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THE ALGORITHM SELECTION PROBLEM III

APPROXIMATION THEORY MACHINERY

FORMULATION AND STRUCTURE OF THE APPROXIMATION PROBLE'\.

The purpose of this report is to analyze the algorithm selection prob­

lem within the framework of approximation theory. We will see that the

principle questions of this problem can be formulated within the traditional

framework of approximation theory. Even 50, the answers to many of the

questions require the development of very novel techniques and theories of

approximation. ~fore specifically then. our purpose is to systematically

examine these questions, to indicate what light can be shed on them from

the existing theory of approximation and to point out the new problems in

approximation theory that are raised by the algorithm selection problem.

Needless to say, we do not propose to solve these new problems in this

report. The principle questions are divided into four groups:

1. Norms and approximation fonns

2. Degree of convergence, complexity and robustness

3. Existence, uniqueness and characterization

4. Computation

The question of computation is deferred to another report.

For convenience and completeness. we summarize the abstract fonnulation

of the algorithm selection problem as presented in [ 6J. ll'e present the

model which includes selection based on features. but which does not include

variable performance measures. This latter aspect of the algorithm selection

problem has interesting consequences which we mention at some points, but

the main theme of the formulation is not affected by it.
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The model is described by the schematic diagram in Figure 1.
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Figure 1. Schematic diagram of the abstract model for
the algorithm selection problem.

Definitions for the abstract model in Figure 1.

9 = Problem space or collection

x = Member of ~, problem to be solved

y= Feature space identified with ~m here to suggest it is simpler

and of lower dimension than !P.

F = Mapping from 9' to !fIT which associates features with problems .

.N = Algorithm space or collection

A = Member of JQf. algorithm applicable to problems from 9'

S = Mapping from 9' to .J;/'

",n __
~ n-dimensional real vector space of performance measures
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p = Mapping from SJf x 9 to 9i'n determining perfonnance measures

II II = Norm on 91 n providing one number to evaluate an algorithm I 5

performance on a particular problem.

Note that the selection mapping depends only on the features f(x) but yet

the performance mapping still depends on the problem x. The introduction of

features may be viewed as a way to systematize the introduction of problem

subclasses in the model.

I. NORMS AND APPROXIMATION FORMS.

The question of norms enters in the final step from the algorithm per­

formance space ..£iln to the single number which represents the algorithm per-

formance. Since we have a norm on a standard n-dimensional vector space,

the possibilities are well-known. The most common are of the form

Ilpll = [~ w. p:] l/r
i=1 1. 1.

with typical values of r being 1, 2 or infinity (for the Tchebycheff or

minimax norm). However, the nature of the selection problem is such that .,

we can anticipate using non-standard norms. The reason is that the perfor-

mance measures tend to include essentially incomparable variables, e.g.

PI = computer time used (measured in seconds)

Pz = computer memory used (measured in words)

P3 = complexity of setting up the computer run (measured in

hours required by the programmer)

A plausible norm to use in such a context might be

where
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a for P2 ~ 10,000

10.5 for 10,000 < P ~ 20,000- 2o(P2) =
2*10- 5

for 20,000 ~ Pz ~ 30,000

7P2*lO-9 for P2 > 30,000

and

a for P3 < .5

a(P3) = 2 for .5 2 P3 < 2

P3 for P3 ..::. 2

There are two ohservations. one positive and one negative, about such

complicated norms that can be made based on current experience in approxima-

ticn. The negative one is that they do complicate the theory sometimes and,

more often. make the computations substantially more difficult. The positive

one is that the choice of norm is normally a secondary effect compared to

the choice of approximation form. That is. if one has a good choice of ;lpprox-

imation fonn, one obtains a good approximation for any reasonable nonn. This

implies that one can, within reason, modify the norm used so as to simplify

the analysis or computations. A significant corollary to this last observa-

tion is that one cannot compensate for a poor choice of approximation form

by computing power or technical skill in analysis.

We now turn to the crucial question of approximation forms which we

group into five classes:

a. discrete

b. linear

c. piecewise

d. general non-linear:
standard mathematical
separable
abstract

e. tree and algorithm forms.
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In order to discuss these choices, we need to formulate more precisely the

standard idea of approximation form as it currently exists in approximation

theory. The form is to be used for the selection mapping S(f(x)): ~ ~ ~

and we 'lisualize a parameter (or coefficient) space:£ plus a particular

form of the mapping. To show explicitly the dependence of 5 on the coefficients.

we may write S(f(x),c) at times. Specific examples of the five classes of

approximation forms are given below:

a. Discrete S(f(x),l) = computer program #1

S(f(x).2) = computer program #2

5 (f(x), 3) =

b. Linear 5 (f(x), c)

computer program #3

..2 2 3= cl+c2fl+c3ti+c4(flf2) +cs (f2-f3) +c6/f
3

Note that linear refers to the dependence on the coefficients c. and
1

not the features f
j

.

c. Piecewise linear

5(f(x),c) = cl +c2f 1+c3f 2+c4f 1f 2+cS/f2
for 1f]+f

2
, > 2

2
for If]+f 2 1 < 2 and f] ~ f 2

= c6+c7fl+Cgf2+Cgflf2+clOfl

cll+c12fl+c13f2+c14
f]-f2

for If]+f21 ::. 2 and f] .::. £2
=

1+f
l
+f

2

We see that the feature space is subdivided into pieces and

S(f(x),c) is defined linearly on each of the pieces.

d. Non-linear, Standard forms:

Rational: 5(f(x),c) =

Exponential:

Spline:

S(f(x),c)

5(f(x) ,c) = cl+c2fl+c3f2+cS(fl-c4)++c7(f2-c6).

o forf<c
where (i-c) + ={

f-c for f > c
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This is an example of variable pieces. If c4 and c
6

were constants.

then this would be piecewise linear.

Non-linear, Separable:

The effects of the different features (and their associated

coefficients) are completely independent of one another. The

exponential example given just above is also of this form.

The abstract non-linear form is an arbitrary function of the features f(x)

and the coefficients c.

c. Tree and algorithm forms:

f 1+£2 ..::. c 1?

NO YES

£2 ~ c 2 ? cSf1f 2+c4
> c ?

(f
l
+f

2
)2 S·

I

~
_._-

/
c
ll

+c
12

f
1S = c6 f 1£2 +c7

S = csf
2

+cg f
1

f
2

+c
1O S = S = clS+c16fl+c17f22

c13+c14f2

FUNCTION S(F,C)
SUM-O
DO 20 K=I, C(I)

20 SUM=SUM+C(K+I)'F(K)
IF( F(I) > C(I) ) THEN S~I = SUM(( C(C(I)+I))+I )
PROD=!.
IF( F(C(I)+2) < (C(C(l)+I)+F(2))(F(3) ) THEN PROD=F(I)'F(2)
DO 40 K=I. C(C(I)+3)

40 PROD = ( F(K)+C(K))'PROD+C(C(I)+K+3 )
S = C(I)'SUM+C(2)'PROD+C( C(I)+C( C(I)+3)+1 )'F(I)

The main thrust of approximation theory is for the case where the co-

efficients c are used to parameterize a relatively simple form (i.e. such

as the linear, piecewise linear and non-linear forms) . . The distinguishing
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characteristic of these cases is that the set of approximation forms can

(at least locally) be identified with a manifold in some ordinary finite

dimensional space. The approximation theory machinery is then used to

obtain the best coefficients or parameters (again, at least locally) from

this manifold.

One thus may conclude that there are three distinct situations as

far as the applicability of approximation theory machinery. The first and

most favorable situation is for the linear, piecewise linear and nonlinear

approximation forms. Here the machinery may be applied essentially as

it currently exists. This does not mean that all of thes~ cases are already

solved and all one has to do is to "capyll the solutions from somewhere.

Rather, it means that these are the kinds of problems the machinery is supposed

to handle and, if it is currently inadequate in some specific instance, it

needs to be extended in the direction it is already headed.

The second situation is for the tree and algorithm forms. lIere it seems

that a major change in emphasis is required. The exact nature of the new

machinery is certainly unclear and no doubt there are hidden difficulties which

are not apparent from a casual inspection. However, it seems plausible that

the general spirit of the approach and techniques may well be similar to that

already existing. For example, the piecewise linear forms may be visualized

as one of the simplest of the tree forms. The development an~ analysis for.

the piecewise forms (even for variable pieces) has progressed fairly smoothly

over the past 10 years and the resulting body of results is very much of the

flavor of the previously established linear and specialized non-linear theories.

There were (and still are), of course, some difficult questions for the piece-
,

wise linear, but the prospects do not appear to be too bad for developing a

useful body of approximation theory machinery for the tree and algorithm forms .

•
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The third and least favorable situation is for the discrete forms. The

standard mathematical approach results in stating that the problem is trivial

in this case. One ascertains the best selection mapping by a finite enumer­

ation. Unfortunately, the enumeration may well be over very large sets. Even

1000 elements (algorithms) are completely unmanageable in most instances and

it is easy to find problems where there are millio~s of algorithms to be con­

sidered (at least in some abstract sense). It is not at all clear how

algorithm selection procedures are to evolve in this situation and the develop­

ment of such procedures is one of the foremost open questions in this entire

area of study.

We close this section by repeating a fundamental observation: The most

important single part of the successful solution of an approximation problem

is the appropriate choice of the approximation form. Approximation theory

machinery comes into play after this choice is made. Thus it is essential to

have insight into both the problem and algorithm spaces and into the possible

forms one might choose for the selection mappings.

2. CLASSIFICATION OF PROBLEMS, DEGREE OF CONVERGENCE, COMPLEXITY AND ROBUSTNESS.

This section has two distinct parts. First, we introduce the concept

of classifying problems and second, we introduce three other concepts which

are intimately related to ways of classifying problems; These three concepts

degree of convergence, 'complexity and robustness -- are important for evalua­

ting the overall value of various approximation forms for the algorithm

selection problem.

2.1 Classification of Problems. An important approach to obtaining insight into

the nature of the problem space is to partition it into particular classes

of problems. Ideally there is a representative member or property of each
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class which is ospecially TelDvant to the selection of algorithms. The

exact nature of the classification depends, of course, essentially on the

specific problem space. Some typical examples include:
b

a. Numerical Quadrature: Compute If = J f(x)dx
a

Class 1: Those f(x) which have continuous curvature

Class 2: Those f(x) which have 5 or fewer oscillations in [a.b]

Class 3: Those f(x) which are analytic

Mathematics has a highly developed classification system for func-

tions (integrands f(x» which provides literally dozens of classes

relevant to numerical integration algorithms.

b. SchedUling a CPU in an operating system

Class 1: Batch processing mUltiprogramming, 1 CPU, 2 I/O channels

and 1 disk

Class 2: Time sharing, 2 CPU's, SO terminals

Class 3: Time sharing with a batch processing background.

2 CPUI S , 50 terminals, saturation loading

We see that the problem classification has many independent

variables giving a high dimensional problem space.

c. Scene an~lysis.

Class 1: One connected object. a line drawing with 50 or

fewer lines

Class 2: Up to 10 objects. each composed of from 1 to 10 rectangles,

triangles or circular arcs

Class 3: Unknown number of separated objects of one of 4 types;

distinguishing properties are color, texture, size,

position and orientation

It is easy to visualize thousands of partiCUlar types of scenes

to analyze.
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The idea of problem classification is simple, but important. Most

algorithms are developed for a particular class of problems even though the

class is never explicitly defined. Thus the performance of algorithms is

1.U1likely to be tmderstood without some idea of th.,.;p:rob1em ·class usoc:Lat-ed

with their development.

It is particularly common to attempt a classification system which

goes from easy to hard. Thus one visualizes a nested set of problems where

the innermost set consists of very easy probiems and the largest set consists

of very hard ones. Unfortunately, it is not always easy to make such 8

classification (at least in a reasonable way) for complex problem spaces. One

is lacking the insight to know in all circumstances just what makes a problem

hard or easy.

2.2 Degree of Convergence. The idea of degree of convergence comes from con-

sidering a sequence of approximation forms and asking: How much better do

these for.ms do as one goes further out in the sequence? "A standard example

would be for computing Log x by polynomials of degree O,lJ~3,•.• ,N, •.••

We assume that for each approximation from the sequence we have the best

coefficients possible.

In the present context, our ultimate objective is to choose the best

algorithm for every problem. If we let A*Cx) be the best algorithm for

problem x and let ~(x) be the algorithm chosen by the best coefficients for

the N-th approximation form, then the quest~on is: How does

ENCX) = "PCA"Cxllll - "pC'),CX)) II

behave as N gets big? Does it go to zero for every x? Suppose we set

max
xE9'
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does EN go to zero fast, slow or at all? The answer to these questions is

called the degree of convergence for the problem space ~ and the sequence of

approximation forms.

In standard mathematical situations this idea is well-developed and the

degree of convergence is known for many cases. In the standard case the

problem is to evaluate a function f(x) and the best algorithm A*(x) is taken

to be the exact value of f(x). The measure of performance of an algorithm

A that produces an approximation aex) is taken to be [r(x) - a(x) I. Thus,

for computing sin (x) for xE!JI = [0, 7f/2] we know that polynomial forms give

-N
EN KN for some constant K. In this case EN goes to zero extremely

fast. If one replaces sin (x) by ABS(x-l) J then EN - KN- 1 which is not

very fast at all.

The analogy with approximately evaluating a function can be carried

further, but theoretical information about the degree of convergence is

limited to 'lmathematical 'l functions. That is, functions defined in a mathe-

matical context where one knows a variety of properties. We can say J howe_ve!.•

that really fast convergence using simple forms (i.e. polynomials and similar

linear forms) requires that the function involved be very well-behaved. By

well-behaved we mean smooth (no jumps or discontinuities of any kind. includ-

ing in derivatives) and of a consistent global nature (i.e. if it oscillates

one place. it oscillates everywhere; if it is flat one place. it is flat

everywhere). A large proportion (at least 50%) of the "functions" that arise

naturally in the real world are not well-behaved in this sense.

2.3 Complexity. A fashionable idea related to degree of convergence is complexity.

Thus the complexity of a function is some intrinsic measure of how hard it is

to compute the function. The idea extends directly to solving problems by

noting that solving a problem is equivalent to computing the value of the

function which gives the solution of the problem.
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In actually measuring complexity, one docs several things:

A. Introduce some measure of the work involved in a computation.

Typical examples are: muubex of arithmetic operations. number of

mUltiplies, execution time of a real program on a partiCUlar real

computer, length of Fortran program needed, number of steps in a

Turing machine computation.

B. Assume"that one considers the most efficient scheme. There is

no limit on how badly one can evaluate a function, complexity is

measured with methods of optimal efficiency.

C. Restrict the kinds of steps in the algorithms used for the

computation. For example, polynomial approximation excludes

division so l/x may be difficult to compute, but if division

were allowed then this would be a very easy function. Similarly

Ix-.sl is very easy if ASS is allowed or if a test and branch

operation is allowed.

A uniform way to impose the above conditions on the complexity quest~~

is to say that the function is to be evaluated by a particular machine or,

essentially equivalent. by one of a partiCUlar class of programs for a

general purpose machine. We illustrate this approach for polynomials:
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MEMORY

N TERMS
COEF(K)

-
~NP~

X
\.

• ']",,
i SPECIAL I., MULTIPLYI"
~ ADD
i UNIT

i TEST N TERMS
UNIT FAIt

SUCCEED

OUTPUT

F

READ X
F=COEF(D)
DO ID K=I,NTERMS

F=F+X'COEF(K)
ID CONTINUE

PRINT F

(a) Polynomial evaluation machine
(b) Polynomial evaluation

program

Figure 2. Polynomial evaluation via machine or program.
The special MULTIPLY/ADD unit and TEST unit of the
machine are such that they can only and automatically
do execute the program on the right.

The advantage of the idea of complexity over that of the degree of

convergence is that much greater generality is achieved. Degree of con-

vergence can be normally interpreted as complexity using a very specialized

machine. For example, a machine which can only add and multiply but which

can be programmed to do this in more or less arbitrary sequence and with

arbitrary operands is considerably more versatile than the polynomial

evaluation machine shown in Figure 2. It could, for example. evaluate

the function X
l024

in 10 operations rather than the 1024 required for the
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strictly limited polynomial evaluation machine. This added generality also

makes it possible to place the standard mathematical approximation forms

into the same framework as the piecewise forms and the tree or algorithm

forms. One merely adds or changes a piece of ''hardware'' on the machine.

The disadvantage of the idea of complexity is that its generality makes

it very difficult to obtain specific results. Current research is very

intensive and yet concentrated on rather simple problems as seen in Table 1.

or Complexity ofComputation

Add two N-digit integers

Multiply two N-digit integers

Evaluate polynomial degree N

Median of list of length N

MUltiply two ~ x N matrices

Work
Standard
Method

N multiplies

N log N

N3

Optimal

N

?

?

N

?

Best Known

N

N loi N

[N/2]+2 mUltiplies

N
N2. 7---

Table 1. Summary of complexity results for some common computations

These problems are orders of magnitude simpler than the typical situatio~-

that arises in the algorithm selection problem. Thus t~ere is little hope

for the near future that we will obtain optimal algorithms for most of these

problems (except possibly from very limited subclasses of algorithms) .

In spite of the low probability of obtaining precise results about

complexity in the algorithm selection problem. there are three good reasons

to consider the idea. First. it provides the proper framework within which

to contemplate the problem. Second. the results for simple problems show

that the standard ways of doing things are often not optimal or even anywhere

close to best. Third. the high degree of complexity in "real" problems

indicates that simple-minded approaches are unlikely to do well and even

sophisticated approaches will often fall very short of optimal. Indeed. it
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is likely that further theoretical developments in the arell will indicate that

it is essentially impossible to obtain the optimal algorithms for many real

problems.

2.4 Robustness. Robustness is a technically precise term in Statistics which

relates the quality of statistical estimates in extreme situations. Thus

an estimation procedure is robust of its quality degrades gracefully as the

situation becomes more and more extreme. We dq not attempt to define this

concept precisely here but it is quite useful in considering the selection

of algorithms. It is a common phenomena for algorithms to do very well on

a certain class of "easy" problems and to do increasingly less well as one

moves away from these easy problems. A robust algorithm then is one whose

performance degrades slowly as one moves away from the problems for which

it was designed. Since the problem space is so large and so poorly under-

stood in many real situations, this quality can be extremely important.

There is a reasonable probability that one will face a problem with a com-

pletely unforeseen combination of attributes which invalidate some of the

"\>,'orking assumptions" used in the development of the algorithm. The worst

situation is, of course, an algorithm which fails completely and quietly as

soon as one moves away from the ideal problems.

Consider the simple example of estimating the wealth of the "typical"

student in a classroom. One has three candidate algorithms for the estimate:

the average wealth, the medium wealth and the mid-range wealth. In a

unormal" situation these algori tmns p;oduce similar estimates. anyone of

which is satisfactory. A difficulty occurs with Howard Hughes III (wealth

of $625 million) or John D. Rockefeller V (wealth of $398 million). The

mid-range now produces ridiculous estimates like $200 or $JOO million and

the average is not much better with estimates like $20 or $30 million. The
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median estimate is~ however. essentially unaffected by the pressure of such
a wealthy person and thus is a very robust algorithm for this problem.

While the average is more robust than the mid-range. it is not very satis­
factory in extreme situations.

While robustness of an algorithm is a quality of a'different and more

nebulous nature than things like efficiency, it is nevertheless a very

desireable one. It is related to concepts like complexity and degree of
convergence because it too varies over the problem space and a precise defi­
nition of robustness would involve some classification of the problems into
"easy. medium, hard, harder" classes. Note that robustness is relevant to
even a single algorithm while the other two concepts intrinsically involve
classes or sequences of algorithms.

Finally we note that robustness is frequently difficult to identify or
measure. In some situations one can achieve robustness with very simple
algorithms. In others it seems that robustness requires a complex algorithm

that has numerous tests for special situations and cases. _...---.

3. SURVEY OF APPROXIMATION FORM AITRIBUTES.

This section presents a survey of the general attributes of five

important types of approximation forms. Of necessity we speak in generalities
and thus there is a real danger that a casual reader is misled. The state­

ments we make about attributes apply "usually" or "commonly". Realistic
specific situations exist which exhibit behaviors exactly opposite the usual
one. We have already noted that the most crucial decision in the algorithm

selection problem is that of the approximation form. Ideally~ this process
goes as follows: one is intimately familiar with the problem space and with
a large variety of approximation forms. One weighs the various advantages
and disadvantages of the forms as they interact with the special features of
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the problem space. Perhaps some simple experimentation is made. Finally

a choice of form for the algorithm selection mapping is made which achieves

a good bal~ce with the overall objectives.

Thus one can visualize this section as a primer on the choice of

approximation forms. Unfortunately, it is only an elementary primer and

there is no substitute for detailed experience with a variety of real

situations.

3.1 Discrete Forms. One might tend to dismiss this case as Ildegenerate". After

all, if one is merely to select the best 9ne of three or eleven algorithms,

there seems to b~ little need for any elaborate machinery about approximation

forms. We do not imply that how to identify the best will be easy, rather

we say that concepts like complexity, degree of convergence, etc. will not

playa role.-· This reaction is appropriate in many cases. However, sometimes

there are some very interesting and challenging features of these forms.

The principle feature is that the finite number of algorithm is either

in fact or in concept a very large set. Even though we may have selected
•

just three algorithms, we often visualize that these are representative

samples from a very much larger set. Recall from the discussion of the

numerical quadrature problem that there may well be tens of millions of algo-

rithms of even a rather restricted nature. Thus in the mind's eye there is

almost a continuum of algorithms even though we may in fact be examining only

three of them. One of the major weaknesses of modern mathematical machinery

is in its ability to handle problems involving very large finite sets. The

emphasis has been on developing tools to handle problems with infinite sets

with a finite set of.

(e.g. the continuum) and one frequently draws

123say. 10 elements.

a complete blank when faced

We are really saying that the proper way to consider discrete forms is
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as a discretization of n continuum. One then applies some intuitive illc8s

about continuous forms (such as presented later in this section) ami hope­

fUlly obtains satisfactory results.

Unfortunately, we cannot continue a meaningful discussion here along

these lines because we have no knowledge of the possible continuum behind the

discrete set.

We conclude by recalling that robustness is a property of individual

algorithms and thus immediately relevant to discrete forms. It could be

evaluated for each algorithm in the discrete set. However, if the set is

large, then this is impractical. In this latter case. one probably must

attempt to transfer information about robustness from some underlying

continuum.

3.2 Linear Forms. There are so many obviously nice things about linear forms

that we might tend to concentrate too much on what is bad about them; or

we might tend to ignore anything bad about them. Some of these nice things

are:

-They are simple and efficient to use.

They are the easiest to analyze (by far).

They are easy to understand and visualize intuitively.

They are- often extremely successful in achieVing good approximation.

These observations imply that we should give these forms first consideration

and that we should try other things only after we are fairly sure that some

linear form does not suffice.

The bad thing about these forms comes from the following experimentally

observed fact: Many real world processes are not linear or anywhere close to

£Sing linear. In particular, we would like to emphasize that: Most of the

world processes are not a linear combination of Simple, standard mathematical
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entities. Since these facts are experimental rather- than theoretical, we

cannot prove them here. Indeed J certain theoretical results (e.g. the

Weirstrass Theorem) are frequently used to support just the opposite con-

elusion (e.g. one can use polynomials for everything).

Let us illustrate the situation by a trivial example: Our problem

space 9 has just one attribute of consequence and we call it x (which

identifies the problem with a real number that measure this attrib~te).

Our algorithm space..!4f is likewise simple with no attribute which we call

A. Suppose that x and A range between a andl and suppose the best algorithm

is for A = .27 if x < .41) A = .82 if .41 < x < .8 and is A = .73 for

x > .8. The best or optimal algorithm selection mapping is then as shown

in Figur~ 3 (left).

/
/

/
•

/
/

/

/
/

/
/

/

/

Figure 3. (left) Graphical representation of the optimal algorithm
selection mapping for a simplified example. (right) The
optimal plus the best linear algorithm selection mapping.
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If we attempt a linear form then we would have A = a + Bx where a and S

are coefficients to be determined. The optimal values a* and B* for these

coefficients give a mapping shown as the dashed line in Figure 3. This

mapping is clearly not very close to being optimal.

Once this completely linear form is recognized as inadequate, one then

tends to proceed on to something more flexible. A natural idea is to use

polynomials. e.g.

2 3 N-I
Ql+a2x+Q3x +Q4X +···+QNX

If one carries this out for N=4 (cubic polynomials) and N=20. one can

expect results such as shown in Figure 4 (prOVided one has been very careful

in the computations). It is hard to argue that either one of these selec-

ticn mappings is a good approximation to the optimal one. Note that in both

cases that the polynomials aTe truncated at either A=O or at A=l in order

to avoid obtaining non-existant algorithms for some values of x.
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Figure 4. Graphical representation of the optimal plus the
best cubic (left) and best 20th degree (right)
polynomial selection mappings-.- .
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Can one hope to do much better by choosing something besides poly-

nomials? One frequently sees Fourier Series (sines and cosines), exponen-

tia1s. Bessel functions, etc., etc. None of these give noticeably better

approximations. There is, of course, a way to obtain excellent results by

a linear form: A = Q + Bw(x). One merely chooses w(x) to be the optimal

selection mapping and then we find a*=O and B*=l gives a perfect approxima-

tioD.

This last observation shows the impossibility of making universal

judgements about linear forms. If you choose linear combinations of the

right things J then the linear fOnTIS can do very well indeed. In practice

though. one is usually limited to just a few possibilities and one has

very little information about the optimal mapping. Note that a typical

real problem has 5 to 15 dimensions in each of x and A variables. One is

not likely to hit upon the optimal mapping as one of the things to include

in the linear mapping.

We now attempt to motivate the above conclusions from the point of view

of degree of convergence and complexity. For standard mathematical situa-

tions there are numerous results about how the error of polynomial and

similar functions behave as the number of terms increases. The phenomena

of Figure 4 shows very slow convergence, or poor degree of convergence.

Of course, if the optimal selection mapping has a jump as seen in Figure 3,

there will always be a large error at that jump. We also see that the large

error at the jump induces large errors everywhere.

If the optimal mapping is continuous but has breaks in the slope,

then it is known that the degree of convergence for N-terms is like liN.

That means that if I term gives a unit error, then 10 terms give a .1 error,

100 terms give .01 error, etc. This is a very bad situation even for the
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simplest case of a I-dimensional problem space. Higher dimensions compound
this difficulty enormously. Thus if several of these breaks occur In a

K-dimensional problem space, then the error behaves like l/~where N is
again the number of terms. For K=5. if 1 term gives a unit error then we

would expect to need about 32 terms for 1/2 unit error, 1000 terms for 1/4

unit error and 100,000 for .1 error. For K=lO, the corresponding numbers
are 1,000, 1,000,000 and 1010 , respectively for errors of 1/2, 1/4 and .1.
Clearly polynomials and related functions are hopeless in such situations

except for the crudest of approximations to the optimal selection mapping.

How often can one expect the problem space to produce selection

mappings with these troublesome properties? Experimental evidence with

phenomena from physics and engineering problems indicates more than 50% of

these functions are unsuitable for polynomials and other standard linear
mathematical forms. This includes Fourier Series which are currently widely
used in engineering situations where they cannot possibly give accurate

results. There is an intuitive reason why one should expect this. Many--physical phenomena have several domains where different factors completely
dominate the behavior. As one goes from one domain to another there is a
kind of discontinuity in behavior even if there is no sharp break in the
slope. These disconti~uities affect the degree of convergence directly and,
expecially for low accuracies, lead to a very excessive number of turns

being required. Recall that polynomials, Fourier Series. etc. have the

property that their global behavior is completely determined by their

behavior on an arbitrarily small domain. This property is not present in

many real world situations and is another intuitive reason for doubting the

general applicability of the standard mathematical forms.

One must admit that the above arguments are taken from simplified and.... ~ '.
"
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specialized situations. The extrapolation to all kinds of algorithm sclec-

ticn problems is very tenuous indeed. Yet, we conjecture that things get

worse rather than better as one gets away from these situations into a

broad range of real world problems.

3.3 Piecewise Linear Forms. In simple terms. we break up the problem domain into

pieces and use separate linear forms on each piece. The motivation is to

circumvent the difficulties described in the preceding discussion. In many

cases the most crucial step is to determine the appropriate pieces and yet

these forms assume that they are fixed and given by some a priori process.

In these cases· we in fact have a two stage process: the first is an intuitive-

hopefully realistic, partition of the problem domain into separate pieces.

The second is the application of mathematical techniques to obtain the best

coefficients for each of the linear pieces. Note that there are often some

interconnections between the pieces (for example, broken lines are piecewise

linear functions of one variable which join up continuously) which give rise

to mathematical problems which are non-standard but still linear (and hence

----usually tractible).

It is difficult to draw general conclusions about this approach

because of the vagueness of the process for determining the pieces. Indeed

if the pieces are poorly chosen or too big, then one can have all the

difficulties mentioned with the traditional linear forms. On the other hand,

there are the follOWing hopefUl facts about this approach:

(i) Sometimes one does have good enough intuition to determine

the pieces so that a very significant 1mprovement is made.

Sometimes only a very few pieces are required for this

improvement to happen.

(ii) Sometimes the problem domain is small enough that one can,.
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break it up into more or less equal pieces that are small

enough to obtain good results and yet still not obtain an

intractible number of pieces.

(iii) There are theoretical results (admittedly again from the

narrow context of approximating functions of one variable)

which indicate that if the best selection of pieces is

made, then there are fantastic improvements possible.

to -t where N is the number of coefficients
N

If one piece gives accuracy I, then these convergence

that the degree of convergence may change from

"k 1lleINsomething

inVOlved.

That is so

rates indicate that about 10,000 or 5, respectively, coeffi-

cients are needed to give an accuracy of .01 in the determi-

nation of the best selection mapping. Such an improvement

obviously changes the entire nature of the problem.

We conclude that piecewise linear forms merit separate consideration

for three reasons:

A. They are non-standard in mathematical/scientific analysis and

might be overlooked if lumped into a larger class.

B. Once the difficult determination of pieces is made, then more

or less standard machinery can be used in furt~er analysis and

computation.

C. They have been very useful in a variety of difficult situations
•

and, while they are not a panecea. there is reason to believe

that they will continue to be so.

3.4 General Nonlinear Forms. It is not very profitable to discuss such forms

in the abstract. These ~orms include everything. including the best possible

selection mapping, and thus one can do perfectly with them. Thus we must,
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rC:llly be concerned with various specific classeS of nonllnour forms. 'l1lc

literature on approximation theory contains a considerable development of

a variety of such classes.

Rational Functions:

A partial list of these with simple examples is:

2
c

1
+c2x+c

s
x

c
4

+c
S

x

Exponential/Trigonometric Functions:

2 forc~+c2x+c3x
_00 < x ~ c4

Piecewise Polynomials: { 2 3 forc
S

+c
6
x+c

7
x +cSx c

4
< x ~ cg

2 forcIO+cUx+c12x c9
< x < 00

Unisolvent Functions: The set of all conic sections in the place.

Varisolvent Functions: A general class of non-linear forms which includes

the rationals, exponentials, etc.

There are several general statements that one can make about these

forms:

(i) A considerable (or even very extensive) amount of analysis has ~en

made of the theory of approximations

(ii) In those cases where degree of convergence results are available

(e.g. piecewise polynomials and rationals), they imply that these

special forms are much more ~apable of approximating a wide

variety of behaviors. For example. both rationals and piecewise

polynomials can do very well at approximating" a jump discontinuity

or a behavior like IX or 1/&.

(iii) The computational effort required to obtain best (or even very

good) coefficients of these forms can be substantial. The develop-

ment of computational methods is more difficult than for linear

forms. However, it is practical to carry out the~ computations in



26

a variety of cases.

Thus one expects (and observes) these forms to be useful in a variety of

situations. The key to success is to analyze onels particular situation

sufficiently to obtain general knowledge of the required behavior of the

selection mapping. One then chooses that nonlinear form which possesses this

behavior and for which one can handle the analytical and computational

difficulties.

In conclusion, the determination of the proper non-linear form is still

somewhat of an art and there is no algorithm for making the choice. On the

other hand. the degree of convergence and complexity results for rational

functions and piecewise polynomials show that they have great flexibility

and are likely to do well in most situations. Doing well might not be

good enough. In real problems the dimensionalities are high and needing

five coefficients per dimension implies that 5n coefficients are required

for an n-diemnsional feature (or problem) space. With n=2 this is a modest

25 coefficients, but n=10 would then require almost 10 million coefficients.

This 10 million may be considered doing well compared to the 6 decillion

coefficients of another approach. but in either case one cannot use the

forms.

3.5 Tree and Algorithm Forms. These forms are most intriguing because they

promise so much and have the mystery of the unknown. Perhaps it is a case

of the grass being greener on the other side of the fence. These forms may

have difficulties and disadvantages which are not apparent now but which

may limit their usefulness much more than one hopes.

The primary basis for their promise is their flexibility arid potential

for complexity. They certainly should complement the more traditional

mathematical forms. Their fleXibility and complexity might be the limita­

tion on 'their application. Computational ~ethods for good coefficients of
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traditional forms have taken many years to develop and even now can be

quite demanding. It may well be that the computation of good coefficients

will severely restrict the usefulness of these forms for many years.

The piecewise linear forms are an example of a simple tree form and

"their success bodes well for other cases. Computational techniques and

theoretical analysis for these forms is progressing steadily and we can look

for them to enter into the "standard and routine II category before long. This

development should serve as a usefUl guide for other simple tree and a1go-

rithmic forms. Still. we are very far removed from the time when we can

select as our approximation form a 72 line Fortran program and then compute

the best "coefficient values" (Fortran statements) for a particular appli-

cation.

Tn summary, we have very little hard information about these forms,

but they appear to hold great promise and to provide a great challenge for

theoreticians and practicioners.

3.6 An Error to Avoid. Occasionally one observes the following situation develop:
-~

(i) A real world problem is considered

(ii) A crude model is made of it. This model perhaps has some

undertermined coefficients or is to De manipUlated to obtain

predictions about the real world problem's solution.

(iii) A huge effort is spent in.obtaining accurate coefficients or

predictions based on the model.

In the specific instance at hand, the real world problem is the algorithm

selection mapping, the model is the approxi~ation form selected and the

effort is in determining the coefficients of this form. The error that one

can make is in believing that finding the best coefficients of the selection

mapping will result in good selections. In many cases there is no reason
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to believe that the best coefficients will give good selections. One is

particularly susceptible to making this error when using simple linear forms

for the selection mapping. One may refer to Figure 3 for an illustration

for this situation.

4. EXISTENCE. UNIQUENESS AND CHARACTERIZATION.

This section presents an intuitive summary of three principal topics

of approximation theory. The algoIithm selection problem presents some new

open questions in these topics and some of these are indicated. There is

more emphasis on summarizing the theory of approximations than on the impli­

cations for the algorithm selection problem.

4.1 The Existence Question. In concrete situations one rarely worries about

the existence of best selection algorithms (even though one continually

worries about the existence of good ones). Yet, from time to time this

question sheds important light on practical questions. Parameterization plays

an important role here, one is continually identifying algorithms by means

of a set of coefficients or parameters. The question of existence of a _.-­

best algorithm then becomes a question of the existence of a best set of

coefficients. In the simplest cases (e.g., linear forms) the coefficients

are just sets of real numbers and the question is readily reduced to a

problem about sets of .real numbers. One then attempts to show that:

a. infinite coefficients cannot be best

b. the algorithms depend continuously on the coefficients

It then follows from standard mathematical arguments that a best set of

coefficients exists.

This line of reasoning may fail a various points for nonlinear approxi­

mation forms. The failure is usually because of some weakness in the
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parameterization. A key point to remember is distinguish carefully

between an approximation form and the particular set of coefficients used

to parameterize it. Consider the two simple examples:

5(£,c)

In both of these cases C
z

= + ~ corresponds to a constant and hence a

perfectly reasonable function. In the first example this is due to a silly

parameterization, one should have c
1

+c
2

f instead. It is sometimes not so

easy to see such silliness in more complex examples. The second example

presents a more delicate situation, there is no familiar mathematical way

to rewrite this form so that the difficulty disappears. One can, however,

obtain a perfectly satisfactory parameterization by taking

be the values of S(f,c) at £=0 and £=1, respectively. However~ there is

now no nice way to express S(f,c) explicitly in terms of c l and cz'

True non·-existence is fairly common for non-linear forms and discrete

sets. The standard example is

5(f,c) = £ £ {-l,O,l}

Thus the feature f can take on only one of three possible values and we

choose to give S the form of the reciprocal of a quadratic polynomial.

Suppose now that the best selection (of all possible forms and problems) is

I if f=O and 0 if f ~ 1. Consider the case where cl=l; we have

5 (0, c) 1 1= 0

1+0*£2

S(-l,c) 5(+l,c)
1

= = l+c
2
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We can make S~l,c) as close to zero as we want by making Cz large, however,

if we set c2=m. then S(Q,c) is ruined. The difficulty in this example is

an essential one. There is no way to reparameterize S(f,e) so as to obtain

the best selection. yet we can come as close to it as we please.

Study of the existence question occasionally leads one to realize that

the approximation form chosen must be extended in some way_ A simple mathe-

matiea] example of this occurs for the two exponential form

S(f,c) = c2 f c4 fc e +c e
1 3

+ •• J.
= (1+E)c4 and expand the first term in a Taylors series after factor­

c 1e
C4f

to obtain

c f [ (<C4f )
2

ele 4 1+£c4f+ 2! +

ing out

This may be rewritten as

Now let c1=-c3, c1=a/e: and then let e: go to zero. The result is

afe c4 f

.....e..

and we see that this form wi th two exponentials also contains a function of

completely different mathematical form. However, the plot of fe f and

neighboring curves in Figure 5 shows that there is nothing exceptional about

SCf,c) near this curve. Even so, the coefficients are c
l

= +W. c
3

= _W,

There is a singularity in the parameterization near this curve. much as there

is a singularity at the north and south poles for the geographic coordinates

parameterization of the globe.
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Figure 5. The curve fe f and nearby curves of the form c1eC2f
+

with various values of c l ' cz' and c3"

A variation of" this phenomenon occurs with the piecewise forms.

Consider piecewise linear forms (broken lines) with variable break points.

Figure 6 shows two things that can happen when the break points come together.

On the left we see that two of them can converge so that the result is a

step function with a jump discontinuity. On the right we see that four

break points can converge so that an isolated peak (a "deltall function)

of arbitrarily small base and large height is obtained.
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Figure 6. Two ways that non-linear break points in a broken line fo~

can introduce new forms: a jump discontinuity (left) and
a 11delta" function (:right).

Study of the existence question can have implications for computations

in the following way. If either non-existance or the need for extending

the definition are discovered. then one can expect

the computations

computational difficulties.

C2f c4 f
c e + c e

I 3
if one is using the two exponential form

approximation is fe
f

(or nearly so). then

For example,

and the best

become extremely ill-conditioned and normally collapse in a blizzard of highly

magnified round-off errors.

So far we have discussed only classical mathematical forms, and we

expect the same phenomena to occur for the tree and algorithm forms. A very

interesting open question is whether other phenomena may occur.

4.2 The Uniqueness Question. One is usually not interested in this question

per se, any best (or good) approximation will do. However, its study, like

that of existence, can give insight into computational difficulties that

may arise.
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Global uniqueness is a rare property except for linear problems.

This fact is intuitively illustrated by the simple problem of finding the

closest point on a curve (a class of algorithms) from a given point (the

optimal algorithm). This is illustrated in Figure 7.

Cl.C 'role, ~E.fr~J.I.rI''''a
ql,,, .. il£._. c>1.t::.'-",tJ

'y n. .. """"A,fIMJ S.

"

se+- o~ P~"I.I'_1 "II L..ttc.

+'I" .. t """oW" O"r. "';DI:~h ....
I); b,,+' .~

Figure 7. Illustration of non-uniqueness of best approximation for a
nonlinear problem. In a linear problem, the curve would be
a straight line and every point would have a unique closest
point.on the line.

Two other properties of the uniqueness question are illustrated by

Figure 7. First is that almost all points have a unique best approximation

even if a few do not. Second. we see that when there is more than one

best approximation. they tend to be reasonably separated from one another.

The point x. for example. has best approximations Xl and x
2

. Finally, the

point y illustrates the most difficult situation where even though the
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closes~ point (Yl) is uniquely determined, there is another point (Y2) much

further away which is locally best and unique. That is to say, there is

no point close to Y2 which is closer to y than Y2 is.

There are enormous computational implications of the phenomena illustrated

in Figure 7. First. and somewhat less important, one can expect trouble

at those points where two or more closest points are close together. This

occurs near the three ends of the "lines of non-uniqueness II in Figure 7.

More important is the fact that computational schemes are almost always local

in nature and thus might well locate Y2 a~ the closest point to y. Further,

such schemes usually give no inkling that there might be a point much closer

to y. Note that this unfortunate situation occurs when we find a bad

approximation (Y2 is far from y) and our limited experience in these matters

does support the hope that "good" locally best approximations are likely to

be global best approximations.

4.3 The Characterization Question. A characterization theorem gives some property

of a best approximation which characterizes it, i.e., wh1ch allows us to --distinguish it from other approximations. An elementary approach to the

question goes as follows: If we have a best approximation S(F,C*) with

best coefficients C*, then we have minimized something, namely our measure

of performance I [p(S(F.C),F)1 I. At minima we have derivatives equal to

zero. Therefore, a characteristic property comes from the equations that

result from evaluating the derivative of the measure of performance and

setting it equal to zero.

The application of this approach is straight forward in many instances,

for example, the derivation of the normal equations for least squares

approximations. In other instances, the characteristic conditions might
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appear to be completely unrelated to this approach. However, there usually

is a direct relationship. For example. the conditions for optimality in

linear programming problems is obtained this way modulo the changes necess-

ary to include "differentiation" at the corners of multi-dimensional

polyhedra. As an example, we derive the classical alternation theorem of

minimax approximation using this elementary approach. Assume we want to

approximate f(x) by S(c.!) with coefficients c = cI '

max If(tJ - S(c,tJI = minimum
t

Then we wan t

so that

max If(t) - S(c,tJI = 0
t

j = 1,2 •... ,n

Now, the maximum only occurs at the extrema of If-51 and if we denote them

by t~, i=1,2,3, ... we have
1

If(t) - 5(c.tJl at t, = 0
1

j=1.2, ...•n

i = 1,2,3, ...

We now differentiate off the absolute value sign to get

S(c,t)at t~ = 0
1

j = 1,2, ... ,n

i = 1,2,3, ...

n
If S(c,t) is linear i.e., S(c,t) = ~

j =1

(lJ sign If - sl ~j(t)at t, = 0
1

c. $. (t) then we have
J J

j = 1,2, ... ,n

i = 1,2,3, ...

That this is a variation of the alternation theorem is seen as follows

(for the case of polynomial approximation, $.(t) = t j
-

l ).
J

First note that

there must be at least n extrema t~ because otherwise we could find a
1
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pOlynomial S(d,t) of degree n-1 so that

(2) S(d.t~) • sign If(t') - S(c.t~)1
1 1 1 i .. 1.2,.l, .. .,k~n

which contradicts the preceding relationship (1). More generally, the

extrema t~ must Occur with a combination of signs so that it is impossible1

to achieve (2) with any choice of coefficients d. Thus, using elementary

properties of polynomials. one. finds that there must be a set of extrema t~
1

so that

sign [ f - sl 0
at t!

1

i i+l(-I) or (-I) i.l,2, ... ,n+1

This is the classical alternation property that characterizes best minimax

approximations.

The main point made is that almost all characterization conditions come

from setting derivatives equal to zero even though in some cases it may look

much different because of special situations or because the conditions have

been manipulated after equating the derivatives to zero.

The implication for computation is that they also are based on findi~_

coefficients where the derivative is zero. Ih many situations the key to

an effective computational procedure is to find a proper interpretation of the.

derivative in the problem at hand. Th.~.se procedures are generally itQ'ative

in nature (unless one is lucky) and share many of the computational properties

of similar methods of elementary numerical analysis (e.g., Newton's method,

secant method, bisection, fixed point iteration). Unfortunately, these shared

properties are not that attractive in high dimensional problems. That is

that some of them are slow to converge or computationally expensive or

difficult to initialize for convergence. Some methods may have all three of

these unattractive properties in certain cases.
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5. CONCLUSIONS.

One objective of this paper is to explore the applicability of approxi­

mation theory to the algorithm selection problem. We conclude that there is

an intimate relationship here and that approximation theory forms an appro­

priate base upon which to develop a theory of algorithm selection methods.

We also conclude that approximation theory currently lacks much of the necessary

machinery for the algorithm selection problem. There is a need to develop

new results for and apply known techniques to these new cirCUMStances. The

final section of this paper is somewhat of an appendix which lists IS

specific open problems and questions in this area.

We note that there is a close relationship between the algorithm selection

problem and general optimization theory. This is not surprising since the

approximation problem is a special form of the optimization problem. We

have not attempted to detail this relationship here, but one may refer to

[8] where the relationship between non-linear approximation and optimization

is explored.

We conclude that most realistic algorithm selection problems are of

moderate to high dimensionality and thus one should expect them to be quite

complex. One consequence of this is that most straight forward approaches

(even well-conceived ones) are likely to lead to enormous computations for

the best selection. Indeed, the results of Rabin [5] suggest that this com­

plexity precludes the determination of the best selection in many important

cases.

Finally, we reiterate the observation that the sinlle most important

part of the solution of a selection problem is the appropriate choice of the

form for the selection mapping. It is here that theories give the least

guidance and where the aTt of problem solving is most crucial.
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6. OPEN qUESTIONS AND PROBLEMS.

We list 15 questions that are given or suggested by the developments

of this paper.

1. What is the relationship between tree forms and piecewise linear forms?

Can all tree forms be made equivalent to some piecewise form, linear Gr

non-linear?

2. What are the algorithm forms for the standard mathematical forms? Do

they suggest useful simple classes of algorithm forms? See [2, Chapter

4] for algorithm forms for some polynomial and rational forms.

3. Determine specific classes of tree forms where the current machinery of

non-linear approximation is applicable.

4. Develop some general approaches ~r method~ to classifying problems within

a problem space. This is related to the next problem.

5. Develop an abstract machinery for analYZing optimal features. Such n

machinery might well combine the theoretical ideas of n-widths and/or

enthropy [3] with the intuitive ideas of performance profiles given

earlier (7] .
-...e---

6. What is the nature of the dependence of the degree of convergence on the

dimensionality of the problem? Some results are known for polynomial

approximation to mUltivariate functions. Are these typical of what one

should expect in general?

7. What is the nature of the dependence of compleXity on the dimensionality

of the problem? Can results of 6. above be translated directly into

statements about complexity?

8. Obtain more-precise information about the nature of real world functions?

The generalities used in this report were obtained by selecting a large
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number of empirically determined functions from [1] and then observing

how effective polynomial approximation is. Are the results of this

experiment representative of other contexts? Can more precise infor-

mation about the properties of such classes be obtained?

9. Determine the computational complexity of the fallowing specific problems.

For simplicity, one may use one evaluation of f(x) as the unit of

computation and ignore all other work.

(a) Approximation to f(x) via interpolation by polynomials.

Assume various kinds of smoothness for f(x).

(b) Least squares approximation to f(x) on [0,1] by polynomials .

.Assume various kinds of smoothness for f(x).
I

(e) Evaluate f f(x)dx. This is closely related to the least
o

squares problem.

10. Fo~late a more precise and general concept of robustness.

11. Develop useful mechanisms to embed certain classes of discrete forms

into continuous ones. This is particularly relevant for non-standard

-mathematical forms.

12. Develop techniques to partition high dimension~l problem sets into subsets

where good linear approximations are possible. A particular instance

would be to develop adaptive algorithms for piecewise linear (no continuity)

approximations in high dimensions. See [4] for some work in one

dimension.

13. Develop existence theorems for various classes of tree form approximations.

Do the difficulties of coalesced knots that occur in spline approxima-

tion have an analogy in general tree forms?

14. What are the relationships between best algorithm selection and the

results in automata theory about computability and computational complexity?
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IS. Is there anyway to "differentiate" the tree form so as to obtain a

local characterization theorem?
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