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"The Generalized Inverse in Linear Programming 

An Intersection Projection Method" 

by L. Duane Pyle 

). Introduction. This is one of a series of papers dealing with dif-

ferent aspects of the same central theme: how the generalized inverse A +[8] 

of a matrix and related constructs may be used in connection with linear 

programming to gain greater understanding of underlying mathematical 

structure and to provide computational techniques for solution. 

Much of the material being presented has previously been rather 

inaccessible, the principal references being Ph.D. theses [1] and [9J 

and papers given at the 1959 RAND Symposium on Mathematical Programing 

held in Los Angeles (abstracts were published formally) and at the 1964 

International Conference on Mathematical Programming held in London 

(abstracts were published informally). 

In this paper the structure provided by a theorem characterizing 

duality in terms of orthogonality [id] is used to represent the direct 

(equalities) form of the linear programming problem together with a prob-

lem equivalent to its dual, as a restricted, fixed point problem 

Pz = z > 9 where P is a perpendicular projection matrix. Convergence 

of a "Kaczmarz-like" intersection projection method for numerical so-

lution of such problems is established. Consideration of computational 

techniques prompted a more genera) study leading to the discovery of a 

closed form for intersection projection matrices based on the Wynn 

e^ - Algorithem pi]. Further investigations of variations of this form 

are currently underway [12]. 
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In another paper in this series [2], the work of R. Cline regarding 

representations of the generalized inverse of a partitioned matrix [U,V] 

is applied to the classical, multidimensional transportation problem, 

yielding the closed form of the projection matrix P for such problems. 

Experience with computer programs employing Cline's results to compute 

solutions of two dimensional transportation problems using an accel-

erated intersection projection method is also described in [2^. 

2. Notation, definitions and supporting theorems. To maintain com-

pleteness, certain definitions and theorems will be summarized below. 

For motivation and other supporting details the reader is referred to 

reference []0] with which notations 1 agreement has been maintained. 

Consider the direct (equalities) form of the linear programming 

problem (to be abbreviated DLPP): 

Definition 2.1: Maximize (x,c) such that Ax = b; x > 9, 

(0 is a vector of zeros.) 

Definition 2.2: Let e ^ e ^ be any set of orthonormal eigen-

vectors of I - A +A; the set corresponding to eigenvalue 

\ - 1, the set corresponding to eigenvalue X = 0. 

Definition 2.3: Let be a specific set of such eigen-

vectors chosen such that 

c q where c^ = (I - A +A)c q 

and 

-(q+D A +b whe re 
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As in reference [10] it will be assumed that | | A +b| j | 1 c q| | * 9 

and that 2 < q < n - 1 since q = 0 implies A is nonsingular and 

q = n implies A = 0. If q = 1 the null space of A is a 1-dimensional 

linear manifold and then solution of the related DLPP is trivial. 

Definition 2.k: The vector x is said to be feasible for the DLPP if 

both x > 9 and Ax = b. 

Definition 2.5: The feasible vector x is said to be optimal for the 

DLPP if (x,c) > (x,c) for all feasible x. 

Questions relating to existence of solutions are not to be con-

sidered; it will be assumed throughout that the set of feasible solutions 

of the DLPP of Definition 2.) is non-empty and bounded and thus that both th^ 

DLPP and its dual have at least one (finite) optimal solution. A knowledge 

of standard notions and manipulations concerning vectors and matrices 

having real elements defined on E n will be assumed, where E n is real, 

Euclidean n-dimensional vector space. The reader is referred to [5] 

for a detailed treatment. Relevant properties of the (Moore-Penrose-

Bjerharnmar) generalized inverse are given in [8]-



Definition 2.6: Two linear programming problems, I and II, will be said 

to be equivalent if the set of feasible solutions of I coincides with the 

set of feasible solutions of II, and if, also, the set of optimal solutions 

of I coincides with the set of optimal solutions of II. 

Definition 2.7: 

Problem A: Minimize (x, - c q) such that Ex = 3, x > 6 

where c q = (I - A +A) c 

X1 
E = 

• 
x = 

X1 

P = 

x 
-

n 

(A +b, e ( q + , ) ) 

(A +b, e< n>) 

E A fb 

Problem B: Minimize (y, A b) such that Ey = p, y > 9 

where 

0 )T 

E = 

(q)T 

y = 

i 

L yn_ 

P - 4 

(-c q, e ^ ) 

= E <-c q) 

-T + 
Problem A': Minimize (a, 0} such that E a + A b > 0 

where 

a = 

a , 

is unrestricted, E and 3 defined as in 

problem B. 

Problem B 1: Minimize (y, p) such that E T y - c q > 0 

where 

Y = 
q+i 

is unrestricted, E, P and c^ defined 

as in problem A. 



Proofs for the following theorems are given in [1(3: 

Theorem 2.1: Problem A and the DLPP of definition 2.1 are equivalent; 

problems A and B l are essentially duals as are problems A 1 and B. 

Theorem 2.2: If x is optimal for problem A, then a = E x is optimal 

for problem A 1 . If a is optimal for problem A 1 , then x = A +b + E^ a 

is optimal for problem A. 

Theorem 2.3: If y is optimal for problem B, then y = E y is optimal 

for problem B 1 . If y is optimal for problem B 1 , then y = -c^ + E^ y 

is optimal for problem B. 

Theorem 2 M \ If x and y are feasible for problems A and 8, re-

spectively, then (x, y) = 0 if and only if x and y are optimal. 

Theorem 2.5: If Ax = b is solvable and 

(I - A +A - e ( q + , ) T ) x = x * 9 

where (I - A'A) x j* x and A b * 9 

then Ax = b where 

(A+b, A +b) ~ 

A +b) 
x = 

Theorem 2.6: I - A +A = E T E and A +A = E T E 



3. A restricted fixed point problem. Let the eigenvectors 
A A 

be defined as in Section 2 and consider optimal solutions x,y to prob-

lems A and B, respectively. By Theorems 2.2, 2.3 and Z.K 

0 = = (A+b + - c < l + I Yi 

i=l i=q+l 

i=l i=q+l 

= V l - a, ||cq||. 

Thus, for optimal x,y, the corresponding a.j and Yq +] must satisfy 

the relation 

- _ U s l 
q+1 

Y . = ii" h — a, 

IJA+b|| 

q n 
a + r* a _ (i) ~ q r- ~ _(i) 

Conversely, suppose x = A b + ) a. e and y = -c* + ) v. e 

L_ 1 Z_.
 1

 1 

i = l i=q+l 

are feasible for problems A and B, respectively, and that 

I lc
q
 I I - -

Y
 = 1

 - J — a. • It then follows that (x,y) = 0 which, by 
q 1 11**11 ' 

. A A 

Theorem l.k, implies x and y are optimal for problems A and B, 

respectively. Since for any feasible x,y, ( x , e ^ ) = a| and 

(y*,I
( q + l )

) = V q +,_ thus if 

; . t f . ^ U j . - U s l i i . ( S . j O J j . i j s l i i . -
+ ] I U + k l I I I fl k I 1 1 

then x and y are optimal. As a consequence of the above reasoning, 

it follows that: 
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Theorem 3.1: Any solution of the following system of n+2 equations in 

2n+l unknowns which is non-negative in its first 2n components, pro-

vides optima 1•solutions to problems A and B, respectively: 

5 < D T 

0 

E 

(q+T)T - iislLl 

l|A+b 

-1 

a, 

3 

0 

where the various submatrices and subvectors have been defined in Section 2. 

Proof: The first n equations of the system exhibited, together with the 

stated non-negativity condition, simply represent a matrix formulation of 

the feasibility conditions imposed by problems A and B, respectively. 

The last two equations add the necessary and sufficient conditions of 

Theorem l.k for feasible solutions x and y to problems A and B to 

be optima I. 

In order to avoid carrying along the constant of proportionality 

1 f ^ , consider the following linear programming problems: 
l|A+b|| 



(3.1) Maximize (x,c) such that Ax = b, x > 0; 

(3.2) Minimize (x,-c
q
) such that Ex = 0, x > 9; 

(3.3) Minimize ( x , - e ^ ) such that Ex = x > 9. 

Letting x = |[A bj|ST in (3-3) gives 

(3.4) Minimize | [A
+
b | | (x,-e ̂ ) such that 

I _ 1 
Ex = 

||A
+
b| 

8 = E(-
l lA+b|| 

A
+
b) = E e

( q + l )
, 

Fina1ly, 

(3-5) Minimize (x, - e ^ ) such that Ex = Ee ^ x > 9. 

That is, if jT is an optimal solution of the DLPP (3-5) then 

| [A b]|>T is an optimal solution of (3-0 and optimal values of the 

functionals are related as follows: 

Maximum of (x,c) = (A+b,c)-1 |cq | | ||A+b|| [Minimum of ( x , e ^ ) ] . 

Designating (3.5) as Problem A, the problem analogous to Problem 8 

has the form 

Problem B: Minimize such that Ey" = p, y" > 6 

where p = E ( - e ^ ) . 

Then if and y = -e <' }
 + £ ^.e ) are 

i = l i=q+l 

optimal for A and B, respectively, 0 = (ST,ŷ  - —at| -

Finally, letting <X| = a j + - a j > where it is required that 

CXj+> 0, > 0, the system exhibited in Theorem 3-1 assumes the form 

(3.6) 

E 0 6 9 

n— 

X 

0 E Q 8 y I <-e<") 

e T -(q +0T 1 
~ + ai 0 

? 0 ) T 8T 
-1 1 ai 

0 

--Jo-
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where it is required that 

rp = a, 

.
 a
l J 

> 9 

Any /j6> 9 such that C L ^ - i r thus yields optimal solutions to problems 

A and B, after performing the simple modifications described following 

relation (3-5). 

Observe that the row vectors associated with the coefficient array 

of the first n equations 

"e £> 9 el = 

0 E 9 9 
E e ( q + 1 ) 

E(-e ( , )) 

T -(q+1)T , , 
-(l)T T 
e^ e1 -1 1 

0 
0 

are mutually pairwise orthogonal and of length 1. The row vectors of 

each of the last two equations 
— - — 

= 

are orthogonal to the row vectors of each of the first n equations, 

although they are not orthogonal to each other. An equivalent system 

is obtained by replacing the row vector of the (n+2)nd equation by its 

component orthogonal to the row vector of the (n+l)st equation: 

- 0 ) 

r- - T 
^ ( D e 

e 

-l 

2 

sr 

- T 

9 

JT 

1 

~ / r 

sr 

J _ - ( q + D 
3 

_ J _ 

3 



Note that the (n+l)st and (n+2)nd equations have constant terms equal 

to zero. Upon normalization, the following system, equivalent to 

(3.6), is obtained: 

(3.7)0.*= 

E 
1 1 

0 8 e £ - < q + » 

0 
1 1 

E 8 9 
[ [ 

e T 1 -(q+i)T i _ J _ 1 1 

/ r s r j ST f — 
0 

/ H 0 ) T - ~ b 4 ~
¥ ( q + 0 T

' " 

1 1 

0 

The (n+2) rows ofCLare mutually orthogonal and of length 1. 

It is easily verified [9] that if the rows of a matrix 1) are 

mutually orthogonal and of length 1, that U is a partial isometry 
r e a 1 + T ' + T 

and that for anyAPartial isometry U = U. Thus CL = CL. Now, 

,'f 

employing Theorems 2.5 and 2.6, is an exercise in matrix algebra to 

prove the following restricted fixed point theorem: 



] 1 

p= 

Theorem 3.2: Consider the matrix P defined as follows: 

(3.8) 

h f t V )s(')T +I-(q +»)-(q +l)T 2- (1); (q*1)T_ £(q+l) ;(l)T i" ( 0 
5 5 

2-(q+l)-0)T. i;(l);(q+l)T 
5-

J.-0) T 

5 

J;(i)T 
5 

A +A- | ; ^ ) ; ( q + l ) T + l;(l)-(l)T 

i e ^ O T 
5 

I-(q+l)T 
5 

5 5 

2 

5 

2 
5 

3 
5 

P is a (2n+2) by (2n+2) projection matrix with the property that if Pz = z > 6, z ^ 9 

the first n elements of z provide (essentially) an optimal solution for the 

DLPP of Definition 3.1. More precisely, let 

v -
(2) 

,(3) 

where v ^ are n by 1; v ^ ^ and a r® single elements, 

_-e0> 

o 

o 

and Pz = z > 9 , z / 9. 
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Then either (a) $ = ||A+b|| v ^ is an optimal solution for the DLPP (3.1), 

where Maximum (x,c) = (A+b,c) + ||c q|| ||A+b|| (v ( 3 ) - v ( 4 ) ) , or (b) 

the set of feasible solutions is unbounded. 

Proof: Upon direct substitution, obtain 

a f a -

e t 0 6 

o r J - ( , • ! > 

« T e T 

e
T
 e

T 

I 

/ 3 

/ 3 

f - e o > fl 

e e 

A e(q+,)T 
_ 1 ] 

ft fl 

i e O T - f ^ D T l j 

E T E + | - e ( l ) - e ( l ) T - | - ( , ) - ( q + 1 ) T - j - ( l > ^ - ( 1 ) 

- | - ( q + 0 " (1)T E TE ; ( q + l ) - (q+1)T " ^ ( q + D ^ ; ( q + D 

- i h
( 1 ) T

 " ? - . <
q + , ) T

 ! " I 

^ - ( d t r .
( q + , ) T

 ^ 



Since, by Theorem 2.6, I- A +A = E T E and A +A = E T E, 

I- A +A- j - (1 >-(1)T |-(l)-(q +1)T 
5 e " ' 

1 - ^ = 1 | - (q+1 )-(1 )T A +A- | -(q+l)-(q+l)T i - ± - (q+1) 

i e(,)T D T 
3 
5 

2 

5 

5e (1)T - j ~ (q+i) t 
2 
5 

Similarly, 

(Xl-

e t o 

e t 

e
T
 e

T 

L 
e

T
 e

T 

e 

A 

/3 

j. 

/ J 

4 ; ( q + , ) - f j - e ^ 0 

3 v 5 

E e < « + " 

E(-.f>) 

V E " A +A -e ( q + l ) " ; < q * l f 

E T K - ' e O ) =: (I- A + A ) ( - e 0 ) ) = - -e(') 

0 0 0 

0 0 0 



Thus 
_(q +l)_(q +l)T . - ( q + D - O K 

_ e ( O e ( q + l ) T y ( 1 ) e ( D T 

e 

e 

o 

o 

9 

9 

0 

0 

Combining, obtain P = I - a + ( X +— 1 — <2^ (c2-+ -̂)T as exhibited in 

relation (3-8). If (l-cta.)z 4 Case (a) follows from Theorems 2.5 
+ ^ 

and 3.1. If (l-QO.)z = z z > 0 , then suppose^. is a vector such 

that Q-* - il, /p> 9. Thus, z p z > 8 for all |j > 0 and Q-z =jb-• 

By Theorem 3»li the subcomponents of z provide optimal solutions to 

problems A and B, respectively, thus to A and B after the appro-
#v 

priate modifications. Since the elements in z corresponding to posi-

tive elements in z may be made arbitrarily large by appropriate choices 

of the set of feasible solutions to problem A is then unbounded^which 

is Case (b) (note that this is contrary to the assumptions made in 

Section 2). 
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k. An intersection projection method. It is well-known [7] that if 

Pj and are two perpendicular projection matrices with ranges M^ 

and M 2 , respectively, then 

Theorem 4.1: 1im ( P l P 2 ^ V = ' ^ P 2 P 1 P 2 ^ V e x * s t s a n d e a c h c a s e i s 

V -> oo v - CO 

a perpendicular projection matrix with range M ^ O f ^ . 

If ST and y" are optima) solutions for problems A and B of 

Section 3, it follows from Theorem 2,k that the non-zero elements of 

x and y" are interlaced in the sense that if x\ J6 0 then y\ = 0 and 

if - ^ 0 then x. = 0. Thus, if the indices of the zero elements in 
' i I 

x! and are known, the problem of determining z fi Q such that 

2 = Pz, z > 9, is solved by application of Theorem with P^ = P and 

P^ = I where I is obtained from the (2n + 2) by (2n + 2) identity matrix 

by replacing diagonal l's by O's in positions corresponding to the 

zeros in x" and "y. It will be shown that even when the interlace pat-

tern is unknown, a variation of this procedure provides a sequence con-

verging to z = Pz, z > 6, z £ 9: 

Suppose P is a (real) t by t perpendicular projection matrix 

(i.e., P^ = P^ = P) having an eigenvector 9 corresponding to the 

eigenvalue \ = 1, where it is assumed that P ^ 0, P T I and = 

It may be remarked that in the case described in the preceding paragraph, 

it cannot be that > ® although no use will be made of this property. 
/ - \ 

Let {5 } (i = l,...,t) be an orthonormal set of eigenvectors of P 

forming a basis for real, Euclidean t-dimensiona1 vector space, E t, where 

correspond to \ = 1 , ^ ^ ^ correspond to \ = 0. 
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(k) (k) (k) 
Definition 1: If x is a real vector with elements x* , 

fk) 
then I is that t by t matrix obtained by replacing the "i"th 

(k) 

diagonal element of the t by t identity matrix by zero if x. < 0 

for (i = 1,... , t). 
Let w ( k ) = , W X W and x ( k + 1 > = P w ( k ) for <k - 0,1....), where 

1 for (i = 1 t). With this particular choice of an initial 

vector, it will be shown that 

Theorem k.Z: Either for some (k = 1,2,...) 

(I) X ( k > = P x ( k ) , X ^ > e , X ( k ) or 

(II) lim [x ( k >3 = z = Pz, z > e , z ^ e . 
k ~-> oo 

Proof: Since xf 0 )= 1 for (i = 1 t), I ( 0 , = I and w ( 0 ) = x ( 0 ) . 

Now therefore 

i»l 

x 0 ) . *,<»). P V t , ( o ) i S ( i ^ D . J i,(«) ) l 5(«) ) e(t) i t h u s 

i=l i=I 

( x ( l ) , | ( , ) ) = ( w ( 0 ) , ? ( 1 ) ) > 0. It follows that x ( ' W If x ( , ) > 9 

then Case I holds with k = 1, since P w ^ = P 2 w ^ = Px ̂  K Otherwise 

x ( , ) has at least one element which is strictly negative. Since 9. 

it follows that (x 0 ) , 5 ( l ) ) < ( I 0 ) x 0 ) , 5 ( 1 ) ) = ( w 0 , , C 0 ) ) . thus 

> ( x ( , )
t |

( , ) ) = ( w < ° ^ 0 ) ) > 0. which implies that 6. 

Now, w < ' ) = f ( W 0 ) j 5 ( i ) ) § ( i ) a n d x 0 2 ) ^ ( 1 ) . J ( w 0 ) , §
( i , ) 5

( i ) , thus 

i=l i = l 

0 which implies x ^ ^ f l and, as before, unless 

Case I holds with k = 2, it follows that (x ^, J^1 ̂  )<(w \ '), thus 

( W ( 2 \ §
( , W 2 \ S ( , W ( ^ 5 ( , W ^ ? ( I ) K « ( 0 ) . S 0 ) ) > 0 . Continuing 

in this manner, either Case I holds for some positive integer k, or two 
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(k) (k) 

infinite sequences [xv '} are generated having the properties 

l » ( W )
1 !

( l ) ^ W , S ( l ) ) > ( » W , 5 , , ) ) 4 , k - | , , ! , l ) ] for M . 2 . . . . ) 

where (w ̂ , ^ )> w 

and Pw The 

(k) (k-1) (k-1) last relation follows from the fact that if x = Pw - w x , then x ^ W ^ p V ^ W ^ , which is Case I. But PW< k>* w< k> 
t 

for (k=0,1,... ) implies that for all such k \ w ^ = Y (w , *) , 
ŝ  L » 

i=\ 

where ( w ^ , ^ * ^ ) / 6 0 for at least one value of i in the index set 

(i=g+l,...,t), from which it follows that 
| x M ) . 5 ( o t H 1 ^ ( w ( K ) , ? ( i ^ a ) . ? ( . ) i l < | | | ( K ( k ) j § ( i ) ) 5 ( i ) . s ( , ) | H | K ( k ) . § ( I ) | | 

i=l i=l 

for (k'K),],...). Since each x ^ possesses at least one negative element, 

n - w - 5 < " l l - i n w x 0 « ) . e ( i ) | | < | | x w . g ( i ) | | . 

The sequence of non-negative numbers is strictly monotone 

decreasing, therefore 1im {| | w ^ | | J exists. Denote this limit by 
k -4 00 

the value d. If d = 0 then 1 im [ w ^ J = lim { x ^ } = and 
k - 00 k - 00 

Case II holds with z = If d > 0, then there must exist a sub-

sequence [w f k )3 such that lim { w ^ } = v ^ > e , where = d. 
k - co 

There are then two possibilities; 

(i) v<°>-® 

(ii) V ( 0> * e 

(i) If 6, then lim 0 for (i=l,...,t). In 
k -» GO 

"(k) fl) 
particular lim (wv ,|v ; ) = But it was previously established that 

k - 00 

the sequence is monotone non-decreasing and bounded by 

the positive quantity The assumption that v ^ - 0 thus 

leads to a contradiction. 



(ii) If 8, then either P v ^ = in which event Case II 

holds with z = or the entire process may be repeated with x ^ 

replaced by Since v 6, I I and w v , thus 

P v ^ v ( 0 ) implies v ° W 0 W 0 W ° > . hence 

I | - > 11<| Pw > t I-I IV ( 0 > - 5 ° } I I - - -

~(k) ~(k+l) "(k) 
Now consider the sequence £x v '} where x* = Pw . The sequence 

{ w ^ } converges to v ^ . The sequence { x ^ } is a subsequence of the 

sequence { x ( k ) } , and thus d < | | x " ( k + I 5 ° } I |<l |x ( k ) - g° ) 11 for 

(k=0,l,...). Let dj =
 J t h a s b e e n s h o w n

 above that 

d . < d . Now I im { ;
( k )

} = lim £PW
( k
"

1
 > J = P 1 in, <

k
"

1
>} = Pv<

0 )
= Pw<

0 )
= 

k — oo k — oo k -> oo 

thus lim {|fx
( k )

-§
( , )

||3 = J|V
( , )

- 5
( , )

| | = d, < d . But 
k a> 

lim { | | | } = d, which provides a contradiction, 
k - oo 

In summary it has been shown that either Case I holds or the sequence 

{ w ( k ) } converges to thus satisfying Case II, or the sequence 

(k) A(k) (0) 
{w } possesses a subsequence [w } which converges to a vector v 

which has the properties required in Case II. But the appropriate portions 

of the previous development may now be repeated with v ^ in place of f ; ^ , 

in which case it follows that lim [ | fw | | } = lim C | | w ^ - v ^ | | 3 = 0 
k -» od k oo 

and thus that lim [w
 ( k
> } = v

 ( 0 )
, where v

( 0 )
= P v

( 0 )
, v <

0 )
> 8, v<

0 )
* 0, 

k -> oo 

which completes the proof of the theorem. 
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5. Numerical example and concluding remarks. To illustrate the results 

given in Section 4, consider the following linear programming problem: 

Maximize (x,c) where Ax = b, x > 9 

and 
A = 

1 -1 
b = 

10 

7 
c ~ 

Then 

= — A 14 

1 4 

5 -8 

4 2 
A +b = 1 

19 

-3 

27 
c q = c 14 

3 

1 

- 2 

0.8018 

0.2673 

-0.5345 

0.5731 

-0.0905 

0.8145 

1
 -

A + A =
 k 

9 3 -6 

3 1 -2 

-6 -2 4 

P = I - C L & + ( A (CL%)T 

A b|j = 4.7359 

c q|| = 0.2673 

(A+b,c) = 16y 

0.4214 0.0597 0.0620 -0.0460 -0.1056 0.4144 0.1604 -0.1604 

0.0597 0.0327 -0.0941 0.0976 0.0024 0.0629 0.0535 -0.0535 

0.0620 -0.0941 0.4460 -0.4491 -O.O895 0.0435 -0.1069 0.1069 

-0.0460 0.0976 -0.4491 0.4816 -0.0760 -0.0658 0.1146 -0.1146 

-0.1056 0.0024 -0.0895 -0.0760 0.9594 O.II56 -0.0181 0.0181 

0.4144 0.0629 0.0435 -0.0658 0.1156 0.4592 0.1629 -0.1629 

0.1604 0.0535 -0.1069 0.1146 -0.0181 0.1629 0.6000 0.4000 

-0.1604 -0.0535 0.1069 -0.1146 0.0181 -0.1629 0.4000 0.6000 
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Application of the iteration defined in Section 4 

To the example yields the vector 

"0.8968 

0.1583 

0.0000 

0.0000 

0.0000 

0.9347 

1.3807 

0.6194 

Now {Cil- , z) = 0.9992 where 

= -

-q+l 

I 

- F < " 

0 

0 

0.5731 

-0.0905 

0.8145 

-0.8018 

-0.2673 

0.5345 

0.0000 

0.0000 

Thus x = 

~0.8968~ "8.501 r 

2 j j V b U 0.1583 _ 1.5006 

0.0000 0.0000 

and (A+b,c) + |)cq|j j|A +bj|(v ( 3 ) - v ( 4 ) ) = 18.5004 

By way of comparison, the exact optimal solution for the example is 

x = 

8.5" 

1.5 

0.0 

with maximum (x,c) = 18.5. 
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Remarks: 

(1) The iterative method employed in solving the example required a 

large number of repetitions. This method is an example of what might 

appropriately be called "Kaczmarz-1 ike" iterations [6]. Recently the 

problem of accelerating the rather regular, albeit slow, convergence 

of such methods has been studied (see, for example [3], [11] and [12]. 

2 

In the numerical example given above, Aitken's 6 process was applied 

to the individual elements of the vector sequence, subject to the con-

dition that acceleration was employed only after successive differences 

of corresponding elements were monotonically decreasing. The result 

was that the 651 iterations required for "convergence" without acceler-

ation were reduced to 11, using the same convergence criterion. In 

another small but less trivial problem (n=8), 1274 iterations were re-

duced to 155 employing the same approach. A rather intriguing possi-

bility which invites further investigation is that the approximate 

nature of the "interlace" pattern in a pair of optimal solutions 

x'.y' becomes fairly well established after far fewer iterations than 

are required for convergence. Should this prove to be a general property, 

the method described might prove useful in determining near-optimal so-

lutions which may then be used in initiating a standard simplex solution. 

(2) For certain problems with special structure, such as the multi-

dimensional transportation problem [4], a closed form for A + may be 

used in implementing the intersection projection method [2], For prob-

lems with no special structure, Kaczmarz-1 ike iterations may be used in 

computing A +b, (l-A+A)c and the subcomponents of the vectors P w ^ 

using the techniques described in [11], in which case sparsity plays a 

significant, yet not an essential, role. 
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