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Abstract 

Statistical multiplexing is very important in high-speed ATM type of networks, since it 

allows applications to efficiently share valuable network resources. However, statistical 

multiplexing can also lead to congestion which must be effectively controlled in order to 

provide users satisfactory quality of service. 

In this report we study a fundamental measure of network congestion, the tail of the 

steady state queue length distribution at an ATM multiplexer. In particular, we focus on 

the case when the aggregate traffic to the multiplexer can be characterized by a Gaussian 

process. In our approach, an ATM multiplexer is modeled by a fluid queue serving a 

large number of input processes. We derive asymptotic upper bounds to P({Q > x)) the 

tail of the queue length distribution, and provide several numerical examples to illustrate 

the tightness of the bounds. Our study is based on Extreme Vulue Theory, and therefore 

different from the popular Markovian and Large Deviation techniques. 



1. Introduction 

Advances in lightwave communication technology have enable networks to support various real-time 

applications. Statistical multiplexing is extremely important in such high-speed networks, since it in- 

creases network efficiency by allowing a large number of applications to share network resources. However, 

when these resources, such as buffer space and link capacity, are shared, there also exists the possibility 

of excessive congestion, which could impact the quality of the underlying delay-sensitive real-time appli- 

cations. A fundamental measure of congestion is P({Q > x)), the tail of the steady state queue length 

distribution in an infinite buffer system. We will study P({Q > x)) in the context of an ATM multiplexer 

(shown in Figure 1.1). The accurate computation of the tail probability P({Q > x)) is important for the 

control and design of these high-speed networks. For example, P({Q > B))  is often used to approximate 

the loss probability in the corresponding finite buffer system with buffer size B.  

Commercial ATM switches already support 622 Mbps link speeds and gigabit-per-second switches are 

expected to appear soon. Therefore, most ATM multiplexers are expected to serve a large number of 

heterogeneous traffic sources, and the analysis of the corresponding queueing system becomes increasingly 

important. Computing the queue length distribution at an ATM multiplexer has been a challenging 

problem, and many analytical techniques have been developed. The rich theory of Markov processes has 

been found to be especially useful for the analysis of statistical multiplexers (e.g. [24, 271). However, 

the computational complexity of these techniques increases rapidly with the number of states, and the 

number of states needed to model the aggregate traffic increases exponentially with the number of traffic 

sources being multiplexed. For this reason, in the literature, a number of approximation techniques have 

been suggested [l, 2, 8, 10, 12, 15, 16, 20, 21, 22, 281. 

I t  has been shown under a variety of Cramer type assumptions (exponentially bounded marginals and 

autocorrelations of the arrival process) that P({Q > x)), the tail of the queue length distribution of an 

infinite buffer queue, is asymptotically exponential [ I ,  2, 151; that is, 

P({Q > x)) - Ce-vx as x + m. (1.1) 

Here 7 is a positive constant called the asymptotic decay rate,* C is a positive constant called the asymp- 

totic constant, and f (x) g(x) means that lim,,, f (x)/g(x) = 1. Therefore, the asymptote Ce-7" has 

been a natural choice to approximate the tail probability for large values of x. This approximation is often 

called the asymptotic approximation. For a large class of queueing systems, computing the asymptotic 

decay rate 7 is quite straightforward even with a large number of arrival processes. However, the asymp- 

totic constant C can be exactly determined only for a limited class of queueing systems. Furthermore, 

'Using Large Deviation techniques, it has been shown for more general classes of arrival processes, that the limit 

lim,+, -; log P({Q > x)) exists [19]. Obviously, (1.1) implies TJ = lim,+, - 5  log P({Q > x)). Therefore, for greater 

generality, we define the asymptotic decay rate 7 as lim,+, -$log P({Q > x)), whenever the limit exists. Note that  the 

tail probability does not have to  be asymptotically exponential for the asymptotic decay rate to  be well defined. 
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Figure 1.1: A typical ATM multiplexer serving K network applications. K applications are sharing the 
buffer and the network link of the ATM multiplexer. 
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even for these queueing systems, it is usually computationally difficult to exactly compute C when the 

queue serves a large number of arrival processes. Consequently, the following simpler approximation has 

been proposed (by setting the asymptotic constant C to 1). 

8 
C, 

-8 
2 
E 

* 

P({Q > x)) z e-vx. (1.2) 

This approximation is the well known Effective Bandwidth (EB) approximation, which has been suggested 

for use in admission control [8, 16, 20, 21, 221. In recent papers, however, it has been found that the EB 

approximation does not account for statistical multiplexing gain and could thus be quite conservative [12, 

281. Therefore, there is renewed interest in the asymptotic approximation, and methods have been 

developed to approximate the asymptotic constant C for special cases [2, 13, 141. 

Our goal is to compute the tail probability P({Q > x)) from the first two moments of the traffic 

sources. In particular, we focus on the cases when the aggregate traffic to an ATM multiplexer can be 

characterized by a stationary Gaussian process appealing the Central Limit Theorem [18]. We develop 

an asymptotic upper bound of the form shown in (1.1) to the tail probability P({Q > x)). Since for very 

general Gaussian arrival processes, it has been shown that (1.1) holds, this also implies that we find an 

upper'bound to the asymptotic constant C. A good bound on the asymptotic constant is important, as 

mentioned above. However, researchers have recently contended that even the asymptotic approximation 

may be a poor estimate in the range of tail probabilities of interest. For example, t,his has been shown 

in [12] for On-Off arrival processes and in [9] for stationary Gaussian input processes that are correlated 

a t  multiple time scales. Hence, based on this upper bound and an earlier lower bound result [9, 101, we 

derive another asymptotic upper bound which is shown to track the tail probability very closely for a 

wide range of queue lengths x. 

The remainder of this report is constructed as follows. In Chapter 2, we introduce a queueing model 

for ATM multiplexers and provide important definitions and facts related to the model. Also, in this 

chapter, we briefly discuss the Gaussian characterization of the aggregate traffic. In Chapter 3 we derive 

asymptotic upper bounds for the tail probability P({Q > x)) of the queueing model fed by some classes 



of Gaussian input processes, and suggest an approximation for more general Gaussian processes. In 

Chapter 4 we first investigate the performance of our bounds through numerical examples. We also apply 

our approximation to the ATM multiplexer to demonstrate the practical applicability of the technique. 

Finally, in Chapter 5, we bring this report to a conclusion and briefly discuss future research directions. 



2. Problem Modeling 

2.1 Fluid Queue 

Fluid queues have often been suggested as good models for the analysis of statistical multiplexers [15]. 

We model an ATM multiplexer by a discretetime fluid queue shown in Figure 2.1. The fluid queue consists 

of an infinite buffer, a server that drains fluid from the buffer at rate p,  and K independent fluid inputs 

that fill the buffer a t  rate ALk) (k = 1 ,2 , .  . . , K ) .  The fluid buffer and server correspond to the cell buffer 

and the high-speed network link of the ATM multiplexer, respectively. Conceptually, the K inputs fill the 

fluid buffer in much the same way as K applications load a statistical multiplexer, and the fluid server 

drains the buffer at a constant rate p ,  in much the same way as a network link empties the buffer by 

transmitting cells at a fixed rate. Consequently, Q,, the amount of fluid in the buffer at time n, is closely 

related to the number of cells in the multiplexer. 

The evolution of the Q,, the amount of fluid in the buffer, can be expressed by the following famous 

(Lindley's) equation: 

Qn = (Qn-l + A n  - p ) +  , (2.1) 

K where A, := CkZl Aik)  and (x)+ := max{O, x). 

It has been shown under some mild assumptions (such as the stationarity and ergodicity of A, and 

the stability condition; that is, := E{A,) < p), that the distribution of Q, determined by (2.1) and an 

initial condition Qo, converges to a unique limiting distribution (the steady state queue distribution) as 

n goes to infinity, regardless of the initial condition [23]. In addition, it has been shown that the marginal 

distribution of the stationary stochastic process Q, defined by Q, := supml, C:=L=,+l(Ai - p),  is equal 

to the steady state queue length distribution [23, 291. Therefore, if we define a stochastic process I, and 

a constant K as 
- - 

Fn := A-,, - A and K := p - A ,  

then the suprema distribution of the stochastic process X, defined by 

is, in fact, the steady state queue distribution. In other words, 

p({Q > x)) = p({Q-1 > x)) = ~ ( { S U P X ,  n l o  > x)). (2.4) 

Relation (2.4), which comes originally from [23, 291, is very important in our study of the steady state 

queue distribution. We will study the suprema distribution P ( { s ~ p , , ~  - X, > x)) to obtain asymptotic 

upper bounds to P({Q > x)). It can be easily checked that I, is a centered (zero mean) process and its 

autocovariance function CE is the sum of the autocovariance functions of K independent input processes; 
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Figure 2.1: Fluid queue with K inputs and one server. 

that is, 

where Ck(l) is the autocovariance function of the k-th input. 

From now on, let ( w ) ~  denote supsEo we. We do not specify the index range O when it includes the 

entire domain of we. Also, we make the following weak assumptions on the process E, and the constant 

(Al)  En (or equivalently A,) is stationary and ergodic. 

(A2) rc < 0 (or equivalently X < p, the stability condition for a single-server queue). 

Next, we briefly motivate the Gaussian characterization of the aggregate traffic to the ATM multiplexer. 

2.2 Central Limit Theorem in ATM networks 

As mentioned earlier, we expect a large number of traffic sources to be multiplexed in ATM net- 

works. For example, FORE SYSTEMS has already built commercial ATM switches to support OC-12 

(622.08 Mbps) lines, and ATM networks with OC-24 (1.2 Gbps) lines are already operational (at Cam- 

bridge University). Due to the huge capacity of a single ATM link, we can expect that hundreds or even 

thousands of applications will share an ATM link; an OC-3 (155.52 Mbps) line can accommodate over 

7700 voice calls (32 Kbps during active period) and an OC-12 line over 300 MPEG video calls both a t  

a utilization of p := X/p = 0.8. These numbers seem to be large enough for the Central Limit Theorem 

to be applied to characterize the aggregate traffic to an ATM multiplexer by a Gaussian process [9, 101; 

even though how precisely the Gaussian process reflects the aggregate traffic may depend on 

How many input processes are multiplexed. 



How input processes are distributed. 

Unfortunately, it is not easy to analytically investigate the effect of these two major factors to the 

performance of the Gaussian characterization of the aggregate traffic. This is mainly because the effect 

of the Gaussian characterization of the aggregate traffic in queueing problems is not easily analyzable. 

Therefore, in our previous research [9, 101 we have studied the effect of these factors via numerical 

experiments, and found that several hundred independent inputs are usually sufficient for the Gaussian 

approximation to work well. 



3. Asymptotic Upper Bound on P ( { ( X )  > x)) 

In this chapter, we study the suprema distribution of the stochastic process X,, described by (2.3). 

We first introduce a few fundamental results from Extreme Value Theory. Then, in Section 3.2, we obtain 

several preliminary results, and from these results, in Section 3.3, we derive asymptotic upper bounds* to 

the tail probability P({(X) > x)). Throughout this chapter, remember that P({(X) > x}) = P({Q > x)) 

when the stochastic process En and the constant tc are defined by (2.2). Therefore, through the study of 

the stochastic process X,, we will study properties of the steady state queue length distribution. 

3.1 Extreme Value Theory 

The following two inequalities from the Extreme Value Theory play key roles in our study of the 

suprema distribution of X, [3]. 

Theorem 1 (Borell's Inequality) Let {Ct : t E T) be a centered Gaussian process with sample path 

bounded a.s.; that is (C) < cc a.s. Then E{(C)) is finite and for all x > E{(C)), 

where (a2)  := SUPtE~ E{Ct2). 

Theorem 2 (Slepian's Inequality) Let C and c be two centered Gaussian processes on an index set T 

with sample path bounded a.s. If E{Cz) = E{c:) and E{(C, - ~ t ) ~ )  < E{(<, - y)') for a11 s , t  E T ,  then 

for all x 

P({(C) > XI) 5 P({(c) > XI). 

Even though these two theorems are not presented in their strongest form (many variations and improve- 

ments can be found in the literature; e.g. [3, 26]), they are usually easier to apply because of their simple 

preconditions. 

Also, to obtain an upper bound to the tail probability P({(C) > x)) using Borell's inequality, we will 

need the following theorem 13, Corollary 4.151, which provides us a way to bound E{(C)), the mean of 

the supremum of Ct. 

Theorem 3 Let {Ct : t E T) be a centered Gaussian process and define a pseudo-metric d on T as 

d(tl , t2) := JE{(c~, - Ct,)2) (note that d is not a metric, since d(tl ,  t2) = 0 does n.ot necessarily imply 

t l  = t 2 ) .  Also, let N ( E )  be the minimum number of closed d-balls of radius e needed to  cover T ,  then 

there exists a universal constant L such that 

'We say f (x) asymptotically bounds g(x) from above, if limsup,,, % 5 1. 



3.2 Preliminaries 

In this section we set the stage for our study of the suprema distribution of Xn. Those readers that 

are not interested in the detailed proofs can safely skip to Theorems 9. 

We will derive asymptotic upper bounds to the tail probability P({(X) > a)) when the centered 

Gaussian process Jn given in (2.2) satisfies the following conditions: 

(Cl )  Ct(l) is absolutely summable and CE-, CI(l) > 0. 

(C2) lCE(l) is absolutely summable. 

(C3) Czl lCE(1) + CEm+l mC<(l) > 0 for all m = 1,2, . . . and CZ, lC<(l) > 0. 

From (2.3), the mean and autocovariance function of Xn can be computed as 

E{Xn} = - ~ n ,  and (3.1) 

ml=l mz=l 

In the following proposition, we show several important properties of the variance and the autocovariance 

function of X,. Before we do that,  however, we first define three parameters S, D, and D which will be 

extensively used in the report. 

- - 

D := 2 x l c C ( l ) ,  and 

Proposition 4 
{ ) V a r  Xn-1 - 2 (a) For n > 1, varnxn - 1 - CZ11 mC< (m). 

(b) Cx(n1, n2) = a (Var(Xn1) + Var{Xn2) - Var{Xlnl-nzl)) 
Var{Xn) = S. (c) Under condition (Cl) ,  limn,, 

var{Xnl) - var{Xnz) / 5 9 for all n l ,  nz > 0, (d) Under conditions (Cl)  and (CZ), I nl n2 

and limn,, n (S - y*) = D. 

(e) Under conditions (C1)-(C3), < S and there exists an no such that for all n 2 no, 

Var{X,}. = SUpo<m5n 

Proof of Proposition 4 : (a) From (3.2), we have 

n-1 m 
= C<(O) + 2 x (1 - -)Cg(m) (by changing variables m = mz - ml) .  (3.3) 

m=l n 



Therefore, for n > 1, 

(b) Without loss of generality ( W. L. 0. G) assume n2 > nl. Then, 

(c) Let hn(m) bede f ined fo rm=0 ,1 ,2 ,  . . .  as 

if m = 0, 

i f m = l , 2  ,...) n - 1 )  

otherwise. 

V a r { X , ,  Then, it follows from (3.3) that -4 = 2 Cz=, hn(m). On the other hand, from the definition of 

hn (m) we know that I hn (m) 1 I IC( (m) ( and 

$C((O) i f m = O ,  
lim hn(m) = 

n-im C( (m) otherwise. 

Therefore, from condition (Cl )  and the Dominated Con.vergence Theorem (DCT) [ 5 ] ,  we have 

00 00 

lim Var{xn) - lim hn (m) = Ce(0) + 2 C C( (m) = S 
n-im n - C ,-+rn 

m=O m= 1 

(d) W.L. 0. G. assume n2 > n l  > 0. From (3.3), we have 

n l  nz-m Since 0 5 5 m for m = n ~ ,  nl + 1, .  . . ,n2 - 1, it follows that 



Now, let hn(m) be defined as 

mC((7n) i f m = O , l  , . . .  , n ,  
hn (m) := 

nCE (m) otherwise. 

Then, from (3.3) and the definition of S ,  

n- 1 00 

(S - 
var{xn)) 

= 2n (5 ct (m) - x (1 - m ) ~ c  (m) n m=l m= 1 
n 

Again, we know that hn(m) + mC[(m) as n + co and Ihn(m)l < mlCc(m) 1. Therefore, from condition 

(C2) and DCT, limn,, n (S - v) = 2 Eml mCc(m) = D. 

(e) From (3.3) and the definition of S, 

03 

= 2 (5 mC((rn) + x n Q ( m )  > 0 (from condition (C3)). 

Therefore, < S for all n > 0. From conditions (C2) and (C3), it follows that 

limn+00 mC((m) = C E = l  mCF(m) > 0. This with (a) implies that there exists an n l  > 0 such 

that V a ~ i X n }  V a r { X n - l )  
n- 1 > 0 for all n 2 n l ;  that is, is an increasing function for n > n l .  Now, 

-, then e < S, and from (c) there exists an no 2 nl  such that V a T ( ~ o '  > C. let c := SUPO<~<,, m 

Let n 2 no,  then for m < n l ,  

Var{Xrn) Ic I m 
Var{Xno) (from the definition of no) 

no 

I Var{Xn) (because ! is increasing for n > nl ) .  n 

Also, since is increasing for n 2 nl  , 5 !2@d n for m E (n l ,  n) .  Therefore, for all 
V a r  X ,  V a r { X , ) ,  

72 2 no1 4 = suPo<m<n rn Q. E. D. 

These properties will be extensively used in our study of the suprema distribution of X,. For simplicity, 

we now define a new Gaussian process Y;") for each z > 0 as 

The following lemma is a direct result of the definition of Y,("), and plays a key role in obtaining bounds 

to  the tail probability P({Q > x)). 

Lemma 5 For any n E { O , l ,  2 , .  . .), Xn > x if and only if Y,(") > & 



From the definition of Y,("), it immediately follows that Y,(,) has zero mean, and its autocovariance 

function c$) is given by 

c?)(n1, n2) = XCX (n l ,  n2) 
(x + ~ n l ) ( x  + K ~ Z )  ' 

(3.5) 

Now, let u:,, be the variance of Y,("), then it can be expressed in terms of Var{Xn) as 

From Proposition 4(c), it follows that a:,, t 0 as n t oo. Therefore, a:,, should attain its maximum 

(a;) at some finite value of n = fix (note that (a;) denotes the supremum of a:,, over the time index n). 

In the following proposition (Proposition 6) we show an important property of fix. Before we introduce 

this proposition, for notational simplicity, we define a function g(n) for n = 0,1,2,  . . . as 

if n = 0, 

otherwise. 

Then we can write the variance of Y,(") in terms of function g(n) as 

- 
Sxn 

"'In - (5 + g(n). 

Proposition 6 Under condition (Cl) ,  fiz as x + 03. Further, under conditions (Cl)  and (C2), 
fi -z 

lim,,, + = 0 for all E > 0. 

Proof of Proposition 6 : From Proposition 4(c), we have limn,, g(n) = 1. Let G := supnyo g(n) and n, 

be the nonnegative integer at which attains its maximum. Then, it follows that G is finite and 

not less than 1, and In, - 5 1. Since a:,, attains its maximum at n = fix, 

By solving (3.8) for fix, we have 

Since %,g(iz,) + 1 as x + co, this inequality implies that fix + 03 (consequently, g(fix) + 1) as 

Since ( x ~ ~ ) 2  attains its maximum at n = n,, we know from (3.8) that g(n,) 5 g(fix), and that the 

following relation should hold. 



Since both g(n,) and g(fi,) approach 1 as x + m ,  this inequality implies that 

fcfi, 
lim - = 1. 

2--too x 

Thus, we have proven the first part of the proposition. Now, assume CE(l) satisfies conditions (Cl )  and 

(C2). From Proposition 4(d.), note that 

From (3.9), it follows that 

On the other hand, 

( ~ + j l = ) ~  Since >jlZz , % and g(n,) approach 1 as x + m and since 1: - n,l < 1, it follows from (3.13) that 

for sufficiently large x, 
Is

2 

- 1 < 2ldfiX) - s(&)I + 2. 

Therefore, from (3.12) and (3.14)) for sufficiently large x, we have 

g ( i ~ ~ ) ( ~ + n = ) ~  (from the fact that 4jlz z;(jlz) + l a s x + m )  

4~1f i ,  - n,l 21s ~ l f i ,  - jlzJ 
5 + 8 (from (3.11)) Sgfi,n, x sn,hx $ 

(since 1 0  and y, % + 1 as x + rn). 

-2 

Now, assume that lim,,, + = 0 for some E > 0 (from (3.10), we already know that this holds for 

any E > 1). Then, since Ifi, - n,I < Ifi, - :( + 1, from (3.15) we have 

6 - Z  fiz - z. 
Hence, lim,,, = 0. Thus it follows by induction that lim,,, = 0, for all E > 0. Q.E.D. 

z 

The following proposition describes the asymptotic behavior of (a:) is a direct result of Proposi- 

tion 4(c) and Proposition 6. 



2 - s  Proposition 7 Under condition (Cl) ,  lim,,,(a,) - n. 

2 - xVar{Xa ) - 1 Var{Xa,) niL 1- Proof of Proposition 7 : From (3.6), we have (a,) - (2+niLz)s - n i ~ =  , However: 

we know that varitdz' i S (Proposition 4(c)) and i 1 (Proposition 6), as x i m. Thus, 

l i m x + m ( a ~ )  = 2. Q. E. D. 

3.3 Main Results 

In our previous papers [9, 101, we have derived a lower bound to P({(X) > x)) in terms of maximum 

variance (a:) from the following simple relation. 

P({(X) > XI) 2 P({Xfiz > 2)) 

= P ( { Y , ~  > J;)) = 9 (&) (from  emm ma 5 ) .  

m uZ 
Here 9 (x) := 2 e-T d y  is the tail of the standard Gaussian distribution. 

JZ;; 

Using the following well known inequality for function 9 [17], 

we have shown that the lower bound is in fact asymptotically similar to the tail probability P({(X) > x)) 

in the logarithmic sense (also see [9]); that is, 

This lower bound has been used to approximate the tail probability P({(X) > z)) (or equivalently, 

to approximate P({Q > x)))  in [9, 101. In these papers, it has been shown through many numerical 

examples, that the lower bound accurately approximates the tail probability for a very wide range of 

values of x. Noting that the lower bound is the probability that X, is greater than x at only one point 

ii, out of the whole index set {0 ,1 ,2 . .  .), the reader may wonder how this lower bound can be so close 

to the tail probability. However, in the Extreme Value Theory for Gaussian processes, the maximum 

variance of a centered Gaussian process with nonconstant variance, has been frequently emphasized as 

a very important factor in studying the suprema distribution of the Gaussian process (also as can be 

seen in Borell's inequality) [3, 4, 26, 301. In addition, it has been found in various forms, that the 

behavior of a centered Gaussian process around the index, at which the maximum variance is attained, 

essentially determines its suprema distribution. Therefore, it seems natural to expect that there should 

be a neighborhood F, around fix (or around z )  such that P ( { ( Y ( " ) ) ~ ~  > fi)) - P({(Y(")) > fi)) as 

x 4 m. The following theorem validates our expectation and will be used to obtain an asymptotic upper 

bound to P({(X) > x)). 



Theorem 8 Under condition (Cl) ,  for any a > 1, 

lim P ( { ( ~ ) [ & , F ]  > XI) 
= lim P ( { ( Y ( " ) ) [ ~ , ~ ; Z ~ ~  > f i ) )  = 1. .+- P({(X) > x)) z+- P({(Y'"') > fi)) 

Proof of Theorem 8 : To prove the theorem, it suffices to show that 

lim P ( { ( Y ( " ) ) [ ~ , ~ ~ ~  > f i ) )  = o 
2-- P({(Y'"') > fi)) 

for all a > 1, where AC denotes the complementary set of A. 

Let a > 1. Since g(n) + 1 as n + oo, there exists an no such that g(n) 5 $ for all n 2 no. Now, 

let G := supn,, g(n), then there exists an x, > ann. such that is 5 for all x 2 x, . Since - a is an increasing function for n j 2, this (in conjunction with (3.7)) implies that, 

SxnG < 
d , n  5 for all x 2 x, and n < no. 

(x + ~ n ) ~  - 2n(a + 1) 

It can easily be shown that aT < for n E [&, ?Ic. Therefore, from the definition of no, we 

have 

Now from (3.18) and (3.19), it follows that 

'fi for all x > x,. (g:)'",". 5 2n(a + 1) 

We now define a pseudo-metric d( l)  on {O,1, 2 , .  . .) as d(x)(nl ,n2)  := JE{(Y;:) - Y$!))Z}. Also, let 

~ ! " ) ( n )  := {m : d(")(n, rn) 5 a) be a d(")-ball of radius r centered at n ,  and N(")(r) be the minimum 

number of d(')-balls of radius of r needed to cover {0 ,1 ,2 , .  . .). Since  or{^,(^)) j < and 

since Y:") = 0, B!")(o) covers {O, 1 , 2 , .  . .) when a 2 @. Therefore, for all x > 0, 

Now, assume that a < 4% and n2 > n l .  Then, 



However, since Var{(Xn2 - X,, )) = Var{X,,-,, ) from the stationary increment property of X,, 

Var{(Xn2 -Xnl ) ) and Var{Xnl ) are bounded by GS(n2 -nl) and GSnl , respectively. Hence, from (3.22) 

(from the fact that && < and < A). 
This implies that if In2 - rill 5 &t2, then d(")(nl, n2) 5 t. Consequently, 

x x 
In - m c2, n + -c2] c B:") (n). 

2SG 

Also, it can be easily shown that ~ar{Yn(")) 5 t2 for n 2 s. Since YJZ) = 0, this implies that 

SGx 
m) c B:")(o). 

NOW, let k = [&t2], where 1x1 denotes the smallest integer greater than or equal to x. Then, from 

(3.24) and (3.25), it follows that d(")-balls of radius of centered at ki (i = 0, I ! .  . . , [-1) cover 

0 1 2 ,  . . )  Hence, for c < a, N(")(c) is bounded by the following inequality. 

From (3.21) and (3.26), N ( E )  defined by 

i f f < @ ,  
N(€) := 

otherwise, 

bounds N(")(t) for all x, e > 0. Now, let M := L SF log; ~ ( c ) d c  (it can be shown that the integral is 

finite). Then from Theorem 3 

E{(Y("))) < M, for all x > 0. (3.27) 

By applying Theorem 1 to ~ n ( " )  for n t 12, $1"; we get 

(from (3.20) and the fact that (Y(x))[x,y;c a C 5 (Y("))) 
% ( & - M ) ~ ( ~ + I )  

5 2e- ~6 (from (3.27)), (3.28) 



for x sufficiently large. Therefore, 

1 
Iim inf - - log P ( { ( Y ( " ) ) ( ~  > &)) 2 lim 

~ ( 6  - M)2(a + 1) - - tc(a + 1) 
sic0 x m IC sfi  ' 

x,m s x f i  (3.29) 

Additionally, it has been shown for very general Gaussian input processes [2, 191 that 

1 1 2 tc 
lim -- log P({(Y(,)) > &)) = lim -- logP({(X) > x)) = - 

x+oo  Z x+m x S '  

Since > 9 for all a > 1, (3.29) and (3.30) imply that 

lim 
p({(y("))[&,.y]" > f i l l  

= 0, 
x+- P({(Y'"') > 6)) 

and the theorem follows. Q. E. D. 

So far we have considered the stochastic process Xn expressed by (2.3). Now, as a special case of such 

processes, consider a Gaussian random walk Vn with variance Var{Vn) = a 2n  and drift E{Vn) = -bn; 

that is, 

Vn = aBn - bn. (3.31) 

n Here Bn := Cm=l xm denotes a standard Gaussian random walk, where {x, : n = 1,2,  . . .) are centered 

i.i.d. Gaussian sequence with unit variance. This special case has received a lot of interest. An upper 

bound to the tail of its suprema distribution P({(V) > z)) is well known 125, page 2361 and given by 

P({(v)  > x)) = P({aBn > x + bn for some n = 0 ,1 ,2 , .  . .)) 5 e-%. (3.32) 

Using this result, we now derive an asymptotic upper bound to the tail probability P({(X) > x)). 

2 r c Z ~  
Theorem 9 Under conditions ((31)-(C3), limsup,,, ~?P({ (X)  > x)) 5 e - 7 .  In other words, 

,-%(z+?) asymptotically bounds P({(X) > x)). 

Proof of Theorem 9 : Let Vn := &B, - Kn, and define a centered Gaussian process z?) (n = 0 ,1 , .  . .) 

for each x > 0 bv 

22) := d Z G J ( v n  + ten) 
x + tcn 

From the definition, the autocovariance function cF) of z?) can be easily derived as 

From (3.7) and [3.33), we can see that the variance of z?) is equal to that of Y,("). Now, let a > 1. 

From Proposition 4(e), there exists an no > 0 such that for all n > no, 

va r{xm)  < Var{Xn) 
- for all m < n.  

m n 
(3.34) 



If we assume x > amo and n2 > n l  > & >_ no, then 

Cx(n11722) = 1 - ( V a r { X n  + r n 2  - V a r { X n Z n 1 )  (from Proposition 4(b)) 
n 1 2n1 

1 Var{Xn,) + 

2 (  n l  "a'{Xn2}) n2 (from (3.34)) 

This implies that 

Therefore, from (3.5), (3.33), and (3.35), it follows that for x > amo, C?)(nl,nz) > ~ g ) ( n l ,  nz) for 

all n l ,  n2 E [$, T I .  Since we know ~ a r { ~ , ( " ) )  = ~ar{Z,")), we have E{(Y;,") - Y,!,"))'} < E { ( z ~ )  - 

~ 2 ) ) ~ )  for all n l ,  nz E [&, 5 1 .  Therefore, from Theorem 2, 

P ( { ( Y ( " ) ) ( ~ , ~ ~  > &)) _< P ( { ( z ( " ) ) [ ~ , ~ ~  > 6)) for all x >_ a m , .  (3.36) 

Now, we obtain an upper bound to P ( { ( Z ( " ) ) ~ ~ , E ~  > &)) as follows. 

x a x  
P ( { ( Z ( " ) ) ( ~ , ~ ]  > 6)) = P({Z?) > & for any n E [-, -1)) 

a K  K 
x a x  

= ~({dm~, > x + ~n for any n E [-, -I)) 
aIC K 

(from the definition of Vn and 22)) 
a x  x a x  > x + Kn for any n E [--, -1)) 

a n  K 

(since g(n) is increasing on [&, 71 from (3.34)) 

> x + nn for any n > 0)) 

- 2 h ~  

5 e Sg(ryl) (from (3.32)). (3.37) 

From (3.36) and (3.37), we have an asymptotic upper bound to P ( { ( Y ( " ) ) ~ ~ , ~ ~  > &)) 

2 h ~  

> } e s  for all x > am,. (3.38) 

On the other hand, from Proposition 4(d) and the fact that g(n) -+ 1 as n -+ co, we have 

2nx 2 nx - 

~ K X  (1 - w) 
-- - - (from the definition of g(t)) 
S S g ( r 5 l )  S g ( r Y l )  



Therefore, from Lemma 5, Theorem 8, (3.38) and (3.39), it follows that 

2 % ' ~  
limsup e y  P({(x) > x)) = limsup ~ T P ( { ( Y ( ~ ) )  > 6)) < e - 7  

X + M  x+m 

2 e Z D  

Since CY > 1 is arbitrary, finally we have limsup,,, ~YP({(X) > x)) 5 e - 7 .  Q. E. D. 

Theorem 9 gives us an exponential asymptotic upper bound (e-%(,+T) ) to  the tail probability 

P({Q > x)) = P({(X) > x}). This also implies that Theorem 9 provides us with an upper bound e - 9  

to the asymptotic constant C given in (1.1). However, in our previous research, it has been shown that a 

single exponential type of approximation (such as the asymptotic approximation and EB approximation) 

may not closely estimate the tail probability even for relatively large values of x. This is quite typical for 

traffic, that is correlated at multiple time scales, for which the tail probability converges to  its asymptote 

slowly. Therefore, in spite of the theoretical significance of this asymptotic upper bound, it is expected 

to suffer from the same problem as other single exponential approximations for certain types of arrival 

traffic. 

On the other hand, in our previous research 19, 101, the lower bound Q (6) has been found to be 

an accurate approximation to the tail probability and matches the tail probability curve even when it 

converges to its asymptote slowly. Remember that the lower bound is a (standard Gaussian ( (.3 ) 
tail) function of 6, the maximum variance and the queue length. From the fact that the lower bound 

matches the shape of the tail probability quite well, we can infer that the maximum variance (a;), as 

a function of x, contains key information about the shape of the tail probability curve. Therefore, it 

would be an important result if we were to find an asymptotic upper bound in terms of the maximum 

variance (a:). In the following theorem we find such an asymptotic upper bound in terms of (0:) based 

on Theorem 9. 

Theorem 10 Under conditions (Cl) and (C2), e-* e - + ( ~ + y )  as x i m. Therefore, with an 
-+ additional condition (C3), e z ( o = )  asym~ptotically bounds P({(X) > z)). 

2 - xVartXa,1. Hence, Proof of Theorem 10 : From (3.6) and the definition of fix, we have (a,) - (x+nfi,)2 

Vartxa~l)f i ,  i D, and (5iRz)2 1 0 as 5 1 m from Proposition 4 Since i K, VaTi?zl i S, ( S  - 

and Proposition 6, it follows from (3.40) that 

2 x 2  -+ 2rc2D Therefore, lim,,, e s e  z ( o x )  = e - 7  



As mentioned before, the lower bound Xk (6) has been found to be an accurate approximation to 

the tail proability. However, from (3.17) and Theorem 10 it can easily be shown that 

(6) - / g e - % ( x + % )  as x + W, (3.41) 

which implies that the lower bound is not asymptotically exponential. Since the tail probability P({Q > 

x}) is asymptotically exponential with great generality, the ratio of the lower bound to the tail probability 

asymptotically goes to  0; more precisely, there is a constant c > 0 such that *TI(&) 
P({Q>x)) - * as + 

Therefore, the lower bound may fail to accurately approximate the tail probability for very large values 
-+ of x or very small tail Note, however that e 2 ( m = )  is in fact asymptotically exponential 

under conditions (Cl)  and (C2) (which are relatively weak absolute summability conditions). This fact, 

in conjunction with the observation that the maximum variance (u:) provides important information 
-+ about the shape of the tail probability curve, suggests that e 2 ( m = )  will provide a good approximation to 

P({Q > x}) even without requiring condition (C3). Our expectation will be experimentally validated in 

Chapter 4. 

t ~ o t e  that the term C vanishes much more slowly than the tail probability which vanishes exponentially. This is a 6 
reason that the lower bound usually approximates tail probabilities, which is not too small, fairly well. 



4. Results and Discussion 

In this chapter, we investigate the tightness of our asymptotic upper bounds via several numerical 
-+ examples. Also, we illustrate the performance and applicability of our approximation e 2(o=)  even when 

condition (C3) does not hold. Since, in general, the exact tail probability P ({Q > x)) is not analytically 

obtainable we use simulation techniques to validate our results. In particular, we use the Importance 

Sampling simulation technique described in [7] to improve the reliability of the estimation. We have 

calculated 95% confidence intervals for each tail probability estimated via simulation by the method of 

batch mean [6]. However, to not unnecessarily clutter the figures, we only show confidence intervals when, 

they are larger than +20% of the estimated tail probability. 

For the importance sampling simulations, (pseudo) regenerative cycles [7] are defined to be the time 

period between successive time epochs. We define these time epochs to be the time at which the queue 

transitions from an empty state to a non-empty state. Generally, the accuracy of simulation via impor- 

tance sampling improves as the number of regenerative cycles involved in the simulation increases [7]. 

Therefore, when P({Q > 0)) is very small, even though this does not necessarily imply the rareness of the 

regenerative cycle, it is usually difficult to get enough number of regenerative cycles for the simulation. 

After extensive simulation studies, we found that reliable results even using importance sampling cannot 

usually be obtained (in a reasonable amount of time) when P({Q > 0)) is less than Hence, for all 

experiments, we set the utilization ( p  = Alp) SO that P({Q > 0)) is greater than (as shown in the 

numerical figures, we do, however, estimate significantly lower values of P({Q > x)), for x > 0). 

This chapter is composed of two parts: in Section 4.1, we test the performance of the asymptotic 
- 

upper bounds derived in Theorems 9 and 10. We further apply the approximation e in the case of 

Gaussian input processes that do not satisfy condition (C3). In Section 4.2 we apply this approximation 

to traffic source models for real-time applications such as voice and video, and illustrate its effectiveness 

for admission control. 

4.1 Numerical Investigation for Gaussian Input Processes 

Example 1 In this section we consider fluid queues fed by a Gaussian input process. By comparing the 

asymptotic upper bound to the exact tail probability estimated via simulation, we can investigate how 

tight our bounds are to the tail probability. 

Conditions (Cl)  and (C2) are very weak conditions. Any (stationary) Gaussian process whose auto- 

covariance function vanishes faster than 1-' for any 6 > 2 (except, of course those processes for which 
Q3 C c ( l )  = 0) satisfy these conditions. It is relatively more difficult to classify Gaussian processes 

that satisfy condition (C3). However any Gaussian process with a non-negative autocovariance func- 

tion satisfies condition (C3). Therefore, in the first example we consider Gaussian input processes with 

nonnegative autocovariance functions that vanish exponentially. 



- Exact Tall Rob. 

k y m .  Upper Bound 

Queue Length (x) Queue Length (x) 

Figure 4.1: The exact tail probability and the Figure 4.2: The exact tail probability and the 
asymptotic upper bound e-%("++) for a Gaus- asymptotic upper bound e-%("++)  for a Gaus- 
sian input process with autocovariance function sian input process with autocovariance function 
C,c(Z) = 200 x 0.951'1. CE(l) = 100 x 0.91'1 + 60 x 0.981'1. 

In this example we will discuss Figures 4.1-4.6. For Figures 4.1-4.3 we focus on the asymptotic upper 

bound e - % ( " + F )  obtained in Theorem 9. For the rest of the figures in this example, we focus on the 
-+ asymptotic upper bound e 2(a=) obtained in Theorem 10. 

We consider fluid queues fed by three different Gaussian input processes. The autocovariance functions 

of these Gaussian processes are given as 200 x 0.951'1, 100 x 0.91'1 + 60 x 0.981'1, and 104 x 0.991'1 + 64.14 x 

0.9991'1 + 31.86 x 0.99991'1. In Figure 4.1, we show the exact tail probability and asymptotic upper bound 

e-%("++) for the Gaussian input with the autocovariance function 200 x 0.951'1 for six different values 

(5.26,11.11,17.65,25,33.33,42.86) of rc = p - X. As one can see in the figure, for large z, the asymptotic 

upper bound parallels the tail probability for all values of rc. This is not a surprising result because 

both the asymptotic upper bound and the tail probability are asymptotically exponential with the same 

decay rate 9.  Further note that the bound matches the simulation results quite well. This suggests 
2 r 2 ~  

that e - 7  is a good bound to the asymptotic constant. The tightness of the asymptotic upper bound 

is also demonstrated in Figure 4.2, which shows the same curves for the Gaussian input process with 

the autocovariance function 100 x 0.91'1 + 60 x 0.981'1 when K = 5.26,11.11,17.65,25,33.33,42.86. As in 

Figure 4.1, the asymptotic upper bound parallels the tail probability as x increases and the difference 

between the bound and the exact tail probability is less than an order of magnitude for large enough values 

of x. However, in Figure 4.2, the asymptotic upper bound fails to approximate the tail probability for small 

queue lengths (< 500) for rc = 33.33,42.86. This is because the tail probability in Figure 4.2 converges 

to its exponential asymptote slowly, while the tail probability in Figure 4.1 converges to its asymptote 

fairly fast and forms a nearly straight line. The autocovariance function of the Gaussian input used in 

the second experiment consists of two power terms with quite different decay rates. Therefore, the input 

is correlated a t  different time scales. A far more significant effect of this multiple time-scale correlation 

is demonstrated in Figure 4.3. In Figure 4.3, we show the exact tail probability, the asymptotic upper 
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Figure 4.3: The exact tail probability, the asymp- Figure 4.4: The exact tail probability and the -+ totic upper bound e - + ( x + q ) ,  and the EB ap- asymptotic upper bound e 2iaz)  for a Gaussian in- 
proximation for a Gaussian input process with put process with autocovariance function CE(l) = 
autocovariance function Cc(l) = 104 x 0.991'1 + 200 0.95111. 
64.14 x 0.9991'1 + 31.86 x 0.99991'1 when K = 33.33. 
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bound, and the EB approximation for the Gaussian input with autocovariance function 104 x 0.991'1 + 
64.14 x 0.9991'1 +31.860.99991'1 for K = 33.33. Note that the autocovariance function is composed of three 

weighted power terms with very different decay rates. Consequently, the tail probability converges to its 

asymptote very slowly. Note that the true asymptote will lie below the asymptotic upper bound shown 

in Figure 4.3. Hence, any single exponential approximation including the asymptotic approximation, the 

EB approximation, and the asymptotic upper bound e-%("+%),  provides a poor estimate of the tail 

probability even for values of x as large as 100,000. 

Through a number of numerical examples (other than those just shown), we have found that the upper 
2h2 D 

bound e - 7  to  the asymptotic constant is usually very close to the asymptotic constant. Therefore, 

the asymptotic upper bound given by Theorem 9 approximates the tail probability for sufficiently large 

queue lengths. However, as shown above, single exponential approximations are fundamentally limited 

and may fail to accurately estimate the tail probability for small or even fairly large values of queue 

lengths. 

On the bright side, since we now know that the asymptotic upper bound is accurate for large enough 

2, we expect that the bound e-* given by Theorem 10 should also be accurate for large values of queue 

lengths (since they are asymptotically similar). Further, as discussed in Section 3.3, since the bound is 

expressed in terms of the maximum variance (u:), we can also expect it to match the shape of the tail 

probability curve (as in the case of the lower bound Q (&)) TO demonstrate the performance of this 

bound, in Figures 4.4, 4.5, and 4.6, we redo the experiments of Figures 4.1, 4.2, and 4.3, respectively. As 
- 

expected, the bound e * is accurate over the entire range of queue lengths shown in all three figures. 

Also, the analysis matches the shape of the actual tail probability curve. 

OXIOO Ir104 hl0' 310'  4x10~ 5x10' 6x104 MO' 8x10' RIO' 1x10' 0 500 1000 1500 2000 2500 30M) 3500 4000 
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Figure 4.5: The exact tail probability and the Figure 4.6: The exact tail probability and the 
Z - -+ asymptotic upper bound e 2'-?' for a Gaussian in- asymptotic upper bound e 2 ( m = )  for a Gaussian in- 

put process with autocovariance function Cc(l) = put process with autocovariance function CE(l) = 
100 x 0.91'1 + 60 x 0.981'1. 104 x 0.991'1 + 64.14 x 0.9991'1 + 31.86 x 0.99991'1 

when rc. = 33.33. 

Example 2 Now, consider fluid queues fed by two different Gaussian processes whose autocovariance 

functions are given by 10 x 0.951'1 cos & and l o x  0.91'1 cos %+0.1 x 0.991'1. Neither of these autocovariance 
Z 

functions satisfy condition ((23). For this case we cannot guarantee that e-2'-?' is an asymptotic upper 

bound. However, as mentioned earlier, we have found via extensive numerical experiments, that the lower 

bound B (6) which is also a function of the maximum variance (02), is accurate for Gaussian inputs 

that do not satisfy condition (C3) (see [lo] for example). Therefore, we expect the analytical expression 
-- 

e 2 ( m 2 )  to accurately approximate the tail probability, which is in fact demonstrated in Figures 4.7 and 

4.8. 

In the following section, we use our analytical result e-2("?7 to approximate the tail probability for 

more general (non-Gaussian) traffic source models. 

4.2 Numerical Investigation for Voice and Video Traffic 

-+ In this section, we illustrate the performance of our analytical approximation e 2 ( o ~ )  by applying it to 

an ATM multiplexer serving voice and video traffic. Throughout this section we assume that the amount 

of fluid and time is measured in an abstract unit of "cell" and "slot," respectively. In our setting, a cell 

corresponds to a 53-bytes (48-bytes payload) ATM cell and a slot to a 10 msec interval. 

Example 3 In this example, we study the queueing behavior of multiplexed voice source models. Each 

voice source is modeled by an On-Off Discrete-time Markov Modulated Fluid (DMMF) process. The state 

transition matrix and the input rate vector of the DMMF model are given as follows. 
r 1 

I 0.9833 0.01677 
State Transition Matrix : 

0.025 0.975 1 
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Figure 4.7: The exact tail probability and our Figure 4.8: The exact tail probability and the ana- -* -+ analytical approximation (e '("2) ) for a Gaus- lytical approximation ( e  '("2) ) for a Gaussian in- 
sian input process with autocovariance function put process with autocovariance function Cc (1) = 
C((1) = 10 x 0.951'1 cos and K = 1,2. 10 x 0.91'1 cos + 0.1 x 0.99-1'1 and K = 1,2. 

The DMMF voice traffic source model is obtained by discretizing the Continuous-time Markov Modulated 

Fluid model used in [28]. The service rate of the fluid server is set to 14672 cells/slot, which roughly 

corresponds to the capacity of an OC-12 link (622.08 Mbps). The exact tail probability and our analytical 

approximation for 42500 and 42800 multiplexed DMMF sources are shown in Figure 4.9. Remember that 

the proposed technique uses only the first two moments of the aggregate traffic input to approximate the 

tail probability. As one can see in the figure, the approximation accurately matches the tail probability 

over the entire range of queue lengths shown in the figure. 

Example 4 The exact tail probability and the proposed approximation for 105 and 107 simple JPEG- 

encoded video traffic source models are shown in Figure 4.10. This traffic source model is the superposition 

of a 2.i.d. Gaussian process and three DMMF processes with very different state transition rates designed 

to capture the multiple time-scale correlation observed in the JPEG-encoded movie "Star Wars." The 

state transition matrices and the input rate vectors of three DMMF's and the mean and the variance of 

the 2.i.d. Gaussian process are given as follows. 

State Transition Matrices : 
[ 0:): 0-2: ] [ 0.999 0.001 ] [ 0.9999 0.0001 ] 

0.001 0.999 0.0001 0.9999 

Mean of 2.i.d. Gaussian : 82.42 

Variance of i.2.d. Gaussian : 8.6336 



1x104 ' ' , I . , ~ I ~ ' r I ' . , r  , , I . , . I , . . I  

0 2000 4000 6000 8000 10000 12000 14000 0 2000 4000 6000 8000 10000 12000 14000 
Queue Length (x cells) Queue LengUl (x cells) 

Figure 4.9: The exact tail probability and our Figure 4.10: The exact tail probability and our 
analytical approximation for a fluid queue serv- analytical approximation for a fluid queue serving 
ing 42500 and 42800 voice traffic source models 105 and 107 JPEG-encoded video traffic source 
(DMMF). The service rate of the fluid server is models. The service rate of the fluid server is set 
set to 14672 cells/slot. to 14672 cells/slot. 

Again, we set the service rate of the fluid server to 14672 cells/slot. 

As in the case of Example 4.9, the analysis matches the simulations quite closely, even though the 

number of traffic sources being multiplexed is significantly smaller. Also note that the approximation 

follows the shape of the exact tail probability quite well. 

In general, the stochastic characteristics of a video traffic source change with the type of video appli- 

cation which the source represents. For instance, the video traffic source that mainly transmits movies 

is very likely to  have different characteristics from that of the video source that does news programs. 

Further, the video coding schemes employed to reduce the required bandwidth can also significantly af- 

fect the stochastic characteristics of the video traffic generated. Therefore, modeling such diverse video 

traffic sources may not be an easy and efficient way of characterizing these sources. From this viewpoint, 

the traffic characterization based only on the first two moments (mean and autocovariance) have some 

advantage over the characterization based on explicit stochastic modeling, since the mean and autoco- 

variance of a traffic source can be directly measured from the source. In most of the numerical examples 

provided so far, it has been illustrated that the first two moments contain very important information 

about the queueing behavior of the source and can be used to approximate the steady state queue length 

distribution accurately. However, it should be noted that in the previous examples, the first two moments 

of traffic sources have been analytically obtained from the source models. Hence, the question to ask is 

whether the moments measured directly from a source can be used to accurately capture its queueing 

behavior. In the next example, we demonstrate that from the mean and autocovariance measured from 

a real video source, the queue length distribution can be accurately computed. 

Example 5 In this example, we use the frame size trace of the JPEG-encoded movie "Star Wars" to 
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Figure 4.11: The autocovariance function mea- Figure 4.12: The simulation result and our ana- 
sured from JPEG-encoded movie "Star Wars" and lytical approximation for a multiplexer serving 79 
its approximation with the weighted sum of 4 ex- and 81 JPEG-encoded movie "Star Wars" through 
ponential functions. an OC-12 output link. 

simulate real video sources, and experimentally obtain the tail probability P({Q > z)) for these sources. 

Also, we use the mean and autocovariance function measured directly from the frame size trace to 
-+ compute the approximation e 2(o=) and compare it to the tail probability obtained through simulation. 

In Figure 4.11, we show the autocovariance function measured directly from the trace. As one can see from 

the figure, the autocovariance function has quite an irregular shape for the time difference I larger than 

1000, and hence cannot easily be expressed by a simple function of the time difference I. Therefore, using 

the least square method, we approximate the autocovariance function by the sum of 4 exponential terms 

which have very different decay rates, as shown in Figure 4.11. Using this approximated autocovariance 
= - 

function, we then compute the approximation e 2'"3' for the tail probability P({Q > z)) for 79 and 81 of 

these sources, and compare them to the simulation results in Figure 4.12. Because importance sampling 

based simulation cannot be applied here (since we are using a real trace of JPEG-encoded video), the 

95% confidence intervals displayed in the figure are quite large (especially for probabilities less than lop3. 

Nevertheless, as in the previous examples (where a stochastic model for JPEG-encoded video traffic is 

used for simulation, and the autocovariance function analytically obtained from the model is used to 

compute the approximation), the approximation follows the simulation results closely. 

An important application of our analytical technique is for call admission control. We assume that a 

new call is admitted to an ATM multiplexer with buffer size B if the resulting tail probability P({Q > 
x = B)) _< cp, i.e. cp is the maximum tolerable tail probability for a call to be admitted. 

Example  6 Consider an ATM multiplexer with an OC-12 link and 20000 cell buffers, serving only JPEG- 

encoded video calls. We model this ATM multiplexer by a fluid queue fed by the video traffic source model 

used in Example 4. Again, we assume a 10 msec time-slot size and ATM cell size; therefore the server 

of the fluid queue can serve at most 14672 cell in each time slot. In Figure 4.13, we show the exact tail 
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Figure 4.13: The exact tail probability, the EB ap- Figure 4.14: Admissible combinations of voice and 
proximation and our analytical approximation of JPEG-encoded video calls for an OC-12 link with 
the tail probability P({Q > x)) a t  x = 20000 cells 20000 cell buffers, computed by simulation and our 
versus the number of JPEG-encoded video traffic analytical approximation. The maximum tolera- 
source models being multiplexed. The service rate ble tail probability (cp) is set to 
(14672 cells/slot) of the fluid queue corresponds to 
the capacity of an OC-12 link. 

probability, the EB approximation, and our analytical approximation a t  x = 20000 for different numbers 

of inputs. As one can see in the figure, assuming cp = 10W6, our analytical approximation and the EB 

approximation estimate the maximum admissible number of video calls as 104 and 83, respectively. On 

the other hand, from the simulation results the maximum number of admissible JPEG-encoded video calls 

turns out to be 104. Therefore, the proposed approximation exactly estimates the maximum admissible 

number of calls (even though it slightly overestimates the tail probability), while the EB approximation 

underestimates the number by more than 15%. 

So far, we have considered ATM multiplexers serving a large number of homogeneous inputs. In the 

next experiment, we demonstrate the applicability of the proposed technique for heterogeneous sources 

by determining the admissible region for voice and JPEG-video calls a t  an ATM multiplexer. 

Example 7 In Figure 4.14, we show the admissible region for voice and JPEG-encoded video calls 

computed by simulation and our analytical approximation. 

The maximum tolerable tail probability cp and the buffer size B are set to lop6 and 20000 cells as in 

the previous example. Again, we assume an OC-12 link for the transmission link of the ATM multiplexer. 

As one can see in the figure, the admissible regions computed by simulation and the proposed technique 

are so close that it is difficult to  distinguish the boundaries of them. In fact, the proposed technique 

underestimates the maximum number of calls by less than 1% in terms of utilization. 



5 .  Conclusion 

In this report we have developed asymptotic upper bounds and approximations to the steady state 

tail probability P ({Q > x)) a t  an ATM multiplexer serving a large number of input processes. We 

model the ATM multiplexer as an infinite buffer fluid queue and characterize the aggregate input process 

as a Gaussian stochastic process. This enables us to avoid the classical state explosion problem that 

occurs when many traffic sources are multiplexed. After modeling the aggregate input process by a 

Gaussian process, we derived an exponential asymptotic upper bound e-%("+ 9) to the tail probability 

P ({Q > x)). This enabled us to find a good bound to the asymptotic constant. Further, we have derived 
z - 

another asymptotic upper bound e in terms of the maximum variance (02). Through extensive 
-+ numerical experiments, we have found that e 2 ( a - )  accurately approximates the tail probability for very 

general types of traffic over a wide range of queue lengths x. We also used this analytical technique to 

accurately predict the tail probability for voice and JPEG-encoded types of video sources. Further, we 

were able to use our analytical technique for very efficient admission control. 

In this report we provided results for discrete-time fluid queues in which the fluid arrival and service 

take place only a t  discrete times. Equivalent results for the continuous-time fluid queue have already 

been derived and are available in [ll]. Although we have currently focusing on the analysis of ATM mul- 

tiplexers, for future work we plan to concentrate on the analysis of intree-network statistical multiplexers. 
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