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A NON-PROCEDURAL HIGH-LEVF.L LANGUAGE

FOR AUTOMATED DESIGN OF APPLICATIONS SYSTEMS

ABSTRACT

This paper focuses on the use of high-level non-procedural languaGes
for stating system requirements in computer-aided design of larqe­
scale information systems. Necessary and desirable features of
such a language are considered along with the resolution to a 9ro­
blem definition technique composed of two requirement statement
languages and their analyzers as they relate to the infor~ation

~Y5tem design process. Desirable features of such a high-level
language include the following:.

facilitates Machine Independent problem statement

machine analyzable (for completeness and design)

ability to provide complete information for design and
optimization process

provides non-procedural representation oriented toward
non-prog~ammers.

As no single language in present use has proven adequate for satis­
faction of all of the above features, a problem definition technique
was evolved from ADS (Accurately Defined Systems), SSL (SODA State­
ment Language), and PSL II (Problem Statement Language). Such an
aggregate technique has proved adequate for present needs in satis­
fying the above desirable features.

The statement of the design problem must be reflected in the re­
quirements statement language and then analyzed for completeness
by automated analysis techniques before system design and optimiza­
tion can begin.

The procedures and programs described are presently being incorpor­
ated into a framework that facilitates man-machine interaction for
problem definition and information systems design.



A NON-PROCEDURAL HIGH-LEVEL LANGUAGE

FOR AUTOMA~~n DRf,IGN OF APPLICATln~S SYSTEMS

COMPUTER AIDS FOR AUTOMATING TilE SYSTEMS BUILDING PROCESS

The wid~sp~ead expansion of computer applications coupled

with the less spectacular growth in sources of programming man­

power has created a critical situation motivating the developMent

of tools for automating the production of software. Similar in

concept to the compiler-compiler, an automated systems building

tool generates software for a range of applications far wider than

tt.e compilation of high-level programming languages.
The activities performed by computer aids for systems build-

ing include:

1. Procedures for stating pro~essing requirements.

2. Automatic analysis of processing requirements.

3. The design of program structure; i.e~, determining how
many modules must be generated and the size of each
module.

4. The design of logical tile structures and 109ical data
base.

5. Performance evaluation of hardware and software.

6. The allocation of files to storage devices~

,. The specification of storage struct~res for each file.d,.,
The emphasis of this paper is on steps land 2 above, whi~e steps

3 and 4 are discussed as they influence problem statement procedures.

Processing requirements are stated in a Requirements State­

ment Language (RSL) or Problem Statement Language (PSL) to permit

the statement of requirements for an information system without

stating the procedures that will be used to implement the syste~.

The effective use of an RSL is aided by a Requirements Statement

Analyzer (RSA), ·a program that verifies an RSL statement and that

performs logical analysis. Finally, an RSA produces a coded state­

ment to be used by additional software components that perform the

physical systems design and that automatically produce source

language statements implementing the information system described

by the RSL statement.

Steps 3 and 4 deal with the logical system design process

[1). As the logical, design progresses, a physical design must
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emerge in line with evaluation cf software and selected hardwor~

system components. Steps 5, 6, and 7 entail hardware design
development, data or0anization, _and system evaluation [2]. Pre­
vious design procedures have relied heavily on manual propessl.:s
for generation of designs and use of simulati~n for evaluation and­
refinement [3]. A methodology called SODA (~ystems Optimization
and Design Algorithm) has been derived for the total design process
from non-procedural problem statement through software design and
hardware selection to final implementation and performance evalu­
ation [4J.

EXPERIENCE WITH REQUIREMENTS STATEMENT LANGUAGES
As a proposed solution to a recognized need, the RSL con­

cept has been discussed and is now receiving increased interest in
the computing cornmunitya Early references include McGee [5] and
Pridmore [6]. Recent references include Sammet [7, p. 609],
Benjamin [8, p. 642J, and Merten and Teichroew [91. Teichroew [loJ
surv.eys seven proposed languages and presents a set of detailed
specifications for an ideal RSL.

The seven techniques discussed by Teichroew view the problem
in essentially the same way. They describe how to produce outputs
from inputs. All seven techniques provide some method for describ­
ing data relationships as the user views them. They provi~e some
facility for stating the requirements of the problem. Several
provide some facility for stating other data such as time and
volume.

Young and Kent [11] represent "the earlier work. Information
Algebra is the work of the CODASYL Development Committee [12J. Two
other efforts have been reported by Langefors [13 and 14] and
Lombardi [15J. Accurately Defined Systems (ADS) is a product of
the National Cash Register Company [16J and is described by Lynch
[17J. The Time Automated Grid (TAG) system, a 'product of IBM, was
developed by Myers [181 and is described by Kelly [19, Chap. 8J.
Finally, Systematics is the work of Grindley [20J.

ADS and TAG use a practical, straiqhtforward approach without
attempting to develop any "theory" of data processinq. ADS or TAG
consists of a systematic way of recordinq the information that an
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analyst would gather. ADS or TAG could be used by any experienced

analyst with very little instruction.
Young and Kent and Information Algebra represent a problem

definition approach that is more concerned, with developing a theory

and use a terminology and develop a notation that is not at all
natural to most analysts. Lombardi's approach requires the com­
pletion of the "system design before it can be used and resembles
a non-procedural programming language rather than an RSL.

However, Lombardi's work is relevant because it presents a

non-procedural technique for sta~ing requirements once the fil0.
processing runs have been determined. Langefors' technique uses
the concept of precedence relationships among processes and files

without indicating how these relationships are obtained and is
relevant to the analysis of a problem statement rather than to the

design of a syst~. However, it does suggest a .number of desira~le

features of a problem statement technique. Using a specialized
form of mathematics, Systematics provides facilities for stating

alternative actions under various conditions, for defining non­

quantitative information items, and for classifying information
items into a hierarchy.

Despite the availability of these RSL techniques, their use
has not been extensive. To the best of ,our knOWledge, the lan­
guages of Young and Kent and of Lombardi have not been used ExbC9t

in an expe~ime~tal way and the development of Systematics has

been discontinued after a field trial. Information Algebra has
been used only once by Katz and McGee (2l). It appears that the

development and use of TAG has been discontinued by IBM. ADS

appears to be gaining in user acceptance. The U. S. Navy [2],
in the process of designing a Financial System, and a number of
other firms [22] have used ADS as a problem statement technique.

This current work is the result of an evolutionary process

involving several different RSL's. The first development SSL/I
(SODA Statement Language/I) is the work of Nunamaker {4]. Exten­
sion of SSL/I resulted in the development of PSL/I (Problem State­
ment Language/I) described by Koch, Krohn, McGrew, and Sibley (23).
Experience with PSL/I indicated its shortcomings and led to PSL/II

possessing improvements suggested by Hershey, Rataj, and Teichroew
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(24]. Simul~aneous with the development of PSL/II, experience
with ADS demonstrated the value of a forms-oriented nSL for C"i:~"

of problem definition. Hence, this repor-t focuses on the descrip­

tion of SSL/II, an RSL encompassin~ the forms orientation of ADS

and the power of expression of PSL/II. The evolution of SSL/rI
is illustrated in Figure 1.

Figure 1. Evolution of SSL/II.

Overview Of Three Requirements Statement Languages

Past experience with problem statement techniques has

indicated that no existing problem statement technique is .adequate

for the complete expression'of user requirements relevant to all

aspects of systems design and optimization. This deficiency moti­

vated the initial development of SSL/I, the subsequent development

of PSL/II, and examination of ADS for desirable features. j('

ADS is forms-oriented, thereby making .it easy to use while

still being capable of specifying much of the basic problem defini­
tion. SSL/I possesses additional capabilities, particularly in the

specification of operational requirements consisting of information

on volumes, frequency of output, and timing of input and output.

Finally, PSL/II exhibits more powerful generalized facilities for

data description, processing requirements, and operational require­
ments.

SODA Statement Language/I

An SSL/I problem statement is composed of a collection of

Problem statement Units (PSU). A PSU consists of three components:

data description, processing requirements, and operational require­

ments.
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The data description is defined by Elementary Data Sets
and Data Sets. An Elementary Data Set consists ,of a Data Na:-:\c,

Data Value, Descriptor Name, and Descriptor Value. An example of
an Elementary Data Set is the sales of model X in the north region:

Data "Name Descriptor Value Descriptor Name Data Valu('

SALES MODEL_X (in the) NORTH REGION (is) 500.

A Data Set is the set of all Elementary Data Sets with the same
Data Name. An example of a Data Set is the sales of model X in
all regions of the country. There are four types of Data Sets:
input, storage, terminal (reports), and computed (output of a

?rocess).

Processing requirements consist of computational formulas

described by four kinds of Processes: COMPUTE, SUM, IF, and
GROUP (grouping 0t Data Sets that appear together on a report).

Time requirements. are specified by stating absolute time deadlines.
Statement of time requirements for reports is expressed via a Need

Vector indicating the time periods during which report production
is required. Data set volumes are computed from the volumes spec­

ified for each Elementary Data Set.
An SSL/I problem statement exhibits the following structure:

Problem Statement Name
List of Identifiers
List of Descriptors

Descriptor Name
The Number of Descriptor Values for each

Descriptor Name
List of Data Sets

Data Name
Volume of Data Set
Type of Data Set

List of PSU
Contents of each PSU

PSU Number
PSU Name
Need Vector
List of Processes
END of PSU'

END OF PROBLEM STATEMENT.

..-:~-

SODA Statement Analyzer

SODA Statement Analyzer (SSA) accepts the requirements
stated in SSL/I, analyzes them, and provides the problem definer
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with English-like

A PSL/II problem

with diagnostics for debugging his problem statement. SSA also
produces a number of networks which record the interrelationships
of Processes and data and passes the netwo~ks on to the SODA pro­
gram concerne~ with the generation of alternative designs.

Each type of input and output is specified in terms of the
data involved and the transformation needed to produce output from
input and stored data. Time and volume requirements are also

stated. SSA analyzes the statement of the problem to determine
whether the required output can be produced from the ava-ilable

inputs. The problem statement stored in machine-readable form
is processed by SSA which:

1. Checks for consistency in the problem statement and
checks syntax in accordance with SSL; i.e., verifies
that the problem statement satisfies SSL rules and i-s
consistent, unambiguous, and complete.

2. Prepares summary analyses and error comments to aid
the problem definer in correcting, modifying, and
extending his problem statement.

3. Prepares data to pass the problem statement op to the
SODA p~ograrn concerned with generation- of alternative
designs.

4. Prepares a number of matrices that express the inter­
relationships of Processes and data.

Problem Statement Language/II
-- .

To fulfill the needs outlined in this report. the ISDOS
(Information Systems Design and Optimization System) Project at

the University of Michigan has designed PSL/II (Problem Statement
Language/II), a prototype Requirements Statement Language, and is

currently implementing PSA (Problem Statemen~ Analyzer), a Require­

ments St~tement Analyzer to analyze PSL/II statements (25].
A basic develop~ent of ISDOS has been PSL/II (24J. a lan­

guage to communicate the needs of the user to the ISDOS software.

A PSL/II statement specifies the time and volume characteristics
which govern the production of outputs and the acceptance of inputs,
and the formulas to be used to compute the values of data elements

in the outputs. PSL/II is distinguished by the variety of facili­
ties it makes available for problem statement.

PSL/II is a free-form narrative language
statements conforming to specific syntax rules.
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In addition,

which the

statement consists of one or more sections to enable modular

problem definition. The possible sections include:

1. Real World Entity (RWE) section
2. Problem Definer (PO) section
3. Principal Data Set (POS) section
4. GROUP section
5. HISTORY SET section
6. DEFINE section
7. PROCESS section
8. FUNCTION section
9. CONDITION section

10. EVENT section.

A Real World Entity section describes some part of the

organization for which the information system is being defined.

This description is generally in the form of a narrative comment.

A Problem Definer section identifies a problem definer, the

location, e.g._ post office box, to ,which messages for the problem

definer are to be sent, and the sections of the problem statement

for which the problem definer is responsible.

A Principal Data Set section describes an input or output

of the information system being defined. The section includes

descriptions af:

1. Time of occurrence and volume of the POS.

2. Content and logical data structure of the POS.

3. Lists of PROCESS(es) and FUNCTION(s) which involve
the PDS. - ...-

4. Estimated cost of the PDS.

5. Value of the PDS on some arbitrary scale.

A GROUP section defines the logical struct~re of an inter­

mediate node in a hierarchical' (tree) data structure.

the section identifies the processes and functions in

group is involved.

A HISTORY SET section defines the logical s~ructure of a

grouping of data elements which must be stored by the information

system being described. Rules for updating the hiStory set are

specified along with the processes and functions in which the

history set is involved.

A DEFINE section assigns various attributes to a user defined

name. The attributes include:

1. ELEMENT, terminal node in a hierarchical data structure
2. DATA TYPE
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3. SYSTEM PARAMETER
4. KEYWORD for information retrieval
5. AUTHORITY for expenditure
6. SOURCE of information
7. SECURITY, access key to insure privacy
8. OPERAND
9. INTERVAL

10 . PREDEF INED.

In addition, this section enables:

1. Specification of synonym(s) for the data name being
defined.

2. Identification of FUNCTION(s) or PROCESS(es) which
either:

a. Use the data name being defined.
b. Modify the value of the data name being defined.
c. Derive the data name being defined.

3. Specification of the conditions which the value of the
defined data name must satisfy, e~g. validation rules.

4. Assignment of identifiers to distinguish instances of
the defined data name.

A PROCESS section defines a process which is a component

of the information system being defined. A PROCESS is a collection

of FUNCTION(s) and other PROCESS(es). The largest process is the

entire problem itself. Problem definition is performed top-down

so that the problem definer first defines the largest processes

and sUbsequently defines the smaller processes of which the larger

processes are composed until all constituent processes are de~d.

For each process, its operand(s) and result(s) are specified. In

addition, the relationship of the process to other processes and

functions is identified. Finally, information on the occurrence

and timing of the process is specified.

A FUNCTION section defines a set of computations for deter­

mining the value of an element defined in the problem statement.

The function definition is either a decision table or an arithmetic

expression. As in the case of a process, the relationship of the

function to other functions and processes is identified. Information

on occurrence and timing is also specified.

A CONDITION section defines a logical condition as a con­

ditional expression composed of arithmetic expressions, relational

operators, and boolean operators. For example,~a CONDITION section

may be included in a PSL/II problem statement to specify the condi­

tion, e.g. gross pay less than or equal to zero, under which a
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paycheck is not issued.
Finally, an EVENT section defines an event that must be

recognized by the information system being defined. Such an
event can then be used in either a PDS, PROCESS, FUNCTION, or
CONDITION section to specify its time of occurrence.

PSA accepts inputs in PSL/II and analyzes them for correct

syntax. PSA checks the PSL/II statement for completeness and

consistency and produces a coded statement of specifications for
the other modules of ISDOS.

Accurately Defined Systems

Accurately Defined Systems (ADS) is a product of the National
Cash Register Company [16] and is described by Lynch [171. ADS
consists of a set of forms and procedures for systematically re­
cording the information that a systems analyst would gather during

compilation of the user requirements for the information systen

to be implemented. The essential .elements of an ADS requirements
statement include descriptions of:

1. Inputs to the information system.
2. Historical data stored by the information system.
3. Outputs produced by the information system.
4. Actions. required to produce these outputs and the

conditions under which each action is performed. ---
ADS Analyzer

Computer-aided analysis of an ADS statement performs a

number of checks and prepares a ~eries of summaries of the state­
ment of user requirements. The simplest kind of check performed

involves the validation of ADS source statements to uncover any

violations of the syntax rules of ADS problem statement. Rules

relating to naming conventions, numbering conventions, information

linking, and the like are specified to quide the user during pro­

blem definition.
More complex checks of logical consistency and completeness

indicate errors in data element definition and in linking of in­
formation sources. Major errors of a logical nature include the

use of data elements not defined elsewhere in.the ADS statement
and the redundant definition of data elements with multiple
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Occurrences in the ADS statement. -Less serious errors involve
historical data elements for which no update procedures have b~CJl

specified and definition of data elements not- used elsewhere in
the ADS statement.

Summary reports produced by computer-aided analysis include
a directory of all data element occurrences, i~dexes to all data
elements and processes, matrices indicating the data elements
required by each process and the precedence relationships among

data elements, and graphica~ displays of the ADS forms submitted
for analysis. The data element directory consists of an alpha­
betical list of the data elements defined in the ADS statement,

the places of occurrence of each e~ement, and the information
source of each occurrence. The indexes assign a unique number to
each data element and process for identifying row and column

positions in ~e matrices indicating incidence and precedence
relationships. The incidence matrix uses process numbers as row

indexes and data element numbers as column indexes to identify the

data elements used in each computational process. The precedence
matrix uses data element numbers as both row and column inqexes to

indicate, for each data element, the data elements that must be
computed before the first data element can be calculated. Finally,

the graphical reports display the five kinds of ADS forms in,~h~,_

tabular manner that they would appear in manual use of ADS.

ADS
The ADS requirements statement begins with the definition

of all system outputs. Then definition continues with the identi­
fication of information that enters the system in order to describe
inputs to the system. Finally, the requirements statement is com­
pleted with the definition of historical data retained in the system
for a period of time and with the specification of computations

and accompanying logic that subsequently use the input and histor­
ical data to produce the system outputs.

Linking of information elements among the various ADS de­

finitions is accomplished in two ways. First, each element of data
is assigned a unique name that is always used whenever that element

appears in any ADS definition. Second, each use of a data element

in a report, history, or computation definition is linked back to--
-10-



its intorrnation source elsewhere in the ADS description. Hence,
all data elements are chained from output to input and each out-
put can ultimately be expressed in terms of inputs to the system.

Chaining is accomplished by assigning page and line numbers to all

ADS forms so that each use of a data element can be uniquely identi­
fied by the form, page, and line on which the element appears.

An example of an ADS requirements statement will demonstrate
the effectivenes~ of the concepts described above. The ADS example

describes the requirements of an application for payroll calculation~

The application produces an output report listing social
security number, narne, and current pay period wages for each em­

ployee. Also, ~he application includes a master file containing
the following information in each employee record;

1. Social security number.
2. Name.
3. Wage status.
4. Hourly rate or pay period salary.
5. Year-to-date.wages.

Inp~t to the application is a set of time cards containing the

pay period date, 'employee social security number, and number of

hours worked during the pay period.
ComputatioDs'include two types: current wage calculation

and year-to-date wage calculation. Current wage calculation is

performed for both salaried and hourly paid employ~es. Hou~ly -.
calculations are further subdivided into straight-time calculation

and overtime calculation. Finally, the logic definition. form pre-
,

sents a decision table specifying the conditions under which each

computation is performed ..
Note the facility for cross-referencing data elements among

the various forms. For example,. Section III of the report defini­
tion form in Figure 2a specifies the source of each element on the

report. Similarly, each ~ntry in the history and computation de­
finition forms in Figure 3 includes an indication of the sourc;e of
the data element specified. Since this example includes only wage

calculation and not master file maintenance, the source of all
history data elements cannot be specified here. Furthermore, the
forms may be incomplete in other respects due to the omission of

non-e••ential details, e.g. report headings, in this example.
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In Figure 2a, the Report Definition Form describes the
printed output produced by the application. Section I documents
the layout of the report by using the s~ls identified in the
upper right-hand corner to describe the printed fields. The
number in parentheses below each field refers to the numbered
items in Section III. Section III identifies the source of each
data item appearing on the report. Cross~referencing is, achieved

by specifying H, C, or I for history, computation, or input re­

spectively and by specifying page and line numbers that appear on
every form. Section,IV shows the sequence in which the output data
is listed on the report.

Figure 2b is the Input Definition Form, a description of
the input to the source program. Section I describes the format
of the input record and is linked to the complete description of

each field in Section II. Section II' identifi~s the alphabetic,

numeric, or alphanumeric character of each field and its size in
number of characters.

The History Definition Form, a.description of the master

file maintained by the application, appears in Figure 3a. Again,

each field is completely described. In addition, the memo entry

in line 5 refers to an explanation of the wage status code in the
memo list that actually apPears on the Input Definition Form.

:- ~

T~e computation and Logic Definition Forms are displayed in
Figure 3b. The Computation Definition Porm lists the variables to
be computed and the factors needed to perform the computations.

Again, the source of each fa~tor is specified. The entry in the
sign column identifies the arithmetic operation to be perfo~ed.

Since only binary operators are allowed, temporary variables must
be generated for intermediate results and are given mnemonic names
here for clarity •.. The Logic Definition Form represents a decision

table that specifies the conditions under which each computation

is performed. The computations are listeq across the top and

linked to the Computation Definition Form while the conditions are

specified down the righthand side.
ADS possesses obvious advantages over the traditional nar­

rative requirements statement technique. Narrative statements are
ambiguous and often incomplete while ADS erovides a standardized
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and systematic approach to system definition. Still, ADS is both

exact and precise while rema1n1ng hardware independent. ADS pro­
motes effective communication among systems personnel by imposing

a discipline that enables the efficient use of human and machine
resources. Development time is reduced while software. quality is

enhanced because the ADS technique enables checking for accuracy,
consistency, and completeness of the requirements statement. Above

all, dollar savings are realized with the use of ADS for problem
definition.

ADS Analyzer

The first module of the Problem Statement Analyzer for ADS

(PSA/ADS) performs source deck validation, lists the input cards,
creates a file containing all valid card images, and constructs ~

dictionary table to be used by other PSA/ADS modules. Source deck

validation checks compliance with ADS syntax rules and detects

errors that include:
1. Specification of an illegal form type, i.e., neither

Report, Input, History, Computation, nor Logic.

2. Improper form format.

3. Illegal data element name~

4. Invalid page or line numbering.
For each valid ADS entry, the dictionary table records:

1. Place of occurrence.
a. Form type.
b. Page number.
c. Line number.

2. Data element name.
3. Information source.

a. Form type.
b. Page number.
c. Line number.

Then, the dictionary is sorted, in ascending order, according to

the following keys listed in major to minor order:

1. Data element name.
2. Place of occurrence.

a. Form and entry type.
b. Page number.
c. Line number.
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The second module of PSA/ADS prints the data element di­

rectory and ~onstructs a symbol table containing all data ele~ent

names in alphabetical order. Obtained from the sorted dictionary

table, the data element directory lists the data elements in alpha­

betical order and provides the following information for each data

element:

1. Placefs) of occurrence.

a. Form type.
b. Page number.
c. Line number.

2. Information source(s).

a. Form type.
b. Page numbe.r.
c. Line number.

During

check.s

directory printing, the second module performs logical

to detect the following errors and warnings:

1. ERROR: NO SOURCE OF INFORMATION.
A data element has been used, but it has never been
defined as an input or as the result of a computation.

2. ERROR: ID IS NOT IN BODY OF FORM.
A data element has been defined as an identifier,
usually for sequencing purposes, of a data grouping
that appears on a History or Input Definition Form, but
the identifier does not appear as one of the data ele­
ments defined in the body of the form.

3. WARNING: NO UPDATE FOR HISTORY.
A data element has been defined in a History Definition
Form, but the element has not been defined as a result
of a computation. This situation ,is an error only if
the data element represents cumulative data, e.g., ycar­
to-date total.. If the data element represents relatively
constant data, e.g., employee address, that is updated
from input elements, this situation is not an error.

4. WARNING: NOT USED.
A data element has been defined as an input or as a
result of a computation, but it is not subsequently
used as an operand in a computation, as a report or
history item, or as a decision variable in a Logic De­
finition Form.

S. WARNING: REDUNDANT INPUTS.
A data element appears on more than one Input Definition
Form in which the element is not used as an identifier,
e.g., for sequencing purposes. Hence, only those input
definitions using that data element as an identifier
are probably necessary.
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6. WARNING: RF.nUNDANT IlISTORIES.
A data element appears on more than one History l)e­
finition Form in which the element is not used as .:In
identifier, e.g., for sequencing purposes. Hence, only
those history definitions using that data element as an
identifier are probably necessary.

7. WARNING: BOTH INPUT AND COMPUTED.
A data element has been defined as both an input and the

. result of a computation, but it does not appear as an
operand in a computation. Unless the input data element
is being used to verify the computed data element, eitnc'l:"
the input or computation definition is unnecessary.

8. ERROR: INVALID BACK REFERENCE.
A data element has been defined with an information
source that is not valid. possible causes include
specification of a report definition item as an informa­
tion source, specification of a non-existent page or
line number, and reference to an ADS entry (as an in­
formation source) where the desired data element docs
not exist.

9. ERROR: NO SOURCE OF INFORMATION.
A data element has been defined for which no inform~tion

source can be found, i.e., no other definition of·that
element can be found on any Input, History, or Computa­
tion Definition Form.

Also, the second module assigns a unique number to each data element

and prints an alphabetical list of the data elements used in the
ADS statement. Then, the sorted dictionary table is again sorted,

in ascending order, according to the following keys, listed-- iI1.4lllLl:-··­

major to minor order:

1. Form type (numeric).

a. Report: form type = 1
b. Input: form type = 2
c. Computation: form type = 3
d. Logic: form type = 4
e. History: form type = 5.

2. Page number.

3. Line number.

4. Entry type (each form consists of different entry types) .

The third module of PSA/ADS creates a file containing re-

cords of the computational processes defined in the ADS statement,

prints a list of the computational processes, and generates matri­

ces displaying the incidence and preced~nce relationships among the

data elements and processes defined in the ADS statement. The

third module reads entries from the twice-sorted dictionary table
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and for each computation entry, the wodule writes one or more

(depending on the number of operands in the computation) records

on the file of computational processes. Each record has the form:

1. Symbol table pointer of the data element that appears
as the result of the computation entry.

2. Symbol table pointer of the data element that appears
as an operand of the computation for which the first
pointer identifies the result.

At the same time, the third module inserts ADS form page delimiters

into the card image'file produced 'by the first module for forms

printing by the fourth module. The process file is then sorted in

ascending order. Since the data elements were placed in the syr'­

bol table in alphabetical order by the second module, this sort

lists the processes'in alphabetical order and the operands In al­

phabetical order within each process. Then, the third module qen­

erates the incidence matrix indicating the data elements that serve

as result and as operands for each process. These relationships

are easily derived from the result-operand pa~rs in the sorted

process file. Also, an alphabetical list of the processes is

generated with the operands of each process listed alphabetically.

Again, the sorted process file is sorted in ascending order ac-
~,;~j.,cording to the following keys in major to minor order:

1. Symbol table pointer of opera~d.

2. Symbol table pointer of result.

Finally, the twice-sorted process file is used to generate the

precedence matrix indicating the direct precedents of eac~ process.

Data element I is said to be a precedent of data element J if I

must be computed before J can be computed. A direct predecent of

J is a precedent of J that is not also a precedent of any other

precedents of J. To generate the precedence matrix, the module

reads each record in the twice-sorted process file and identifies

the operand data element indicated in the second field of the re­

cord as a direct precedent of the process result data element in­

dicated in the first field of the'same record.

Finally, the card image file created by the first module

is sorted, in ascending order, according to the following keys in
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major to m.i.nor order:

1. Form type (numeric, see keys of dictionary sort for
legend) •

2. Page number.

3. Line ntunber.

4. Entry type.

The fourth and final module reads the sorted card image file and,
prints the input in a tabular format similar to that of the ADS
forms developed by NCR.

N3vy Experience With ADS

The SSL/II language being developed is a result of exper­

ience gained from working with the United States Navy Material

Command Support Activity (NMCSA).· The Navy statement of require­

ments for a financial management system was expressed in ADS by

a large Accounting Firm. The ADS statement for the Navy system

includes descriptions for 79 reports and for the accompanying

history files, computations, and inputs which define 791 data

elements. An ADS analyzer, developed at the University of Michigan

[26] was used to check the ADS statement of requirements for com­

pleteness, consistency and logical accuracy. The ADS analyzer

produced information and reports that were used by the SODA s~J~&~

mant Analyzer. SODA was then used to (1) generate preliminary de­

signs of program structure and logical data base structure for the

batch application part of the system and ,2) to recommend a computer

system for the entire financial management system.

The- Navy integrated financial management system is a large­

scale design and implementation effort for more effective financial

management, particularly procurement accounting, within the agency.

The systems design effort commenced in May, 1971, and is expected

to continue for·4 to 5 years at a cost of 12 million dollars.

A systems design effort of this magnitude has an impact

upon many different offices within the complex organization of the

agency. Financial managers, the end-users of the system, are

scattered among many offices engaged in complicated communication
of varied information requirements.
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of the
followed

Behavioral Experience With ADS

The first objective of the introduction of ADS into any
environment is gaining user acceptance. ADS represents deviation

from the established practices and initial resistance to change

often occurs. ~s a result, many questions regarding ""DS a'nd its

impact upon the organization are raised.

In response to this initial user reaction, an ADS training

program is advisable. However, ADS is simple and straightforward

so less than one day of intensive training is all that is necessary

to adequately prepare individuals to begin using ADS. Then, further

training is required only to deal with the specific restrictions

imposed upon the use of ADS by the ADS Analyzer software. For ex­

ample, the Analyz~r restricts the length of data element names to
forty characters. •

The use of a form-oriented procedure such as ADS still

requires a significant investment of time and effort to realize

the return of a complete and consistent logical systems design.

Still, a number of users with ADS experience agree that ADS has

saved them considerable time during the specification of logical

system design.
,_ 'n ,.';~_"..

This savings is realized by the capability of the ADS

Analyzer to provide feedback information to the user. The 'n:h"""
should be able to do a better job of specifying his requirements

because he receives feedback much sooner in the system design

cycle utilizing computer analysis of ADS. Ordinarily, in a com­

pletely manual narrative system, ambiguities and omissions in the

logical system description are not discovered until physical design

or even coding is well underway. By then, many aspects of the

system design have been specified so that resolution of difficulties

may be impossible.

Physical system design is not the responsibility

ADS user. Completion of the ADS logical description i~

by the physical system design process that provides the specifica­

tions for programming.
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Performance of ADS

Experience has demonstrated that ADS is adequate for
_specification of the logical system. However, an ADS desc~iption

does not provide sufficient information for optimization of physi­
cal system design. Data on system performance rcquiremen~s wa~

collected to supplement the AD~ descriptiop in SODA State~~nt

'Language. Relevant data includes specifi~ation of the frequency

of occurrence of each ADS - described inp~t and report and of th~

volume of each input, report, and history.,

Other needed enhancements to computer-aided ADS include

Lacilities for describing data structures ~nd look-up tables and

for decision tables expressing processing )ogic and input validation

rules. Finally, additional software for generating report layouts

and program test data would add significan~ly to computer-~ided

ADS capabilities. Many of these enhancements are to be inpluded

in the SODA Statement Analyzer for SSL/II.

ADS Shortcomings

The decision to use ADS as the basis for SSL/II motivates

examination of the shortcomings of the current implementation of

machine-aided ADS and resolution of these issues before implementa­

tion of the system described in this report.

The most obvious need relates to the general orientation

of the problem definition technique to machine analysis. The

establishment of an effective machine orientation involves:diverse

issues as straightforward as conventions for naming data e~ements

and as subtle as the manner in which sources of information are

referenced.

The most fundamental modification of ADS to enhance:machine

analysis involves the manner in which occurrences of data elements

are referenced in order to specify sources of information. The

current implementation only allows a single source of information,

i.e. a back reference, to be specified for any data element oc­

currence. An improved implementation should also enable the spec­

ification of multiple references. Hence, references would be used

for the qualification of data element occurrences rather than the
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mere location of data element occurrences.

Another issue involves the facilities available for de­

scription of data structures. Currently, ADS allows only two types

of structure: data elements and forms. Although the simplicity

of the problem statement technique is an issue of primary concern,

the availability of some data structuring capability is essential.

Hence, an optional data structuring facility at least capable of

describing repeating groups should enable sufficient precision when

necessary while still preserving simplicity oth~rwi5e. Another

related issue involves the use of identifiers. The use of identi­

=iers in ADS is limited to the specification of sort keys in history,

input, and report definitions. The notion of an identifier should

be broadened to disti~guish each occurrence o~_a data grouping

from every other occurrence of the grouping.

Another issue relates to the problem statement facilities

for specifying computations and their accompanying logic. The use

of the Computation and Logic Definition Forms can best be enhanced

by the creation of a single form for specifying decision tables.

Such a form will greatly improve machine analysis of logical con­

sistency and completeness of the problem statement. While strong

logical connection is desirable, care must be take~ to prevent use

of the decision table form to "program" rather than to IIdescribe"

the system. Another use of the decision table form includes the

specification of validation rules for input data elements.

The final issue revolves around the need to provide time

and volume information for the arrival of inputs and for the pro­

duction of histories and reports. Although ADS currently accom­

modates volume information that is not included in machine analysis,

there is no formal method for expressing timing information. Hence,

the volume information is relatively useless' since there is no way

to specify the time period in which the given volume is produced

or to specify the time of occurrence for a report.

SSL/II, A FORHS-ORIEfTED FRONT-END PROBLEM STATEMENT TECHNIQUE

Motivated by the need for better methods of constructing

large software systems, research indicates ~hat problem statement
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techniques offer a feasible approach to statinq the requircmcnt~

of an information system without stating the processing procedures
that will satisfy those requirements. Thi~ approach further
motivates the development of software tools for validating the
consistency and completeness of the statement of requirements a~rt

for optimizing the design of the information system fUlfilling

those requirements.
Research conducted by the ISDOS Project has resulted in

the development of PSL/II. In spite of th~ powerful facilities
for problem statement possessed by PSL/II, examination of PSL/II

raveals the apparent need for a forms-oriented front end problem

statement technique. Characterized as a free-format technique
requiring knowledge of restrictive syntactic rules, PSL/II:may
require a good deal of training before it can be used by a"rela­
tively sophisticated problem definer. Therefore, the development

of a forms-oriented front-end problem statement technique seems
advisable to enable initial problem definition by a relatively
naive user. Then, software can generate a "PSL/II representation

so that the initial problem statement can be supplemented with the
use of the more powerful problem statement facilities available in

PSL/II. By translating the forms-oriented front-end probl~m state­
ment into a data base representation devel~ped for PSL/II, it may

be feasible to extract a PSL/II representation of the problem, .

statement from the data base. Then, the software can gene~ate

incomplete PSL/II statements for the problem definer to insert

the missing information. In this way, a complete PSL/II problem
statement can be constructed without requirinq user knowle4ge of
the full PSL/II syritax. It is important to note that the ~ata

base is the medium enabling use of two complementary problem
statement techniques: the forms-oriented technique is used during

initial problem statement preparation while PSL/II serves as a

vehicle for problem statement completion s~nce PSL/II is viewed
as the model for a complete problem statement.,

Exp~rience with A.DS at the U. "5. Navy Material cownd
Support Activity, Duncan Electric, and other installations supports
the choice of ADS as the basis for a front-end forms-oriented
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problem statement technique. This paper describes a design of

a forms-oriented problem statement technique based on ADS and for

development of software for problem s~atement analysis.

Specifications Of A Software System To Aid Statement Of User
Requirements

SSL/II is composed of two sublanguages to provide facilities

for expression of user requirements relevant to all aspects of
system design and optimization:

1. Phase I is derived from ADS and is augmented with
facilities for expressing performance requirements,
e.g. I/O volumes and frequencies, and data structures.
Phase I is forms-oriented and intended for use whilp.
initially preparing a statement of user requirements.

2. Phase II is a free-format representation of user re­
quirements produced by the software for subsequent use
in generating specifications for program modules and
files.

Three software packages are required for the proper inter­

action of the Phase I and Phase II representations of user require­

ments. The first software package analyzes the Phase I statement

and prepares diagnostic messages to the user to aid him in preparing

a complete and consistent Phase I representation. The second soft­

ware package produces the Phase II representation of the problem

statement in preparation for generating specifications for program

modules and files. Phase ~I possesses expanded capabilities that

enable the user to furnish additional details required for complete

problem statement. For example, procedures related to file security,

e.g. specification of passwords, might be defined during Phase II.

Hence, the second.software package invokes the query language to

form requests to the user. Generally, these requests are in the

form of incomplete Phase II statements with blanks to be filled in

by the user. Finally, upon satisfaction of all query requests, a

final database representation is prep~red for use during specifica­

tions generation and accompanying management summary reports are

generated for user perusal. These reports are graphic descriptions

of the information system to be designed and include summaries of

the following kinds of information:

1. Size
a. Number of processes and data elements defined.
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b. Estimated size of data base.
2. Data relationships

a. Incidence relations indicating the data itemsrequired by each computational process.b. Precedence relations among the data items.
3. Workload and performance

a. Number of reports produced in each processingcycle.
b. Estimates of system parameters, e.g. transportvolume.

The third software package is a control program which feeds diag­
nostic messages and query requests to the user and which relays the
resulting response from the user to the appropriate software pack­
age.

The justification for two phases of problem statement re­
presentation results from the need to provide an easy-to-use,
human-oriented method for statement of user requirements while
still maintaining a rigorous, complete representation for machine
analysis. Therefore, Phase I is forms-ori~nted to guide the user
during problem statement preparation while Phase II possesses
expanded problem statement facilities to insure a representation
suitable for complex computer-aided analysis.

A fourth software package accepts the data base represen­
tation generated by the previous packages and proceeds to generate
logical design specifications for program modules and files. The
logical flow of the software described herein is illustrated in
Figure 4.

A Data Structure Facility For A Forms-oriented Front-end ProblemStatement Technique

Experience with ADS indicated the need for a facility
capable of describing a wide variety of logical structures in
data description. However, it is important to realize that such
a facility must enable the problem definer. to specify the logical
relationships among the data items he describes without requiring
him to define the specific structures required to represent those
relationships. Hence, we describe a hierarchy of data structural
units to be made available to the problem definer in a simple
relational manner that will enable the interactive design of a
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data base for the application desired.

The Data Structure Class

The types of structures available to the problem definer
and the manner in which structures of each type are constructed
from other structures describe the data structure class of the
problem statement technique. The available structure types and
their component structures include:

structure Component Structure

Item

item
group
group relation
record
file
data base

none
item, group
group
group, group relation
record, group relation
file

The elementary data structure is the item. The item is
the smallest structural unit from which all available structure
types are ultimately constructed.

Group

A group is a collection of items or other qroups. A si~ple
group is a collection of items only while a compound group is a
collection of both items and groups.

A simple group can be used in two ways. One, it can be,
defined as a collection of items in order to give the collection
a name and other attributes of its own. An example is the group
EMPLOYEE composed of the items NAME, SoCIAL-SECURITY-NUMBER, WAGE­
STATUS, and RATE. Also, the items CHILD-NAME and AGE form the
simple group OFFSPRING. Second, a simple group can be defined as
a collection of string-valued items having a "collective value"
~ormed by concatenating the string-valu~d item components. For
example, the items MONTH, DAY, and YEAR form the group DATE-OF­
HIRE.

A compound group is a collection of a set of items, ~alle~
principal items, and a set of groups, called principal groups,
with this new collection having a name and other attributes of its
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own. For example, if the groups DATE-OF-HlRE and OFFSPRINr. ~rc

added to the simple group F.MPLOYRF., the result is a new compound

group EMPLOYEE consisting of the items NAMB, SOCIAL-SECURITY-NU~JH·:R,

WAGE-STATUS, and RATE and the simple groups DATE-OF-HIRE and OFF­
SPRING.

A group may be either repeating or non-repeating. A, .
repeating group may have an arbitrary number of occurrences for

each occurrence of the compound group containing the repeating

group. A non-repeating group has only one occurrence for each

occurrence of the containing compound group. For example, OFF­

SPRING is a repeating group because the number of children can

vary from employee to employee. However, OATE-OF-HIRE is a non­

repeating group because each employee·has only one hiring date.

Group Relation

A group relation is a mapping between two sets of groups.

The groups belonging to the first set are called parent groups

and those belonging to the second set are called dependent groups.
(

The group relation provides a way of relating groups.

For example, with a set of parent PERSON group occurrences:

{PERSON (JOHN DOE), PERSON (J. SMITH)}

and with a set of dependent SKILL group occurrences:

{SKILL 110001 , SKILL(2000), SKILL (3000l , SKILL(40001},

a group relation can be created to relate each person to the skill(s)

he possesses:

f<PERSON (JOHN DOE), SKILL (3000» ,}
<PERSON(J. SMITH), SKILL(2000»,
<PERSON(J. SMITH), SKILL(3000l> •

Also, the group relation provides a'way to establish a

hierarchic relation between two sets of items. In a hierarchic.
group relation, each occurrence of a dependent group must be sub-

ordinate to one occurrence of a parent group; the dependent group

occurrence cannot stand alone. An example of a hierarchic group

relation associates a parent group occurrence representing a person

with a set of dependent group occurrences representing the academic
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degrees he holds:
[PERSON(J. DOE), DEGREECBS,1970,PUP.DUE>}
lPERSONIJ. DOE), DEGREE(MS,1971,PURDUE) .

Generally, a hierarchic group relation is equivalent to a com­
pound group. However, two differences exist:

1. In a compound group, a principal group may be sub­ordinate to a single set of items only (the principalitems), but in a group relation, a dependent groupmay be subordinate to 'many sets of items (parentgroups).
2. In a compound group, the principal items do not havea collective name; the compound group name refers tothe entire collection of principal items and principalgroups. In a group relation, each parent group hasits own name.

An occurrence of a group relation consists of one or more
occurrences of each parent and dependent group, with each parent
group occurrence associated with one or more dependent group oc­
currences. If the group relation is non-hierarchic, each dependent
group occurrence may be optionally associated with one or more
parent group occurrences. If the group relation is hierarchic,
each dependent group occurrence~ be associated with one par­
ent group occurrence.

In a manner analogous to compound groups, a dependent
group in a group relation may be repeating or non-repeating. A
repeating dependent group has a variable number of occurrences
for each occurrence of its parent group: a non-repeating dependent
group has only one occurrence for each occurrence of its parent
group.

Record

A record is a collection of groups and group relations in
which one and only one group, the record-defining group, is not
subordinate to any other group. The record is used to define the
major entities of an application. For a given class of entities,
e.g. the employees of a firm, the principal items in the record­
defining group correspond to fixed entity attributes common to
all entities in the given class. The items in the principal group
contained in the record-defining group or in the dependent group
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subordinate to the record-defining group correspond to variable
~ntity attributes. variahle entity .:lttribut(~s (~.ithcr havl' IIlUtl jpl,·

values or ure not necessarily common to all entities in the ~iv('n

class.
The record-defining group may not be the dependent group

in a hierarchic group relation contained in the record. However,
the record-defining group may be the dependent group in a noo­
hierarchic group relation that relates records in the same file.
A later discussion of the file describes inter-record relations.

There are three record types: the group record, the tree

record, and the plex record. Each record type is a generalization
of the former type so that a special case of each type is identical
to the former type.

A group record is a single compound group. The compound

group is the record-defining group.

A tree record is a set of hierarchic group relations ar­

ran~ed as a tree so that each group has at most one parent, and

that one and only group, the record-defining group, has no parent.
A plex record is a set of group relations in which each

group except the record-defining group is the dependent group in

a hierarchic group relation. In addition, all groups in a plex

record may occur in any number of non-hierarchic group relations.

File
A file is a collection of records. Hence, a file represents

a collection of application entities, e.g. employees, projects,
or parts. The entities represented by a file may belong to the
same class, e.g. employees of a firm, or to different classes, e.g.

projects and the parts used in, each project.

In the sense that one record of a file can be processed
without referencing apother record in the same file, the records

of a file are independent of one another. However, the records
in a file may be "explicitly inter-related in a manner apparent to
the system. For example, the records in a file may be ordered on

the value of the record sequencer, a set of items contained in the
record. A file'with unrelated records or with records related only
by ordering is called an unlinked file. In "addition, more general
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relations are possible by permitting non-hierarchic group rclution~

between groups in different records or between records themselves
when the records, are group r~cords. A file containing records
participating in these more general explicit relations is called
a linked file. Of course, the records in a linked file may also
be ordered.

Data Base

A data base is a set of files.

Data Structure Definition

Having described the data structure class of the problem

statement technique, we now describe various facilities available
for definition of the data structure chosen by the problem definer.

The most common facility use~ the level-number concept for explicit
description of hierarchical data structures. However, the level­

number concept appears inadequate for definition of a plex record.

Hence, an alternative scheme involving a relational view of data
is also described.

Level-number

The level-number concept is presented for definition pur­
poses. It is not intended to imply that a problem definer will
describe his data requirements in terms of level-number. The

level-number structure will be constructed from the relational
model presented in the next section and not by the problem definer.

Once the data structure in terms of level-numbers is constructed

from the relational model it is clear that files can be automat­

~cally generated.
Level-numbers are used to describe the structure of a

record. The record-defining group is assigned level number 01;
groups and items within the record are assigned higher, but not

necessarily consecutive, level-numbers that do not exceed some
specified maximum va1up..

A group consists of all the items and groups following it
in the definition until a level-number less than or equal to the
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level-number of the first group is encountered. All structures,

i.e. items or groups, that form a level within the same group

must have the same level-number. Whenever a name of a structure

needs a level-number lower than the level-number of the name

immediately preceding it in the definition, the level-number must

be selected from the level-numbers of the structures that include

the preceding name.

To demonst~ate the use of level-numbers, a group record

consisting of the sinqle compou~d group E."1PLOYEE described earlier

is defined:

01 EHPLOYEE
05 NAME
05 SOCIAL-SECURITY-NUMBER
05 WAGE-STATUS
05 RATE
05 DATE-OF-HlRE (non-repeating group)

10 MONTH
10 DAY
10 YEAR

05 OFFSPRING (repeating group)
10 CHILD-NAME
10 AGE

However, with a plex record involving any number of non­

hierarchic group relations, level-numbers alone are inadequate

for data structure definition. Especially when a single dependent

group is subordinate to a single parent group by two distinct non­

hierarchic group relations, some sort of explicit mechanism; e.g.

sets, owners, and members as proposed by CODASYL [28]; is necessary

to supplement level-numbers. Such a mechanism is believed to be

too sophisticated for use by the relatively naive user for which

this forms-oriented language is intended. Even level-numbers them­

selves may be unsuitable for a naive usert

Hence, a relational view of data using only tabular data

structures fQr representing data relationships may be most suitable

for a forms-oriented problem statement technique intended for

relatively naive users. A table is most certainly a simple, easily

understood data structure. Still, a table is adequate for repre­

senting all the data structures described earlier.

A Relational Model Of Data

A relational model of data for large data bases is described
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by Codd [29 & 30]. The relational model uses tables for reprcs~nt­

ing the logical data base structure.

A table is a rectangular array with the following properties:

QUANTITY)

4
2
1
3
5

P3:

P4:

P5 :

PI: a table is column-homogeneous, i.e. all the items
in any single column are of the same type, but items
in different columns are not necessarily of the
sarne type.

P2: each item. in a table is either a number or a character
string.

all rows of a table are distinct.

the ordering of rows in a table is immaterial.

the columns in a table are assigned distinct names
and the ordering of columns in a table is immaterial.

As a result, a table repr~sents a relatipncaf degree n, where n

is the number of columns in the table. An example of a relation

of degree 3 is the" relation COMPONENT. The triple (x,y,z) belongs

to this relation if the part with part number x is a component of

the part with part number y and if z units of part x are needed

to construct one unit of part y:

COMPONENT (SUB-PART-NO, SUP-PART-NO,

2010 6020
2015 6020
2025 6020
3010 6030
3025 6030

We now demonstrate that the relational model possesses the

capability to represent the three types of records described

earlier. Hence, in addition to its comprehensibility, the rela­

tional model alsQ possesses flexibility.

Tabular Representation Of Group Records

Consider the example of a group record called EMPLOYEE

described earlier. The elimination of the principal groups DATF,­

qF-HIRE (non-repeating) and OFFSPRING (repeating) is accomplished

with three separate relations. These three relations convey all

~he information contained in the group record because the ~tem

SOCIAL-SECURITY-NUMBER uniquely identifies each EMPLOYEE and the
item CHILD-NAME uniquely identifies the children of each EMPLOYF.E:
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1';1PLOYEE (NAME. SOCIIII.-SECURITY-NUMBEH. WIIGE-STATUS, RATE)
DATE-OJ~-HIRE U~OCIJ'.l.-SECURITY-NUMBJ·:I~, MON'fll, DAY, YEAR)
OFFSPRING (SOCIAL-SECURITY-NUMBER,CHILD-NAME,AGE) .

Tabular Representation Of Tree Records
.

Consider the example of a tree record called PERSON:

01 PERSON (parent of SKILL group and CHILD group)
05 NAME
05 NUMBER
05 SALARY
05 SKILL

10 CODE
10 TITLE

05 CHILD (parent of PET group)
10 CHILD-NAME
10 AGE
10 PET

15 TYPE
15 PET-NAME

,
Al though identical to' a group record, the tree record PERSON

differs from the group record in addressability: an occurrence

of the group record must be retrieved as a complete unit, but

certain portions, e.g. the SKILL group, of an occurrence of the

tree record can be retrieved without retrieving the 'entire tree

record occurrence. Assuming that the following items uniquely

identify the corresponding groups:

Item Group

NUMBER PERSON
CODE SKILL
CHILD-NAME CHILD
PE~-NAME PET

elimination of the group structures yields the following relations:

PERSON (NAME,NUMBER,SALARY)
SKILL (NUMBER,CODE,TITLE)
CHILD (NUMBER,CHILD-NAME,AGE)
PET(NUMBER,CHILD-NAME,PET-NAME,TYPE).

Tabular Representation Of Plex Records

Consider an example of a plex record describing relation­

ships between suppliers and parts. The parent group SUPPLIER con­

sists of two items: SUPPLIER-NO and SUPPLIER-DESC. The depen0ent

group PART consists of three items: PART-NO, PART-OESe, and

QUANTITY. Two relationships between SUPPLIER x and PART y exist:
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the CANDIDATE relationship holds if x is capable of supplying y;

the ACTUAL relationship holds if x actually supplies y. Since
the dependent group PART is subordinate to the parent group sup­

PLIER by two distinct non-hierarchic group relations, level-numbers
alone are inadequate for representing both relationships. Assuming

that SUPPLIER-NO uniquely identifies each SUPPLIER and that PART­

NO uniquely identifies each PART, four relations represent both

groups and the two relationships between the groups:

SUPPLIER (SUPPLIER-NO, SUPPLIER-DESC)
PART (PART-NO, PART-DESC, QUANTITY)
CANDIDATE(SUPPLIER-NO, PART-NO)
ACTUAL (SUPPLIER-NO, PART-NO).

Evaluation Of The Relational Model

With the relational model, data description is performed

in a bottom-up fashion in contrast to the top-down strategy of

process definition. User specification of the relational pro­

perties of the data enables the software to construct the data

base by aggregating the tabular structures. User specification

of the processes defining the information system is accomplished

via the decomposition of the problem into its component processes.

Therefore, it appears that top-down decomposition is the domain

of the man while bottom-up aggregation is the domain of the machine

as man and machine co-operate in the design of application systems.

PROCESS GENERATION AND PROGRAM MODULE SPECIFICATIONS FROM SSL/II
DEFINITION

The SSL/II problem statement contains the basic information

required to generate program module specifications from processes

that may be grouped into program modules to eliminate unnecessary

transport of data from history files to program modules. For ex­

ample, if it is determined that two processes require the same in­

puts and occur in the same processing cycle, e.g. daily, then the

two processes become candidates for grouping into a single program
module.

SODA Generator of Alternatives (SGA) performs process gen­

eration by compiling four"comprehensive summaries for each SSL/II­

described report:
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1. Input summary.
2. History input summary.
3. Computation summary.
4. History output summary.

Since the source of each report item is specified in the SSL/II
statement, all sourceS that are either input items or history
items are included in the input and history input summaries, re­

spectively. For report items whose sources are computation items,
the input and history input items that are used as operand factors
in the computations are placed into the input and history input

summaries since the sources of all computation operand factors are
specified. Also, the computations require~ to produce the report

items are placed into the computation summary. Finally, the history

output summary is compiled by listing all history items whose
sources are items listed in either the input, history input, or

computation summaries. Therefore, the history output summary in­
dicates those history items that might be updated by the elementary
module being specified.

After generating a process for each SSL/II-speoified report,
SGA searches for candidates for program module grouping in two ways.
First, if some process requires history inputs either identical to

or forming a subset of the history inputs required by another pro­

cess, the two processes are identified as candidates for grouping.

If the two candidates for grouping occur in the same processing

cycle, grouping into a single program module is recommended by SGA.

Similarly, if two processes update the same history outputs

and occur in the same processing cycle, ?rouping into a single
program module is recommended.

Second, if some process produces history outputs either

identical to or forming a subset of the history inputs required
by another process, the two processes are identified as candidates

, .. .

for grouping. Again, if the two candidates for grouping occur in

the same processing cycle, grouping into a single program module

is recommended by SGA.

The four summaries and other specifications produced for

each program module become the basis for code generation in ful­
fillment of the requirements expressed in the original SSL state­

ments. Both human-readable and machine-readable representations

are produced to enable code genera~ion by either manual or automatic

mean. accordinq to the choice of the system implementer.. A pro-
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• to type version of SGA has been developed for use with the ADS

description of the Navy information system mentioned earlier.

Program Module Grouping For The Navy Example

For the Navy information system described earlie~ SGA

generated 62 program modules to produce the 79 ADS-specified re­

ports. For each program module, SGA provides the following informa­

tion to the SODA Performance Evaluator (SPE):

Brief program module title.
Frequency of occurrence.
program module size, in K bytes.
History files required for processing.
File device type.
Size, in bytes, of each history record input .

• Number of history records input for processing.
Volume, in number of lines, of printed output.

For each ~rogram module, module size and number of arithmetic

operations are derived from the quantity and complexity, e.g. al­

ternative logic paths, of computations in the summary produced by

SGA. Volume and size of history records input are derived from

the history input summary produced by SGA. SGA performs summary

analysis on all ADS-specified inputs required to produce each

history item. User-provided data on input requirements was then

used to derive the volume of the history item under scrutiny. The

size of the history item is provided in the ADS description. Final­

ly, twenty record groups were generated with each group containing

history items that are used together in a fashion that implies log­

ical connectivity. Each group of records forms the basis for de­

fining history file structures. An overview of the program~odule

specifications for fiscal reporting tasks is presented in Table 1:

aatch Program Module Workload Summary.

Note that process grouping into modules and history record

grouping into files were performed in a manner that spreads the

workload equally among the modules to the greatest extent possible.

Workload sharing is made possible by minimizing the variance in the

number of cpmputations in each module and by minimizing the variance

in the number of records in each file grouping.
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Table 1: Batch Program Module Workload Summary
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GENEP~TION OF CODE FROM ADS AND SSL/II

Figure 5 illustrates a COBOL program that conceptually

might be generated by SOpA to fulfill the requirements described

in the ADS statement of Figures 2 and 3. The program reads TIME­

CARD-FILE, an input file of time cards, a~d performs the ADS­

specified computations and logic to update EMPL-MASTER-FILE-IN and

to produce PAY-REPORT.

The ADS description primarily provides information for

generating the DATA DIVISION (part A of Figure 5) and the COMPUTE­

WAGES paragraph (part C of Figu~e 5) of the PROCEDURE DIVISION.

The remainder (part B of Figure 5) of the PROCEDURE DIVISION con­

tains the procedures and processing logic needed for the application

of the ADS logical definition to the physical implementation of the
ADS-specified report generation and history file maintenance.

Automatic production of this code necessary for physical implemen­

tation can be fulfilled in various ways. One software company has

incorporated an additional form called an execution definition into

its use of an ADS description for code generation. The execution

definition for.m details the processing logic necessary for driving

the execution of the logic and computations described in the ADS

forms. Another approach to code generation might involve the in­

corporation of code skeletons for cornmon 'data processing functions,

e.g. transaction processing for master tiles. Then, the code

~keleton is completed during code generation by providing the mis­

sing record sequencing identifiers and program termination condi­

~ions. Finally, automatic generation of code for report generation

features such as positioning of heading and output lines might be

~ccomplished by incorporating another feature into the computer­

aided SSL/II report definition form for specification of report

layouts and headings as in the original manual ADS system.

Still, computer-aided analysis involves much more than the

rudimentary approach to code generation previously described. Cur­

rent approaches to code generation from a non-procedural require-. .
menta statement merely translate logical descriptions into highly

~nefficient code, regardless of' the 'quality of the original logical

description. For example, deficiencies include the restriction of
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ID~:~IFICATION DIVISION,
PROGAA:I-IO. PlIl'ROLL-CALCUlATION.
~"I~~NT DIVISION,
CONFIGURATION SECTION.
SOURCE-CO~UTER. 6500.
OB.JECT-cortpUTER. 6500,
INPUT-OUTPUT SECTION,
FILE-CONTROL.

SEL£CT TIME-CARD-FILE ASSIGN TO INPUT.
SELECT PAl'-REPORT ASSIGN TO OUTPUT.
SELECT E~PL-~TER-FILE-IN ASSIGN TO TAPE01.
SELECT ~~PL-MASTER-FILE-OUT ASSIGN TO TAPE02.

PICTURE 9(4)V99.

PICTURE 99V99.
PICTURE: 9(6)V".

PICTURI: 9(9).
PICTtiRF. X(19).
PICTURE 9.
PICTURE 99V99.
PICTURE 9(6)V".

CO!o:PI:T£-I;N:;F.~_
IF SAUlRIF.D TlltN

MOVE &~PL-nATE-IN TO WAGF.~

GO TO cm·PUTF.RU"GES-!XIT.
IF HOCRLY THEN .

IF TItlE-CARD-HRS LESS OR EOU"L 40 THEN
CO~PUTE WA~ES - TI~r.-C"RO-HRS • E~2L-RATE-IN

GO TO co~:rl;TE-"AGES-r.XIT ELSE
COM.?UTE WAGES ~ 140 + ITlKE-CARD-HRS - 40) • 1.5) •

EMPL-RATE-IN
GO TO COMPUTE-WAG£S-EXIT ELSE

MOVE ~INVALID WAGE STATUS"" TO PAY· REPORT-NAME
HOVE ZERO TO WAGES.

CO~UTE-WAGES-EXIT.

EXIT.

PilCCFn;'R.F, DIVISIC~I.

OPEN-rILr.s.
OPf.11 INPli7 TIME-CARD-FILE, E."IP~-HASTER-FILF.-IN,

OPE~ OUTPUT PAY-REPORT, EMPL-HASTER-FILE-DUT.
MOVE SPACES TO PAY- !U':POR~REC,

READ-TIME-CARD,
READ TI~\E-CARD-rILE AT END GO TO END-TIKE-CARD-PILE.

READ-E~L-~ST[R.

READ FJo'IPL-~IASTEn-FILE-IN AT END GO TO NO-HATCH.
IF TIHE-C~RD-SSN EQUALS EHPL-SSN-IN THEN

PERFORM PROCE:5S-TIME-eARD
GO TO READ-TIME-CARD.

IF ~~L-SSN-IN LESS TIME-CARD-SSN THEN
GO TO READ-El'1PL-!1AST£R.

IF E.~PL-SSN-Itl GRF.ATER TIrolE-CARO-SSN THE.'l
GO TO NO-Ii1ITCH EL.'=.F;

M~VE ~SYSTF.~ F.RROR; to PAY-REPORT-NJl~

WRITE PAY-REPORT-REC
GO TO CLOSE-FILES.

PROCESS-TIME-CARD.
MOVE EHPL-HASTER-REC-IN TO Ef1PL-!<{ASTER-REC~OUT.

MOVE FMPL-SSN-IN TO PAY-R~PO~T-SSN,

MOVE EMPL-N~~-IN TO PAY-REPORT-NAME,
PERFOR~ COMPUTE-WAGES THRU COMPUTE-WAGES-EXIT.
ADD WAGES TO Ef~L-YTD-H~GES-IN GIVING EMPL-YTD-WAGES-DUT.
MOVE WAGES TO PAY-REPORT-WAGES.
~RITE E~PL-~{ASTER-REC-OUT,

WRITE PAV-R~POP.T-REC.

HOVE SPACES TO PAY-REPORT-REC •
END-TIME-CARD-FILt.

CLOSP. TI~£-CARO-FILE.

COPl'-F.~PL-HASTER.

READ EHPL-HASTER-FILE-IN INTO EMPL-MASTER-REC-OUT
AT END GO TO CLOSP.-MASTER.

GO TO COPY-E~~L-~~TER,

No-~IA'I'CH.

~IOVE ~NO ~IATCH TIME CAfUlr1I TO PAY-REPORT-NAME •
~rRITE P,'\Y-REPORT-REC.

CLOSE-FILES.
CLOSE Tlw::-C.a.RD-FILE.

CLOSE-HI\~TF.R.

CLOSE E:\?L-M.'\STF.R-FILr:-IN, EM.PL-HIISTER-FILE-OUT, PAY-REPORT •
S'.:JP RC~;.

c

9(6) •
9 (9).
9 (3).

9 U).
X(l8).

••
PICTURE
PICTU~

PICTURE

PICTURE: XU).
PICTURE: 9 (9).
PICTURE X(lO).
PICTURE X(l6).
PICTURE X(lO).
PICTURE $$$9,99,
PICTURE: XIl3).

PICTURE
PICTURE
PIC'TtIRE

DATA DIVISION.
PILE SECTION.
FD 'l'IHF.-eARD-FILE:

OATA RECORD- IS TIME-eARD
LABEL RECORDS OMITTED
RECORD CONTAINS 19 CHARACTERS.

01 TIIIF.-CARD.
02 TIME-eARD-DATE
02 'l'I!'lE-eARO-SSN
02 TI~E-ClIRD-HRS

PO PAY-REPORT
DATA RECORD IS PAY-REPORT-RE(:
LABEL RECORDS OMITTED
RECORD CO~ITAINS 136 CHARACTERS.

01 PAY-REPORT~REC.

02 FILLER
02 PAY-REPORT-SSN
02 FILLER
02 PAY-REPORT-NNKE
02 FILLER
02 P~Y-nEPORT-Wllr,ES

02 rILLE"-
YO EMPL-~!I'\STER-FILJ:-IN

DATA R:.COl\Il IS E.'IPL-l'IASTER-REC-IN
. LABEL RECOROS OMITTED

RECORD COSTAINS 40 CHARACTERS.
01 EfIPL-~:1I.S'i'£R-R.C:C-IN.

02 r:~rL-SS::-IN

02 F.~IPL-Nl\"r.-IN

02 E~lrL·\':7,.(;!:-STlITUS-IN

98 HO~RLY VALUE 1.
88 SA:..'\!l.I~:> VALUE 2.

02 f..':PL-R...CE-IN
02 E~PL-l'TO-~AGES-IN

PO EHPL-~:.AS.E:R-FILE-OUT

DATA RECO~D IS ~~PL-HASTER-REC-OUT

LABEL REC,}RDS O:-tITTED
Rf:CORD CO:"T,'\ISS 40 CHARACTERS.

01 E"1PL-":J\STI'R-~C-OUT.

02 E.·:;>L-Sf~:-OUT

02 E'!PL-::,\.':!:-Ol:'i'
02 E~rL-~AGE-STA~S-OUT

02 E"lPL-AATE-OUT
02 EMP~-YTD-WAGES-OUT

~ORKI~G-S~ORAGE SECTION.
01 WAGES

A

I...
o
I

Figure 5: COBOL Program F.xample



· ,
a one-to-one correspondence of reports and progr,lm module!;; \oil l".h
absolutely no consideration for module grouping. In addition,
failure to consider volume and frequency of access with regard t.o
the various history data items defined eliminates any possibility
for generating optimal file structures. Capabilities of computer­
aided analysis should include specification of optimal file design~
and grouping of single report generating modules in order to elimi­
nate excessive transport of data from files to programs. These
capabilities can only be achieved by extension of forms-oriented
programming specification techniques like ADS to true requirements
statement techniques providing supplementary volume and timing data
to the optimization software. Then, th~ potential of the computer
to aid the problem definer during the system design cycle can be
fulfilled.

CONCLUSION

Experienc~ with two problem statement languages ADS and
SSL/I in the design of an information system for the U. S. Navy
~otivated the development of a forms-oriented front-end language
called SSL/II to supplement the PSL/II language developed by the
~SDOS Project.

ADS analysis and program module generation software are
available on the CDC 6500 at Purd~e University., Concurrent with
the design of forms for SSL/II, implementation of software for
SSL/II analysis is currently progressing.
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