Purdue University
Purdue e-Pubs

Department of Computer Science Technical

Reports Department of Computer Science

1974

A Non-Procedural High-Level Language for Automated Design of
Application Systems

J. F. Nunamaker

Report Number:
74-127

Nunamaker, J. F., "A Non-Procedural High-Level Language for Automated Design of Application Systems"
(1974). Department of Computer Science Technical Reports. Paper 78.
https://docs.lib.purdue.edu/cstech/78

This document has been made available through Purdue e-Pubs, a service of the Purdue University Libraries.
Please contact epubs@purdue.edu for additional information.

https://docs.lib.purdue.edu/
https://docs.lib.purdue.edu/cstech
https://docs.lib.purdue.edu/cstech
https://docs.lib.purdue.edu/comp_sci

U‘J-

- 0 I-LEVEL LANGUAGE

FOR AUTOMATED DESIGN OF APPLICATION SYSTEMS

by:
J. F. Nunamaker, Jr., Thomas Ho, and Benn Konsynski
Computer Sciences Department

Purdue University
West Lafayette, Indiana 47906

CSD-TR 127

A _NON-PROCEDURAL HIGH-LEVFEL LANGUAGE .

FOR AUTOMATED DESIGN OF APPLICATIONS SYSTEMS

ABSTRACT

This paper focuses on the use of high-level non-~-procedural languacgces
for stating system requirements in computer-aided design of large-
scale information systems. Necessary and desirable features of

such a language are considered along with the resolution to a Dro-
blem definition technicue composed of two requirement statement
languages and their analyzers as they relate to the information
system design process. Desirable features of such a high-level
language include the following:

* facilitates Machine Independent problem statement
* machine analyzable (for completeness and design)

* ability to provide complete information for design and
optimization process

* provides non-procedural representatioh oriented toward
non-programmers.

As no single language in present use has proven adequate for satis-
faction of all of the above features, a problem definition technique

was evolved from ADS (Accurately Defined Systems), SSL (SODA State-
ment Language), and PSL II (Problem Statement Language). Such an

aggregate technique has proved adequate for present needs in satis-
fying the above desirable features.

The statement of the design problem must be reflected in the re-
quirements statement language and then analyzed for completeness

by automated analysis techniques before system design and optimiza-
tion can begin.

The procedures and programs described are presently being incorpor-
ated into a framework that facilitates man-machine interaction for
problem definition and information systems design.

A NON-PROCEDURAL HIGH-LEVEL LANGUAGE
FOR AUTOMATED DESIGN OF APPLICATIONS SYSTEMS

COMPUTER AIDS FOR AUTOMATING THE SYSTEMS BUILDING PROCESS

The widespread expansion of computer applications coupled
with the less spectacular growth in sources of programming man-
power has created a critical situation motivating the development
of tools for automating the production of software. Similar in
concept to the compiler~-compiler, an automated systems building
tool generates software for a range of applications far wider than
the compilation of high-level programming languages.

The activities performed by computer aids for systems build~
ing include: :

1. Procedures for stating processing requirements.

2. Automatic analysis of procesaing requirements.

3. The design of program structure; i.e., determining how
. many modules must be generated and the size of each
module.

4. The design of logical file structures and logical data
base.

5. Performance evaluation of hardware and software.

6. The allocation of files to storage devices.

7. The specification of storage structures for each file.
The empha51s of this paper is on steps 1 and 2 above, whlle steps

3 and 4 are discussed as they influence problem statement procedures.

Processing requirements are stated in a Requirements State-
ment Language (RSL) or Problem Statement Language (PSL) to permit
the statement of requirements for an information system without
stating the procedures that will be used to implement the system.
The effective use of an RSL is aided by a Requirements Statement
Analyzer (RSA), .a program that verifies an RSL statement and that
performs logical analysis, Finally, an RSA produces a coded state-
ment to be used by additional software components that perform the
physical systems design and that automatically produce source
language statements implementing the information system described
by the RSL statement. '

Steps 3 and 4 deal with the logical system design process
{1}. As the logical design progresses, a physical design must

-1-

emerge in line with evaluation of software and selected hardware
system components. Steps 5, 6, and 7 entail hardware design
development, data orqganization, and system evaluation [2). Pre- .
vious design procedures have relied heavily on manual processcs

for generation of designs and use of simulation for evaluation and
refinement [3]. A methodology called SODA (Systems Optlmlzatlon

and Design Algorithm) has been derived for the total design process:
from non-procedural problem statement through software design and -
hardware selection to final implementation and performance evalu-
ation [4].

EXPERIENCE WITH REQUIREMENTS STATEMENT LANGUAGES

As a proposed solutien to a recognized need, the RSL con-
cept has been discussed and is now receiving increased interest in -
the computing community. Early references include McGee [5] and
Pridmore [6]. Recent references include Sammet (7, p. 609],
Benjamin [8, p. 642], and Merten and Teichroew [9]. Teichroew [10]
surveys seven proposed languages and presents a set of detailed
specifications for an ideal RSL.

The seven techniques dlscussed by Teichroew view the problem
in essentially the same way. They describe how to produce outputs
from inputs. All seven techniques provide some method for describ--
ing data relationships as the user views them. They provide some
facility for stating the requirements of the problem. Several
provide some facility for stating other data such as time and
volume.

Young and Kent [11] represent the earlier work. Information
Algebra is the work of the CODASYL Development Committee [12]. Two
other efforts have been reported by Langefors (13 and 14) and
Lombardi {[15). Accurately Defined Systems (ADS) is a product of
the National Cash Register Company [16] and is described by Lynch
[17). The Time Automated Grid (TAG) system, a product of IBM, was
developed by Myers [18] and is described by Kelly [19, Chap. 8].
Finally, Systematics is the work of Grindley [20].

ADS and TAG use a practical, straightforward approach without
attempting to devalop any "theory" of data processing. ADS or TAG
consists of a aystamatic way of recording the information that an

—-2-

analyst would gather. ADS or TAG could be used by any experienced
analyst with very little instruction.

Young and Kent and Information Algebra represent a problem
definition approach that is more concerned with developing a theory
and use a terminology and develop a notation that is not at all
natural to most analysts. Lombardi's approach requires the com-
pletion of the_system design before it can be used and resembles
a non-procedural programming language rather than an RSL.

However, Lombardi's work is relevant because it presents a
non-procedural technique for stating requirements once the file
processing runs have been determined. Langefors' technique uses
the concept of precedence relationships among processes and files
without indicating how these relationships are obtained and is
relevant to the analysis of a problem statement rather than to the
design of a system. However, it does suggest a number of desirable
features of a problem statement technique. Using a specialized
form of mathematics, Systematics provides facilities for stating
alternative actions under various conditions, for defining non-
qguantitative information items, and for classifying information
items into a hierarchy.

Despite the availability of these RSL techniques, their use
has not been extensive. To the best of our knowledge, the lan-
guages of Young and Kent and of Lombardi have not been used—ex@ept
in an experimental way and@ the development of Systematics has
been discontinued after a field trial. Information Algebra has
been used only once by Katz and McGee {[21}. It appears that the
development and use of TAG has been discontinued by IBM. ADS
appears to be gaining in user acceptance. The U. S. Navy [2],
in the process of designing a Financial System,and a number of
other firms {22] have used ADS as a problem statement technique.

This current work is the result of an evolutionary process |
involving several different RSL's. The first development SSL/I
(SODA Statement Language/I) is the work of Nunamaker {4]. Exten-
sion of SSL/I resulted in the development of PSL/I (Problem State-
mant Language/I) described by Koch, Krohn, McGrew, and Sibley [23].
Experience with ﬁSL/I indicated its shortcomings and led to PSL/II
possessing improvements suggested by Hershey, Rataj, and Teichroew

-3

(24]. Simultaneous with the development of PSL/II, experience
with ADS demonstrated the value of a forms-oriented RSL For o
of problem definition. Hence, this report focuses on the descrip-
tion of SSL/II, an RSL encompassinag the forms orientation of ADS
and the power of expression of PSL/II. The evolution of SSL/II

is illustrated in Figure 1.

SSL/I

PSL/I

PSL/II f{gys
Ny, #

Figure 1. Evolution of SSL/II.

Overview Of Three ﬁequirements Statement Languages

‘ Past experience with problem statement techniques has)
indicated that no existing problem statement technique is .adequate
for the complete expression 'of user requirements relevant to all
aspects of systems design and optimization. This deficiency moti-
vated the initial development of SSL/I, the subsequent development
of PSL/IX, and examination of ADS for desirable features. il

ADS is forms-oriented, thereby making it easy to use while
still being capable of specifying much of the bhasic problem defini-
tion. 8SL/I possesses additional capabilities, particularly in the
specification of operational requirements consisting of information
on volumes, frequency of output, and timing of input and output.
Finally, PSL/II exhibits more powerful generalized facilities for
data description, processing requirements, and operational reguire-
ments.

SODA Statement Language/I

An SSL/I problem statement is composed of a collection of
Problem Statement Units (PSU). A PSU consists of three components:
data description, processing requirements, and operational require-

ments.

The data description is defined by Elementary Data Sets
and Data Sets. An Elemcntary Data Set consists of a Data Nanc,
Data Value, Descriptor Name, and Descriptor Value. An example of
an Elementary Data Set is the sales of model X in the north region:

Data Name Descriptor Value Descriptor Name DRata Valiur
SALES MODEL X (in the) NORTH REGION (is} 500,

A Data Set is the set of all Elementary Data Sets with the same
Data Name. An example of a Data Set is the sales of model X in
all regions of the country. There are four types of Data Sets:
input, storage, terminal (reports), and computed {ocutput of a
Frocess). '

Processing requirements consist of computational formulas
described by four kinds of Processes: COMPUTE, SUM, IF, and
GROUP (grouping of Data Sets that appear together on a report).
Time requirements are specified by stating absolute time deadlines.
Statement of time requirements for reports is expressed via a Need
Vector indicating the time periods during which report production
is required. Data set volumes are computed froﬁ the volumes spec-
ified for each Elementary Data Set.)

An SSL/I problem statement exhibits the following structure:

Problem Statement Name
List of Identifiers .
List of Descriptors
Descriptor Name
The Number of Descriptor Values for each
Descriptor Name
List of Data Sets
Data Name
Volume of Data Set
Type of Data Set
List of PSU
Contents of each PSU
PSU Number
PSU Name
Need Vector
List of Processes
END of PSU

END OF PROBLEM STATEMENT.

SODA Statement Analyzer

SODA Statement Analyzer (SSA)} accepts the requirements
stated in SSL/I, analyzes them, and provides the problem definer

-

with diagnostics for debugging his problem statement. SSA also
produces a number of networks which record the interrelationships
of Processes and data and passes the networks on to the SODA pro-
gram concerned with the generation of alternative designs.

Each type-of input and output is specified in terms of the
data involved and the transformation needed to produce output from
input and stored data. Time and volume requirements are also
sStated. SSA analyzes the statement of the problem to determine
whether the required output can be produced from the available
inputs. The problem statement stored in machine-readable form
is prodessed by SSA which: -

1. Checks for consistency in the problem statement and
checks syntax in accordance with SSL; i.e., verifies
that the problem statement satisfies SSL rules and is
consistent, unambiguous, and complete.

2. Prepares summary analyses and error comments to aid
the problem definer in correcting, modifying, and
extending his problem statement,

3. Prepares data to pass the problem statement on to the
SODA program concerned with generation of alternative
designs. '

4. Prepares a number of matrices that express the inter-
relationships of Processes and data.

Problem Statement Language/II

To fulfill the needs outlined in this report, the ISDOS
(Information Systems Design and Optimization System) Project at
the University of Michigan has designed PSL/II (Problem Statement
Language/II), a prototype Requirements Statement Language, and is
currently implementing PSA (Problem Statement Analyzer), a Require-
ments Statement Analyzer to analyze PSL/II statements [25].

A basic development of ISDOS has been PSL/II {24], a lan-
guage to communicate the needs of the user to the ISDOS software.
A PSL/II statement specifies the time and volume characteristics
which govern the production of outputs and the acceptance of inputs,
and the formulas to be used to compute the values of data elements
in the outputs. PSL/II is distinguished by the variety of facili-
ties it makes available for problem statement.

PSL/II is a free-form narrative language with English-like
statements conforming to specific syntax rules. A PSL/II problem

-6=

statement consists of one or more sections to enable modular
problem definition. The possible sections include:

l. Real World Entity (RWE) section
2. Problem Definer (PD) section

3. Principal Data Set (PDS) section
4., GROUP section

5. HISTORY SET section

6. DEFINE section

7. PROCESS section

8. FUNCTION section

9. CONDITION section
10. EVENT section.

A Real World Entitylsection describes some part of the
organization for which the information system is being defined.
This description is generally in the form of a narrative comment.

A Problem Definer section identifies a problem definer, the
location, e.g. post office box, to which messages for the problem
definer are to be sent, and the sections of the problem statement
for which the problem definer is responsible.

A Principal Data Set section describes an input or output
of the information system being defined. The section includes
descriptions of: _

l. Time of occurrence and volume of the PDS.

2. Content and logical data structure of the PDS.

3. Lists of PROCESS(es) and FUNCTION(s) which involve
the PDS. .

4. Estimated cost of the PDS.

5. Value of the PDS on some arbitrary scale.

A GROUP section defines the logical structure of an inter-
mediate node in a hierarchical (tree) data structure. In addition,
the section identifies the processes and functions in which the
group is involved. _

A HISTORY SET section defines the logical structure of a
grouping of data elements which must be stored by the inférmation
system being described. Rules for updating the history set are
specified along with the processes and functions in which the
history set is involved.

A DEFINE section assigns various attributes to a user defined
name. The attributes include:

l. ELEMENT, terminal node in a hlerarchical data structure
2. DATA TYPE

SYSTEM PARAMETER

KEYWORD for information retrieval
AUTHORITY for expenditure

SOURCE of information

SECURITY, access key to insure prlvacy
OPERAND |

INTERVAL

PREDEFINED.

In addition, this section enables:

l. Specification of éynonym(s} for the data name being
defined.

2. Identification of FUNCTION(S) or PROCESS{es) which
either:

a. Use the data name being defined.
b. Modify the value of the data name being defined.
c. Derive the data name being defined.

3. ©Specification of the conditions which the value of the
defined data name must satisfy, e. g. validation rules.

4. Assignment of identifiers to distinguish instances of
the defined data name.

A PROCESS section defines a process which is a component
of the information system being defined. A PROCESS is a collection
of FUNCTION(s) and other PROCESS(es). The largest process is the
entire problem itself. Problem definition is performed top-down
8o that the broblem definer first defines the largest processes
and subsequently defines the smaller processes of which the larger
processes are composed until all constituent processes are defdwed.
For each process, its operand(s) and result(s) are specified. 1In
addition, the relationship of the process to other processes and
functions is identified. Finally, information on the occurrence

[
QU@ U bW

and timing of the process is specified.

A FUNCTION section defines a set of computations for deter-
mining the value of an element defined in the problem statement.
The function definition is either a decision table or an arithmetic
expression. As in the case of a process, the relationship of the
function to other functions and processes is identified. 1Information
on occurrence and timing is also specified.

A CONDITION section defines a logical condition as a con-
ditional expression composed of arithmetic expressions, relational
operators, and boolean operators. For example,\a CONDITION section
may be included in a PSL/II problem statement to specify the condi-
tion, e.g. gross pay less than or equal to zero, under which a

paychéck is not 1issued.

Finally, an EVENT section defines an event that must be
recognized bj the information system being defined. Such an
event can then be used in either a PDS, PROCESS, FUNCTION, or
CONDITION section to specify its time of occurrence.

PSA accepts inputs in PSL/II and analyzes them for correct
syntax. PSA checks the PSL/II statement for completeness and
consistency and produces a coded statement of specifications for
the other modules of ISDOS.

Accurately Defined Systems

Accurately Defined Systems (ADS) is a product of the National
Cash Register Company [16] and is described by Lynch [17]. ADS
consists of a set of forms and procedures for systematically re-
cording the information that a systems analyst would gather during
compilation of the user requirements for the information systen
to be implemented. The essential elements of an ADS requirements
statement include descriptions of:

l. Inputs to the information system.

2. Historical data stored by the information system.

3. Outputs produced by the information system.

4. Actions required to produce these outputs and the
conditions under which each action is performed.

ADS Analvyzer

Computer-aided analysis of an ADS statement performs a
number of checks and prepares a series of summaries of the state-
ment of user requirements. The simplest kind of check performed
involves the validation of ADS source statements to uncover any
violations of the syntax rules of ADS problem statement. Rules
relating to naming conventions, numbering conventions, information
linking, and the like are specified to guide the user during pro-
blem definition.

More complex checks of logical consistency and completeness
indicate errors in data element definition and in linking of in-
formation sources. Major errors of a logical nature include the
use of data elements not defined elsewhere in .the ADS statement
and the redundant definition of data elements with multiple

-0

occurrences in the ADS statement. Less serious errors involve
historical data elements for which no update procedures have bcen
specified and definition of data elements not used elsewhere in
the ADS statement.

Summary reports produced by computer-aided analysis include
a directory of all data element occurrences, indexes to all data
elements and processes, matrices indicating the data elements
required by each process and the precedence relationships among
data elements, and graphical displays of the ADS forms submitted
for analysis. The data element directory consists of an alpha-
betical list of the data elements defined in the ADS statement,
the places of occurrence of each element, and the information
source of each occurrence. The indexes assign a unique number tc
each data element and process for identifying row and column
positions in the matrices indicating incidence and precedence
relationsﬁips. The incidence matrix uses process numbers as row
_ indexes and data element numbers as column indexes to identify the
data elements used in each computational process. The precedance
matrix uses data element numbers as both row and column indexes to
indicate, for eéch data element, the data elements that must be
computed before the first data element can be calculated. Finally,
the graphical reports display the five kinds of ADS forms iD.FhE..
tabular manner that they would appear in manual use of ADS.

ADS

The ADS requirements statement begins with the definition
of all system outputs. Then definition continues with the identi-
fication of information that enters the system in order to describe
inputs to the system. Finally, the requirements statement is com-
pleted with the definitibn of historical data retained in the system
for a period of time and with the specification of computations .
and accompanying logic that subsequently use the input and histor-
ical data to produce the system outputs. |

Linking of information elements among the various ADS de-
finitions is accomplished in two ways. First, each element of data
is assigned a unique name that is always used whenever that element
appears in any ADS definition. Second, each use of a data element
in a report, history, or computation definition is linked back to

-10-

its'inkormation source elsewhere in the ADS description. Hence,

all data elements are chained from output to input and each out~

put can ultimately be expressed in terms of inputs to the system.
Chaining is accomplished by assigning page and line numbers to all
ADS forms so that each use of a data element can be uniquely identi-
fied by the form, page, and line on which the element appears.

An example of an ADS requirements statement will demonstrate
the effectiveness of the concepts described above. The ADS exarple
describes the requirements of an application for payroll calculation:

The application produces an output report listing social
serurlty number, name, and current pay perlod wages for each em-
ployee. Also, the application includes a master file containing
the following information in each employee record:

1. Soclal security number.

2. Name. :

3. Wage status.

4. Hourly rate or pay period salary.
5. Year-to-date. wages.

Input to the application is a set of time cards containing the
pay. period date, employee social Security number, and number of
hours worked during the pay period.

Computafions“include two types: current wage calculation
and year-to-date wage calculation. Current wage calculation is
performed for both salaried and hourly paid employees. Hourly-se-
calculations are further subdivided into straight-time calculation
and overtime calculation. Finally, the logic definition form pre-
sents a dec1slon table specifying the conditions under which each
computation is performed..

Note the facility for cross?referencing data elements among
the various forms. For example,. Section III of the report defini-
tion form in Figure 2a specifies the source of each element on the
report. Similarly, each entry in the history and computation de~
finition forms in Figure 3 includes an indication of the source of
the data element specified. Since this example includes only wage
calculation and not master file maintenance, the source of all
history data elements cannot be specified here. Furthermore, the
forms may be incomplete in other respects due to the omission of
non-essential details, e.g. report headings, in this example.

-1l~

In Figure 2a, the Report Definition Form describes thc
printed output produced by the application. Section I documents
the layout of the report by using the symbols identified in the
upper right-hand corner to describe the printed fields. The
number in parentheses below each field refers to the numbered
items in Section III. Section III identifies the source of each
data item appearing on the report. Cross-referencing is achieved
by specifying H, C, or I for history, computation, or input re-
spectively and by specifying page and line numbers that appear on
every form. Section.IV shows the sequence in which the output data
is listed on the report.

Figure 2b is the Input Definition Form, a description of
the input to the source program. Section I describes the format
of the input record and is linked to the complete description of
each field in Section II. Section II 3dentifies the alphabetic,
numeric, or alphanumeric character of each fleld and its size in
number of characters.

The History Definition Form, a.description of the master
file maintained by the application, appears in Figure 3a. Again,
each field is completely described. In addition, the memo entry
in line 5 refers to an explanation of the wage status code in the
memo list that actually appears on the Input Definition Form.

The Computation and Logic Definition Forms are displayed in
Figure 3b. The cdmputation Definition FPorm lists the variables to
be computed and the factors needed to perform the computations.
Again, the source of each factor is specified. The entry in the
sign column identifies the arithmetic operation to be performed.
Since only binary operators are 2llowed, temporary variables must
be generated for intermediate results and are given mnemonic names
here for clarity. - The Logic Definition Form represents a decision
table that specifies the conditions under which each computation
is performed. The computations are listed across the top and
linked to the Computation Definition Form while the conditions are
specified down the righthand side.

ADS posseasea obvious advantages over the traditional nar-
rative requirements statement technique. Narrative statements are
ambiguous and often incomplete while ADS Qrovzdes a standardized

-1z

(a)

ru_mu[:!l:hiar:gy

aIPQ1 DIVNITION ter naue of eca:_PAY=REPORT Iommen e i
AR N AP
= =

CAJRL B
LEERL L N T

T . PEERASED pv
__EﬁM-_.__ oAt i _lo_T1

b o hde - S an) e

I RSPORT LAYOUT €= HONT oS PGS im0 b Figure 2: Report and Input
- Definitior Forms

-E '[_

NI ”| L NTTT 1T I __:__H'] |
moma i R
TR BRI IR [il
S e T
s T T | LT : i
ST 3 X ' 5 S99q igd
CIHALIHN T S I I (3
ST L |

{a)

INPUT DERINITION for_BAYROLI., _ mppikation nanee o rgr_TIME=CLR3
mCROSS KEFERENCE TO FIELD NAMES AR 1§ EC*'&SiﬁiD_aﬁﬁjggh EECORD -

SEQUENRCE:
(WHEN FIELD HEADING INCLUDES MULTIPLE wtow e _PURCHED_CARD Y S —————
CODES, LIST ALL CODES ON ATTACHMENT) Lo _av. e e L o
FOR VAZIAME, NARE OF TORMAT,
SOURCE FORMATS, ErTER -
NAME Tuwo |77 ' 'o.coot ¥ | TIME- | TIME~CARD|
N Bl CARD- SSN
| EMPL-SSY 14 1
?| EMPL-NAME B 1] 3 {2)
1 WAGES 1] 1
FiT AR RL
(a) (b}
« [COMPLETE DESCRIPIION BELOW OF £ACH FIELD
MAJOR LEVEL I EMPL-SSN (H.01.01) IN__S_E__C_'HQ[!_ L-—"1MPUT MEINA LAYOUT
T e -
LEVEL 2 L FIELD NAME I v e !.,u. IVALIDATION RuiES
LEVEL 3 | TIMEzCARD-DATE | [N 6 L
TIME-CARD-SS% __ N9l
TIME-CARD-HRS N3

.-.b'[-

{a)

LISTORY DERNITION forRAYEQUL_ Application ' Nank OF CROUANG _BPL-MASTER-FIL

(b)

PREPARLD OY —_—
DATE pace__1 ol
1 FIELDS THAT IDENTIFY THIS HISTORY: _DMRL-seN_ wist & mocizn_CRUPLTE=1A2LS
Lo bl 1
O WHAT IS THE EXPECTED VOLUM%@ AY. ML ser

Comrytancu chnon fw JDAXRGLL .

= = Bl bt

I11 DESCRIBE EACH FIELD OF THE GROUP

e ———

R L e T

- . 1
I [V . Lok T LT] '-lﬁl et
. e B 1V REY HOT .
e NAME S PO e L el ICLON o b P i;’:f_EB_ID_LQQ_lC_DEF_ﬂ_!E-m}.S RENDL-RATE
1 | ENPL-SEN ! 3 J'REEFR T0 LOGIC PEF #1 IMAGES TIME=CARn-Jres
2 A *REEER T0 L0CIC B -
C 1Sl WAGES I = =4 VPl R
ESS TR B CDEF#1 OTAL-AD I-HRS xl‘r PL=R7L Ll
[-_— ' !
5 | EMPL-VACE=STATLS 1 : 1 L TOTAL=ADJ-URS {20 + :;‘n 1-ONT-iRS ,_l._ g
g :
7 |EMPL-RATE 4 xh. g
8
9 | BAPL-YTD-WAGES X a
(a)

LOGIC DUINIIIDN far PA\ROLL..._

-tOM DEFINITION CO‘E'UUIIOX -
NARE, _COMPUTE-WAGES

PAGEL .. 1 ___LINE NOS _ 1=

Lm0 UST from Input Definition Form

No.

_.Allphu:lllun S DESSION TARE

o PRECARID BY
DATE __.

a MHER L

~WAGE JALLE,

PaGE.__1.__of 1

1 {H.0x,05) WACE STATLS (OnF

1 = BOURLY
2 - SATARTFT)

1 ENVER REFERENCE TO CONPULATION, NAM OF TRAHSACTION, ETC

O ENTER CONDITION,
TRANSACTION TYPE, ETC

HOL'RLTJQ"\.\ER

Figure 3: History,*(:ornputation and

Logic Definition

Forms

and systematic approach to system definition., Still, ADS is both
exact and precise while remaining hardware independent. ADS pro-
motes effective communication among systems personnel by imposing

a discipline that enables the efficient use of human and machine
resources. Development time is reduced while software quality is
enhanced because the ADS technique enables checking for accuracy,
consistency, and completeness of the requirements statement. Above
all, dollar savings are realized with the use of ADS for problem
definition.

ADS Analyzer

The first module of the Problem Statement Analyzer for ADS
(PSA/ADS) performs source deck validation, lists the input cards,
creates a file containing all valid card images, and constructs a
dictionary table to be used by other PSA/ADS modules. Source deck
validation checks. compliance with ADS syntax rules and detects
errors that include:

l. Specification of an illegal form type, i.e., neither
Report, Input, History, Computation, nor Logic.

2. Improper form format.
3. Illegal data element name.
4. Invalid page or line numbering.
For each valid ADS entry, the dictionary table records:
1. Place of occurrence.

a. Form type.
b. Page number.
¢. Line number.

2. Data element name.
3. Information source.
a. Form type.
b. Page number.
¢. Line number.
Then, the dictionary is sorted, in ascending order, according to
the following keys listed in major to minor order:.
1. Data element name.
2. Place of occurrence. |

a. Form and entry type.
b. Page number.
¢. Line number.

-15-

The second module of PSA/ADS prints the data element di-

rectory and constructs a symbol table containing all data element

names in alphabetical order. Obtained from the sorted dictionary

table, the data element directory lists the data elements in alpha-

betical order and provides the following information for each data

element:

1.

2-

Places) of occurrence.

a. Form type.
b. Page number.
¢. Line number.

Information source(s).

a. Form type.
b. Page numberx.
¢. Line number.

During directory printing, the second module performs logical

checks

to detect the following errors and warnings:

1.

2.

ERROR: NO SOURCE OF INFORMATION.
A data element has been used, but it has never been
defined as an input or as the result of a computation.

ERROR: ID IS NOT IN BODY OF FORM.

A data element has been defined as an identifier,
usually for sequencing purposes, of a data grouping
that appears on a History or Input Definition Form, but
the identifier does not appear as one of the data ele-
ments defined in the body of the form.

WARNING: WO UPDATE FOR HISTORY.
A data element has been defined in a History Definition
Form, but the element has not been defined as a result

of a computation. This situation.is an error only 1if

the data element represents cumulative data, e.g., ycar-
to-date total. If the data element represents relatively
constant data, e.qg., employee address, that is updated
from input elements, this situation is not an error.

WARNING: NOT USED. :

A data element has been defined as an input or as a
result of a computation, but it is not subsequently
used as an operand in a computation, as a report or
history item, or as a decision variable in a Logic De-
finition Form.

WARNING: REDUNDANT INPUTS.

A data element appears on more than one Input Definition
Form in which the element is not used as an identifier,

e.g., for sequencing purposes. Hence, only those input

definitions using that data element as an identifier

are probably necesasary.

6. WARNING: REDUNDANT HISTORIES.
A data element appears on more than onc History De-
finition Form in which the element is not used as an
identifier, e.qg., for sequencing purposes. Hence, only
those history definitions using that data element as an
identifier are probably necessary.

7. WARNING: BOTH INPUT AND COMPUTED.
A data element has been defined as both an input and the
"result of a computation, but it does not appear as an
operand in a computation. Unless the input data element
is being used to verify the computed data element, either
the input or computation definition is unnecessary.

8. ERROR: INVALID BACK REFERENCE.
A data element has been defined with an information
source that is not wvalid. Possible causes include
specification of a report definition item as an informa-
tion source, specification of a non-existent page or
line number, and reference to an ADS entry (as an in-
formation source) where the desired data element does
not exist.

9. ERROR: NQ SOURCE OF INFORMATION.
A data element has been defined for which no information
source can be found, i.e., no other definition of. that
element can be found on any Input, History, or Computa-
tion Definition Form.

Also, the second module assigns a unique.number to each data element
and prints an alphabetical list of the data elements used in the
ADS statement. Then, the sorted dictionary table is again sorted,
in ascending order, according to the following keys, listed in.asse -
major to minor order:

1. Form type (numeric).

a. Report: form type =1

b. Input: form type = 2

¢c. Computation: form type = 3
&. Logic: form type = 4

e. History: form type = 5.

2. Page number.
3. Line number. . .
4. Entry type (each form consists of different entry types).

The third module of PSA/ADS creates a file containing re-

. cords of the computational pfocesses defined in the ADS statement,
pPrints a list of the computational processes, and generates matri-
ces displaying the incidence and precedence relationships among the
data elements and processes defined in the ADS statement. The
third module reads entries from the twice-sorted dictionary table

~17- . .

and for each computation entry, the module writes one or more
(depending on the number of operands in the computation) records
on the file of computational processes. Each record has the form:

l. Symbol table pointer of the data element that appears
as the result of the computation entry.

2. Symbol table pointer of the data element that appears
as an operand of the computation for which the first
pointer identifies the result.
At the same time, the third module inserts ADS form page delimiters
. into the card imageafile produced by the first module for forms
printing by the fourth module. The process file is then sorted in
ascending order. Since the data elements were placed in the syr-
bol table in alphabetical order by the second module, this sort
lists the processes: in alphabetical order and the operands in al-
phabetical order within each process. Then, the third module gen-
erates the incidence matrix indicating the data elements that serve
as result and as operands for each process. These relationships
are easily derived from the result-operand pairs in the sorted
process file. Also, an alphabetical list of the processes is
generated with the operands of each process listed alphabetically.
Again, the sorted process file is sorted in ascending order ac-
cording to the following keys in major to minor order:
1. Symbol table pointer of operand. i —
.2, Symbol table pointer of result. '

Finally, the twice-sorted process file is used to generate the
precedence matrix indicating the direct precedents of each process.
Data element I is said to be a precedent of data element J if I
must be computed before J can be computed. A direct predecent of
J is a precedent of J that is not also a precedent of any other
precedents of J. To generate the precedence matrix, the module
reads each recbfd in the twice-sorted process file and identifies
the operand data element indicated in the second field of the re-
cord as a direct precedent of the process result data element in-
dicated in the first field of the same record.

Finally, the card image file created by the first module
is sorted, in ascending order, according to the following keys in

=18=

major to minor order:

l. Form typc Inumeric, see keys of dictionary sort for
legend). ,

2. Page number.
3. Line number.
4. Entry type.

The fourth and final module reads the sorted card image file and
prints the input in a tabular format similar to that of the ADS
forms developed by NCR.

Navy Experience With ADS

The SSL/II language being developed is a result of exper-
ience gained from working with the United States Navy Material
Command Support Activity (NMCSA). * The Navy statement of require-
ments for a financial management system was expressed in ADS by
a large Accounting Firm. The ADS statement for the Navy system
includes descriptions for 79 reports and for the accompanying
history files, computations, and inputs which define 791 data
elements. An ADS analyzer, developed at the University of Michigan
[26] was used to check the ADS statement of requirements for com-
pleteness, consistency and logical accuracy. The ADS analyzer
produced information and reports that were used by the SsoODA St
mant Analyzer. SODA was then used to (1) generate preliminary de-
signs of program structure and logical data base structure for the
batch application part of the system and {2) to recommend a computer
system for the entire financial management system.

The Navy integrated financial management system is a large-
scale design and implementation effort for more effective financial
management, particularly procurement accounting, within the agency.
The systems design effort commenced in May, 1971, and is expected
to continue for-4 to 5 years at a cost of 12 million dollars.

A systems design effort of this magnitude has an impact

upon many different offices within the complex organization of the
agency. Financial managers, the end-users of the system, are

Scattered among many offices engaged in complicated communication
of varied information requirements.

-19-

Behavioral Experience With ADS

The first objective of the introduction of ADS into any
environment is gaining user acceptance. ADS represents deviation
from the established practices and initial resistance to change
often occurs. As a result, many questlons regarding ADS and its
impact upon the organization are raised.

In response to this initial user reaction, an ADS training
program is advisable. However, ADS is simple and straightforward
so less than one day of intensive training is all that is necessary
to adequately prepare individuals to begin using ADS. Then, further
training is required only to deal with the specific restrictions
imposed upon the use of ADS by the ADS Analyzer software. For ex-
ample, the Analyzer restricts the length of data element names to
forty characters. .

The use of a form-oriented procedure such as ADS still
requires a significant investment of time and effort to realize
the return of a complete and consistent logical systems design.
Still, a number of users with ADS experience"agree that ADS has
saved them considerable time during the specification of logical

system design. o
This savings is realized by the capability of the ADs
Analyzer to provide feedback information to the user. The—u#dﬂﬁi-—
should be able to do a better job of specifying his requirements
because he receives feedback much sooner in the system design
cycle utilizing computer analysis of ADS. Ordinarily, in a com-
Pletely manual narrative system, ambiguities and omissions in the
logical system description are not discovered until physical design
or even coding is well underway. By then, many aspects of the
system design have been specified so that resolution of difficulties
may be impossible.
Physical system design is not the responsibility of the
ADS user. Completion of the ADS logical description is followed
by the physical system design process that provides the 59901flca—

tions for programming.

-20-

Performancé of ADS

Experience has demonstrated that ADS is adequate for
specification of the logical system. However, an ADS description
does not provide sufficient information for optimization of physi-
cal system design. Dafa on system performance requirements was
collected to supplement the ADS descrlptlon in SODA Statement
Language. Relevant data includes specification of the frequency
of occurrence of each ADS -~ described input and report and of tho
volume of each input, report, and history.; .

Other needed enhancements to computer-aided ADS include
facilities for describing data structures and look-up tables and

for decision tables expressing processing Jlogic and input validation

rules. Finally, additional software for generating report layouts
and program test data would add significantly to computer-aided
ADS capabilities. Hany of these enhancements are to be 1npluded
in the SODA Statement Analyzer for SSL/IIX..

ADS Shortcomings

The decision to use ADS as the basis for SSL/II motivates
examination of the shortcomings of the current implementation of
machine-aided ADS and resolution of these issues before 1mp1ementa-
tion of the system described in this report.

The most obvious need relates to the generail orientation
of the problem definition technique to machine analysis. The
establishment of an effective machine orientation invqlves:diverse
issues as straightforward as conventions for naming data eiements
and as subtle as the manner in which sources of information are
referenced.

The most fundamental modification of ADS to enhance.machine
analysis involves the manner in which occurrences of data elements
are referenced in order to specify sources.of information. The
current implementation only allows a single source of information,
i.e. a back reference, to be specified for any data element oc-
currence. An improved implementation should also enable the spec-
ification of multiple references. Hence, references would be used
for the qualification of data element occurrences rather than the

-21~

mere location of data element océurrences.

Another issue involves the facilities available for de-
scription of data structures. Currently, ADS allows only two types
of structure: data elements and forms. Although the simplicity
of the preoblem statement technique is an issue of primary concern,
the availability of some data structuring capability is essential.
Hence, an optional data structuring facility at least capable of
describing repeating groups should enable sufficient precision when
necessary while still preserving simplicity otherwise. Another
related issue involves the use of identifiers. The use of identi-
fiers in ADS is limited to the specification of sort keys in history,
input, and report definitions. The notion of an identifier should
be broadened to'distiﬁguish each occurrence og_a data grouping
from every other occurrence of the grouping. ' _

Another issue relates to the problem statement facilities
for specifying computations and their accompanying logic. The use
of the Computation and Logic Definition Forms can best be enhanced
by the creation of a single form for specifying decision tables.
Such a form will greatly improve machine analysis of logical con-
sistency and completeness of the problem statement. While strong
logical connection is desirable, care must be taken to prevent use
of the decision table form to "program" rather than to "describe"
the system. Another use of the decision table form includes the
specification of validation rules for input data elements.

The final issue revolves around the need to provide time
and volume information for the arrival of inputs and for the pro-
duction of histories and reports. Although ADS currently accom-
modates volume information that is not included in machine analysis,
there is no formal method for expressing timing information. Hence,
the volume information is relatively useless since there is no way
to specify the time period in which the given volume is produced
or to specify the time of occurrence for a report.

SSL/II: A FORMS-ORIENTED FRONT-END PROBLEM STATEMENT TECHNIQUE
L3

Motivated by the need for better methods of constructing
large software systems, research indicates that problem statement

-22-~

techniques offer a feasible approach to stating the requirements
of an information system without stating the processing procedurcs
that will satisfy those requirements. This approach further
motivates the development of software tools for validating the
consistency and completeness of the statement of requirements and
for optimizing the design of the information system fulfilling
those requirements. , E

Research conducted by the ISDOS Project has resulted in
the development of PSL/II. 1In spite of the powerful facilities
for problem statement possessed by PSL/II, examination of §SL/II
reveals the apparent need for a forms-oriented front end pfoblem
statement technique. Characterized as a free-format technique
requiring knowledge of restrictive syntactic rules, PSL/II may
require a good deal of training before it can be used by a'rela-
tively sophisticated problem definer. Therefore, the development
of a forms-oriented front-end problem statement technique seems
advisable to enable initial problem definition by a relatively
naive user. Then, software can generate a PSL/II representation
so that the initial problem statement can be supplemented with the
use of the more powerful problem statement facilities available in
PSL/II. By translating the forms-oriented front-end problem state-
ment into a data base representation developed for PSL/II, it may
be feasible to extract a PSL/II representation of the problem
statement from the data b;se. Then, the software can geneiate
incomplete PSL/II statements for the problem definer to inéert
the missing information. In this way, a complete PSL/IX problem
statement can be constructed without requiring user knowle@ge of
the full PSL/II syntax. It is important to note that the data !
base is the medium enabling use of two complementary problém
statement techniques: the forms-oriented ;echnique is uaed during
initial problem statement preparation while PSL/II serves és a
vehicle for problem statement completion since PSL/II is viewed
as the model for a complete problem statement.

Experience with ADS at the U. '‘S. Navy Material Commﬁnd
Support Activity, Duncan Electric, and other installations'supports
the choice of ADS as the basis for a front-end forms~oriented

-23-

problem statement technique. This paper describes a design of
a forms-oriented problem statement technique based on ADS and for
development of software for problem statement analysis.

Specifications Of A Software System To Aid Statement Of User
Requirements

SSL/I1 is composed of two sublanguages to provide facitities
for expression of user requirements relevant to all aspects of
system design and optimization:

l. Phase I is derived from ADS and is augmented with
facilities for expressing performance requirements,
e.g. I/0 volumes and frequencies, and data structures.
Phase I is forms-oriented and intended for use while
initially preparing a statement of user requirements.

2. Phase II is a free-format representation of user re-
quirements produced by the software for subsequent use
in generating specifications for program modules and
files.

Three software packaées are required for the proper inter-
action of the Phase I and Phase II representations of user require-
ments. The first software package analyzes the Phase I statement
and prepares diagnostic messages to the user to aid him in preparing
a complete and consistent Phase I representation. The second soft-
ware package produces the Phase II representation of the problem
statement in preparation for generating specifications for program
modules and files. Phase II possesses expanded capabilities that
enable the user to furnish additional details required for complete
problem statement. For example, procedures related to file security,
e.g. specification of passwords, might be defined during Phase II.
Hence, the second .software package invokes the query language to
form requests to the user. Generally, these requests are in the
form of incomplete Phase II statements with blanks to be filled in
by the user. Finally, upon satisfaction of all guery requests, a
final database representation is prepared for use during specifica-
tions generation and accompanying management summary reports are
generated for user perusal. These reports are graphic descriptions
of the information éyatem to be designed and includg summaries of
the following kinds of information:

l, 8ize :
a. Number of processes and data elements defined.

-24-

b. Estimated size of data basa.
2. Data relationships

a. Incidence relations indicating the data items
required by each computational process.
b. Precedence relations among the data items.

3. Workload and performance

a. Number of reports produced in each processing
cycle.

b. Estimates of system parameters, e.g. transport
volume.

The third software package is a control program which feeds diag-
nostic messages and query requests to the user and which relays the
resulting response from the user to the appropriate software pack-
age. _
The justification for two phases of problem statement re-
presentation results from the need to provide an easy-to-use,
human-oriented method for statement of user requirements while
still maintaining a rigorous, complete representation for machine
analysis. Therefore, Phase I is forms-oriented to guide the user
during problem statement preparation while Phase II possesses
expanded problem statement facilities to insure a representation
suitable for complex computer-aided analysis,

A fourth software package accepts the data base represen-
tation generated by the previous packages and proceeds to generate
logical design specifications for program modulés and files. The
logical flow of the software described herein is illustrated in
Figure 4.

A Data Structure Facility For A Forms-oriented Front-end Problem
Statement Technique

Experience with ADS indicated the need for a facility
capable of describing a wide variety of logical structures in
data description. However, it is important to realize that such
a facility must enable the problem definer. to specify the logical
relationships among the data items he describes without requiring
him to define the specific structures required to represent those
relationships. Hence, we describe a hierarchy of data structural
units to be made available to the problem definer in a simple
relational manner that will enable the interactive design of a

~25=-

S—
hase I Phase I Data Program
epresentatio Analysis Module
P ? Base Generation
Diagnostida
’
N
| —
Problem Control Phase II Z' \ Phase II Management
. . , Generation Summary
Definer Program Representatlo«l & Analysis Reports
9 _

Query

Requests

Figure 4: Logical Flow of Re'uirements Statement Analveis

data base for the application desired.

The Data Structure Class

The types of structures available to the problem definer
and the manner in which structures of each type are constructed
from other structures describe the data structure class of the
problem statement technique. fThe available Structure types and
their component structures include:

Structure Component Structure
item none

group item, group

group relation group

record group, dgroup relation
file record, group relation
data base file

Item

The elementary data structure is the item. The item is
the smallest structural unit from which all available structure
types are ultimately constructed.

Group
A group is a collection of items or other aroups. A simple
group is a collection of items only while a compound group is a

collection of both items and groups.

A simple group can be used in two ways. One, it can be
defined as a collection of items in ordér to give the collection
a4 name and other attributes of its own. An example is the group
EMPLOYEE composed of the items NAME , SOCIAL—SECURITY—NUMBER, WAGE-
STATUS, and RATE. Also, the items CHILD-NAME and AGE form the
simple group OFFSPRING. Second, a simple group can be defined as
a collection of string-valued items having a "collective value"
formed by concatenating the string-valued item components. For
example, the items MONTH, DAY, and YEAR form the group DATE-OF-
HIRE. _

A compound group is a collection of a set of items, called
Principal items, and a et of groups, called principal groups,
with this new collection having a name and other attributes of its

-27=

own. For example, if the groups DATE-OF-HIRE and OFFSPRING arc
added to the simple group FEMPLOYFE, the result is a new compouncd
group EMPLOYEE consisting of the items NAME, SOCTAL~SECURITY-~NUMBER,
WAGE-STATUS, and RATE and the simple groups DATE-OF-HIRE and OFF-
SPRING. '

A group may beleither repeating or non-repeating. A
repeating group may have an arbitrary number of occurrences for

each occurrence of the compound group containing the repeating
group. A non-repeating group has only one occurrence for each

occurrence of the containing compound group. For example, OFF-
SPRING is a repeating group because the number of children can
vary from employee to employee. However, DATE~OF-HIRE is a non-
repeating group because each employee has only one hiring date.

Group Relation

A group relation is a mapping between two sets of groups.
The groups belonging to the first set are called parent groups
and those belonging to the second set are called dependent groups.

p
The group relation provides a way of relating groups.
For example, with a set of parent PERSON group occurrences:

{PERSON(JOHN DOE) , PERSON(J. SMITH&
and with a set of dependent SKILL group occurrences:
{sx:muoom, SKILL(2000), SKILL(3000),-SKILLMOOO)} ,

a group relation can be created to relate each person to the skill (s)
he possesses: '

{(PERSON(JOHN DOE) , SKILL(3000)> ,}

<PERSON(J. SMITH), SKILL(2000)>,

<PERSON(J. SMITH), SKILL{3000)> J. :

Also, the group relation provides a'way to establish a
hierarchic relation between two sets of items. In a hierarchic
group relation, each occurrence of a dependent group must be sub-
ordinate to one occurrence of a parent group; the dependent group
occurrence cannot stand alone. An example of a hierarchic group
relation associates a parent group occurrence representing a person
with a set of dependent group occurrences représenting the academic

-28-

degrées he holds:

PERSON(J. DOE}, DEGREE (BS,1970,PURDUE)
PERSON(J. DOE), DEGREE ({MS,1971,PURDUE)/ .

Generally, a hierarchic group relation is equivalent to a com-
pound group. However, two differences exist:

l. In a compound group, a principal group may be sub-
ordinate to a single set of items only (the principal
items), but in a group relation, a dependent group
may be subordinate to many sets of items (parent
groups) . ‘

2. In a compound group, the principal items do not have
a collective name; the compound group name refers to
the entire collection of principal items and principal
groups. 1In a group relation, each parent group has
its own name.
An occurrence of a group relation consists of one or more
occurrences of each parent and dependent group, with each parent
group occurrence associated with one or more dependent group oc-

currences. If the group relation is non-hierarchic, each dependent

group occurrence may be optionally associated with one or more
parent group occurrences. If the group relation is hierarchic,

each dependent dgroup occurrence must be associated with one par-
ent group occurrence.

In a manner analogous to compound groups, a dependent
group in a group relation may be repeating or noh—repeating. A
repeating dependent group has a variable number of occurrences
for each occurrence of its parent group: a non-repeating dependent

group has only one occurrence for each occurrence of its parent
group.

Record

A record is a collection of groups and group relations in |
which one and only one group, the record-defining group, is not '

subordinate to any other group. The record is used to define the
major entities of an application. For a éiven class of entities,
€.g. the employees of a firm, the principal items in the record- .
defining group correspond to fixed entity attributes common to !
all entities in the given class., The items in the principal group
contained in the record~defining group or in the dependent group

-29-

'subordinate to the record-defining group correspond to variable
entity attributes. Variable entity attributes cither have mutt iple
values or arc not necessarily common to all entities in the qivoen
class.

The record-defining group may not be the dependént group
in a hierarchic group relation contained in the record. However,
the record-defining group may be the dependent group in a non-
hierarchic groﬁp relation that relates records in the same file.
A later discussion of the file describes inter-record relations.

There are three record types: the group record, the tree
record, and the plex record. Each record type is a generalization
of the former type so that a special case of each type is identical
to the former type.

A group record is a single compound group. The compound

group is the record-defining group.
A tree record is a set of hierarchic group relations ar-

ranged as a tree so that each group has at most one parent, and
that one and only group, the record-defining group, has no parent.
A plex record is a set of group relations in which each

group except the record-defining group is the dependent group in
a hierarchic group relation. In addition, all groups in a plex
record may occur in any number of non-hierarchic group relations.

File

A file is a collection of records. Hence, a file represents
a collection of application entities, e.g. employees, projects,
or parts. The entities represented by a file may belong to the
same class, e.g. employees of a firm, or to different classes, e.q.
Projects and the parts used in each project.

In the sense that one record of a file can be processed
without referencing apother record in the same file, the records
of a file are independent of one another. However, the records
in a file may be ‘explicitly inter-related in a manner apparent to
the system. For example, the records in a file may be ordered on
the value of the record sequencer, a set of items contained in the
record. A file with unrelated records or with records related only
by ordering is called an unlinked file. In addition, more general

-30~

relations are possible by permitting non-hierarchic group relations
between groups in different records or between records themselves
when the records are group records. A file containing records
participating in these more general explicit relations is called

a linked file. Of course, the records in a linked file may also

be ordered.

Data Base

A data base is a set of files.

Data Structure Definition

Having described the data structure class of the problem
statement technique, we now describe various facilities available
for definition-of the data structure chosen by the problem definer.
The most common facility uses the level-number concept for explicit
description of hierarchical data structures. However, the level-
number concept appears inadequate for definition of a plex record.
Hence, an alternative scheme involving a relational view of data
is also described.

Level-number

The level-number concept is presented for definition pur-
poses. It is not intended to imply that a problem definer will
describe his data requirements in terms of level-number. The
level-number structure will be constructed from the relational
model presented in the next section and not by the problem definer.
Once the data structure in terms of level-numbers is constructed
from the relational model it is clear that files can be automat-
ically generated.

Level-numbers are used to describe the structure of a
record. The record-defining group is assigned level number 01;
groups and items within the record are assigned higher, but not
ﬁecessarily consecutive,'level—numbers that do not exceed some
specified maximum value.

A group consists of all the items and groups following it
in the definition until a level-number less than or equal to the

-31-

level-number of the first group is encountered. All structures,
i.e. items or groups, that form a level within the same group
must have the same level-number. VWhenever a name of a structure
needs a level-number lower than the level-number of the name
immediately preceding it in the définition, the level-number must
be selected from the level-numbers of the structures that include
the preceding name.

To demonstrate the use of level-numbers, a group record
consisting of the single compound group EYMPLOYEFE described earlier
is defined:

01 EMPLOYEE
05 NAME ' ' '
05 SOCIAL-SECURITY-NUMBER
05 WAGE~STATUS
05 RATE , !
05 DATE-OF-HIRE (non-repeating group) '
10 MONTH
10 DAY
10 YEAR
05 OFFSPRING (repeating group)
10 CHILD-NAME
10 AGE
However, with a plex record involving any number of non-
hierarchic group relations, level-numbers alone are inadequate
for data structure definition. Especially when a single dependent
group is subordinate to a single parent group by two distinct non-
hierarchic group relations, some sort of explicit mechanism; e.q.
sets, owners, and members as proposed by CODASYL {28]; is necessary
to supplement level-numbers. Such a mechanism is believed to be
too sophisticated for use by the relatively naive user for which
this forms-oriented language is intended. Even level-numbers them-
selves may be unsuitable for a naive user!
Hence, a relational view of data using only tabular data
structures for representing data relationships may be most suitable
for a forms-oriented problem statement technigue intended for
relatively naive users. A table is most certainly a simple, easily
understood data structure. 'Still, a table is adequate for repre-

senting all the data structures described ea;lier.

A Relational Model Of Data

A relational model of data for large data bases is described

-32-

by Codd [29 & 30]. The relational model uses tables for represent-
ing the logical data base structure. '
A table is a rectangular array with the following properties:
Pl: a table is column-homogeneocus, i.e. all the items
in any single column are of the same type, but items

in different columns are not necessarily of the
same type.

P2: each item in a table is either a number or a character
string.

P3: all rows of a table are distinct.
P4: the ordering of rows in a table is immaterial.

P5: the columns in a table are assigned distinct names
and the ordering of columns in a table is immaterial.

As a result, a table represents a relation:of degree n, where n
is the number of columns in the table. An example of a relation
of degree 3 is the relation COMPONENT. The triple (x,y,z)} belongs
to this relation if the part with part number x is a component of
the part with part number y and if z units of part x are needed
to construct one unit of part y: - ‘

COMPONENT (SUB-PART~NO, SUP-PART-NO, QUANTITY)

2010 6020 4
2015 6020 2
2025 6020 1
3010 : 6030 3
3025 6030 5

We now demonstrate that the relational model possesses the
capability to represent the three types of records described
earlier. Hence, in addition to its comprehensibility, the rela-
tional medel also possesses flexibility.

Tabular Representation Of Group Records

Consider the example of a group record called EMPLOYEE
described earlier. The elimination of the principal groups DATE-
QF-HIRE (non-repeating) and OFFSPRING (repeating) is accomplished
with three separate relations. These three relations convey all
the information contained in the group record because the item
SOCIAL-SECURITY-NUMBER uniquely identifies each EMPLOYEE and the
item CHILD-NAME uniquely identifies the children of each EMPLOYEE:

-313-

EFMPLOYEE (NAMI, SOCTAL-SECURITY-NUMHER, WAGE~STATUS , RATI)
DATE~OF-HIRFE (SOCIAL-SECURITY-NUMBIR,MONTII, DAY, YEAR)
OFFSPRING (SOCIAL-SECURITY-NUMBER,CHILD-NAMF ,AGE) .

Tabular Representation Of Tree Records

Consider the example of a tree record called PERSON:

0l PERSCON (parent of SKILL group and CHILD group)
05 NAME :
05 NUMBER
05 SALARY
05 SKILL
10 CODE
10 TITLE
05 CHILD (parent of PET group)
10 CHILD-NAME
10 AGE !
10 PET
15 TYPE
" 15 PET-NAME

Although identical to a group reéord, the tree record PERSON
differs from the group record in addressability: an occurrence
of the group record must be retrieved as a complete unit, but
certain portions, e.g. the SKILL group, of an occurrence of the
tree record can be retrieved without retrieving the 'entire tree
record occurrence. Assuming that the following items uniquely
identify the corresponding groups:

Item GI'OUE
NUMBER PERSON
CODE ' SKILL
CHILD-NAME CHILD
PET-NAME PET

elimination of the group structures yields the following relations:

PERSON {(NAME , NUMBER, SALARY)

SKILL (NUMBER,CODE,TITLE)

CHILD (NUMBER, CHILD-NAME,AGE)

PET (NUMBER, CHILD-NAME , PET-NAME, TYPE) .

Tabular Repregentation Of Plex Records

Consider an example of a plex record describing relation-
ships between suppliers and parts. The parent group SUPPLIER con-
sists of two items: SUPPLIER-NO and SUPPLIER-DESC. The dependent
group PART consiats of three items: PART-NO, PART-DESC, and
QUANTITY. Two relationships between SUPPLIER x and PART y exist:

~-34-

the CANDIDATE relationship holds if x is capable of supplying y;
the ACTUAL relationship holds if x actually supplies y. Since

the dependent group PART is subordinate to the parent group SUP-
PLIER by two distinct non-~hierarchic group relations, level-numbers
alone are inadequate for representing both relationships. Assuming
that SUPPLIER~NC uniquely identifies each SUPPLIER and that PART-
NO uniquely identifies each PART, four relations represent both
groups and the two relationships between the groups:

SUPPLIER (SUPPLIER-NO, SUPPLIER~DESC)
PART (PART-NO, PART-DESC, QUANTITY)
CANDIDATE (SUPPLIER-NO, PART-NO)
ACTUAL (SUPPLIER-NO, PART-NO).

Evaluation Of The Relational Model

With the relational model, data description is performed
in a bottom-up fashion in contrast to the top-down strategy of
process definition. User specification of the relational pro-
perties of the data enables the software to construct the data
base by aggregating the tabular structures. User specification
of the processes defining the information system is accomplished
via the decomposition of the problem into its component processes,
Therefore, it appears that top-down decomposition is the domain
of the man while bottom-up aggregation is the domain of the machine
as man and machine co-operate in the design of application systems.

PROCESS_GENERATION AND PROGRAM MODULE SPECIFICATIONS FROM SSL/II
DEFINITION

The SSL/II problem statement contains the basic information
required to generate program module specifications from processes
that may be grouped into program modules to eliminate unnecessary
transport of data from history files to program modules. For ex-
ample, if it is determined that two processes require the same in-
puts and occur in the same processing cycle, e.g. daily, then the
two processes become candidates for grouping into a single program
module. ,

SODA Generator of Alternatives (SGA) performs process gen-
eration by compiling four comprehensive summaries for each S5L/II-
described report:

-35~

l. Input summary. .
2. History input summary.

3. Computation summary.

4. History output summary.

Since the source of each report item is specified in the SSL/II
statement, all sources that are either input items or history

items are included in the input and history input summaries, re-
spectively. For report items whose sources are computation items,
the input and history input items that are used as operand factors
in the computations are placed into the input and history input
summaries since the sources of all computation operand factors are
specified. Also, the computations required to produce the report
items are placed into the computation summary. Finally, the history
output summary is compiled by listing all history items whose
sources are items listed in either the input, history input, or
computation swnmaries. Therefore, the history output swmary in-
dicates those history items that might be updated by the elementary
module being specified.

After generating a process for each SSL/II-specified report,
SGA searches for candidates for program module grouping in two ways.
First, if some process requires history inputs either identical to
or forming a subset of the history inpﬁts required by another pro-
cess, the two processes are identified as candidates for grouping.
If the two candidates for grouping occur in the same processing
cycle, grouping into a single program module is recommended by SGA.

Similarly, if two processes update the same history outputs
and occur in the same processing cycle, grouping into a single
program module is recommended.

Second, if some process produces history outputs either
identical to or forming a subset of the history inputs required
by another process, the two processes are identified as candidates
for grouping. Again, if the two candidates for grouping occur in
the same processing cycle, grouping into a single program module
is recommended by SGA.

The four summaries and other specifications produced for
each program module become the basis for code generation in ful-
fillment of the requirements exprefssed in the original SSL state-
ments. Both human-readable and machine-readable representations
are produced to enable code generation by either manual or automatic
means according to the choice of the system implementers. & pro-

-36-

totype version of SGA has been developed for use with the ADS
description of the Navy information system mentioned earlier.

Program Module Grouping For The Navy Example

For the Navy information system described earlier, SGA
generated 62 program modules to produce the 79 ADS~specified re-
ports. For each program module, SGA provides the following informa-
tion to the SODA Performance Evaluator (SPE) :

* Brief program module title.

* Frequency of occurrence.

* Program module size, in K bytes.

* History files required for processing.

* File device type.

* Size, in bytes, of each history record input.

* Number of history records input for processing,
* Volume, in number of lines, of printed output.

For each program module, module size and number of arithmetic
operations are derived from the quantity and complexity, e.g. al-
ternative logic paths, of computations in the summary produced by
SGA. Volume and size of history records input are derived from
the history input summary produced by SGA. SGA performs summary
analysis on all ADS-specified inputs required to produce each
history item. User-provided data on input requirements was then
used to derive the volume of the history item under scrutiny. The
size of the history item is provided in the ADS description. Final-
ly, twenty record groups were generated with each group containing
history items that are used together in a fashion that implies log-
ical connectivity. Each group of records forms the basis for de-
fining history file structures. An overview of the program module
specifications for fiscal reporting tasks is presented in Table 1:
Batch Program Module Workload Summary.

Note that process grouping into modules and history record
grouping into files were performed in a manner that spreads the
workload equally among the modules to the greatest extent possible.
Workload sharing is made possible by minimizing the variance in the
number of computations in each module and by minimizing the variance
in the number of records in each file grouping.

-37=-

-8€-

BATCH PROGRAM

MODULE WORKLOAD SUMMARY

Application/
Proora=m ID

A. Fiscal Reporting
1. Procram Budget
Status

2. Appn. Status by
FY and Acct.

3. Report on
Reimbursables

4. Report on
Obligations

5. Analysis of
Appropriations and
Furnd Balances

6. Line Iten
Report

7. Surmary Line
Itexn Report

8. °Procurement Program
Progress Report

9. Worksheet

Task Freq/ Memory Required File Medium Avg. Record Record Avg. Qutput
TYPE Month {X bytes) Language " ID Code Length (char.} Volume Length ([.ines’
COBOL H1 R4
Print 1 150 H5 Ell Digk 861 2200 340
COBOL H1 H5
Print 1l 50 H1ll Disk 243 2200 23000
. COBOL H1l B4 Disk 232 225 24000
Print 1 as
COBOL Hl H4
Print | 100 AS Disk 437 2000 1000
COBOL Hl B4
l/year HS H11 Disk 4§76 2200 800
Pgint June 50 .
COBOL Hl H4 Disk 232 225 24000
Print 1l 35
COBOL H1 H5
Hll Disk 263 2200 4700
Print 1 50
COBOL H1 HS
H1ll Disk 258 2200 4000
Print 1 35
. COBOL H1 HS Disk 141 2000 4000
Print 2/year 25 .
June, Dec,
Table 1:

Batch Program Module Workload Summary

GENERATION OF CODE IFROM ADS AND SSL/IT

Figure 5 illustrates a COBOL program that conceptually
might be generated by SODA to fulfill the requirements described
in the ADS statement of Figures 2 and 3. The program reads TIME-
CARD~FILE, an input file of time cards, and performs the ADS-
specified computations and logic to update EMPL-MASTER-FILE-IN and
to produce PAY-REPORT,

The ADS description primarily provides information for
generating the DATA DIVISION (part A of Figure 5) and the COMPUTE-
WAGES paragraph {(part C of Figu;e 5) of the PROCEDURE DIVISION.

The remainder (part B of Figure 5) of the PROCEDURE DIVISION con-
tains the procedures and processing logic needed for the application
of the ADS logical definition to the physical implementation of the
ADS-specified report generation and history file maintenance.
Automatic production of this code necessary for physical implemen-
tation can be fulfilled in various ways. One software company has
incorporated an additional form called an execution definition into
its use of an ADS description for code generation. The execution
definition form details the processing logic neceéssary for driving
the execution of the logic and computations described in the ADS
forms. Another approach to code generation might involve the in-
corporation of code skeletons for common data processing functions,
e.g. transaction processing for master files. Then, the code
skeleton is completed during code‘generation by providing the mis-
sing record sequencing identifiers and program termination condi-
tions. Finally, automatic generation of code for report géeneration
features such as positioning of heading and output lines might be
accomplished by incorporating another feature into the computer-
aided SSL/II report definition form for specification of report
layouts and headings as in the original manual ADS system.

Still, computer-aided analysis involves much more than the
rudimentary approach to code generation previously described. Cur-
rent approaches to code generation from a non-procedural require-
ments statement merely translate logical descriptions into‘highly
inefficient code, regardless of the quality of the original logical
description. For example, deficiencies include the restriction of

-39-

-0F-

IDENTIFICATION DIVISION.

PROGRA-ID. PAYROLL-CALCULATION.

ENVIRONMENT DIVISION.

CONFIGURATION SECTION.

SOURCE-COMPUTER. 6500.

ORJECT~COMPUTER. 6500,

INPUT-QUTPFUT SECTION,. -

FILE-CCONTROL.
SELECT TIME-CARD-FILE ASSIGN TO IKPUT.
SELECT PAY-REPORT ASSIGH TO QUTPUT,.
SELECT EMPL-MASTER-FILE-IN ASSIGH TO TAPEOL.
SELECT EYMPL-MASTER-FILE-OUT ASSIGN TO TAPEOZ.

DATA DIVISION.
FILE SECTION.
D TIME-CARD-FILE
DATA RECORD IS5 TIME-CARD
LADEL RECORDS OMITTED
RECORD CONTAINS 18 CHARACTERS.
01 TIIE-CARD.

02 TIME-CARD-DATE PICTURE 9(6).
02 TIME-CARD-SSH PICTURE 9(9).
02 TIME-CARD=-HRS PICTORE 9(3).

PD PAY-REPORT
DATA RLCORD 1S5 PAY-REPORT-REC
LABEL RECORDS QMITTED
RECORD COMTAINS 136 CHARACTERS.
01 PAY-REPORT-REC.

02 FILLER PICTURE X{9).

02 PAY-REPORT-5SHN PICTURE %(9).

02 FILLER PICTURE X{10).

02 PAY-REPORT-NMME PICTURE X(18}.
}\ 02 FILLER PICTURE X{10).

02 PAY-NZPORT-WAGES PICTURE $$39.99.

02 FILLER PICTURE X({73}.

Fb EMPL-MASTER-FILE-IN
_ DATA RSCORD IS EMPL~MASTER-REC-IN
LABEL RECORDS OGMITTED
RECORD COXTAINS 40 CHARACTERS.
01l EMPL-MASTER-RFC-IN.

02 TMPL-SSN-IN PICTURE 9(9).
02 EMPL=NAVE-IN PICTURE X{18).
02 EMPL-VOR-STATUS-IN PICTURE 9.

88 HOURLY VALUE 1.
BB SALARITD VALUE 2.
02 FMPL-RATE-IN PICTURE 99v99,
02 EMPL-YTO-UAGES-IN PICTURE 9(6)V39.
PD EMPL-MASTER-FILE-OUT
DATA RECOND IS EMPL-MASTER-REC-OUT
LABEL RECORDS OMITTED
RFECORD CONTAINS 40 CHARACTERS.

A PRCCFOURE DIVISICH.
OPEN-FILTS.
OPF! INPUT TIME-CARD-FILE, EMPL-MASTER-FILE-IN.
OPE:: OUTPUT PAY-REPORT, EMPL-MASTER-FILE-OUT.
MOVE SPACES TO PAY- REPORT-REC,
READ-TIME-CARD,
READ TIME-CARD-FILE AT END GO TO END-TIME-CARD-FILE.
READ-EMPL-MASTER.
READ FMPL-MASTER-FILE-IN AT END GO TO NO-MATCH,
IP TIMC-CARD-SSN EQUALS EMPL-SSN-IN THEN
PERFORM PROCESS-TIME-CARD
GO TO READ-TIME-CARD.
IF EMPL-SSN-1H LESS TIME-CARD-SSN THEN
GO TO READ-EMPL-MASTER. _
IF EMPL-SSN-IN GREATER TIME-CARD-5SN THEN
. GO TO NMO-MATCH ELSF
MAVE ¢SYSTEM FRRORY TO PAY-REPORT-NAME
WRITE PAY-REPORT-REC
GO TO CLOSE-FILES.
PROCESS-TIME-CARD.
MOVE EMPL-MASTER-REC-IN TO EMPL~MASTER-REC~OQUT.
MOVE EMPL-SSN-IN TO PAY-REPOAT-SSN.
MOVE EMPL-NAME-IN TQ PAY-REPORT-NAME.
PERFORM COMPUTE-WAGES THRU COMPUTE-WAGES-EXIT.
B ADD WAGES TO CMPL-YTD-WAGES-IN GIVING EMPL-YTD-WAGES-OUT.
MOVE WAGES TO PAY-REPORT-WAGES.
WRITE EMPL-4ASTER-REC-OUT.
WRITE PAY-RFEPORT-REC.
MOVE SPACES TO PAY-REPDRT-REC,
END-TIME-CARD-FILE.
CLOSE TIME-CARD-FILE.
COPY-FMPL-MASTER.
REND EMPL-MASTER-FILE-IN INTO EMPL-MASTER-REC-OUT
AT END GO TO CLOSE-MASTER.
GO TO COPY—-EMPL-*ASTER.
NO-MATCH.
MOVE FNO MATCH TIME CARDY TO PAY-REPORT-NAME.
YRITE PAY-REPORT-REC.
CLOSE-FILES.
CLOSE TIMR-CARD-FILE.
CLOSE-MASTER.

y STOP Rux.
A

COMPUTE-VAGES .
IF SALARIFRD TIUEN
MOVE EMPL~TATE-IN TQ WAGES
GO TQ COMPUTE-UAGES-EXIT,
IF HOURLY THEN °
IF TIME-CARD-HRS LESS OR EQUAL 40 THEN

COMPUTL WACES = TIMF-CARD-HRS * EMPL-RATE-IN

0l EMPL-'ASTER-REC-0UT. (:: GO TO COMPLUTE-KAGES-EXIT ELSE
02 EMPL-SFN=OUT PICTURE 2(9). COMPUTE WAGES = (40 + (TIME-CARD-HRS - 40} * 1.5) *
02 EMPL-UAME-OUT PICTUGRE X(18). EMPL-RATE-IN
02 EMPL-VAGE-STATUS-ODT PICTURE 9. GO TO COMPUTE-WAGES-EXIT ELSE
02 EMPL-RATE-OUT PICTURE 99V989. MOVE INVALID WAGE STATUSY TO PAY- REFORT-NAME
02 EMPL-YTD-WAGES-QUT PICTURE 9{6)V59. MOVE 2ERC TO WAGES.

KORKING-5TORAGE SECTION. COMPUTE-WAGES~EXIT.

01 WAGES PICTURE 9({4}V99. i EXIT. .

Figure 5: COBOL Program Example

CLOSE ENPL-MASTER-FILR-IN, EMPL-MASTER-FILE-OUT, PAY-REPORT.

4 one-to-one correspondence of reports and program modulcs with
absolutely no consideration for module grouping. 1In addition,
failure to consider volume and frequency of access with regard to
the various history data items defined eliminates any possibility
for generating optimal file structures. Capabilities of computer-
aided analysis should include specification of optimal file designs
and grouping of single report generating modules in order to elimj-
nate excessive transport of data from files to pPrograms. These
capabilities can only be achieved by extension of forms-oriented
pProgramming specification techniques like ADS to true requirements
statement techniques pProviding supplementary volume and timing data
to the optimization software. Then, the potential of the computer

to aid the problem definer during the system design cycle can be
fulfilled.

CONCLUSION

Experience with two problem statement languages ADS and
SSL/I in the design of an information system for the U, S. Navy
motivated the development of a forms-oriented front~end language
called SSL/II to supplement the PSL/II language developed by the
ISDOS Project.

ADS analysis and program module generation software are
available on the CDC 6500 at Purdue University.., Concurrent with
the design of forms for 55L/I1, implementation of software for
SSL/I1 analysis is currently progressing.

-41-

10.

11.

12.

13.

REFERENCES

Nunamaker, J. F. Jr.; Nylin, W. C. Jr.; and Konsynski, B, 1972.
Processing systems optimization through automatic design and
re-organization of program modules. Proc. 4th COINS Conf.,
December 1972, to be published in 1973 by Academic Press.

Nunamaker, J. F, Jr.:; Ho, T.; Konsynski, B.: and Singer, C.

1973. Specification and design of an information system using
computer~aided analysis. CSD Technical Report, Computer Scicrncos
Department, Purdue University, West Lafayette, Indiana (September
1973).

Canning, R. G. 1968. Data processing planning via simulation.
EDP Analyzer 6, 4 (April 1968), 1-13.

Nunamaker, J. FP. Jr. 1971. A methodology for the design and
optimization of information pProcessing systems. Proc. AFIPS
1371 SJCC 38, Montvale: AFIPS Press, 283-294,

McGee, W. C. 1963. The formulation of data processing problems
for computers. In Advances in Computers 4, New York: Academic
Press, 1-52.

Pridmore, H. D. 1967. The abstract information system concept
and the problem of optimum design. Proc. Third Australian

Computer Conf., Chippendale, N.S.W., Australia: Australian
Trade Publications, 149-170. '

Sammet, J. E. 1972. Programming languages: history and future.
Comm. ACM 15, 7(July 1972), 601-610.

Benjamin, R. I. 1972. & generational perspective of information
system development. Comm. ACM 15, 7 (July 1972), 640-643.

Merten, A. and Teichroew, D. 1972. The impact of problem .
statement lanquages on evaluating and improving software per-
formance. Proc. AFIPS 1972 FJCC 41, Montvale, NJ: AFIPS Press,
849-857.

Teichroew, D. 1972, A survey of languages for stating requifeménts
for computer-based information systems. Proc. AFIPS 1972 FJCC 41,
Montvale, NJ: AFIPS Press, 1203-1224.

Young, J. W. Jr. and Kent, H. K. 1958. . Abstract formulation of
data processing problems. Journal of Industrial Engineering
(Nov.-Dec. 1958), 471-479.

CODASYL Development Committee. 1962. An information algebra

-‘phase I report. Comm. ACM 5, 4 (April 1962), 190-204.

Langefors, B. 1963. Some approaches td the theory of information
systems. BIT 3 (1963), 229-254; \

-2~

14.

15,

16.
17.

18.

19.

20.

21.

22.

23.

" 24.

25.

26.

27,

Langefors, B. 1965. Information system design computations
using generalized matrix algebra. BIT 5 (1965), 96-12].

4
lombardi, L. A. 1964. A general business-oriented language
based on decision expressions. Comm. ACM 7, 2 (Feb. 1964),
104-111.

National Cash Register Company, 1968, A Study Guide for
Accurately Defined Systems. Dayton, Ohio.

Lynch, H. J. 1969. ADS: a technique in system documentation.
Database 1, 1 (Spring 1969}, 6-18. '

Myers, D. H. 1962. A time automated technique for the design
of information systems. IBM Systems Research Institute, New
York (1962).

Kelly, J. F. 1970. Computerized Management Information Systems.
New York: Macmillan.

Grindley, C.B.B. 1966. Systematics--a non-programming language
for designing and specifying commercial systems for computers.
Computer Journal. 9 (August 1966), 124-128.

Katz, J. H. and McGee, W. C. 1963. An experiment in non-procedural
programming. Proc. AFIPS 1963 FJCC 23, 'New York: Spartan Books,
1-13.

Cattell, R. Duncan Electric Company, Lafayette, Indiana. Personal
communication.

Koch, R. F.; Krohn, M. J.; McGrew, P. W.; and Sibley, E. H.
1970. PSL Version 2, Release l: A PSL Language Primer. ISDOS
Working Paper No. 33, Department of Industrial and Operations
Engineering, Unlverslty of Michigan, Ann Arbor, Michigan
(August 1970).

Hershey, E. A.; Rataj, W. J.; and Teichroew, D. 1973. PSL/II
Language Specifications Version 1.0. ISDOS Working Paper No. 68,
Department of Industrial and Operations Engineering, University
of Michigan, Ann Arbor, Michigan {(February 1973).

Teichroew, D. and Sayani, H. 1971. Automation of system building.
Datamation 17, 16 (August 15, 1971), 25-30.

Thall, R. 1973. A manual for PSA/ADS: a machine-~aided approach
to analysis of ADS. ISDOS Working Paper No. 35, Department of
Industrial and Operations Engineering, Unlveralty of Michigan,
Ann Arbor, Michigan (February 1973).

CODASYL Systems Committee. 1971. Feature Analysis of Generalized
Data Base Management Systems. New York: ACM (May 1971).

-43-

28.

29.

30.

CODASYL Data Base Task Group. 1971. CODASYL Data Base Task
Group Report. New York: ACM (April 1971).

Codd, E. F. 1970. A relational model of data for large shared
data banks. Comm. ACM 13, 6. {(June 1970}, 377-387. '

Codd, E. F. 1971. Normalized data base structure: a tutorial.
In Proc. 1971 ACM SIGFIDET Workshop: Data Description, Access
and Control, New York: ACM (November 1971), 1-17.

	A Non-Procedural High-Level Language for Automated Design of Application Systems
	Report Number:
	

	tmp.1307986960.pdf.A0KVf

