
Purdue University Purdue University

Purdue e-Pubs Purdue e-Pubs

Department of Computer Science Technical
Reports Department of Computer Science

1973

Specification and Design of an Information System Using Specification and Design of an Information System Using

Computer Aided Analysis Computer Aided Analysis

J. F. Nunamaker

Report Number:
74-126

Nunamaker, J. F., "Specification and Design of an Information System Using Computer Aided Analysis"
(1973). Department of Computer Science Technical Reports. Paper 77.
https://docs.lib.purdue.edu/cstech/77

This document has been made available through Purdue e-Pubs, a service of the Purdue University Libraries.
Please contact epubs@purdue.edu for additional information.

https://docs.lib.purdue.edu/
https://docs.lib.purdue.edu/cstech
https://docs.lib.purdue.edu/cstech
https://docs.lib.purdue.edu/comp_sci

SPECIFICATION AND DESIGN OF AN INFORMATION SYSTEM

USING CO~WUTER AIDED ANALYSIS

J. F. Nunamaker, Jr.
Thomas Ho

Benn Konsynski
Carl Singer

August 30, 1973

CSD-TR 126

SPECIFICATIOM A~D DESIGN OF AN
INFORMATION SYSTEM USING COMPUTER AIDED ANALYSIS'

by

J. F. Nunamaker, Jr., Thomas Ho, Benn Konsynski and Carl Singer

ABSTRACT

This paper describes the use of computer aided analysisfor t.he d:2siqn and development of an integrated financial manage­ment system by the Navy Material Command Support Activity.Computer aided-analysis consists of a set of proceduresa~d computer proqrdrns specifically designed to aid in the processof applications software design, computer selection and perform­ance evaluation. computer aided analysis consists of four majorcomponents: P~oblern Statement Language, Problem Statement Analvzer,r;"merator of t,lternativc Desiqns, and Perfor~ance Evaluator.
~he statement of requirements was written in ADS (Accu­rately Defined Systems) and analyzed by a Problem StatementAnalyzer for ADS developed at the University of Michigan andextended at Purdue University. The ADS problem definition wassupplemented with additional inf~ation in order to create acomplete problem definition.
The analyzed problem statement was then translated to theform necessary for use by the SODA (Systems Optimization andDesign Algorithm) program for the generation of alternatives andperformance evaluation. Fundamental to the SODA approaoh is theautomatic generation of designs of program structure and datastructure. This is the point at which SODA differs from thecommercially available simulation packages.
It was necessary to supplement the ADS definition withadditional information needed to perform the SODA analysis. Thisadditional information was defined in SODA Statement Language.The paper focuses on the use of ADS as a problem definitiontechnique and the use of SODA as a design aid for the specifica­tion of program modules and logical data base structure.The procedures and programs described are presently beingincorporated into a framework that facilitates man-machine inter­action for problem definition and information systems design .

• Computer Sciences Department
Purdue University·
~~st Lafayette, Indiana 47906

SPECIfICATIO:J AND DESIGN OF A:J

INFORMATION SYSTEM USING COMPUTER AIDED ANALYSIS.

J. F. Nunamaker, Jr.
by

Thomas Ho, Benn Konsynski and Carl Singer

INTRODUCTION

The problems inherent with the increasinq use of the

computer for informatior. systems applications have provided the

motivation for the development of tools for auto~ating the pro­

Jt.:".:lioTI ;.;i a~p1.ications software. The current:. methods for

bUilding information systems contain numerous deficiencies [11

<-tnt] c;omr:uter-i"\irleu analysis of user requirements is proposed as

tht:! first step toward automated systems bUilding [21.

ovtavTEW OF COMPUTER AIDED ANALYSIS

In this paper we describe: (1) a number of software

systems for computer aided analysis and (2) how they were used

to aid the Navy Material Command Support Activity with the
design of a large information system.

The activities performed by the systems for computer aided
analysis consisted of:

l~ Procedures for stating processing requirements.

2. Il"utomatic analysis of processing requirements.

3. The design of program structure; i.e., determining how

many modules must be generated and the size of each
module.

4. Th€ design of logical file structures and logical data
base.

5. Selection of hardware, including:

Central processing unit

Core memory size

Auxiliary memory

Input/output configuration

* Computer Sciences Depart~ent
Purdue I:::iversity
Nest Lafaye~te, Indiana 47906

-1-

6. The allocation of f~les to storage devices.

7. The optimal selection of blocking fa~tors for each file.

An overview of the software
is shown in Fioure 1.
below.

Each of the
system for computer

major components is
aided analy~i~

described

St,Hement of
Requircmr'lte in

Ans WHo
Slipplel'lcnt.:&ry

Info~ation in SSL

!.!:!?bl"", ~~!!!.

!. lIDS
2. SSL

SODA
Gener.. toro.

1I.1ternat.lv.. ,
(SCJI,j

SODA
Pe:rfol"lllanee
~.lllator

(liP!:)

Figure 1: SODA (Syster'
Optimizati('l~

and Design
Algorithm)

C~lete Specifieatione of
lseleeted Computer Syet~~e

I:Ji'peeted Syete",e
PerfOrmance Te.t,

PROBLEI1 STA7E11E:.T TECHNIQUES

Past experience with problem statement techniques indicated

,that no existing problem statement technique was adequate for the

complete expression of user requirements relevant to all aspects

of systems design and optimization. Hence, two techniques: (1)

Accurately Defined Systems (ADS) and (2) SODA Statement Language
(SSL), were used.

of information onThe combined problem statement consists

data volumes and frequency of input and OUtr.'lilt

-2-

ite'"s. The cata

Complete Spec~f~cat10ns of
[Selected Computer Systems

Expected Systems
Performance Tests

-

~?
Statement of

Requirements in
ADS with

Supplementary
Information in SSL

II
--

Diagnostics Problem Analyzer
~- and l,.

Analysis l- ADS

-------- 2. SSL
~

-, flardwar
Dl.-'3.'Jnost1cs SODA

I"
File,- on Generator

Timing of
/tlculations Alternatives ~

(SGA) oftwar-- ,File

Diagnostics
.

SODAon
'-' Performancel,. Detailed

Timing Evaluator
lalcUlation, (SPE)

-, . ,

description, processinq requirements, operational requirements,'
and time and volume information are expressed in units specified
by the problem definer. The problem statement must contain suf­
ficient detail so that systems analysts and programmers could use
it to design and implement the information system with no addi­
tional information.

ADS is form oriented and is used to obtain much of the
basic problem definition. SSL is used to express system desian
parameters and performance requirements, e.g., I/O volumes and,
frequencies for system design and performance optimization.

Accurately Defined Systems

Accurately Defined Systems (ADS) is a product of the Nationai
Cash Register Company (1968) and is described by Lynch [6] and
NCR [7]. ADS consists of a set of forms and procedures for sys­

"ternatically recording the information that a systems analyst
would gather during compilation of the user requirements for the
information system to be implemented. The essential elements of
an ADS requirements statement include descriptions of:

1. Inputs to the information system.
2. Historical data stored by the information system.3. Outputs produced by the information system.4. Actions required to produce these outputs and theconditions under which each action is performed.

SODA Statement Language

SODA Statement Language (SSL) consists of a set of forms
tor systematically gathering data on the volumes and frequencies
of system inputs and outputs described in the ADS statement.
The essential elements of an SSL statement include requirements
data for:

1. Inputs to the batch processing subsystem.
2. Queries to the teleprocessing subsystem.
3. Reports produced by the information system.

PROBLEM STATEMENT ANALYZER

Both the ADS analyzer and the SODA Statement Analyzer
accept the requirements stated in the respective languages,

-3-

analyze them, and provide the problem definer '.·ll th d~.a.,no9tics

for debugging his problem statements and reports.

ADS Analyzer

Computer-aided analysis of an ADS statement performs a
number of checks and prepares a series of summaries of the
statement of user requirements. The simplest kind of check
performed involves the validation of ADS source statements to
uncover any violations of the syntax rules of ADS problem state­
ment. Rules r.elating to naminq conventions, numbering conventions.
information linking, and the like are specified to guide the user
during problem definition.

More c~mplex checks of logical consistency and complete­
ness indicate errors in data element definition and in linking
of information sources. Major errors of a logical nature include
the use of data elements not defined elsewhere in the ADS state­
ment and the redundant definition of data elements with multiple
occurrences in the ADS statement. Less serious errors involve
historical data elements for which no update procedures have been
specified and definition of data elements not used elsewhere in
the ADS statement.

Summary reports produced by computer-aided analysis incl~de
a directory of all data element occurrences, indexes to all data
elements and processes, matrices indicatinq the data elements
required by each process and the precedence relationships among
data elements, and graphical displays of the ADS forms submitted
fo~ analysis. The data element directory consists of an alpha­
betical list of the data elements defined in the ADS statement,
the placed of occurrence of each element, and the information
source of each occurrence. The indexes assign a unique number
to each data element and process for identifying row and column
positions in the matrices indicating incidence and precedence
relationships. The incidence matrix uses process numbers as roW
indexEs and data element numbers as column indexes to identify
the data elements used in each computational process. The pre­
cedence matrix uses data element numbers as both row and column

-4-

indexes to indicate, for each data element, the data elements
that must be computed before the first data element can be cal­
culated. Finally, the graphical reports display the five kinds
of ADS forms in the tabular manner as they \.,.ould appear in input
or manual use of ADS.

SSA (SODA Statement Analyzer)

SSA produces a number of networks which record the inter­
relationships of processes and data and passes the networks on
...~ the SO')]\ program conceri1ed with the generation of alternative
designs.

Each type of input and output is specified in terms of the
data involved, the transformation needed to produce output from
input, and st~red data. Time and volume requirements are also
stated. SSA analyzes the statement of the problem to determine
whether the required output can be produced from the available
inputs. The problem statement stored in machine-readable form
is processed by SSA which:

1. Checks for consistency in the problem statement andchecks syntax in accordance with SSL; i.e., verifiesthat the problem statement satisfies SSL rules and isconsistent, unambiguous, and complete.
2. Prepares summary analyses and error comments to aid theproblem definer in correcting, modifying, and extendinqhis problem statement.
3. Prepares data to pass the problem statement on to SGA.
4. Prepares a number of matrices that express the inter­relationship of processes and data.

SGA (SODA Generator of Alternatives)

The process of design and selection begins after the re­
quirements have been stated, verified, and an~lyzed in SSA. Sr.A
accepts, as input, the output of SSA and a statement of the
available computing resources, hardware, and utility programs.
The hardware and software file consists of data for the computer
systems under consideration. Extensive data exists for the
following computer systems.

-5-

UNIVAC •......•.••.•.•••. 1100 Series
Control Data •....•..••.. 6000 Series
IBM ••••••••••...•.••• 360/370 Series

Fundamental to the SODA approach is the automatic gener­
ation of designs of Program Structure and File Structure. This
is the point at which SODA differs from other techniques such
as SCERT and CASE. In order to use either SCERT or CASE it is
necessary that a system already be designed to obtain answers re­
garding fQasibility. However, SODA will generate the alternative
designs or evaluate a set of manual designs.

The user has three options with respect to the generation
of altern~tive system designs:

Consider only SODA generated designs
Consider only designs generated manually

• Consider both sources of designs.

It should be emphasized that SODA will automatically gener­
ate designs: the option is available, however, for the user to in­
put some as well.

If the user decides to input designs, he must dose according
to a pre-determined format.

SGA is concerned with the problem of producing an operation­
ally feasible design~ SGA takes the information from SSA, analyzes
the alternative hardware and software information with respect to
a specific design, and generates the specifications for the neces­
sary CPU, core size, program structure, and data structure. SGA
essentially computes the expected processing time required for
alternative designs for each period of time.

SPE (SODA Performance Evaluator)

SPE involves examining the operationally feasible design 1n
an attempt to improve system performance.

The optimization and performance evaluation phase generates
a storage structure and schedule, selects auxiliary memory devices,
and searches for ways to improve the IPS design. SPE may return
control to SGA to select anothe~ CPU or core size or to select
another set of Program Modules and Files.

-6- -

SPE selects the minimum cost hardware configuration thatis capable of processing the stated requirements in the timeavailable. This phase consists of a number of mathematical pro­gramming models and timing routines that are used to (1) optimizethe blocking factors -for all Files, (2) evaluate alternative designs:i.e., specify the number and type of auxiliary memory devices, (3)assign Files to memory devices, and (4) generate an operatingschedule for running Program Modules.
In SPE, the performance criterion is optimized within theconstraint set by the capability of the hardware and by the pro­c~ssing ~eq~irements. S~E produces reports describing the systemand stating its predicted performance. On the basis of thesereports, the 'l.ser may decide to change his problem statement oraccept the design; SPE then provides detailed specifications forthe construct:on of the system or the selection of a specificcomputer system. These reports include:

1. A list specifying which of the available computingresources will be used; i.e., which computer system isrequired to do the job.
2. A list of the Program Modules specifying the input,output, and computations to be performed in each.3. A list of Files to be maintained specifying their··­format and manner in which they will be stored, i.e.,an assignment of Files to memory devices.
4. A statement of the sequence and manner in which theProgram Modules must be run to accomplish all the re­quirements.

The magnitude of the information required to describe largeinformation systems motivated the need for a man-machine inter-"active systems design package which leads to the development ofGPLAN/SODA described in t~e last section a

PROBLEM DEFINI~ION

As stated previously no single problem statement techniquepresently available is adequate for complete description of thesystem 4S required for computer aided analysis. As a result, twoproblem 8tatement languages were selected for expression of userrequirements relevant to all" aspects of system design and optimiza­tion:

-7-

1. Accurately Defined Systems (ADS) to provide a non­
procedural description of user requirements to all
SODA packages performing system design, e.g. SGA.

2. A sublanquage of SODA Statement Language (SSL) to
express performance requirements, e.g. I/O volumes and
frequencies -to all SODA packages for system performance
optimization, e.g. SPE.

The ADS requirements statement begins with the definition

of all system outputs. Then definition continues with the identi­

fication of information that enters the system in order to describ€'

inputs tG t~e system. Finally, the requiremp.nts statement is com­

pleted with the definition of historical data retained in the

system for a period of time and with the specification of compu­

tation~ and accompanying logic that subsequently use the input and

histcrical dat.a to produce the system outputs.

Linking of information elements among the various ADS

cefinitions is accomplished in two ways. First, each element of

d~tu is assigned a unique name that is always used whenever that

.element appears in any ADS definition. Second, each use of a data

element in a report, history, or computation definition is linked

back to its information source elsewhere in the ADS descriptio~.

Hence, all data elements are chained from output to input and each

output can ultimately be expressed in terms of inputs to the system.

Chaining is accomplished by assigning page and line numbers to .all

ADS forms 50 that each use of a data element can be uniquely identi­

fied by the form, page, and line on which the element appears.

An example of an ADS requirements statement will demonstrate

the effectiveness of the concepts described above. The ADS example

describes the requirements of an application for payroll calculation.

The application produces an output report listing social

security number, name, and current pay period wages for each employee.

Also, the application includes a master file containing the followinn

information in each employee record:

1. Social security number.
2. Name.
3. Wage status.
4. Hourly rate or pay period salary.
5. Year-to-date wages.

Input to the application is a set of time cards containing the pay

-8-"

period date, employee social security number, and number of hours
.worked during the pay period.

Computations include two types: current wage calculation ~
and year-to-date wage calculation. Current wage calculation is
performed for both salaried and hourly paid employees. Hourly
calculations are further subdivided into straig~t-time calculation
and overtime calculation. Finally, the logic definition form
presents a decision table specifying the conditions under which
each computation is performed.

Note the facility for cross-referencing data elements amonq
.the various forms. For exarJple, Section III of the report defini­
tion form in Figure 2a specifies the source of each element on
the report. Similarly, each entry in the history and computation
definition forms in Figure 3 includes ~n indication of the source
of the data el~~ent specified. Since this example includes only,
wage calculation and not master file maintenance, the source of
all history data elements cannot be specified-here. Furthermore,
the forms may be incomplete in other respects due_ to the omission
of non-essential details, e.g. report headings, in this example.

In Figure 2a, the Report De;in~tion Form describes the
printed output produced by the application. Section I documents
the layout of the report by using the symbols identified in the
upper right-hand corner to describe the printed fields. The
number in parentheses below each field refers to the numbered
items in Section III. Section III identifies the source of each
data item appearing on the report. Cross-referencing is achieved
by specifyi~q H, C, or I for history, computation, or inout re­
spectively and by specifying page and line numbers that appear on
every form. Section IV shows the sequence in which the output
data is listed on the report.

Figure 2b is the Input Definition Form, a description of
the input to the source program. Section I describes the format
of the input record and is linked to the complete description of
each field in Section II. Section II identifies the alphabetic,
numeric, or alphanumeric character of each field and its size in
number of characters.

-9-

Input

Forms

Report and

Definition

F i9'ure 2:

... ', ."", .. ' '-.·,".,,,
, ,,~ ,.....", .'"' .". "
" .".,~'.~ "'(,'"

""", .. "~'"'' ~.·,·c,· ,..,., "'" ..-.. ,~ .~...
• _ .,<,.,~", DO.,"'_ ,",
~. "0.0,.",,~ ,.... ~ ...

?Ay-RE?O;T 1

.. ,,1".......

I REPORT LAYOUT

b

" " • •

Ii I : I I
I I I

,
' I I,

H-
I

I,

"

I ' " f, , t! I I' ', ' \ I
,

! I , I i \ ; \ , :1:1!I,I,tI

II i:SlSlgn '01
~"--

i " ', I

rH I
, I , In';.

I-
, II.'

LI--k

(al

- ,

"I ' 1·1 I ~

I , - II t1 11
-W-WWH -JH-Ll T,t-H~+,++r.++<,-++'-t+t-'-++H+i_+-c-H+'-++'~

~ ,-, I I j: 'in iii I I
• I I ~ ~

"

" .. 11 " .. " .. " " "
'-'-'-'-'-'-'-'-'-'-'-'-" . '-"-'-

I INPUT MEDIA LAYOUT

'-'-

K-J

(3)

"E''''[O S'
DAnCil...lo'

N... W 0' ~r TUiE-CARD
.cOO>

(2)

Aptllkollo"

, I , • I • , I I " " " " " "

'011 ,AII"l;1 r~"~·~·'=.'~o__~,~'O=":':'=:::=:::::;=:::;:======-- ---1FOt..... 's, f ..TU

ID (oe.! t TIME- TIME-C
CARD- 55N
DATE

(1)

INPUT DUlNl1l0N '0' fArROr I,

.......... , ,~~cu .u.:r.~_~:4~; ;'iti:-,l,
5(OI,;""C£' TIMt.· l,;AI.'U.J-~~~
~::n~ tm PUNCHED CAB!)

.---_.----<

I
'- -'- -'-'- -'-'-'-'-'-'-'-"-

mCROSS ~EFERENCE TO FIELD NAMES
(WHEN FIELD HEADING INCLUDES MULTIPLE
CODES, LIST ALL CODES ON ATTACHMENT)

~ouaCf

NAME : M(MO , "C .ACI L1N[
I

~'. £:!IPL-55N 1 1
7 EHPL-NAME 1 ,
~ WAGES

~ lIiIiIi' 1

I
I---'
o
I

(al (b)

MAJOR LEVEL 1

LEVEL 2

...........liiLEVELiiiii3"....

N

(II (0,\0\1'[ET(OESCRIP [ION BELOW Of EACH flfLD
It" ~ECT!ON 1-- Il'lPU r MEOlA lAYOUT

.. .
1"'1"" jVAlIDAT10N' .", fiELD NAME _0, ',,/. RULES-1 .nME.-C;:" 1SQ:-1JArE___ N _0. I- --- -2 :r IHtcl:ARD-SS:'-i , :L

" T l~I~-CARr.i-HRS- -- "". ,, 3 --- -- --
'-.._--

./

The History Definition Form, a description of the master
file maintained by the application, appears in Figure 3a. Again,
each field is comple~ely described. In addition, the memo entry
in line 5 refers to an explanation of the wage status code in the
memo list that actually appears on the Input Definition Form.

The Computation and Logic. Definition Forms are displayed in
Figure 3b. The computation Definition Form lists the variables
to be computed and the factors needed to perform the computations.
Again, the source of each factor is specified. The ent~y in the
sign column identifies the arithmetic operation to be performed.
Since onlJ ~:inary operators are allowed, tempor~ry variables must
be generated for intermediate results and are given mnemonic names
here for clarity. The Logic Definition Form represents a decision
table that specifies the conditions under which each computation
is p~rformed. The computations are listed across the top and
li~k~c t~ the Computation Definition Form while the conditions are
specified down the righthand side.

ADS possesses obvious advantages over the traditional nar~
rative requirements statement technique. Narrative statements are
ambiguous and often incomplete while ADS provides a standardized
and systematic approach to system definition. Still, ADS is both
exact and precise while remaining hardware independent. ADS pro­
motes effective communication among systems personnel by imposing
a discipline that enables the efficient use of human and machin~
resources. Development time is reduced while software quality is
enhanced because the ADS technique enables checking for accuracy,
consistency, and completeness of the requirements statement. Above
all, dollar savings are realized with the use of ADS for problem
definition.

To determine the computer resource demands of the information
system for which the design process was performed, additional data
supplementary to the ADS statement was necessary. This need re­
quired the following data for each input and report described in
the ADS statement:

1. ADS page number.
2. Frequency of occurrence.
3. Volume.
4. Brief description.

-11-

[, -I',,.
I

1 nt:l'l-S,s;;"
2
J DiPL-SAtfE
4
5 Ir.~l-;;,,,,C<:-s:rAr\;L,,
7 t.'''7:'-~

8
g DG'L-YTD-IIACES

(oJ.)

..,.......~ " '
_.....
.­,,~,-

I :I;H~~ TtiQ£I.Lt:i~L - l:'::::~:'__'. ,,i~<I :IQI:l1.-WJ-I'S-$,.

B

_., -"-.

l:l-.l:..:

.:i-...:. •.

- .--

--" ". - ----:;"

I....
'"I

(a)
~·I~1O IISI ("Dill Input DefInicion Fol"lll

No.

-.

(b)

Figure 3: History, COMputation and Loqic Definition Forns

This information was represented on SSL forms along with

Query profile information which included frequency, size, source,

and file reference information.

ADS ANALYZER

The first module of the Problem Statement Analyzer for ADS

(PSA/ADS) performs source deck validation, lists the input cards,

creates a file containing all valid card images, .qnd constructs

a dictiona~y table to be used by other PSA/ADS modules. Source

deck validacion checks compliance with ADS syntax rules and de­

'C'r:t~ arrc:r.s that include:

1. Specification of an illegal form type, i.e., neither
Re~ort, Input, History, Computation, nor Logic.

2. IM~roper form format.

3. Illegal data element name.

4. r.nvalid page or line nUmbering.

For each valid ADS entry, the dictionary table records:

1. Place of occurrence.

a. Form type.
b. Page number.
c. Line number.

2. Data element name.

3. Information Source.

a. Form type.
b. Page number.
c. Line number.

Then, the dictiondry is sorted, in ascending order, according to

the following keys listed in major to minor order:

1. Data element name.

2. Place of occurrence.

a. Form and entry type.
b. Page number.
c. Line number.

The second module of PSA/ADS prints the data element

directory and constructs a symbol table containing all data

element names in alphabetical order. Obtained from the sorted

dictionary table, the data element directory lists the data el­

ements in alphabetical order and provides the following informa­
tion for each data element:

-13-

1. Place(s) of occurrence.
a. Form type.
b. Page number.
c. Line number.

2. Information source(s).
a .. Fonn type.
b. Page number.
c. Line number.

During directory printing, the second module performs logicalchecks to detect the following errors and warnings;
'1. ERROH: NO SOURCE OF INFORMATION.i na'a element has been used, but it has never beent.eiilled as an input or as the result of a computation.2. ERROR: 10 IS NOT IN BODY OF FORM.A data element has been defined as an identifier,usually for sequencing purposes, of a data groupingthat appears on a History or Input Definition Form,but the identifier does not appear as one of the dataelements defined in the body of the form.3. WARNING: NO UPDATE FOR HISTORY.A data element has been defined in a History Defini­tion Form, but the element has not been defined as aresult of a computation. This situation is an erroronly if the data element represents cumulative data,e.g., year-to-date total. If the data element re­presents relatively constant data, e.g., employee ad­dress, that is updated from input elements, this sit­uation is not an error.

4. W~RNING: NOT USED.
A data element has been defined as an input or as aresult of a computation, but it is not subsequentlyused as an operand in a computation, as a report orhistory item, or as a decision variable in a LogicDefinition Form.

5. WARNING: REDUNDANT INPUTS.
~ data element appears on more than one Input Defini­tion Form in which the element is not used as anidentifier, e.g., for sequencing ?ur~nses Hence,only those input definitions using that data elementas an identifier are probably necessary.

6. NARNING: REDUNDANT HISTORIES.A data element appears on more than one HistoryDefinition Form in which the element is not used asan identifier, e.g., for sequencing ~ur9QSes Hence,only those history definitions using that data elementas an "identifier are probably necessary.

-14-

7. WARNING: BOTH INPUT AND COMPUTED.A data element has been defined as both an input andthe result of a computation, but it does not appearas an operand in a· computation. Unless the inputdata element is being used to verify the computeddata element, either the input or computation defini­tion is unnecessary.
8. ERROR: INVALID BACK REFERENCE.A data element has been defined with an informationsource that is not valid. Possible causes includespecification of a report definition item as an in­formation source, specification of a non-existentpage or line number, and reference to an ADS entry(as an information source) where the desired dataelement does not exist.

9. ERROR: NO SOURCE OF INFORMATION.A data element has been defined for which no informa­tion source can be found, i.e., no other definitionof that element can be found on any Input, History,or Computation Definition Form.
Also, the second module assigns a unique number to each data,ele~ent and prints an alphabetical list of the data elementsused in the ADS statement. Then, the sorted dictionary table isagain sorted, in ascending order, according to the following keys,listed in major to minor order:

1. Form type (numeric)
a. Report: form type = 1b. Input: form type = 2o. Co~putation: form type = 3d. Logic: form type = 4e. History: form type = 5

2. Page nwnber.
3. Line number.
4. Entry type (each form consists of different entrytypes) .

The third module of PSA/ADS creates a file containingrecords of the computational processes defined in the ADS state­ment, prints a list of the computational processes, and generatesmatrices displaying the incidence and precedence relationships~mon9 the data elements and processes defined in the ADS state­ment. The third module reads entries from the twice-sorteddictionary table and for each computation entry, the modulewrites one or more (depending on the number of operands in thecomputation) records on the file of computational processes. Each

-15-

record has the form:
1. Symbol table pointer of the data element that appears

as the result of the computation entry.
2. Symbol table pointer of the data element that appears

as an operand of the computation for which the first
pointer identifies the result.

At the sarne time, the third module inserts ADS form page delimiters

into the card image file produced by the first module for forms

printing by the fourth module. The process fil~ is then sorted

in ascending Qrder. Since the data elements were placed in the
symbol table in alphabetical order by the second module, this sort

lists the processes in alphabetical order and the operands in al­

phabetical order within each process. Then, the third module

generates the .incidence matrix indicating the data elements that
serve as result and as operands for each process. These relation­

ship9 are easily derived from the result-operand pairs in the
sorted process ;ile. Also, an alphabetical list of the processes

is generated with the operands of each process listed alphabetical­

ly. Again, the sorted process file is sorted in ascending order

according to the following keys in major to minor order:

1. Symbol table pointer of operand.

2. Symbol table pointer of result.

Finally, the twice-sorted process file is used to generate the

precedence matrix indicating the direct precedents of each pro­

cess. Data element I is said to be a precedent of data element

J if I must be computed before J can be computed. A direct pre­

cedent of J is a precedent of J that is not also a precedent of
any other precedents of J. To generate the precedence matrix,

the module reads each record in the twice-sorted process file and

identifies the operand data element indicated in the second field

of the record as a direct precedent of the process result data

element indicated in the first field of the same record.
Finally, the card image file created by the first module

is sorted, in ascending order, according to the following keys

in major to minor order:
1. Form type (numeric, see keys of dictionary sort for

legend).

2. Page numb.er.

3. Line number.

-16-

4. Entry type.

The fourth and final module reads the sorted card image file and

prints the input in a tabular format similar to that of the ADS

forms developed by NCR.

PROCESS GE~mRATION AND PROGRAM MODULE SPECIFICATIONS

FROM ADS DEFINITION

The.ADS problem statement contains the basic information

required to generate program module specifications from processes

that may be grouped into program modules to eliminate unnecessary

transport of data from history files to program modules. For ex­

ample, if it is determined that two processes require the same

i.nputs and occur in the same processing cycle, e.g. dai~y, then

the two processes become candidates for grouping into a single

program module.
SODA Generator of Alternatives (SGA) performs process qenera­

ticn by compiling four comprehensive summaries for each ADS-described

report:

1. Input summary.
2. History input summary.
3. computation summary.
4. History output summary.

Since the source of each report item is specified in the ADS state­

ment, all sources that are either input items or history items are

included in the input and history input summaries, respectively.

For report items whose sources are computation items, the input

and history input items that are used as operand factors in the

computations are placed into the input and history input summaries

since the sources of all computation operand factors are specifierl.

Also, the computations required to produce the report items are

placed into the computation summary. Finally, the history output

summary is compil~d by listing all history items whose sources

are items listed in either the input, history input, or computation

summaries. Therefore, the history output summary indicates those

history items that might be updated by the elementary module being

specified.

-17-

After generating a process for each ADS-specified report,
SGA searches for candidates for program module grouping in two
ways. First, if some process requires history inputs either iden­
tical to or forming a subset of the history inputs required by

another process, the two processes are identified as candidates
for grouping. Second, if a predominant (approximately 90t> subset

of the history inputs of some process is identical to a predominant
subset of some qther process, the two processes are identIfied as

candidates for grouping. Finally, if the two candidates for group-,

ing ,OCcur iu the same processing cycle, grouping into a single

program mod~le is recommended by SGA.

SODA MACRO SIMULATION

Overvi~w

In most cases" it is not appropriate to perform a micro
performance evaluation, when many system design factors have not

been specified. Therefore, a macro simulation can be useful as

an aid in the specification of the complete systems design.

The SODA macro simulation model is used to evaluate the

performance of the alternative computer systems under various

simulated workload conditions. The Macro Simulator is used as an

aid in design and performance evaluation of alternative design

factors. The macro simulation is used to test the sensitivity

of the performance considerations on various hardware and software
design parameters. Among the system factors simulated at the

macro level are:

The" number and capabilities of various devices.

Specification of system software organization.

Distribution of teleprocessing arrivals during various
periods in the day.

Query profiles.

SchedUling of I/O devices to channels.
Resource queue characteristics.
Batch scheduling and job profiles.

The macro simulation is used to isolate potential problem areas

-18-

and determine bottlenecks. This analysis is used to evaluate

resource utilization, system throughput, batch turnaround, query

response time, overall system behavior, etc.

Job Generation

In order to simulate a workload at the macro level, several

characteristics of each job in the workload must be specified:

1. Job interarriva1 time.
2. Central memory space requirement.
3. Data base access interrequest time.

4. Number of data base access requests by type and complexity.

5. Data base access record length.

The values of these parameters can be derived from a study of the

requiremen~s of the information system under scrutiny and the per­

£orman~a ~apabj,lities of the computer system being considered.

Simulator Structure

The SODA Macro Simulator is an event oriented simulator
not unlike that presented by MacDougall [8J. ~he major structures

maintained by the "model during simulation are a job status table,

a list of events, various queues, resource status tables and job

and reSOurce utilization statistic tables.

The movement of jobs throughout the simulation was ac­
complished by a progression of ~vents. Each event caused a change

in the state of the affected job. For example, an event that as­

nigned a job to the central processor caused a change in the job

state from waiting to execution.

The simUlation model itself basically consists of a col­
lection of event routines. Each event routine applies the cor­

responding change in state to the affected job and predicts the

type and time of occurrence of the next event that will affect

the job ~aBed on the values of the parameters contained in the
job's entry in the job table. Event sequencing was co-ordinated

by the simulator scheduling routine.

The event sequence was maintained as a list of events
ordered by ascending value of time of occurrence. Each list

-19-

entry consists of four fields:

1. Event identifier.
2. Event time.
3. Pointer to job table entry of affected job.
4. Link to the next entry in the event list.

However, whenever an event routine attempted to allocate

a resource that was already busy, the job seeking the resource
entered a queue of other jobs seeking the same resource. Eventu­

ally, when the resource became available, the scheduler selected

a job from the corresponding queue and initiated the corresponding

event routine. Job selection from the queue was performed according

to a prescribed queue discipline.

simulation Of nata Base Access

The manu2r in which the model simulates job interaction

with the data base is of particular interest due to the sensitivity
of the data management system with respect to particular applications.

The procedure differs from that used for ordinary I/O requests to

and from disk.

Data base accesses are classified by function and complex­

ity. The primary functions are updating and retrieval. In addi­

tion," each function is further subdivided into various categories

of access complexity. Complexity is characterized by factors such

as the number of keys specified in a retrieval request and the

number of indexes that must be searched in order to find the de­
sired data base record. Overall, data base performance is deter­

mined by the size of the data base and by the type of physical

storage structures employed.to represent logical data structures.

The characteristics, e.g. size and physical storage structure,

of the data base are specified initially in the simulation model.

Each type of data base request, e.g. update or retrieval, is
characterized by the various levels of complexity permissible.

Based on this data" the model is able to predict the processing
time of each type and complexity of data base requeet made by the

jobs in the simulated mix.

-20-

GENERATION OF CODE FROM ADS AND SUPPLEMENTARY INFORMATION

Figure 4 illustrates a COBOL program that conceptually

might be generated by SODA to fulfill the requirements described

in the ADS statement of Figures 2 and 3. The program reads

TIME-eARn-FILE, an input file of time cards, and performs the

ADS-specified computations and loqic to update EMPL-MASTER-PILE­

IN and to produce PAY-REPORT.

The ADS description primarily provides information for

q~neratinq the DATA DIVISION (part A of Fiqure 4) and the COM­

PUTE-WAGES para~raph (part C of Fiqure 4) of the PROCEDURE DIVISION.

The remainder (part B of Figure 4) of the PROCEDURE DIVISION contains

the procedures and processing logic needed for the application of

the ADS logical definition to the physical implementation of the

ADS-specified report generation and history file maintenance.

Automatic production of this code necessary for physical implemen­

tation can be fulfilled in various ways. One software company has

incorporated an additional form called an execution definition into

its use of an ADS description for code generation. The execution

definition form details .the processing logic necessary for drivinq

the execution of· the logic and computations described in the ADS

forms. Another approach to code generation might involve the

incorporation of code skeletons for common data processing functions,

e.g. transaction processing for master files. Then, the code

skeleton is completed during code generation by providing the

missing record sequencing identifiers and program termination con­

ditions. Finally, automatic generation of code for report gen­

eration features such as positioning of heading and output lines

might be accomplished by incorporating another feature into the

computer-aided ADS report definition form for specification of

report layouts and headings as in the oriqinal manual ADS system.

Still, computer-aided analysis involves much more than the

rUdimentary approach to code generation previously described.

Current approaches to code generation from a non-procedural re­

quirements statement merely translate logical descriptions into

highly inefficient code, regardless of the quality of the original

logical description. For example, deficiencies include the

•
-21-

IO~r:IF1CA:rJO~ DIVISION"
PROGR.\·!-IO•. P...~RVLL-e.u.c:utUlOU
£NVI~h7 DIVISION.
COta'ICUM.TION SECTION.
SOURCE-CO!1PUTER. 6500.
oan:cT-COI1PUTER. 6500.
~OT-OUTPOT SECTION.
"ILE~CONTROL.

SELECT TI"lE-e..uo--FILE ASSIGN TO INPUT.
SI:L£CT PAY-RJ:PORT ASSIGN TO OUT'PO'!'.
SI:L£CT £-'lPL-CiASTER-FIr.E-IN ASSIGN TO TAP!Ol.
SELECT £.-:PL-HASTER-rILI:-OUT ASSIGN TO TAPE02.

PICTUIU: 914JVU.

PICTURE 9(9).
PICTURF. X(lei.
PICTURE 9.
PIC1\IAE nvn.
PICTURE' "IV".

PIC'nIRE X(9).
PIC'nIRE 9(9).
PICTURE X (10) •
PICTURE X{IS).
PICTURE X(lO).
PICTURe $$5g.99.
PICTURE X{H).

COMPUTE-llII" r f.
IF SALARi-FO Tllt.N

HOVE E~PL-nA7E-IN TO WAGES
GO TO COMPUTE-UA"f.S-EXIT.

IF HOURLY THEN
IF TIKE-eARO-HRS LESS OR EQUAL 40 THEN

CO~~UTE WAGES • TIMF:-c~RO-HRS • EKPL-RATZ-I"
co TO CC»IPUT£-W~GES-EXIT ELSE

COMPUTE WAGES,. (40 + lTIM.£-CARO-HAS • 40) • 1.51 •
EMPL-RATE-IN

CO TO COI'U'UTE-MAGES-EXIT ELSE
MOV! "INVALID WAGE STA'f'tlSr' TO PAY- REPOR'fo-NAI"E
MOVl 11:11.0 TO MACES.

COKPUTE-WACES-EXIT.
EXIT.

PROCf:OUIlE OIVISION.
OPEN-FILES. _

OPE!! INPUT TH1E-CARO'-I"ILE, ooL"-K).Sftll':t!U-'nr.
orE~ OUTPUT PAY-REPORT. ~~-MASTER·rILE-OOT.

HOVE SPACES TO PAY- !l.f.1>OR'!'-AEC.
READ-TIME~CARD.

READ TP1F.-C FiD-FILE s.'~ t'ND GO TO ;[N['l-TIJIlE--eARD-PILZ.
READ-E~L-~~STCR.

READ F'~PL~~\lIST£l\-FU,E-IN AT DID GO 1'0 NO-HATCH.
IF TIM.£-CA~-SSN :::{'UA!S EKPL-SSN-IN ':'IIEN

PERFORM PROCESS-TIJIlE-cARD
GO TO READ-TIME-CARD.

IF EKPL-SSN-I~ LESS TIME-CARD-S~~ THEN
GO TO RZAD-~\PLw~~STER.

IF Dl:PL~SSN-ur G~nR TIIiE-CA~-SSN TBE.'i
GO TO ~0-~~TCH r.L~r

WIVE ,1SY~T£~ r.RROR,J TO PhY-R£PORT-NAME
WkITE PI\Y-REPORT-REC
GO TO CLOSE-rILES.

PROCESS-TIME-CARD.
MOVE EI1PL-~IASTER-R£C-IN TO E11FL-!'IASTER-REC-OUT.
MOVE fKrL-SS~-IN TO PAY-REPORT-SSl'I.
KaYE £HPL-~~1~-IN TO PAY-RF.PORT-NAME.
PERFOk~ COMPUTE-WAGES THRU COMPUTE-WAGES-EXIT.
ADO WAGES TO £HPL-YTC-W~GES-IN GIVING EKPL·YTD-MAGES-DUT.
MOVE WAGES TO PAY-REPORT-MAGES.
~ITE ~~PL-·1ASTER-R£C-CUT.

WRITE PAY- RFPOP.T-REC.
HOVE SPACES TO PAY-R.F:1;>OR1'-REC.

ENO-TIME-CARD-FILE.
. CLOSf: TI!-I.t-ClIfUI-nL!:.

COPY-£.~PL-KAST£R"

READ E~L-MASTER-<ILE-IN INTO &~L-HASTER-REC-oUT

AT EN!) GO TO CLOSr.-KkSTER.
GO TO COPY-£~L-~STER.

NO-KATCH.
HOVE INO IIATCH TIM:: CARQrI TO PAY-REPORT-KAKE.
WRITE p;\Y-REPORT-REC.

CLOSE-FILES.
CLOSE TIllE-CARD-FILE.

CtoSE-!'tASTF:R.
CLOSE E~ln-X\STr.R-rIl.z:-IN. EHPL-HASTER-FILE-OOT, PAY-!U::PORT •
STOP RUN.

B

c

99vn.
9 (,)Vtp.

9(61.
919} •
91JI.

9 (9).
X{I1I.

••
PICTURE
PICTURE

PltnlRe
PICTURe
PICTURE

PICTURE
PIctOR.!:
PICTUAl

DATA OIVI!'lIO~.

PIl.£: SECTION.
rn TIMr.-CARD-FILE

DATA RECORD IS TIKE-CAAD
LABEL RECORDS O!'IITTtD
RECORD CO~TA.INS 18 CHARACTERS.

01 TIllE-CARD.
02 TIME-CARD-DATE
02 TI!'U:-CA!l.O-SSN
02 TI~E-C"'RD-HRS

I'D PAY-REPORT
DATA RECORD IS PAY-R!:PORT·rutC
LASEL RECORDS OMITTEO
RECORO CO~ITAINS 136 CRARAC'l'ERS.

01 PAY-~[PORT-REC.

02 FlUtR
02 PAY-REPORT-SSN
02 FILLER
02 PAY-REPORT-NhKE
02 FILLER
02 PAY-~PORT-WAr,ES

02 FIU.[~

PO ~L-~lASTER-FILE-IN

DATA RECORD IS £'lPL-KASTER-REC-Il'I
LABEL RECORDS' ot1I'M'EO
RECORD CO~TAINS 40 CHARACTERS.

01 EHPL-XASTER-REC-IN.
02 DlPL-SS:I-I~

02 E~'PL-:IlA"'F:-I~

02 £-'II'L-\·:l,Cr.-STI\TUS-IN
88 HO~RLY VALOE 1.
89 S,~~I~O VALUE 2.

Ol t.~IPL-R.ATE-IN

02 E~L-YTO-""'G~S-IN

ro ~L-~~ST£R-FILE-OUT

DATA RtCORD IS EHPL-QSTER-ItI:C-<lU'I'
LABEL RECORDS O!1ITTED
RECORD CO:-'''TAHIS 40 CIIARAC1'DS.

01 EKPL-KAST£A-RE;C-OUT.
02 EY~L-SSN-OUT

02 EKPL~NAME-DUT

02 ~L-~ACE-STATUS-DUT

02 EHPL-AATE-<lU'I'
02 tKPL-rfD-NAC£S-QUT

"OUING-STORACE SECTION.
01 WACES

A

I

'"'"I

Figu:-e 4: COBOL Progr~~ fxample

restriction of a one-to-one correspondence of reports and program

modules with absolutely no consideration for module grouping. In
addition, failure to consider volume and frequency of access with

regard to the various history data items defined eliminates any

possibility for generating optimal file structures. Capabilities

of computer-aided analysis should include' specification of optimal

file designs and grouping of single report generating modules in

order to eliminate excessive transport of data from files to pro­

grams. These: capabilities can only be achieved by extension of

forms-oriented programming specification techniques like ADS to

true requirernen':':'s statement techniques providing supplementary

volume and timing data to the optimization software. Then, the

pot~ntial of the computer to aid the problem definer durinq the

system design cycle can be fulfilled.

EXPERIENCE WITH A LARGE APPLICATION

The work specifically reported in this paper was done for

the united States Navy Material Command Support Activity (NMCSA).

The statement of requirements for a financial management system

was expressed ~n ADS by a large Accounting Firm. An ADS analyzer,

developed at the University of Michigan [9, 10] was used to check

the ADS statement of requirements for completeness, consistency

anc logical accuracy. The ADS analyzer produced information and

reports that were used by the SODA Statement Analyzer. SODA was

then used tc (1) generate preliminary designs of program structure

and logical data base structure for the batch application part of

the system and (2) to recommend a computer system for the entire

financial management system.

Experience With ADS

NMCSA personnel, engaged in financial manage, !nt, are

currently using ADS to state the requirements of a large information

system. This integrated financial management system is a large­

sca~e design and implementation effort for more effective financial

-23-

management, particularI! procurement accounting, within the agency.
The systems design effort commenced in May, 1971, and is expected

to continue for 4 to 5 years at a cost of 12 million dollars.
A systems design effort of this magnitude has an impact

upon many different offices within the complex organization of the

agency. Financial managers, the end-users of the system, are

scattered among many offices engaged in complicated communication

of varied information requirements.
The purpose of the system is to centralize information flow

and,satisfy the information requirements of a variety of decision
makers. ~he principal communicators in the system are the requirin~

manager or financial manager, participating manager, and procure­

.ment ma~aqer. The decision makers observe a hierarchy of authority

delegation a~d reverse order for accountability.

Initial authority is received by the Comptroller of the

Navy, from the office of the Secretary of the Navy. In the case

of a fund allocation, the comptroller issues a program fund al­

location with program values at the line item budget level. The
funding then proceeds through the responsible office to the ad­

ministering office. Here funding proceeds to the requiring/
financial manager level where responsibility lies for execution,

modification, and delivery of the system within cost and schedule

objectives. At this level monthly approval is considered for

interim actions. The reqUiring/financial manager issues project

directives which delegate specific authority to the participating

manager level operatives.

Fund status inquiries are used to maintain fund control

at the project directive line item level. Contract status inquiries

are used to control delivery dates and funds for contract items.
Fund status inquiries are characterized by funded project

directives and planning project directives. The planning project

directive allows for procurement of long-lead-time items. The
funded project directive serves a shorter cycle time and there­
fore has a high activity level of inquiry and update.

Contract status inquiries are primarily identified with
the procurement manager. Once a funded project directive is

established, the information updates revolve around completion

-24-

status of tasks in line with procurement. The procurement manaqcr
updates the contract status·which is observed by the participating

manager and the requiring/financial manager.
The basic objective is to significantly improve the time­

liness of accounting/financial management information reported
by the agency's accounting system to reduce input, processing, and
reporting time. This facilitates elimination of most memorandum

record systems.
The first module of the system to be implemented is the

procurement accounting and reporting subsystem. This subsystem

is intended to oorrnali~e information flow concerning procurement

accounting. This subsystem includes;

1. r'llnds Accounting
2. Planning Document~

3. Contract Accounting
4. Fiscal and Program Status
5, Other items related to appropriations.

ADS was selected as the requirements statement technique
for system documentation. This phase has now been completed and

experience has indicated that ADS served effectively as a tool

for systems documentation. The ADS statement for the system

includes descriptions for 79 reports and for the accompanying

history files, computations, and inputs which define 791 data
elements.

BEHAVIORIL EXPERIENCE WITH ADS

The first objective of the introduction of ADS into any

environment is gaining user acceptance. ADS represents deviation

from the established practices and initial resistance to change

often occurs. As '8 result, many questions regarding ADS and its

impact upon the organization are raised.

In response to this initial user reaction, an ADS training
program is advisable. However, ADS is simple and straightforward
so less than one day of intensive training is all that is necessary
to adequately prepare individuals to begin using ADS. Then, further

training is required only to deal with the specific restrictions
•imposed upon the use of ADS by the ADS Analyzer software. For

-25-

example, the Analyzer restricts the length of data element names

to forty characters.
The use of a form-oriented procedure such as ADS still

requires a significant investment of time and effort to realize

the return of a complete and consistent logical systems design.
Still, a number of users with ADS experience agree that ADS has

saved them considerable time during the specification of logical

system design.
This savings is realized by the capability of the ADS.

Analyzer to provide feedback information to the usera The user
should be ab'e t~ do a better job of specifying his requirements
because he receives feedback much sooner in the system design

c~'cle utilizing computer analysis of ADSa Ordinarily, in a com­
pletely manual narrative system, ambiguities and omissions in the

logical system description are not discovered until physical design

or even coding is well underway. By then, many aspects of the

system design have been specified so that resolution of difficulties

may be impossible.

Physical system design is not the responsibility of the

ADS user. Completion of the ADS logical description is followed
by the physical system design process that provides the specifi­

cations for proqramminqa

Performance of ADS

Experience has demonstrated that ADS is adequate for
specification of the logical system. However, an ADS description

does not provide sufficient information for optimization of physi­

cal system design. Data on system performance requirements was

collected to supplement the ADS description in SODA Statement

Language. Relevant data includes specification of the frequency

of occurrence of each ADS - described input and report and of the

volume of each input, report, and history a

Other needed enhancements to computer-~ided ADS include

facilities for describi~g data structures and look-Up tables
and for decision tables expressing processing logic and input

validation rules. Finally, additional software for generating

-26-

report layouts and program test data would add significantly to

computer-aiuerl ADS capabilities. Many of these enhancements are

included in the SODA Statement Analyzer.

PROGRAM MODULE GROUPING FOR THE NAVY EXAMPLE

For the information system under consideration SGA generated

62 program modules to produce the 79 ADS-specified reports. For

~ach pro~ram module, SGA provides the following information to

the SODA Performance Evaluator (SPE) .

• Brief program module title.
Frequency of occurrence.
Program module size, in R bytes.
Histo~y files required for processing.
File device type.
Size, in bytes, of each history record input.
Number of history records input for processing.
Volume, in number of lines, of printed output.

For each program module, module size and number of arithmetic

operations are derived from the quantity and complexity, e.g. al­

ternative logic paths, of computations in the summary produced by

SGA. Volume and size of'history records input are derived from

the history input summary produced by SGA. SGA performs sumaary

analysis on all ADS-specified inputs required to produce each

history item. user-provided data on input requirements was then

used to derive the volume of the history item under scrutiny. The

size of the history item is prOVided in the ADS description.

Finally, twenty record groups were generated with each group con­

taining history items that are used together in a fashion that

implies logical connectivity. Each group of records forms the

basis for defining history file structures. An overview of the

program module specifications for fiscal reporting tasks is pre­

sented in Table 1: Batch program Module Workload Summary.

Note that process grouping into modules and history record

~rouping into files were performed in a manner that spreads the

workload equally among the modules to the greatest extent possible.

Workload sharing is made possible by minimizing the variance in

the number of computations in each module and by minimizing the

variance in the number of records in each file grouping.

-27-

U,TCR 'PROGPAM M:mt1LE 'WO~ SUl9Vl.RY

-- ~Appliroation,t. " ·"l\a.aJl:- -". -rr-eql .M-.y ·lteqIrired -----. File Hedium . - ..Avq.. -ae~ ~ ..1eoor4 .AV'fJ.• .output.
Program ID !la!!. ~ (X byt,e.) Lanege ID Code Y!'lth (char.) Volume Length (LiM

A. Fiscal Reportin9

1- Program Budget eoBOL Bl .,
Statu. Print 1 ISO BS .U Dbk '01 2200 340

2. App:I. Status by COBOL HI HS
FY and Acct. Print 1 SO Bll Diak 2" 2200 23000

3. Report on eoBOL H1 84 Dil!l);: 232 225 24000
Reimbursable. Print 1 35

,. Report on eoBOL Bl B'
Obligation. Print 1 100 BS Dbk .,7 2000 1000

S. Analysis of' eoBOL Bl H'
I Appropriation. and l/:rear .5 Hll Disk "0 2200 .00

'" Fund Balances Print """. SO'"I
•• Line Item COBOL HI H' Dbk 232 225 24000

Report Print 1 35

eoBOL HI RS
7. Sur.ar.ary Line Bll ~bk 263 2200 4700

Ite:tl Report 'Print 1 SO

COBOL Hl 85•• Procurement 'Pr09r41\'l Hll DilIk 268 2200 4000
Progress Report Print 1 35

COBOL HI BS Disk 141 2000 4000

•• Worksheet Print 2/year 25JUne, Dec.

Table 1: Batch Program Module Workload Summary

FUTURE RESEARCH

Extensions to the co~puter-aided analysis techniques

described in this paper are presently being developed at Purdue
University. The ..ny software packages for aiding in the design
process are being incorporated into a system called GPLAN/SODA.
GPLAN: Generalized Data Base Planning System [4, 51.

The GPLAN approach provides an effective framework for

the solution of problems involving the design and optimization of

larqe information processing systems. GPLAN/SODA, a Generalized

,Data Base Planning System containing System Optimization and Design

Algorithms, provides capabilities ranging from the construction of

an information system described by SSL problem statement to the

optimization of individual system performance factors such as input

and output.
Following the GPLAN outline, the major components of GPLAN/

SODA include:
1. A data base containing general-purpose programming

language (GPPL) and SSL descriptions of the information
system being designed. COBOL is the GPPL for implementa­
tion of the type of information system designed by GPLAN/
SODA: business data processing systems composed of
small (in relation to the size of data files) programs
manipulating large data files.

2. A collection of software packages including:

a. SODA Statement Analyzer (SSA) , a Requirements
Statement Analyzer for SSL.

b. SODA Generator of Alternatives (SGA), a procedure
to generate ·alternative hardware (CPU, core,
auxiliary memory devices) and software (program
module and file structure) configurations.

c. SODA Performance Evaluator (SPE), a collection
of models that produce cost and performance pro­
jection reports in-order to evaluate the alter­
native designs generated by SGA. SPE includes:

Simulators for batch and teleprocessing systems .
• Blocking factor selection model.

Model for file assignment to physical devices.
Program module scheduling model.

d. Code generator to map selected program module and
file structures to programming language (GPPL)
representation for selected hardware configuration.

-29-

e. ,Program re-organizer including capabilities such
"s (3J:

• Combination of· similar data passea on the aame
file to minimize transport volume.

• Merging of loops to enable elimination of
code and of intermediate data files.

f. COBOL-to-ADS translator for existing system (see
the discussiOn of SSL for a description of ADS).

g. ADS-to~COBOL generator for a new system.
3. A query language to enable man-machine interaction

during all phases of GPLAN/SODA operation.

GPLAN/SODA facilitates communication among the users, de­

signers, and ~plementers of an information system throughout
the.life of that system by providing a central clearinghouse of
data relevant to any operational aspect .of information processing.
Problem definition facilities are provided for the user to express
his requiremer-ts to the designers and implementers. Current manual

project management methods often prove inadequate for insuring the

integrity of up-to-date information concerning system implementation
and for distributing this information among the designers and im­
plementers. GPLAN/SODA maintains .a single, up-to-date copy of all
relevant data in a central location easily accessible to all de­
signers and implementers. Data administration and standards en­

forcement are effective because all data name usages and pro­
cessing specifications must pass through the GPLAN/SODA control

software before being accepted and stored.
Second, the pCtential for expansion and improvement is

available through the definition of an interface between each
software package and the other components of GPLAN/SODA. The
addition of a new software package requires knowledge of the input/

output characteristics and the operational capabilities of the
package so that the Generalized Data Management System (GDMS),
query language, and extraction file definitions can be modified
to make the new package available to the user community. The
input/output characteristics must be added to the data definitions
of the GDMS to enable the new package to use the data base. The

"query language and its analyzer must be extended to include the

query components made possible by the added capabilities of the

package. The extraction file structure may require modification

'-30-

to accommodate the needs of the new package.
Finally, GPLAN/SODA p~ovides the man-machine interaction

so necessary ~or the convenient use of any computer-aided tool
while isolating the non-technical user from the intricacies of
the tools applied and the data manipulation that would be required
by these tools in a more conventional environment.

Refer to Figure 5 for an overview of GPLAN/SODA.

DlIut.... ::: ~,..t.. -
fr'*l. Dofl.ltlDrl

~.t~.lIt /AlIUlI~
..,..,.... D.U Intlrl.ctl

J.L.nplfl "".lpl.r
!o'N.n D.e. Opnltlm.

GUlar of AlienlUIv••
-'r IIqul..-aU I. 5n up llbd.1I Perlo_u £.... I ...U.

~ •• Arrlnl. o.ea

far No*I.

c.uol 'roar•..
• "'1_ D.llp AId

4
j

.

lOu

Figure 5: Overvi_ of GPLAN/1I0DA

CONCLUSION

SODA system models were utilized in arriving at the soft­
ware module design .for the procurement accounting module of the
financial system of a large governmental agency. In addition, SODA
performed selection of hardware suitable for implementation of the
proposed design.

All constraints and system objectives were incorporated into
an ADS/SSL problem statement. Program modules were created based
on an aaalysis of the data and information flow relationships.

-31-

REFERENCES

1. Nunamaker, 3. F. Jr. 1971. A methodology for the design and
optimization of information processing systems. Proc. 1971
~ 38, May 1971, AFIPS Press, 283-294.

2. Nunamaker, J. F. Jr. and Whinston, A. A macro approach to
the planning and cost allocation of computer services.
Management Informatics 2, 4, August 1973. (To appear)

3. Nunamaker, J. F. Jr., Nylin, W. C. and Konsynski, B., Proces~ing
Systems Optimization through Automatic Design and Reorganization
of program Modules, proceedinIs of 4th COINS Conference, Decem­
ber 1972, to be publIshed In 973, Academic Press.

4. Nunamaker, J. F. Jr., Swenson, D. and Whinston, A. B., Specifi­
cations for the Design of a Generalized Data Base Planning
System, Proceedings of the National Computer Conference, AFIPS
Press, June 1973.

s. Nunamaker, J. F. Jr., Pomeranz, John, and Whinston, A. B.,
Automatic Interfacing of Application Software in the GPLAN
Framework, CSDTR 95, Computer Science Department, Purdue
University, West Lafayette, Indiana, May 1973.

Data-Lynch, H. J. ADS: A technique in system documentation.
base 1, 1, Spring 1969, 6-18.

7. National Cash Register Company. A.Study Guide for Accurately
Defined Systems. 1968. Dayton, Ohio.

6.

8. MacDougall, M. H. Computer System Simulation: An Introduction.
eQ!puting Surveys 2, 3, (September 1970), 191-210.

9. Mertea, A., and Teichroew, D. The Impact of Problem Statement
Languages in Software Evaluation, Proceedings of FJCC 1972,
AFIPS Press, November 1972, 849-858.

10. Thall, R. 1970. A manual for PSA/ADS: a machine-aided approach
to analysis of ADS. ISDOS Working Paper No. 35 (October 1970),
Department of Industrial and Operations Engineering, University
of Michigan. Ann Arbor. Michigan.

	Specification and Design of an Information System Using Computer Aided Analysis
	Report Number:
	

	tmp.1307986960.pdf.pJWYL

