLEXITY OF APPROXIMATION OPERATORS II

John R. Rlce*
Purdue UniversIty

INTRODUCTION. Computational complexity Is a measure of the number of

operations that some abstract machine requires to carry out a task. The

task considered here is to compute an approxImation to a reaJ function f(x)

and the only operations that we count are evaluations of f(x). Thus, we

consider all other arithmetic performed to be negligible. We have already

considered this topic in a previous paper [7], but we recast the terminology

and notation to be more natural. We also sharpen many of the results of
[7], and establish some new results.

We consider approximation by polynomials and piecewise polynomials in

some norm (primarily L2 and L~). For a given number N of parameters

(coefficients or knots) let P~{x) denote the best approximation and let
•E{N) denote its error I !f-PNII. Throughout we assume the approximation Is

on a standard interval. Note that P~ and E(N) depend on the norm, but the

norm used is always clear from the context. It Is generally Impossible to

com~ute P~{x) exactly, so we must consider estlmatesof P~{x). These estimates
are produced by various computational algorithms and we have

Definition I. An algorithm A which produces an estimate P
L

(xl of

~(x) so that! as Nand L(N) + ~ ,

/I f-PLI' = <9 (dN»

is called an optImal order L-parameter algorithm. The letter H = H(ApN)

denotes throughout the number of f(x) evaluat'ons required by A to

compute PL(x). If L = Nand H(A,N) • ~(N) then A is simply called an
optimal algorithm.

The complexity of the algorithm Is measured by H.

*This work was partially supported by NSF grant GP32940x
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We denote ~he best approximation operator by TN: f(x)+ P=(x) and

we measure the complexity of TN for a class C of functions by

H*(N.C) ~ Inf sup H(A.N)
A fEC

It Is easy to believe (but not proved here) that H* cannot be less than

~N) for any interesting class of functions.

Our ideal objective Is to show that H*aN for various norms (e.g.,

.L I, L2 and L~)J approximation forms (e.g., polynomials, splines) and classes

of functions (e.g., CP[-I,n, analytic in Izi < 2). Of course. we also

wish to identify a corresponding optimal alg.orlthm. We a~ able to do this

in some cases and to come close In others. A significant ~9ncluslon derived

from the results here is that asymptotlcat'ly It Is as easy to compute

Lm approximatIons as L2 approximations for most functions. A second sIgnifi

cant conclusion is that, for a wide class of functions, pIecewise poly

nomial approximations are no more complex to compute (even perhaps less

complex) than ordinary polynomlaJ approximations of comparable accuracy_

We note that piecewise polynomials are much l.8ss compJe)( to use than ordlnllry

polynomials.

2. DISCRETIZATION. Tha first algorIthm We consIder Is

Algorithm I (DiscretizatIon!. Set!-!Ih!r-O. 1, 2•...• I/h).

eva Iuate f (xl on X and then compute PL(xl as the bes t app rox i Indt I011

to f(x) on X.

This algorithm Is directly applicable to LI , L2 and Lei> approxlmatrons. It

was pointed out in [7] that a minor variant algorithm Is not very useful

for smooth functions and that one obtains HI. NP for the class CP[O,I].

Since then, Dunham [3] has shown that If the end points 0 and 1 are in

cluded in X (as they are) then a better results holds. wei have,
Theorem I. Consider the class CP[QJj, P'::' 2, and polynomial

approximation In the LI , L2 or Lei> ~~. Then discretization

(Algorithm I) is an optimal order N-parameter algorithm with

H • NP/ 2



conclusions stated.

has

M =

Proof. let PN(x) be approximation

shown [3] that IIPN-P~II = <!5' (h2).
I/h and we may el iminate h from the

3

produced by Algorithm 1. Dunham

We have then that E(N) B N- P and

relation h2 • N-P to obtain the

Corol tary. Algorithm I 15 an

approximation by polynomials
opt irna I

for the
algorithm for L)'4~

2class C [0,11.

3. LEAST SQUARES APPROXIMATION BY POLYNOMIALS. There appear to be two

main algorithms for estimating least squares approximations by polynomials.

For convenience we do least squares approximatIon with respect to the weight
function (l_x2)-1/2 on [-1,1]. They are

Algorithm 2 (Gauss Quadrature for Fourier Coefficients). Estimate
the coefficients

__ [I f(x) Tk(X) dx< ci ,) 2
-x

by the Gauss quadrature formula:
•

Thus a~ Is the coefficient of the k-th Tchebycheff polynomial Tk(x) in

the Tchebycheff expansion of f(x). The points ~f (m) are the m-point

Gauss quadrature abscissa. The use of this algorithm and closely related

ones is discussed in some detail by Rlvlin [11, Section 3.5].

Algorithm 3 ('nterpolation at the Tchebycheff points). Determine

the polynomial PL(x) so that

P
L

(,. (L+I))=f(,. (L+I))
I I ' ... 1.2 •...• L+l

It is well known that for PL determined by Algorithm 3 we have

We note that if m ... L. then the polynomIals obtained by Algorithms 2 and

3 are the same [J I].



Our fl rst resuJt on least squares Is

Theorem 2 Consider-the class CP~-J, I~~ 3 and least squares

approximation by polynomials. Then Algorithm 2 Is an optimal
order N-parameter algorithm with

P

H ~ NP- I

Proof: We restrict our attention to m > N and we have from [II.
Theorem 3.12] that

• = 2Jm+N
IIPN- PNII < r r , 10,1

j=1 1=2jm-N

Now H f(x) <CPC-I,I] we have that lOll = t/(J-p) and we may estimate the
inner sum. for some constant c, by

2jm+N
r

i=2jm-N
<

2j_
r

i~2jm-N
<

(2J-l}m+2N
r

H2j-l}m

0<
p-I-

(p-I)[(2j-l}m)

For p ~ 3 we then have that, for some constant 0' •

=
0'II P~ - PNil < r 0

p-I < p-l-j=1 (p-I)[(2J-I)m) m

-I=r
We now choose m • H = N to obtain the correct order In the error
Ilf-PNII and this

We note that

p

concludes the prdof.
I

the prevIous result In cli corresponds
,

to obtaining
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Theorem 3. Consider the class CPC-I,l] and least squares aeprox

imation by polynomials. Then AlgorIthm 3 is an optimal order
L-parameter algorithm with

L = M= N :Yiog N

Proof. We have already noted that I If-PLI 1
00

= ~(E(L) log L) and

we also have that I If-PLI 12 ~ I If-PLI 1
00

We have that E(L) • L-P and

c(N) = N- P. We claim that if L = N ~Iog N then c(L) log L is t'(N-P)
because

(N I'log N)-P log (N !ylog N) = N-P(log N)-I [log N + lip log Nl

This concludes the proof.

We see that Algorithm 3 uses fewer f{x) eva)uatlons than Algorithm 2,

but it does not result in an Nth degree polynomIal.

The non-optimality in Theorems 2 and 3 arises from functions in

CP[-l,I] where the Tchebycheff expansion coefficients a~ are the order of

k- P. These functions are rather special since we must also have

Thus these functions have a very few large
-Pk •[00 latl the order of

j=k

coefficients and the rest are comparltively negligible. The bulk of the

funtions in CPr-I, I] would seem to be covered by the next Theorem.

THeorem 4. Consider the subclass of CPt-I,ll which has I~J c t'(k,-P-I)

and least squares approximation by polynomials. Then Algorithms 2

and 3 produce PN(x) with ll.f::fnlJ E t'(N- P) and M·· N.

Proof. We must. of course, take m ~ N in Algorithm 2 and L = N in

Algorithm 3. We have already noted that the two algorithms produce the

same polynomial in this case, so we may restrict our attentIon to Algorithm

2. If we repeat the proof of Theorem 2 with la,1 = O(i-p- l ) instead of

~(j-p) we see that the final estimate turns out to be
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• c'lip -pll<-
N N - Pm

and the choice m = H = N produces the specified order In the error which
concludes the proof.

Note that Theorem 4 does not state that Algorithms 2 and 3 are

optimal for the subclass considered. They are not optimal because one
sees that

E
j=N+1

2a
j < c E

j-N+I

c

and hence £(N) is not N-P.

There are classes of smoother functions where Algorithm 2 and 3 are
optimal. We have

Theorem 5. Consider fex) analytIc In a region containing l:l.Jl
and least squares polynomIal approximation. Then Algorithms 2

and 3 are optlma1-

Proof. I tis known

for some constants p < 1

Ithat the hypothesis on f(x) Implies that lSi 1< cp

and c. Of course, we have again taken meL a N

in these algorithms. We use the same estimate as In the pl'oof of Theorem 2

to obtain that

and hence we have

(2j+1 )N
E

jc(2j-J}N

c (2J-J}N
< I-p P

cp pN

(l-p) (l_p2)

It is well known that t(N) ~ ~(eN) and hence we have established that

Ilf PNII m O'(dN» with M• N. This' concludes the proot.

4. TCHEBYCHEFF APPROXIMATION BY POLYNOMIALS. We first note that Algorithm 3

(Interpolation at the Tchebycheff points) Is equally applicable to Tchebycheff

approximat Ion and. In fact, we have
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Theorem 6. Consider the class cPl:!LlJ and Tchebycheff approximation

by polynomials. Then Algorithm 3 Is an optimal order L-parameter
algorithm with

L • H = N PI log N

The proof is essentially identical with that of Theorem 3.

It is well known [11] that the best least squares approximation is

asymptotically as good as the best Tchebycheff approximation for analytic

functions. Thus we immediately obtain from Theorem 5

Theorem 7. Consider f(x) analytic in a region

and tchebycheff approximation by polynomials.

is optimal.

containing [-1,1]

Then Algorithm 3

We now turn to the most common algorithm for computing Tchebycheff

approximations:

Algorithm ~. ~emes Algorithm). Take a large number (say 2N) of

points in [-1,1] and apply Algorithm 1 to obtain the best Tchebycheff

approximation on this discrete set. Then apply the Remes algorithm

[5.], with this as Initial guess and use the Murnaghan and Wrench

procedure [4J to locate local maxima. Once convergence Is achieved

within the specified tolerance, check the error curve for extraneous

maxima that invalidate the approximation obtained. The check is

performed by sampling the error curve at a number of points proport;onal

to N.

This st~tement of the Remes algorIthm Is one

known [6], [12] that the Remes algorithm Is

useful In practice.

Newton's method for

It Is

a particular

set of equations. As such it has two weaknesses: It might converge to a

local solution that is not a global one and we do not know the number of

iterations required before quadratic convergence sets In. In facti the

latter number is unbounded on the set f(x) £CP[-l,l]. Its strength is that

it is quadratically convergent. In [7J we Introduced-some rather abstruse

function classes in order to identify those f(x) where the Remes algorithm

(Newton's method) behaves well. The fact of the matter Is that one cannot
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identify such classes of functions with natural mathematical terms. The

followIng definition allows us to make a more direct and Intuitive pre

sentation of the result.

(guadratlc convergence)(I)

DefInition ). Consider f(x) <C)l=l...!J wIth 1.lfJJ.. 5.. 1/2. Let P~~

be the a roximatlon obtained b the 81 orlthm at the Ith Iteration

and set OJ "" - P I I.... We say that the Remes algorithm

converges normally with constant a for f(xl if

2
1

o. < 0(0
0

)
1-

(il) the a posteriori check validates the appro~imatlon obtained

(convergence to the glob~l solution)

With this we may refonnulate Theorem 4 of [7] as follows:

Theorem 8. Consider the class of functions In CPr-l,l] p ~ 1 where

Algorithm 4 converges normaJly with constant a ~~.

Then, for Tchebycheff approxImation by polynomials, Algorithm 4

is an optimal order N-parameter algorithm with

H = t/(N log log N)

This more direct reformulation allows us to give a simpler

proof than the one previously outlined.

Proof. The initial calculation of PH (0) (x) requl res O(N) evaluations

of f(x). Each iteration of the standard Remes algorithm requires 4N

evaluations (3N are for the Murnaghan-Wrench estimation of local maxima of

the error curve). The number of iterations required Is determined by the

condition that 5i ~ N-P. Since 80 ~ 1/2 we find that i = log Jog N + c is

a sufficient number where c Is constant depending on QO and p. The

validation check requles a further ~(N) evaluation of f(x) and the total
• I

number required Is ~(N log log N) as claimed.

Note that while Theorem 8 asymptotically spec'fl~s fewer evaluations

than Theorem 6 (or Theorems 2 and 3 for least squares), this relation does

not hold for problems likely to occur In practice. With the optimistic

assumptions that the Initialization and checking only require N evaJutlons
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each and that ~ iterations are required (Independent of NI) we find that

the Remes algorithm leads to IBN f(x) evaluations. The values of N where

Theorems 2, 3 and 6 start to require more evaluations are, for p - ~.

N c 324 (Theorem 2) and N - 1045590 (Theorems 4 and 6).
In a similar manner we may establish

Theorem 9. Consider the class of functions analytic In a region

containing [-1,1] where Algorithm 4 converges normally with constant

~~~. Then, for Tchebycheff approximation by polynomIals, Algorithm

4 is an optimal order N-parameter algorithm with

H - ~(N log N)

Proof. The proof Is the same as Theorem 8 except for bounding the

number of iteratIons in the Remes algorithm. The requirement that ~I ~ pN

(where p < 1 Is associated with the size of the region of analyticity of

f(x)} leads to i : log N + c (c a constant depending on p and aO) as a

sufficient number of Iterations. The theorem now follows ImmedlateJy.

5. PIECEWISE POLYNOMIAL APPROXIMATION. In our previous paper we proved

that the spline projection operator of deBoor [1] Is an optimal algorithm

for CP[-1.1], for L approximation by piecewise pth degree polynomials with
~

N knots. A recent adaptive approximation algorithm of Rice [8]. [9]

allows us to substantially enlarge the domain of functions where an optimal

algorithm is known. We do not describe the algorithm here, but we do

define a class of functions for which -this algorithm is applicable.

Definition 4. The class of .functlons has the following

properitles:

a) Each fIx) Is bounded In the L
q

norm on [-I,ll

b} Each f(x} has a finite number of singularities

sl,l ... l.2 •... ,R
R

We set w(x). II (x-s I)
i .. 1

c} f(P} x Is continuous between the sl nularltles

d} There are constants K and a > -l/g so that If P (x)l ~ ~w(x}la-p

ifxisl"



e)

10

For any Interval [x,x+p] we let F~ denote the L norm of
(p) p q

f (xl on this Interval. Let E(x,p) denote .the error In the

quadrature formula used by the adaptIve approximation algorithm.

This Is [yplca,) Ix a Gauss formula of precision p. There Is a

number A a ACf) called the characteristic length so that if

e. ~ A we have

(I) E(x,p) < K F (x,p)pp+l If F (x,p) < w
- p - P

( ",I) hi E( ) •• I+O f • 0at erw sex,p ~ "t' or some u > •

·,

There are three pertinent remarks to be made about this definition. The

first is that sP contains essentially all functions of pr~ctlcal interest
q -

in approximation. The second Is that sP Is a subset of the functions in-
q

valved in the work of Burchard [2]. Finally, the somewhat lengthly part

(e) of the definition is Included to ensure that the algorithm is computa

tlonallyeffectlve. We note tha~ ~ of the previous algorithms have this

feature and computationally effective versions of them must have!l leas~

one additional fact about f(x), a fact analoguous to the characterIstic

length. The typIcal example of such a fact Is the actually numerIcal value

of the norm of f(P)(x}. These facts provide a priorI bounds on the

oscillations of f(x) and Its derivatives.

The work of Rice [10] and Burchard [2) shows that «N) • N-P for the

class sP and it has been shown by RIce [8], [9] that his adaptive algorithm
q

achieves this degree of convergence. A simple Inspection of that algorithm

shows that the number of funct i on eva 1uat Ions Is proport Iona 1 to the numbe r

N of knots. The factor of proportionality is typically 8 or 10 although

this would grow with larger p. These result Imply

Theorem 10. Consider the clas~ approximation, l<q2~' ~~

~p~i=e~ce~w!!.i~s,-!e'--l:p~o~lLyn",o",m",i"a"l-,s,-"o!.f..;d",eeJg.,r"e",e,-"-p, Then the adapt Ive approx Ima t Ion

algorIthm is optimal. t
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