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Les Dawes
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Abstract

Incorporating engineering concepts into middle school curriculum is seen as an effective way to improve students’ problem-solving
skills. A selection of findings is reported from a science, technology, engineering and mathematics (STEM)-based unit in which students
in the second year (grade 8) of a three-year longitudinal study explored engineering concepts and principles pertaining to the functioning
of simple machines. The culminating activity, the focus of this paper, required the students to design, construct, test, and evaluate a
trebuchet catapult. We consider findings from one of the schools, a co-educational school, where we traced the design process
developments of four student groups from two classes. The students’ descriptions and explanations of the simple machines used in their
catapult design are examined, together with how they rated various aspects of their engineering designs. Included in the findings are
students’ understanding of how their simple machines were simulated by the resources supplied and how the machines interacted in
forming a complex machine. An ability to link physical materials with abstract concepts and an awareness of design constraints on their
constructions were apparent, although a desire to create a ‘‘perfect’’ catapult despite limitations in the physical materials rather than a
prototype for testing concepts was evident. Feedback from teacher interviews added further insights into the students’ developments as
well as the teachers’ professional learning. An evolving framework for introducing engineering education in the pre-secondary years is
proposed.

Keywords: design processes, engineering-based problem solving, middle school, simple machines

Introduction

Incorporating engineering-based problem solving within students’ learning of mathematics, science, and technology is
gaining greater attention across many nations, with science, technology, engineering and mathematics (STEM) in K-12
increasingly regarded as an essential component of progressive 21st century education (e.g., Berland, 2013; English &
Mousoulides, 2011; National Research Council, 2009a; Zawojewski, Hjalmarson, Bowman, & Lesh, 2008). Indeed,
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educating ‘‘a more scientifically literate citizenry’’ is one of
the core goals of STEM education (Shaughnessy, 2013),
yet it remains limited in the elementary and middle schools,
especially with respect to the inclusion of engineering
experiences (Holmes, Rulfs, & Orr, 2007; Stohlmann,
Moore, & Roehrig, 2012). As the National Research
Council (2009b) emphasizes, it takes years or decades to
build the capabilities required by societies: ‘‘You need to
generate the scientists and engineers, starting in elementary
school and middle school’’ (p. 9).

Echoing these sentiments, numerous educational bodies
have lobbied in support of an increased focus on STEM in
schools, especially for underrepresented populations. As
Shaughnessy (2013) noted, the National Council of Teachers
of Mathematics (NCTM), for example, is advocating that
STEM education becomes a national priority where students
are inspired to pursue these fields in school and beyond, and
where increasing the qualifications and retention of STEM
teachers is paramount. Recent US policy initiatives are now
targeting STEM issues as can be seen in the Common Core
State Standards in English, mathematics and science (Common
Core State Standards Initiative, 2012). Other initiatives such as
the US National Engineering Academy’s Grand Challenges for
Engineering are adding to endeavours to advance STEM
participation (National Academy of Engineering, 2012).

Likewise in Australia, recent reports have stressed the
importance of enhancing students’ engagement in STEM
fields, which are seen as powerful vehicles for stimulating
innovation, invention, and economic development (e.g.,
Department of Innovation, Industry, Science, and Research
(DIISRTE), 2011; Engineers Australia, 2009; Tytler,
Osborne, Williams, & Cripps Clark, 2008). The recently
implemented Australian Curriculum in mathematics and
science, and the draft technologies curriculum (ACARA,
2013) incorporate problem solving, reasoning, and design
processes, although specific reference to engineering-based
experiences is limited. Although efforts are being made to
increase participation in STEM within Australia, the need for
a strong national policy in this regard has been emphasized in
a recent report on international comparisons of STEM
education (Australian Council of Learned Academies, 2013).

In our own efforts to improve STEM education in the
middle school, we implemented a three-year longitudinal
study across grade levels 7–9 in three schools. In this paper,
we report on a selection of findings from a STEM-based
unit in which students in the second year (grade 8) explored
engineering concepts and principles pertaining to the
functioning of simple machines. The culminating activity,
the focus of this paper, required the students to design,
construct, test, and evaluate a trebuchet catapult. We
consider findings from one of the schools, a co-educational
college where we traced the design process developments
of four student groups from two classes. The students’
descriptions and explanations of the simple machines used
in their catapult design are examined, together with how

they rated various aspects of their engineering designs
including ways in which they would improve their designs.

Engineering Education in the Middle School

The introduction of engineering education within the
elementary and middle school reflects the growing concerns
of several nations that face an increased demand for, and
declining supply of skilled workers in engineering and allied
fields. The number of graduating engineers from U.S.
institutions, for example, has declined in the past decade
(OECD, 2006), whereas in Australia, the number of engineer-
ing graduates per million lags behind many other OECD
countries (Taylor, 2008). To complicate matters, engineering
does not have a high public profile in many nations. For
example, a recent report, Engineering our Future (National
Grid, n.d.), revealed that, although there is a cursory
acceptance of engineers and engineering among young people,
parents, and teachers in the UK, there are negative perceptions
underlying this acceptance, such as a lack of knowledge and
appreciation of the role of engineering in society. Other studies
(e.g., the ROSE project: Sjoberg & Schreiner, 2010) have
shown a negative correlation between students’ attitudes to
STEM and a nation’s development index. For a nation to be
competitive internationally and strengthen economic growth, it
needs a growing body of well-educated professionals in the
STEM fields (National Research Council, 2009a; National
Research Council, 2009b; OECD, 2006).

In addition to fostering young students’ appreciation and
understanding of engineering in society, engineering educa-
tion can contribute to their learning across many areas of the
curriculum. It not only contextualizes mathematics and
science principles and promotes design processes, but can
also enrich students’ learning in their studies of technology,
literacy, history, and geography. For example, projects that
incorporate investigations of engineering feats across time
and locations can extend students’ appreciation and aware-
ness of the many ways in which engineering has shaped and
improved societies over the centuries (Hudson, English, &
Dawes, 2013). This interdisciplinary perspective is now
extending to the arts, such as STEAM programs that
acknowledge the role of the arts in today’s world with a
focus on creativity, innovation, and design. Some nations,
such as South Korea, are utilising STEAM programs in
schools to increase participation and success in STEM
involving interdisciplinary problem solving (Korean
Foundation for the Advancement of Science and Creativity,
n.d.).

Of particular importance in engineering education, and a
strong focus of our work in schools, is engaging students in
engineering design processes as they solve challenging yet
meaningful real-world problems. Investigating such design
processes in the middle school, however, remains in its
infancy despite the recognized contributions it can make to
problem solving across disciplines (Brophy, Klein, Portsmore,
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& Rogers, 2008; Diefes-Dux, Hjalmarson, Miller & Lesh,
2008; Wicklein, 2006).

Engineering Design Processes in K-12 Education

It has been noted frequently that an understanding of
engineering design processes is at the core of engineering
(e.g., Cunningham & Hester, 2007; Hsu, Cardella, & Purzer,
n.d.), together with the creation, application, and adaptation
of mathematical/scientific models that that can be used to
interpret, explain, and predict the behaviour of complex
systems (English & Mousoulides, 2011; Zawojewski et al.,
2008). The cyclic processes of modelling and design are very
similar: a problem situation is interpreted; initial ideas (initial
models, designs) for resolving the situation are initiated; a
promising direction is selected and expressed in an experi-
mental form; the idea is tested and the resultant information
is analysed and applied in revising (or rejecting) the idea; the
revised (or a new) idea is expressed in an experimental form;
and the cyclic process is repeated until the idea (model or
design) meets the constraints specified by the problem
(Magiera, 2013; Zawojewski et al., 2008).

Addressing engineering design processes as part of the
middle school curriculum can significantly improve students’
problem-solving abilities together with an understanding of
core concepts and principles of a discipline (Borgford-Parnell,
Deibel, & Atman, 2010; Brophy et al., 2008; Diefes-Dux,
Zawojewski, & Hjalmarson, 2010; English & Mousoulides,
2011; Stoner, Stuby, & Szczepanski, 2013). As Borgford-
Parnell et al. (2010) emphasized, design often involves
working on complex and ill-structured problems that feature
ambiguity, multiple solutions, and few, if any, defined rules.
The importance of middle school students working on
challenging and motivating learning experiences with high
cognitive demand has been stressed repeatedly in the
literature (e.g., Brophy et al., 2008; Lambert & Stylianou,
2013; Silver, Mesa, Morris, Star & Benken, 2009; Stoner,
et al., 2013), with such experiences contributing to the
development of creative, flexible, and innovative thinking
skills. Students are thus better placed to deal with the
complex issues that arise in their present and future lives,
including those that involve mathematical and scientific
situations (e.g., Borgford et al., 2010; English, Dawes,
Hudson, & Byers, 2009; National Research Council, 2009a).

Although there are various frameworks and approaches for
developing engineering design processes (e.g., Cunningham
& Hester, 2007; Holmes et al., 2007; Stoner et al., 2013;
Wicklein, 2006), little attention has been given to ways in
which elementary and middle school students evaluate their
designs and identify ways of improving their initial designs.
Despite the complexity of design processes, some research
has shown that even young children have an emerging
capacity to undertake simple design work such as imagining,
planning, constructing, and evaluating (e.g., Fleer, 2000;
Cunningham & Hester, 2007). In Fleer’s study, for example,

preschool children developed designs for creating a friend or
home for a lonely mythical creature living in their garden,
and determined a list of materials they would need for their
construction. Subsequent interviews revealed a capacity to
clearly explain their initial intentions and plans and why their
design did not meet the criteria they had generated.

Students’ evaluation of their designs can reveal the
extent to which they identify and understand core concepts
and principles pertaining to both engineering and the
curriculum content. Selecting appropriate content can be a
challenge in itself, however, with the need for rich and
appealing links to the discipline knowledge to be learned
(Brophy et al., 2008). In the present case, the core content
formed a unit within the students’ science/mathematics
curriculum incorporating the nature and functioning of
simple machines, and how they can interact in producing a
desired product, namely, a catapult.

Engineering-Based Contexts: Simple Machines

A knowledge and understanding of simple machines—
their properties, how they function, their ubiquity in
everyday life, and their key roles in engineering achieve-
ments—is fundamental learning in students’ development of
scientific and mathematical literacy (e.g., Dotger, 2008;
McKenna & Agogino, 2004; Taylor, 2001). The importance
of students’ construction of simple machines, including
drawing plans and describing and communicating their
understandings, has been emphasized in literature for
classroom teachers (e.g., Dotger, 2008; Lancor & Schiebel,
2008; Taylor, 2001).

There appears very limited research on middle school
students’ experiences with simple machines, especially with
respect to engineering-based units of study. One such
research program (McKenna & Agogino, 2004) developed a
learning environment to support middle and high school
students’ mechanical reasoning and understanding of simple
machines. Their SIMALE project (the Simple Machines
Learning Environment) was created to support ‘‘reflection,
collaboration, and presentation of concepts from multiple
perspectives and contexts’’ (p. 97). The findings showed
significant improvements in learning across the three
categories of assessment, namely, analytical problem
solving, conceptual understanding, and the ability to draw
and model. This improvement occurred regardless of the
three intervention types and focus used, namely, computer
simulations, use of hands-on Lego experiences, and both.

A core feature of the SIMALE project was presenting
students with opportunities to apply their understanding of
simple machines across multiple contexts. The intervention
types provided different levels of sophistication in the use
of lever and pulley devices in various situations. Finding
relevant and meaningful contexts in which to introduce the
concepts of simple machines can be challenging (Taylor,
2001). However, the interdisciplinary nature of engineering
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education enables appealing contexts to be utilized, such as
the historical role of catapults in the present study.

A significant implication from McKenna and Agogino’s
project is the important role of collaboration—their
students worked in small groups to share and test ideas,
clarify interpretations of the problems, and explicitly
express their thinking and understanding. Students’ verbal
discussions, illustrations, graphical representations, and
written explanations opened windows into their under-
standing of simple machines. The power of collaboration
was also evident in Lancor and Schiebel’s (2008) study
involving college physics students and elementary grade
students, where the former engaged their younger peers in a
simple machines activity. The learning of both was
enhanced, with the college students gaining a better
understanding of physics principles and awareness of their
own learning, while the young students retained their
learning of simple machines, how they function, and how
they simplify life.

Despite these few studies, there remains an apparent
dearth of research investigating simple machines as a rich
basis for incorporating engineering within the elementary
and middle school curriculum. The present study offers one
example of how this might be accomplished. Specifically,
for the findings reported here, our research questions
address the following:

N Students’ description and explanation of the simple
machines used in their design. In particular, how
many simple machines did the students identify and
did they include reference to the classes of levers
used? Did the students indicate how the machines
were simulated by the materials used? Were they able
to explain how the machines operated in the catapult’s
design and refer to engineering principles? Did the
students indicate how the machines interacted in
operating the catapult? Could they explain why their
design was applied?

N Students’ evaluation of their designs. Specifically, to
what extent did the students consider their design to
comply with the given constraints? How practical,
sturdy, and creative did they view their design? How
efficient did they consider their resource use?

N Students’ perceived improvements to their design. In
what ways did the students indicate they could
enhance their design?

Methodology

Student and Teacher Participation

Three private Queensland (Australia) schools (two single
sex and one co-educational) were involved in the three-year,
longitudinal study within the middle years of schooling
(grade levels 7–9). This paper addresses the second year of

the study with attention given to the co-educational school,
and in particular, four focus groups of students (four students
per group) across two classes (16 such students from a total
of 58; age range 12–14.5 years). We restrict our reporting to
this particular school as the teachers chose to enrich the
learning experiences beyond what we had planned across the
three schools, resulting in greater insights into the students’
understandings of simple machines.

The female teacher of one of the two classes was an
experienced secondary science teacher, whereas the other
teacher was in his second year as a science and
mathematics teacher. Our observations of their teaching
indicated they were confident and competent teachers who
could direct students effectively to their tasks and ask
guiding questions to facilitate a positive learning environ-
ment. Their involvement in the study was essential, with
their in-depth knowledge of their students and the
curriculum a key element. We thus considered it more
appropriate that the teachers, themselves, arrange their
students into groups with consideration of abilities,
personalities, and gender.

The teachers’ involvement included regular teacher
briefing and debriefing meetings throughout each year.
The meetings entailed reviewing their mathematics and
science programs, planning learning experiences that
targeted core curricula goals and themes, reviewing the
students’ progress, and preparing future activities based on
students’ developments in the previous experiences. In
essence, the teachers were co-designers in the learning
experiences, with the researchers providing advice on
implementation. The teachers and researchers did not
intervene directly in the students’ group work addressed
here. Learning was only facilitated where necessary, such
as responding to a student’s query by posing a thought-
provoking question in return.

Learning Experiences

As background to the second year of the study, we indicate
briefly the students’ introduction to engineering education in
their first year (grade 7). The students began by exploring the
world of engineering and its different fields, investigating
eminent engineers, and researching major global engineering
feats. Given the extensive city constructions taking place at
the time, this first year focused mainly on civil engineering
where students investigated civil engineers and their work,
and explored the types and structures of bridges in their local
area. Students subsequently engaged in the design, construc-
tion, and evaluation of a small-scale truss bridge within
monetary and resource constraints.

Exploring Simple Machines: The Catapult Challenge
In the following year (grade 8), the students completed

two comprehensive units of activities, the first of which is
the focus of this paper, namely, the simple machines unit.
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The unit extended over 18 6 45-minute lessons and
provided background information on simple machines,
together with an experimental preliminary activity for
understanding associated key concepts; these understand-
ings were then applied to the design and construction of a
catapult. The preliminary experiences engaged the students
in investigating properties of inclined planes, pulleys,
levers (1st, 2nd, 3rd classes), and wheels and axles. They
also explored simple machines as force and speed multi-
pliers, investigated work related to energy, and calculated
mechanical advantage.

The main activity addressed here required students (in
groups of four) to design, construct, test, and evaluate a
trebuchet catapult. Two lessons were devoted to construct-
ing the catapult, one lesson to testing and evaluating the
catapult, and one lesson to providing a written explanation
of conceptual understandings. The catapult’s effectiveness
was tested by flinging a marshmallow to hit a bull’s eye
target at a two-metre distance. The appendix presents the
main components of the activity. Students were to draw
their own designs first, then decide on and create a group
design, with instructions to include labels, specifications,
and brief descriptions of how each part would function.
They were to then record a description and explanation of
the simple machines used in their design.

On testing their catapult, the students were to reflect on its
effectiveness by responding to the questions: How does your
design comply with the design brief? What is practical about
your design? What makes you think it is sturdy and will
work? What is creative about your design? What simple
machines does your catapult use in the design? How efficient
is your catapult in using resources? Why do you think so?
What else could you improve with your design? Why?

Teacher Interviews

At the end of each year we interviewed each of the
participating teachers individually, inviting them to com-
ment freely on various aspects of the program. Included in
our questions were their satisfaction with the activities,
aspects they considered worked well and those that could
be improved, what they considered their students had
learned, and the teachers’ professional development in
implementing the activities including the effectiveness of
the collaborative development.

Data Collection Methods and Analysis

Multiple sources of data collection were undertaken,
including audio and video recording of all the focus group
work and whole class discussions, scanning of students’
workbooks, and photographing of the students’ creations.
The end-of-year teacher interviews were also transcribed.

The focus groups were audio and video recorded during
the last four 45-minute lessons of the simple machine unit.

Students used workbooks (one workbook per student) to
record their thinking about the key engineering concepts
applied to designing, constructing, testing, and evaluating a
catapult. Once scanned, these documents were returned to
the students. As one focus group student was absent for
some of the lessons, the responses of only 15 of the 16
focus students across the two classes are reported here.

Data analyses involved ethnomethodological interpreta-
tive practices, which incorporated iterative refinement
cycles for analyses of students’ learning (Lesh & Lehrer,
2000). Data were progressively reviewed, transcribed,
coded, and examined for patterns and trends in the
students’ developments using constant comparative strate-
gies (Corbin & Strauss, 2008). Specifically for the data
reported here, students’ written workbook responses were
repeatedly reviewed and coded to address the research
questions, with the coding refined over several months to
identify the major understandings. Inter-rater reliability was
established through multiple sharing and refining of the
coding by the authors, with the process commenced by the
first author. For example, in analysing students’ description
and explanation of the simple machines in their design,
an initial code of ‘‘explains how the simple machine
contributes towards the catapult’s design’’ was expanded to
three codes, namely, factors 2, 3, and 4 described in the
next section. Where necessary, member checks were made
with the research assistants.

Results

In reporting our results, we first consider how the focus
group students described and explained the simple
machines used in their design as gleaned from their student
workbook responses. We next look at the various factors
they offered in evaluating the design of their catapult, as
noted in their workbooks. Following this we consider the
students’ suggestions for improving their design. Finally,
we present excerpts from the teacher interviews that
provide some insights into the teachers’ perceptions of
their students’ learning and their own professional devel-
opment.

Students’ Description and Explanation of the Simple
Machines Used in Their Design

In analysing the focus group students’ responses to this
component, five main factors were identified as indicative
of their understanding and appreciation of simple machine
use in their design, specifically: 1. The number of simple
machines identified and, for the identification of levers, the
class of lever indicated; 2. An indication of how the
machines were simulated by the materials used; 3. An
explanation of how the simple machines operated in the
catapult’s design, and whether reference was made to
appropriate engineering principles; 4. As an extension of
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the last factor, an indication of how the simple machines
interacted in operating the catapult; and 5. An explicit
indication of why the design involving the simple machines
was applied.

Table 1 shows the numbers of student responses for each
of the five factors. Of the 15 student responses, all but one
student identified multiple simple machines, with nine
citing three or more. Nine students also recorded the class
of lever they identified, with five students explaining why
this was the case, such as Martin’s description: ‘‘A third
class lever consists of a fulcrum at one end and the load at
the other end and the effort is in the middle.’’ Further
examples are given in the student responses that follow.

All but two students clearly indicated how the machines
were simulated by the materials they used (e.g., ‘‘The
wedge used was a pushpin. The lever used was a spoon’’),
with their explanations including how the machines
operated in the catapult’s design. Their responses varied
in the depth, however, with some including explicit
reference to underlying principles (n 5 8) and others
suggesting implicit or no reference (n 5 6; one of these
students did not indicate material simulation, however).
Nine students also explained how their simple machines
interacted in operating the catapult, with seven of these
students justifying their use of simple machines in their
design.

To illustrate some of the above understandings, we
reproduce aspects of three students’ responses. Peta, for
example, identified the creation of a complex machine and
not only indicated how the simple machines were simulated
by the materials but also the properties they featured. Her
description suggests she understood how the practicalities
of the resources enabled the engineering and scientific
concepts to be applied in designing a workable catapult.
Peta also drew on her mathematics learning in mentioning
how she utilized her base and why she included triangular
frames. She explained:

‘‘The simple machines were all put together to work as a
complex machine. The spoon was used as a lever. It had a
load, pivot and counter-weight/effort. The load was the
marshmallow in the spoon. It was the projectile. On the other
end of the spoon was the counter-weight. That end was
attached to the base of the whole catapult. In the centre was

the pivot. The pivot was a short paddle pop stick. To keep it
high, on either end there were two triangular frames attached
to the base and short paddle pop. The load, pivot, and counter-
weight being where they are, makes it a 1st class lever.’’

In the next example, Noela displays a recognition and
appreciation of the simple machines her group used, how
they were simulated by the resources, why the simple
machines were chosen, the engineering principles under-
lying their functioning, and the need to keep in mind the
problem constraints. Noela’s explanation also indicates
how she could readily connect abstract concepts, such as
potential and kinetic energy, to the physical materials and
their interactions in achieving the desired outcome, such as
generating this energy. She was also cognizant of the
mathematical constraints imposed on the design, lamenting
that the cost factor was a disadvantage.

‘‘Our catapult, ‘The Epic Failure,’ used only a few
simple machines yet still worked efficiently. The most
important simple machine used was a lever. Our group’s
lever was made of a spoon attached to a cotton reel, which
was then attached to the base. The design was applied
mainly because it would stick to the budget and it was easy
and efficient. We decided that a lever was the best way to
fling the load at the target because applying a lot of effort
on the spoon creates potential energy. This potential energy
will then become kinetic when the effort stops being
applied and the load will fling and (hopefully) hit the target.
A wheel and axle was also used to get the catapult up the
ramp. The wheels were made of cotton reels and dowel was
used as the axle. A wheel and axle was used because not
only does it make it easy to get up the ramp, but it also
gives the catapult’s fling more force by rolling forward.
The only disadvantage was the cost.’’

Like Peta, Jacinta indicated an understanding of how
simple machines operate to form a more complex device
for accomplishing the problem goal. She clearly identified
how the machines were simulated by the materials and
how they interacted in operating the device. She appeared
to have a solid understanding of the scientific and engi-
neering principles underlying the machines’ operations.
Furthermore, Jacinta displayed an appreciation of the
important contributions of collaborative group work in
producing a more effective design.

‘‘Simple machines are devices that exist to make work
easier. When two or more simple machines work together
they form a complex machine. The catapult is a complex
machine. The final catapult design the group decided on
incorporated the strongest features of each of the group’s
member’s individual design, which resulted in a highly
improved catapult in comparison to the individual designs.
On the catapult there were several simple machines, and an
additional simple machine to move the catapult up the
ramp.’’

‘‘The first and most obvious simple machine was a wheel
and axle. The wheels on the bottom of the catapult existed

Table 1
Number of student responses for each factor in the description and
explanation of simple machines.

Factors Addressed Student Responses/15

No. of machines; class of lever 14
How machines were simulated by materials 13
How machines operated in design; reference

to engineering principles
8

How simple machines interacted 9
Indication of why design applied 7
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simply to move the device. The cotton reel acted as the
wheel and the dowel and rubber bands formed the axle.
Another simple machine used was the spoon, thumbtack
and paddle pops, which acted as a second class lever, with
the effort on the same side as the load, and the fulcrum on
the other side. The spoon, thumbtack and paddle pops
formed the actual device that the object was placed onto, to
be flung. To pull the catapult up the ramp, the simple
machine that was used was a pulley. To make the pulley, a
cotton reel and a piece of string were used. The string was
then wound around the cotton reel. When the effort is
applied to one side of the string it causes the opposite side
of the string to lift up. The string was attached to the front
of the catapult.’’

Students’ Evaluation of Their Design

On completion of their catapult and its testing, the
students reflected on various aspects of their design.
Specifically, they were to rate seven components on a
scale of 1–5, with 1 indicating ‘‘not so good’’ and 5
denoting ‘‘excellent.’’ Descriptions for in-between ratings
were left open to enable students to make their own
judgements regarding their design’s effectiveness.

The components included: 1. How does your design
comply with the design brief? 2. What is practical about
your design? 3. What makes you think it is sturdy and will
work? 4. What is creative about your design? 5. What
simple machines does your catapult use in the design? and
6. How efficient is your catapult in using resources? For the
seventh component, the students were asked, ‘‘What else
could you still improve with your design?’’ The students
were to also explain why they chose each rating. Following
this, the students were to select another group and rate its
design in the same way.

We restrict our findings here to the students’ evaluation
of their own designs, and consider in greater detail their
responses to the creativity and improvement aspects, which
provided extended rich data. Including the creative
component was considered important, given that creativity
in engineering innovations is gaining increased recognition
‘‘as a necessity, rather than an accessory in engineering
design’’ (Charyton & Merrill, 2009 p. 145).

Design compliance
Of the 15 focus group responses, 13 rated their design as

either 3 or 4, with one student recording 3 1/2 and another 4
1/2. It would seem that, on the whole, the students considered
their design to comply with the constraints given. For
example, one student who gave a rating of 4 explained: ‘‘The
structure of the catapult remained mostly the same as the
initial design brief. A couple of improvements were made, for
example, to connect the wheel part of the machine to the
catapult, it was found to be more beneficial, strength wise to
use string as opposed to using sticky tape.’’

Practicality
Again, the students’ ratings clustered around 3 and 4

(6 and 7 such responses respectively), with two students
considering their design to have limited practicality (rating
of 1 or 2). The student who rated their design as 2, noted
that ‘‘the only practical thing about it is that the spoon was
held back with great force,’’ suggesting some under-
standing of the scientific and engineering concepts under-
lying their design. Likewise, an awareness of how the
properties of simple machines impact on design was
evident in a student who rated practicality as 4: ‘‘The third
class lever is very practical for throwing projectiles.’’

Sturdiness
Ratings at the lower end of the scale were recorded for

students’ assessment of how sturdy a catapult they
considered their design to generate. The students’ ratings
ranged from 1 to 4 with just over half being 1 or 2, with
some reference to the weaknesses of the materials (e.g., ‘‘It
wasn’t necessarily thought to be ‘sturdy’ because the sticky
tape wasn’t strong enough to hold everything in place for it
to be a success’’).

Creativity
In contrast to the previous components, students’

assessment of their design’s creativity spanned the entire
range with the most prevalent ratings from 2 through 4.
One student rated their design as excellent (5), whereas 9
students recorded 3 or 4. Their explanations for their
decisions included reference to design features such as the
use of a pulley system, mathematical features such as
triangular supports and a substantial base, and to how
resources were used or combined in the design.
Comparisons with other groups’ design were also men-
tioned. Below is a selection of responses with a rating of 3
or 4.

A. The reason our design was creative was because not
many other catapults had designs which had a full
base of paddle pop sticks, some just only had a
frame. Also, almost no groups had a pulley system.

B. Unlike real catapults, this one had a full base with
no gaps. It didn’t use string to attach all parts.
Instead it use (sic) stick tape.

C. Instead of a frame to hold up the spoon so it’s stable
when it launches, it uses a cotton reel and the base
itself to hold it up. The cotton reel is attached to the
base and the spoon rests against it making it the
fulcrum of the lever. The base is used also to
stabilize the spoon because some of the spoon is
inside the base. It is a simple design.

It is interesting to note how the student who gave the
third response above drew on her understanding of simple
machines and engineering design principles to justify the
creativity of her catapult construction. In her workbook she
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presented two designs, her own and that of the combined
group, which appear in Figure 1. Her display of two
perspectives nicely illustrates how her own design features
were incorporated within the group’s design, with the
spoon and cotton reel apparently replacing her original
paddle pop stick to form the lever’s fulcrum.

Use of simple machines
The students’ evaluation of their use of simple machines

was favourable, again with 13 ratings of 3 or 4. One student
(rating of 3), for example, explicitly mentioned the five
simple machines they had explored before the Catapult
Challenge, explaining that ‘‘There are a few different
simple machines used, such as the inclined plane, gears,
wheel and axle, lever and the pulley system. Everything
was shown in the design, and they all worked as planned.’’

Efficiency
The students were not as satisfied with their efficiency in

using the resources, with 10 of the 15 responses ranging
from 1 to 3. Reasons for this inefficiency were mixed,
including those who stated they had spent the entire
monetary allocation without generating what they consid-
ered a successful catapult. Others explained that although
they had not depleted their entire budget, they could have
made their catapult more efficient by using different
materials. Others noted that they had some funds remain-
ing. The students’ recognition of the resource limitations
placed on their design was evident in their responses,
suggesting an awareness of the importance of constraints in

engineering design. In particular, the budgetary constraints
drew on the students’ mathematical skills in estimating,
calculating, and monitoring the use of monetary funds.

Students’ Perceived Improvements to Their Design

Inviting students to suggest ways of improving their
designs provided opportunities for further reflection on the
foregoing design components. Their responses mostly
clustered around the 3 and 4 ratings (12 such responses),
with a variety of reasons offered for how their design might
be improved. These included improving specific design
aspects such as the construction of the base (with or
without mention of simple machine use), addressing
material weaknesses including their impact on the overall
design, identifying better material combinations, and
altering mathematical constraints such as increasing time,
resources, and budget. Of particular interest to this study
are the students’ references to design features and under-
lying engineering principles. Ten students gave explana-
tions of this nature, examples of which appear below. It is
interesting to note in the first example, a possible increase
in confidence in being able to achieve the task, with the
group suggesting a name change from ‘‘The Epic Failure’’
to ‘‘The Epic Achievement.’’

A. If I could improve anything I would make a pulley
to get up the ramp so that it would be easier and that
more simple machines would be used. I would also
stick the base together a little more so that it didn’t
fall apart so often. Another major change could also
be the name. Instead it could be called ‘‘The Epic
Achievement.’’

B. The base could have been made more stable. By
having sticks going across like a fence. The frames
on either side could have been tied with string
instead of sticky tape.

C. The power and distance when projecting the
marshmallow.

D. We could improve the stability of the wheel, and the
angle that the spoon was on. So it would be a better
aim.

E. The catapult that the group constructed could be
improved in many ways, given more time, more
resources, and a larger budget. The catapult was not
stuck together very well with the tape and the lever
was not put in the right place. Overall the catapult
was alright, but if given the chance the catapult
could be greatly improved.

Perceptions of Student and Teacher Learning

Further insights into the outcomes of the study were
gleaned from the teacher interviews. Specifically, we give
consideration to the two teachers’ perceptions of their

Figure 1. Student’s and group’s designs displaying two perspectives.
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that need to address the resources, constraints, and goals of
the problem situation. Although representing and con-
structing the desired product are part of design processes,
we have extracted these features to emphasize the
importance of illustrating or modelling what is to be
achieved and translating this into an end-product. As
indicated in the framework, we consider this a two-way
process where students need to compare their intended
outcome with what they are actually constructing, and
determine whether modifications are needed in one or both.
We argue that this translation between representation and
construction is a process requiring greater attention across
STEM education (c.f., Enderson & Grant, 2013).

The framework also includes a focus on collaborating,
evaluating, documenting, and reporting as key elements of
engineering-based problem solving. As we have argued,
students’ constructive collaboration in designing and
constructing their product, and evaluating and improving
their overall progress towards goal attainment is funda-
mental. Likewise, students’ documentation of their product
creation and their sharing of these developments with their
class peers are important learning processes across the
STEM areas (Magiera, 2013; Stoner et al., 2013).

Concluding Points

Engineering design projects provide engaging experiences
for middle school students as well as their teachers. Using

engineering as a problem-solving context linking science and
mathematics knowledge allows students to design creative
and innovative solutions. Solving such problems, however, is
a complex endeavour—there are multiple interacting factors
that need to be taken into account. Furthermore, students’
application of their learning in science and mathematics
needs to come to the fore, together with the important links
with the targeted engineering understandings. The design of
engineering-based problems thus becomes a challenge in
itself for teachers and teacher educators. More research
is needed on how we can achieve this balance between
science and mathematics learning and the development
of desired engineering principles. The findings of the
National Academy of Engineering’s current study,
‘‘Toward Integrated STEM Education: Developing
Research Agenda,’’ (National Academy of Engineering, n.d.)
should provide insights into ways of addressing this issue.

Acknowledgments

The authors wish to acknowledge the excellent support
provided by our research assistants, Jo Macri and Lyn
Nock. Any opinions, findings, and conclusions or recom-
mendations expressed in this paper are those of the authors
and do not necessarily reflect the views of the ARC.

The project reported here is supported by a three-year
Australian Research Council (ARC) Linkage Grant
LP0989152.

Figure 2. Framework for introducing engineering-based problem solving.

L. D. English et al. / Journal of Pre-College Engineering Education Research 53

11http://dx.doi.org/10.7771/2157-9288.1081



References

Australian Council of Learned Academies (2013). STEM: Country
comparisons: International comparisons of science, technology,
engineering and mathematics (STEM) education. Melbourne: ACOLA.

Australian Curriculum, Assessment and Reporting Authority (ACARA).
(2013b). Draft Australian Curriculum: Technologies. Retrieved from
www.acara.edu.au.

Berland, L. K. (2013). Designing for STEM integration. Journal of Pre-
College Engineering Education Research, 3(1), 22–31.

Borgford-Parnell, J., Deibel, K., & Atman, C. J. (2010). From engineering
design research to engineering pedagogy: Bringing research results
directly to the students. International Journal of Engineering
Education, 26(4), 748–759.

Brophy, S., Klein, S., Portsmore, M., & Rogers, C. (2008). Advancing
engineering education in P-12 classrooms. Journal of Engineering
Education, 97(3), 369–387.

Charyton, C., & Merrill, J. A. (2009). Assessing general creativity and
creative engineering design in first year engineering students. Journal
of Engineering Education, 98(2), 145–156.

Common Core State Standards Initiative. (2012). Common core state
standards initiative: Preparing America’s students for college and
career. Retrieved from http://www.corestandards.org/.

Corbin, J., & Strauss, A. (2008). Basics of qualitative research (3rd edn).
Thousand Oaks, CA: Sage.

Cunningham, C. M., & Hester, K. (2007). Engineering is elementary: An
engineering and technology curriculum for children. In Proceedings of
the 2007 American Society for Engineering Education Annual
Conference & Exposition. Honolulu, Hawaii: American Society for
Engineering Education.

Diefes-Dux, H. A., Hjalmarson, M. A., Miller, T. K., & Lesh, R. Model-
eliciting activities for engineering education. (2008). In J. Zawojewski,
H. Diefes-Dux, & K. Bowman (Eds.), Models and modeling in
engineering education: Designing experiences for all students (pp.17–
36). Rotterdam: Sense Publications.

Diefes-Dux, H. A., Zawojewski, J. S., & Hjalmarson, M. A. (2010). Using
educational research in the design of evaluation tools for open-ended
problems. International Journal of Engineering Education, 26(4), 807–
819.

DIISRTE (2011). Australian Innovation System Report. Australian
Government. http://www.innovation.gov.au/Innovation/Policy/Pages/
AustralianInnovationSystemReport2011.aspx

Dotger, S. (2008). Using simple machines to leverage learning. Science
and Children, March, 22–28.

Enderson, M. C., & Grant, M. R. (2013). Emerging engineers design a
paper table. Mathematics Teaching in the Middle School, 18(6), 362–
369.

Engineers Australia (2009). Technically Speaking – Victoria: Confronting
the challenges facing science, technology, engineering and mathe-
matics education and promotion. Institution of Engineers Australia.

English, L. D., Dawes, L., Hudson, P., & Byers, T. (2009). Introducing
engineering education in the middle school. In L. Mann & R. Hadgraft
(Eds.), Proceedings of the Third International Symposium on Research
on Engineering Education, July 20–23, Palm Cove.

English, L. D., & Mousoulides, N. (2011). Engineering-based modelling
experiences in the elementary and middle classroom. In M. S. Khine, &
I. M. Saleh (Eds.), Models and modeling: Cognitive tools for scientific
enquiry (pp. 173–194). Dordrecht: Springer.

Fleer, M. (2000). Working technologically: Investigations into how young
children design and make during technology education. International
Journal of technology and Design Education, 10(1), 43–59.

Holmes, M., Rulfs, J., & Orr, J. (2007). Curriculum development and
integration for K-6 engineering education. Paper presented at the 2007
ASEE Annual Conference & Exposition.

Hsu, M., Cardella, M. E., & Purzer, S. (n.d.). Assessing design. In J.
Strobel, M. E. Cardella, & S. Purzer, (Eds.), Engineering in pre-college

settings: Research into practice. The Netherlands: Sense Publishers
Forthcoming.

Hudson, P., English, L. D., & Dawes, L., (n.d.). Curricula integration:
Identifying and locating engineering education across the Australian
Curriculum Perspectives. (ISSN: 01597868) Forthcoming.

Korean Foundation for the Advancement of Science and Creativity (2012).
Lead STEAM Education. (http://eng.kofac.re.kr/eng/e2/e24/e241/v1.
cms).

Lambert, R., & Stylianou, D. A. (2013). Posing cognitively demanding
tasks to all students. Mathematics Teaching in the Middle School,
18(8), 500–506.

Lancor, R., & Schiebel, A. (2008). Learning simple machines through
cross-age collaborations. Journal of College Science Teaching, May/
June, 30–35.

Lesh, R., & Lehrer, R. (2000). Iterative refinement cycles for videotape
analyses of conceptual change. In R. Lesh & A. Kelly (Eds.), Research
design in mathematics and science education (pp. 665–708). Hillsdale,
NJ: Lawrence Erlbaum Associates.

Magiera, M. T. (2013). Model eliciting activities: A home run.
Mathematics Teaching in the Middle School, 18(6), 349–355.

McKenna, A. F., & Agogino, A. M. (2004). Supporting mechanical
reasoning with a representationally-rich learning environment. Journal
of Engineering Education, April, 97–104.

National Academy of Engineering. (2012). NAE Grand Challenges for
Engineering. Retrieved from http://www.engineeringchallenges.org/
cms/challenges.aspx.

National Academy of Engineering. (n.d.). Toward integrated STEM
education: Developing research agenda. National Grid accessed
March 29 http://www.nationalgrid.com/uk/Community/EOF/

National Research Council. (2009a). Engineering in K-12 education:
Understanding the status and improving the prospects. Washington,
DC: The National Academies Press.

National Research Council. (2009b). Rising above the gathering storm two
years later: Accelerating progress towards a brighter economic future.
Washington, DC: The National Academies Press. http://www.nap.
educ/catalog/12537.

OECD (2006). Evolution of student interest in science and technology
studies: Policy report, OECD and Development Global Science Forum,
Paris, p.3.

Shaughnessy, J. M. (2013). Mathematics in a STEM context. Mathematics
Teaching in the Middle School, 18(6), 324.

Silver, E. A., Mesa, V. M., Morris, K. A., Star, J. R., & Benken, B. M.
(2009). Teaching Mathematics for understanding: An analysis of
lessons submitted by teachers seeking NBPTS certification. American
Educational Research Journal, 46(2), 501–531.

Sjoberg, S., & Schreiner, C. (2010). The ROSE Project: An overview and
key findings. Naturfagsenteret. Oslo.

Stohlmann, M., Moore, T. J., & Roehrig, G. H. (2102). Considerations for
teaching integrated STEM education. Journal of Pre-College
Engineering Education Research, 2(1), 28–34.

Stoner, M. A., Stuby, K. T., & Szczepanski, S. (2013). The engineering
process in construction and design. Mathematics Teaching in the
Middle School, 18(6), 333–338.

Taylor, J. A. (2001). Using a practical context to encourage conceptual
change: An instructional sequence in bicycle science. School Science
and Mathematics, 101(3), 117–124.

Taylor, P. (2008). Engineers Australia Media Release 29/01/2008. Fixing
Australia’s engineering skills shortage.

Tytler, R., Osborne, J., Williams, G., & Cripps Clark, J. (2008). Opening
up pathways: Engagement in STEM across the primary-secondary
school transition. Canberra, Australia: Department of Education,
Employment and Workplace Relations. http://pandora.nla.gov.au/tep/
88047

Wicklein, R. C. (2006). Five good reasons for engineering design as the
focus of technology education. The Technology Teacher, April, 25–29.

54 L. D. English et al. / Journal of Pre-College Engineering Education Research

12http://dx.doi.org/10.7771/2157-9288.1081

www.acara.edu.au
http://www.corestandards.org/
http://www.innovation.gov.au/Innovation/Policy/Pages/AustralianInnovationSystemReport2011.aspx
http://www.innovation.gov.au/Innovation/Policy/Pages/AustralianInnovationSystemReport2011.aspx
http://eng.kofac.re.kr/eng/e2/e24/e241/v1.cms
http://eng.kofac.re.kr/eng/e2/e24/e241/v1.cms
http://www.engineeringchallenges.org/cms/challenges.aspx
http://www.engineeringchallenges.org/cms/challenges.aspx
http://www.nationalgrid.com/uk/Community/EOF/
http://www.nap.educ/catalog/12537
http://www.nap.educ/catalog/12537
http://pandora.nla.gov.au/tep/88047
http://pandora.nla.gov.au/tep/88047


Zawojewski, J. S., Hjalmarson, J. S., Bowman, K., & Lesh, R. (2008). A
modeling perspective on learning and teaching in engineering
education. In J. Zawojewski, H. Diefes-Dux, & K. Bowman (Eds.),
Models and modeling in engineering education: Designing experiences
for all students (pp.1–16). Rotterdam: Sense Publications.

Appendix

The Catapult Challenge

Design brief for the Catapult Challenge: With less than
$100 budget, construct a catapult that can be moved by
simple machines through the gates (square 30 cm 6 30 cm)
and up a ramp (10 degree inclined plane and 20 cm long) to a
platform. The aim is to then fire a package (projectile) from
the catapult as far and accurate as possible.

Constraints for your design include:

1. Size of the catapult
2. Using only the materials outlined
3. Spending less than $100 for the materials

4. All catapults have a projectile of the same mass (one
marshmallow)

5. Only simple machines may move the catapult
6. You can test three times and record your results in the

Testing Results Table.
7. There must be at least three objective judges for the

operation (Judge 1 assesses the accuracy and distance
of the throw; Judge 2 ensures the rules are followed;
Judge 3 calculates the overall score; Judge 4 ensures
fairness of judging). Judges must sign the Best
Results Table for your results to count.

Prices Materials Prices Materials

$2 Paddle pop $2 Cotton reel
$3 Piece of string per 30 cm $1 Skewer
$3 Rubber band $0.50 Straw
$3 Dowel $2 Plastic spoon
$0.50 Plastic-headed thumb tacks $1 Sticky tape (10 cm)
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