Purdue University
Purdue e-Pubs

Department of Computer Science Technical

Reports Department of Computer Science

1973

Specification and Design of an Information System Using
Computer Aided Analysis

J. F. Nunamaker

Report Number:
74-126

Nunamaker, J. F,, "Specification and Design of an Information System Using Computer Aided Analysis"
(1973). Department of Computer Science Technical Reports. Paper 77.
https://docs.lib.purdue.edu/cstech/77

This document has been made available through Purdue e-Pubs, a service of the Purdue University Libraries.
Please contact epubs@purdue.edu for additional information.


https://docs.lib.purdue.edu/
https://docs.lib.purdue.edu/cstech
https://docs.lib.purdue.edu/cstech
https://docs.lib.purdue.edu/comp_sci

SPECIFICATION AND DESIGN OF AN INFORMATION SYSTEM

USING COMPUTER AIDED ANALYSIS
J. F. Nunamaker, Jr.
Thomas Ho

Benn Konsynski
Carl Singer

August 30, 1973

CSD-TR 126




SPECIFICATION AND DESIGN OF AN
INFORMATION SYSTEM USING COMPUTER AIDED ANALYSIS™*

by

J. F. Nunamaker, Jr., Thomas Ho, Benn Konsynski and Carl Singer
ABSTRACT

This paper describes the use of computer aided analysis
for the da2siqn and development of an integrated financial manage-
ment system by the Navy Material Command Support Activity.

Computer aided- analysis consists of a set of procedures
and computer programs specifically designed to aid in the process
of applications software design, computer selection and perform-
ance evaluation. Computer aided analysis consists of four major
components: Problem Statement Language, Problem Statement Analvzer,
irnerator of ’lternative Designs, and Performance Evaluator.

The srtatement of requirements was written in ADS (Accu-
rately Defined Systems) and analyzed by a Problem Statement
‘Analyzer for ADS developed at the University of Michigan and
extended at Purdue University. The ADS problem definition was
supplemented with additional infogmation in order to create a
complete problem definition.

The analyzed problem statement was then translated to the
form necessary for use by the SODA (Systems Optimization and
Design Algorithm) Program for the generation of alternatives and
rerformance evaluation. . Fundamental to the SODA approach is the
automatic generation of designs of program structure and data
structure. This is the point at which SODA differs from the
commercially available simulation packages.

It was necessary to supplement the ADS definition with
additional information needed to perform the SODA analysis. This
additional information was defined in SODA Statement Language.

The paper focuses on the use of ADS as a problem definition
technique and the use of SODA as a design aid for the specifica-
tion of program modules and logical data base structure.

The procedures and programs described are presently being
incorporated into a framework that facilitates man-machine inter-
action for problem definition and information systems design.

~

*Computer Sciences Department
Purdue University .
Vest Lafayette, Indiana 47906




SPECIFICATION AND DESIGN OF AN
INFORMATION SYSTEM USING COMPUTER AIDED ANALYSIS®*

by
J. F. Nunamaker, Jr. , Thomas Ho, Benn Konsynski and Carl Singer
INTRODUCTION

The problems inherent with the increasing use of the '
computer for informatior systems applications have provided the
motivation for the development of tools for automating the pro-
drection ui epplications software. The current methods for
building information Systems contain numerous deficiencies (1]
and computer-~ided analysis of user reguirements is proposed as
the {irst step toward automated systems building [2].

QOVERVIEW OF COMPUTER AIDED ANALYSIS

In this paper we describe: (1} a number of software
systems for computer aided analysis and (2) how they were used
Lo aid the Navy Material Command Support Activity with the
design of a large information systeml

The activities performed by the systems for computer aided
analysis consisted of:

-

l. Proccedures for stating processing requirements.
Automatic analysis of processing requirements.

3. The design of program structure; i.e., determining how
many moduies must be generated and the size of each
module.

4. The design of logical file structures and logical data
base.

5. Selection of hérdware, including:

" Central processing unit

* Core memory size
Auxiliary memory
Input/output configuration

* Computer Sciences Department
Purdue miversity
West Lafavette, Indiana 47906

-1~



6. The allocation of files to storagec devices.

7. The optimal Selection of blocking factors for each file.

An overview of the software system for computer aided analysi-n
i1s shown in Fiaure 1.

Each of the major components is described
below.

Statemant of
Requirements ip
ADS wirh
Eupplencntary
Information in $sL

. 4

Dlngnostxcs!_ Problem 4921!!25
Amﬁxn_J ''''' o i Aps : Figure 1: SODA (Syster -
L - . SSL

: Optimizatio:
fard and Design
ardward B
Fﬁﬁﬁﬁrﬁ: ¢ -—— "\ File _ Algorithm)
on '(

K= -~ Ymirc T
Caloculations \

Genaratnr
of
Alternatives

- {SGA)
[ S
Diagnowtica
at P'rgog:a
— 1 erio nce
D;::::;d Evaluatoy

b I
Camplete Specifications of
1Selected Computar Systens

Expacted Systems
Performance Tasts

PROBLEM STATEMENT TECHNIQUES

Past experience with problem statement techniques indicated
- that no existing problem statement technique was adequate for the
complete expression of user requirements relevant to all aspects
of systems design and optimization. Hence, two techniques: (1)
Accurately Defined Systems (ADS) and (2) sSoba Statement Language
(SSL), were used.

The combined Problem statement consists of information on
data volumes and frequency of input and outmiut items. fThe cata



yser

Statement of
Requirements in
ADS with
Supplementary
Information in SSI,

Diagnostics Problem Analyzer
< and, l. ADs
Analysis 2. gsi
Diamnostics L SODA
on Generator
Timing of. :
Calculations Alternatives
(sGa) Boftwargd
Diagnostics
on Per?gg;ance
- betailed Evaluator
Timing (SPE)
Calculation i

T

Complete Specificatigls of
Selected Computer Systems

Expected Systems
Performance Tests




description, Processing requirements, operational requirements,
and time and volume information are expressed in units specified
by the problem definer. The problem statement must contain suf-
ficient detail so that Systems analysts and programmers could use
it to design and implement the information system with no addi-
tional information.

ADS is form oriented and is used to obtain much of the
basic problem definition. SSL is used to express system desian
parameters and performance requirements, e.g., I/0 volumes and
frequencies for system design and performance optimization.

Accurately Defined Systems

Accurately Defined Systems (ADS) is a product of the Nationai
Cash Register Company (1968) and is described by Lynch [6] and
NCR [7). ADS consists of a set of forms and procedures for Sys-
'tematically reéording the information that a systems analyst
would gather during compilation of the user requirements for the
information system to be implemented. The essential elements of
an ADS requirements statement include descriptions of:

1. Inputs to the information system.

2. Historical data stored by the information system.

3. Outputs produced by the information system.

4. Actions required to produce these outputs and the
conditions under which each action is performed.

SODA Statement Lianguage

SODA Statement Language (58L) consists of a set of forms
ror systematically gathering data on the volumes and frequencies
of system inputs and outputs described in the ADS statement.

The essential elements of an SSL statement include requirements
data for:

1. Inputs to the batch processing subsystem.
2. Queries to the teleprocessing subsystem.
3. Reports produced by the information system.

PROBLEM STATEMENT ANALYZER

Both the ADS analyzer and the SODA Statement Analyzer
accept the requirements gtated in the respective languages,

-3



analyze them, and provide the problem definer with dlasnostics
for debugging his problem statements and reports.

ADS Analyzer

Computer-aided analysis of an ADS statement performs a
number of checks and prepares a series of summaries of the
statement of user requirements. The simplest kind of check
performed involves the validation of ADS source statements to
uncover any violations of the syntax rules of ADS problem state-
ment. Rules relating to naming conventions, numbering conventions,
information linking, and the like are specified to guide the user
during problem definition.

More ccmplex checks of logical consistency and complete-
ness indicate errors in data element definition and in linking
of information sources. Major errors of a logical nature include
the use of data elements not defined elsewhere in the ADS state-
ment and the redundant definition of data elements with multiple
occurrences in the ADS statement. Less serious errors involve
historical data elements for which no update procedures have been
specified and definition of data elements not used elsewhere in
the ADS statement.

Summary reports produced by comﬁuter—aided analysis include
a directory of all data element occurrences, indexes to all data
elements and processes, matrices indicating the data elements
required by each process and the precedence relationships among
data elements, and graphical displays of the ADS forms submitted
for analysis. The data element directory consists of an alpha-
betical list of the data elements defined in the ADS statement,
the places of occurrence of each element, and the information
source of each occurrence. The indexes assign a unique number
to each data element and process for identifying row and column
positions in the matrices indicating incidence and precedence
relationships. The incidence matrix uses process numbers as row
indexes and data element numbers as column indexes to identify
the data elements used in each computational process. The pre-
cedence matrix uses data element numbers as both row and column



indexes to indicate, for each data element, the data elements

that must be computed before the first data element can be cal-
culated. Finally, the graphical reports display the five kinds
of ADS forms in the tabular manner as they would appear in jinout

Oor manual use of ADS,

SSA (SODA Statement Analyzer)

S5A produces a number of networks which record the inter-
relationships of brocesses and data and Passes the networks on
<@ the SODA program ctoncerned with the generation of alternative
designs.

Each type of input and output is specified in terms of the
data involved, the transformation needed to produce output from
input, and stored data. Time and volume requirements are also
stated. S§sa analyzes the statement of the problem to determine
whether the required output can be produced from the availabie
inputs. The problem statement stored in machineQreadable form
is processed by SSA which:

1. Checks for consistency in the problem statement and
checks syntax in accordance with SSL; i.e., verifies
that the problem statement satisfies SSI, rules and is
consistent, unambiguous, and complete.

2. Prepares summary analyses and error comments to aid the
problem definer in correcting, modifying, and extendinc
his problem statement.

3. Prepares data to pass the problem statement on to SGA.

4. Prepares a number of matrices that express the inter-
relationship of processes and data.

SGA {SODA Generator of Alternatives)

The process of designand selection begins aftgr the re-
quirements have been stated, verified, and analyzed in SSA. sna
accepts, as input, the output of SSA and a statement of the
available computing resources, hardware, and utility programs.
The hardware and software file consists of data for the computer
systems under consideration. Extensive data exists for the
following computer systems.




UNIVAC..................1100 Series
Control Data.........,..6000 Series
IBM...w..............360/370 Series

Fundamental to the SoDa approach is the automatic gener-
ation of designs of Program Structure and File Structure. This
is the point at which sopa differs from other techniques such
as SCERT and CASE. 1In order to use either SCERT or CASE it is
necessary that a system already be designed to obtain answers re-
garding feasibility. However, SODA will generate the alternative
designs or evaluate a set of manual designs.

The user has three options with respect to the generation
of alternative system designs:

* Consider only SODA generated designs
* Consider only designs generated manually
\ * Consider both sources of designs.

It should be emphasized that SODA will automatically gener- '
ate designs; the option is available, however, for the user to in-
put some as well.

If the user decides to input designs, he must dow according
to a pre-determined format.

SGA is concerned with the problem of producing an operation-
ally feasible design. SGA takes the information from Ssa, anaf}zes
the alternative hardware and software information with respect to
A specific design, and generates the specifications for the neces-
sary CPU, core size, Program structure, and data structure. SGCA
essentially computes the expected processing time required for
alternative designs for each period of time.

SPE (SODA Performance Evaluator)

SPE involves examining the operationally feasible design in
an attempt to improve system performance.

The optimization and performance evaluation phase generates
a storage structure and schedule, selects auxiliary memory devices,
and searches for ways to improve the IPS design. SPE may return
control to SGA to select another CPU or core size or to select
another set of Program Modules and Files.

—6— -



SPE selects the minimum cost hardware confiquration that
is capable of processing the stated requirements in the time
available. fThig phase consists of a number of mathematical pro-
gramming models and timing routines that are used to (1) optimize )
the blocking factors for aill Files, (2) evaluate alternative designé:
i.e., specify the number and type of auxiliary memory devices, (3)|
assign Files to Memory devices, and (4) génerate an operating
schedule for running Program Modules.

In SPE, the performance criterion is cptimized within the
constraint set by the capability of the hardware and by the pro-
C2ssing requirements. SPE produces reports describing the system
and stating its predicted performance. On the basis‘of these
reports, the nger may decide to change his problem statement or
accept the design; SPE then pProvides detailed specifications for
the construction of the system or the selection of a specific
- computer system. Thesge reports include:

l. A list specifying which of the available computing
. resources will be used; i.e., which computer system is
required to do the job. '

2. A list of the Program Modules specifying the input,
output, and Computations to be performed in each.

format and manner in which they will be stored, i.e.,
an assignment of Files to memory devices. o

4. A statement of the sequence and manner in which the
Program Modules must be run to accomplish all the re-
quirements,

The magnitude of the information required to describe large
information Systems motivated the need for a man-machine inter--
active systems design Package which leads to the development of
GPLAN/SODA described in the last section.

Hl

PROBLEM DEFINITION

As stated previously no gingle problem statement technique
presently available ig adequate for complete description of the
Bystem as required for computer aided analysis. As a result, two
pProblem statement languages were selected for expression of user
requirements relevant to all aspects of system design and optimiza-
tion:



1. Accurately Defined Systems (ADS) to provide a non-
procedural description of user requirements to all
SODA packages performing system design, e.g. SGA.

2. A sublanguage of SODA Statement Language (SSL) to
express performance requirements, e.g. I/O wolumes and
frequencies to all SODA packages for system performance
optimization, e.g. SPE.

The ADS requirements statement begins with the definition
of all system outputs. Then definition continues with the identi-
fication of information that entars the system in order to describe
inputs %o the system. Finally, the reguirements statement is com-
pleted with the definition of historical data retained in the
system for a period of time and with the specification of compu-
tations and accompanying logic that subsequently use the input and
-histcrical data to produce the system outputs.

Linking of information elements among the various ADS
cefinitions is accomplished in two ways. First, each element of
data is assiqned a unique name that is always used whenever that
-element appears in any ADS definition. Sebond, each use of a data
element in a report, history, or computation definition is linked
back to its information source elsewhere in the ADS description.
Hence, all data elements are chained from output to input and each
output can ultimately be expressed in terms of inputs to the system.
Chaining is accomplished by assigning page and line numbers to all
ADS forms so that each use of a data element can be uniquely identi-
fied by the form, page, and line on which the element appears.

An example of an ADS requirements statement will demonstrate
the effectiveness of the concepts described above. The ADS example
describes the requirements of an application for payroll calculation.

The application produces an output report listing social
gecurity number, name, and current pay period wages for each employec.
Also, the application includes a master file containing the followina
information in each employee record:

l. Social security number.

2. Name.

3. Wage status. ,

4. Hourly rate or pay period salary.
5. Year-to-date wages.

Input to the application is a set of time cards containing the pay



period date, employee social security number, and number of hours
worked during the pay period.

' Computations include two types: current wage calculation
and year-to-date wage calculation. Current wage calculation is
:performed for both salaried and hourly paid employees. Hourly

_calculatlons are further subdivided into straight-time calculatlon_'

and overtime calculation. Finally, the logic definition form
presents a decision table specifying the conditions under which
each computation is performed. _
: Note the facility for cross-referencing data elements amongq
the various forms. For example, Section III of the report defini-
tion form in Figure 2a specifies the source of each element on

the revort. Similarly, each entry in the history and computation
definition forms in Pigure 3 includes an indication of the source
of the data element specified. Since this example includes only
wage calculation and not master file maintenance, the source of
all history data elements cannot be specified here. Furthermore,
the forms may be incomplete in other respects due to the omission
of non-essential details, e. d. report headings, in this example.

In Fiqure 2a, the Report Definition Form describes the
printed output produced by the application. Section I documents
the layout of the report by using the symbols identified in the
upper right-hand corner to describe the printed fields. The
number in parentheses below each field refers to the numbered
items in Section III. Section IIT identifies the source of each
data item appearing on the report. Cross-referencing is achieved
Sv specifying H, ©, or I for history, computation, or inout re-
spectlvely and by specifying Page and line numbers that appear on
every form. Section 1V shows the sequence in which the output
data is listed on the report.

Figure 2b is the Input Definition Form, a description of
the input to the source program, Section I describes the format
of the input record and is linked to the complete description of
each field in Section II. Section II identifies the alphabetic,
numeric, or alphanumeric character of each field and its size in
number of characters.

L



=0T~

{3)

b e = YR 1Y
— T Al

NEPOIT DIFIMITION for ] NAWE OF t{o0e" VA‘I"R-LPDE'TT - . n,--:: ST ey mr
PAYROLL LT o Lo L_|  rmeceen
e L R L §oo QN DG e
- AGarAg PO LG o Figqure z R t 1 ut
XL REPQRT LAYOUT R antaahiy igure 2 epor énd np
Definition Forms
" " - " - - — .3
IR IR I HA B SINERENN
"i.]“.'g 1T ﬁl"' i Hl HHIN an
o i AT TIIAE ! HMNAEERS
AT U] e 1K RETANER A FRAARY
AN IRER R il ?ll"’fjglil T RN R AN ;r‘lj‘ll
e AR g T T T P SRR T
IR IR T R T TESTRRRERR Ly
TR I_j_! f | I
_'_I;*_'"" H ol e B | —
(a)
Namt of moyr_LIME-CARD
TIL cross kererence 1O FIELD NAMES AT S 1CU ALY ot L rcow
{WHEN FIELD HEADING INCLUDES MULTIPLE MLDIA TYPE FIEPARLD BY,
CODES, LIST ALL CODES ON ATTACHMENT) VOLuME AV, A
FOR YARIAN2 hant? OF FORMaT
SOURCE FORMATS EnTER -
NAME |memo | ¥ ::' eact | une 10 coot ¢ g‘i:g'_ TIME-CARD
1| EMPL-SSN 1l 1 | DATE
7| EMPL~NAME 1] 3
1| WAGES 1

¥

{a)

MAJOR LEVEL

1 _EMPL-5SN (H,01.01)

LEVEL 2

L commere nescrirnion stLow OF EACH FIELD
IN 3ECT:ON Fe— IFPUT MEDIA LAYOUT

LEVEL 3

FIELD NAME

VALIDATION RULES

JTIME-CARD-DATE __
TIME-CARD-SSN _
TIML-CARD-HRS




The History Definition Form, a description of the master
file maintained by the application, appears in Figure 3a. Again,
each field is completely described. 1In addition, the memo entry
in line 5 refers to an eéxplanation of the wage status code in the
memo list that actually appears on the Input Definition Form.

The Computation and Logic Definition Forms are displayed in
Figure 3b. The Computation Definition Form lists the variables
to be computed and the factors needed to perform the computations.
Again, the source of each factor is specifiecd. The entry in the
sign column identifijes the arithmetic operation to be performed.
Since only :inary operators are allowed, temporary variables must
be generated for intermediate results and are given mnemonic names
here for clarity. The Logic Definition Form represents a decision
table that specifies the conditions under which each computation
is performed. The computations are listed across the top and
linked te the Computation Definition Form while the conditions are
specified down the righthand side.

ADS possesses obvious advantages over the traditional nar-
rative requirements statement technique. Narrative statements are
ambiguous and often incomplete while ADS provides a standardized
and systematic approach to system definition. Still, ADS is both
exact and precise while remaining hardware independent. ADS pro-
motes effective communication among systems personnel by imposing
a discipline that enables the efficient use of human and machine
résources. Development time is reduced while software quality is
enhanced because the ADg technique enables checking for accuracy,
consistency, and completeness of the requirements statement. Above
all, dollar savings are realized with the use of ADS for problem
definition. .

To determine the computer resource demands of the information
system for which the design process was performed, additional data
aupplementary to the ADS statement was necessary. This need re-
guired the following data for each input and report described in
the ADS statement:

- ADS page number.

- Frequency of occurrence.
-  Volume,

- Brief description.

W N~

-11-



-..z‘[_

1ISTORY DIFINITION dor __IR¥

'Eﬂ'—]._lppll:nriuq; NAtE OF CROUNNG _ DMPL-MV Ve -f,
1

{a)

PEEPAIED BY _ — --
A pact_I_ o1 (k)
1 FIELDS THAT IDEMTIFY THIS FISTORY: EMPL-Ssy
IT WHAT IS THF EXPECTED VOLUME? AV wrx
IT DESCRIBE EACH FIELD OF THE GROUP o == 'I_.__._.___._.:
T soaned ———— I Ty
t T — | Ly Tarw I|R FE D .\ "\'.‘, I‘.‘,; LT =TT l_l_' 7 ' ey e
i I e R Y ET - vy [ L CHr e 9 ., B
i - : TREFFR T0 LOCIG LY ¢f . wviow _:.J_‘ ZeLARN-|1DG '" U rwrmser X1l
! i ToPi—csy 5 |..J—T-___§_ 11 _.__ N e T
2 3! Rzrrn R TO LQEIC 7 i juatin g1 2y ter zans L. o
I | BFL-SuE | a8 . [ Bt S MS—! = =
4 i— — 'l_ -E‘ror\r--m;-lnm i) 1 |' ‘4 piage-. e L S
S | EMPL-WAGE-STATUS | 3 1 £ : L o L
6 ] ARJ-OVT-|(RS ' oyr-pBs e 11X 18 ———
7 (B9 FATE :‘r n : L.! i —_
8 OVT-)ing TME=Carepas  n [ 91- tp
9 | DPL-YTD-WAGES | T R cl 113 g
- JRIPL-YIDet6rs finere

MIMO LS from Input Deflnition Form

No.

{b) .
LOGIC SLHNITION far_ PAYAOLL _..._A,pph.ulm.l -

FEOM DEFINTION  CONPITATION .~
NAME__COMPUTE- THAGES, T — PREPARID AY

PAGE___ 1. lINE NOS _.L_i___ DATE

(a)

(Y

I'-:'.’.-S:ON FAE __WAGE TaSUE

—PaGL ___1__or_ )

A0 (H01.0%) WAG

1 ENTER REMTRENCE TO COvrpia™On., w: OF 1rAn.SACHON [TC

1 - HOURLY

2 = SalaBRIFD

ENCER CONSINON,
'lnus.tcnou Tree [TC

W e

'rmz-canu-n_n_s__c__cp

Figure 3: History, Computation and Logic Definition Forms




This information was represented on SSL forms along with
Query profile information which included frequency, size, source,
and file reference information.

ADS ANALYZER

The first module of the Problem Statement Analyzer for ADS
(PSA/ADS) performs source deck validation, lists the input cards,
creates a file containing all valid card images, .and constructs
a dictionary table to be used by other PSA/ADS modules. Source
deck validation checks compliance with ADS syntax rules and de-
‘ecets arrers that include:

l. Specification of an illegal form type, i.e., neither
Report, Input, History, Computation, nor Logic.

Improper form format.
Illagal data element name.
4. TInvalid page or line numbering.

For each valid ADS entry, the dictionary table records:
1. Place of occurrence.

a. Form type.
b. Page number.
¢. Line number.

2. Data element name.
3. Information source.
a. Form type.
b. Page number.
c. Line number.
Then, the dictionary is sorted, in ascending order, according to
the following keys listed in major to minor order:
l. Data element name.
2. Place of occurrence.

a. Form and entry type. )
b. Page number.
¢. Line number.

The second module of PSA/ADS prints the data element
directory and constructs a symbol table containing all data
element names in alphabetical order. Obtained from the sorted
dictionary table, the data element directory lists the data el-

ements in alphabetical order and provides the following informa-
tion for each data element:

-13-




1.

2.

Place(s) of occurrence.

a. Form type.
b. Page number.
C. Line number.

Information source (s) .

a..Form type.
b. Page number.
€. Line number.

During directory Printing, the second modulé performs logical

checks to detect the following errors and warnings:

1.

ERROLR - RC SOURCE OF INFORMATION.
T data element has been used, but it has never becn

wefined as an input or as the result of a computation.

ERROR: 1D 1§ NOT IN BODY OF FORM.

A data element hag been defined as an identifier,
usually for Sequencing purposes, of a data grouping
that appears on a History or Input Definition Form,
but the identifier does not appear as one of the data
elements defined in the body of the form,

WARNING: NO UPDATE FOR HISTORY.

A data element has been defined in a History Defini-
tion Form, but the element has not been defined as a
result of a Ccomputation. This situation is an error
only if the data element represents cumulative data,
€.d., year-to-date total. If the data element re-
presents relatively constant data, e.g., employee ad-
dress, that ig updated from input elements, this sit-
uation is not an error.

WARNING: NOT USED.

A data element has been defined as &n input or as a
result of a computation, but it is not subsequently
used as an operand in a computation, as a report or
history item, or 4s a decision variable ip 2 Logic

Definition Form.

WARNING : REDUNDANT INPUTS,

A data element appears on more than one Input Defini-
tion Form in which the element is not used as an
identifier, e.g., for Sequencing purnoses Hence,
only those input definitions using that data element
a4s an identifier are probably necessary,

MARNING: REDUNDANT HISTORIES.

A data element dppears on more than one History
Definition Form ir which the aelement is not used as

an identifier, e.g., for Sequencing nurnoses Hence,
only those history definitions using that data element
48 an - identifier are probably necessary.

-14-



7. WARNING: BOTH INPUT AND COMPUTED.
A data element has been defined as both an input and
the result of 3 computation, but it does not appear
45 an operand in a computation. Unless the input
data element ig being used to verify the computed
data element, either the input or computation defini-
tion is unnecessary.

8. ERROR: INVALID BACK REFERENCE.

A data element hasg been defined with an information
Source that is not valid. Possible causes include
specification of a report definition item as an in-
formation Source, specification of 4 non-existent
page or line nuvmber, ang reference to an ADS entry
{as an information source) where the desired data
element does not exist.

9. ERROR: NO SOURCE OF INFORMATION.
A data element has been defined for which no informa-
tion source can be found, i.e., no other definition
of that element can be found on any Input, History,
or Computation Definition Form.

. Also, the second module assigns a unique number to each data
- element and prints ap alphabetical ligt of the data elements
-used in the ADS statement. Then, the sorted dictionary téble is
again sorted, in ascénding order, according to the following keys,
listed in major to minor order:

l. Form type {numeric)

a. Report: form type = 1

b. Input: fornm type = 2

¢. Computation: form type = 3
d. Logic: form type = 4

€. History: form type = 5

2. Page number.
Line number.
4. Entry type (each form consists of different entry
types).
The third module of PSA/ADS creates a file containing
records of the computational processes defined in the ADS state-

among the data elements and processes defined in the ADS state-
ment. The third module reads entries from the twice-sorted



record has the form:

1. Symbol table pointer of the data element that appears
as the result of the computation entry.

2. Symbol table pointer of the data element that appears
as an operand of the computation for which the first
pointer identifies the result.

At the same time, the third module inserts ADS form page delimiters
into the card image file produced by the first module for forms
printing by the fourth module. The process file is then sorted

in ascending order. Since the data elements were placed in the
symbol table in alphabetical order by the second module, this sort
lists the processes in alphabetical order and the operands in al-
phabetical order within each process. Then, the third module
generates the incidence matrix indicating the data elements that
serve as result and as operands for each process. These relation-
ships are easily derived from the result-operand pairs in the
sorted process file. Also, an alphabetical list of the processes
is generated with the operands of each process listed alphabetical-
ly. Again, the sorted process file is sorted in ascending order
according to the following keys in major to minor order:

l. Symbol table pointer of operand. .

2. Symbol table pointer of result.

Finally, the twice-sorted process file is used to generate the
precedence matrix indicating the direct precedents of each pro-
cess. Data element I is said to be a precedent of data element

J if I must be computed before J can be computed. A direct pre-
cedent of J is a precedent of J that is not also a precedent of
any other precedents of J. To generate the precedence matrix,
the module reads each record in the twice-sorted process file and
identifies the operand data element indicated in the second field
of the record as a direct precedent of the process result data
element indicated in the first field of the same record.

Finally, the card image file created by the first module

is sorted, in ascending order, according to the following keys
in major to minor order:

1. Form type (numeric, see keys of dictionary sort for
legend).

2. Page number.
Line number.

-16-



4. Entry type.
The fourth and final module reads the sorted card image file and
prints the input in a tabular format similar to that of the ADS
forms developed by NCR.

PROCESS GENERATION AND PROGRAM MODULE SPECIFICATIONS
FROM ADS DEFINITION

The ADS problem statement contains the basic information
required to generate program module specifications from processeé
that may be grouped into program modules to eliminate unnecessary
transport of data from history files to program modules. For ex-
ample, if it is determined that two processes require the same
inputs and occur in the same processing cycle, e.g. daily, then
the two processes become candidates for grouping into a single
program module. _

SODA Generator of Alternatives (SGA) performs process genera-
tion by compiling four comprehensive summaries for each ADS-described
report:

1. Input summary.

2. History input summary.
3. Computation summary.

4. History output summary.

Since the source of each report item is specified in the ADS state-
ment, all sources that are either input items or history items are
included in the input and history input summaries, respectively.
For report items whose sources are computation items, the input
and history input items that are used as operand factors in the
computations are placed into the input and history input summaries
since the sources of all computation operand factors are specified.
Also, the computations required to produce the report items are
placed into the computation summary. Finally, the history output
summary is compiled by listing all history items whose sources

are ltemes listed in either the input, history input, or computation
summaries. Therefore, the history output summary indicates thoge
history items that might be updated by the elementary module being
specified.

-17-



After generating a process for each ADS-specified report,
SGA searches for candidates for program module grouping in two
ways. First, if some process requires history inputs either iden-
tical to or forming a subset of the history inputs required by
another process, the two processes are identified as candidates
for grouping. Second, if a predominant (approximately 90%) subset
of the history inputs of some process is identical to a predominant
subset of some other process, the two processes are identified as
candidates for grouping. Finally, if the two candidates for group-
ing occur in the same processing cycle, grouping into a single
program mod:le is recommended by SGA.

SODA MACRO SIMULATION

Overview

In most cases, it is not appropriate to perform a micro
performance evaluation, when many system design factors have not
been specified. Therefore, a macro simulation can be useful as
an aid in the specification of the complete systems design.

The SODA macro simulation model is used to evaluate the
performance of the alternative computer systems under various
simulated workload conditions. The Macro Simulator is used as an
aid in design and performance evaluation of alternative design
factors. The macro simulation is used to test the sensitivity
of the performance considerations on various hardware and software
design parameters. Among the system factors simulated at the
macro level are:

* The number and capabilities of various devices,

* Specification of system software organization.

* Distribution of teleprocessing arrivals during various
periods in the day.

* Query profiles.
- Scheduling of 1/0 devices to channels.
* Resource queue characterigtics.
* Batch scheduling and job profiles.
The macro simulation is used to isolate potential problem areas

-18-



and determine bottlenecks. This analysis is used to evaluate
resource utilization, system throughput, batch turnaround, query
response time, overall system behavior, etc.

Job Generation

In order to simulate a workload at the macro level, several
characteristics of each job in the workload must be specified:

1. Job interarrival time.

2. Central memory space requirement.

3. Data hase access interrequest time.

4. Number of data base access requests by type and complexity.

5. Data base access record length.
The values of these parameters can be derived from a study of the
regquirements of the information system under scrutiny and the per-
fnrmanﬂe capabilities of the computer system being considered.

{

Simulator Structure

The SODA Macro Simulator is an event oriented simulator
not unlike that presented by MacDougall [8]. The major structures
maintained by the model during simulation are a job status table,
a list of events, various queues, resource status tables and job
and resource utilization statistic tables. '

The movement of jobs throughout the simulation was ac-
complished by a progression of events. Each event caused a change
in the state of the affected job. For example, an event that as-
rsigned & job to the central processor caused a change in the job
state from waiting to execution.

The simulation model itself basically consists of a col-
lection of event routines. Each event routine applies the cor-
responding change in state to the affected job and predicts the
type and time of occurrence of the next event that will affect
;he job based on the values of the parameters contained in the
job's entry in the job table. Event sequencihg was co-ordinated
by the simulator scheduling routine.

The event sequence was maintained as a list of events
ordered by ascending value of time of occurrence. Each list

-19-



entry consists of four fields:
l. Event identifier.
2. Event time.
3. Pointer to job table entry of affected job.
4. Link to the next entry in the event list.

However, whenever an event routine attempted to allocate
a resource that was already busy, the job seeking the resource
entered a queue of other jobs seeking the same resource. Eventu-
ally, when the resource became available, the scheduler selected
a job from the corresponding queve and initiated the corresponding
event routine. Job selection from the gqueue was performed according
to a praescribed gueue discipline.

Simulation Of Data Base Access

The manner in which the model simulates job interaction
with the data base is of particular interest due to the gsengitivity
of the data management system with respect to particular applications.
The procedure differs from that used for ordinary 1I/0 requests to
and from disk.

Data base accesses are classified by function and complex-~-
ity. The primary functions are updating and retrieval. In addi-
tion, each function is further subdivided into various categories
of access complexity. Complexity is characterized by factors such
as the number of keys specified in a retrieval request and the
number of indexes that must be searched in order to find the de-
sired data base record. Overall, data base performance is deter-
mined by the size of the data base and by the type of physical
storage structures employed.to represent logical data structures.

The characteristics, e.g. size and physical storage structure,
of the data base are specified initially in the simulation model.
Each type of data base request, e.g. update or retrieval, is
characterized by the various levels of complexity permissible.
Based on this data, the model is able to predict the processing
time of each type and complexity of data base request made by the
jobs in the simulated mix.

_20_



GENERATION OF CODE FROM ADS AND SUPPLEMENTARY INFORMATION

Figure 4 illustrates a COBOL program that conceptually
might be generated by SODA to fulfill the requirements described
in the ADS statement of Figures 2 and 3. The program reads
TIME-CARD-FILE, an input file of time cards, and performs the
ADS-specified computations and logic to update EMPL-MASTER-FILE-

IN and to produce PAY~REPORT.

The ADS description primarily provides information for
generating the DATA DIVISION (part A of Figure 4) and the COM-
PUTE-WAGES paraaraph (part C of Figure 4) of the PROCEDURE DIVISION.
The remainder (part B of Figure 4) of the PROCEDURE DIVISION contains
the procasdures and processing logic needed for the application of
the ADS logical definition to the physical implementation of the
ADS~specified report generation and history file maintenance.
Automatic production of this code necessary for physical implemen-
tation can be fulfilled in various ways. One software company has
incorporated an additional form called an execution definition into
its use of an ADS description for code generation. The execution
definition form details .the processing logic necessary for driving
the execution of the logic and computations described in the ADS
forms. Another approach to code generation might involve the
incorporation of code skeletons for common data processing functions,
e.9. transaction processing for master files. Then, the code
skeleton is completed during code generation by providing the
missing record sequencing identifiers and program termination con-
ditions. Finally, automatic generation of code for report gen-
eration features such as positioning of heading and output lines
might be accomplished by incorporating another feature into the
computer-aided ADS report definition form for specification of
report layouts and headings as in the original manual ADS system.

Still, computer-aided analysis involves much more than the
rudimentary approach to code generation previously described.
€urrent approaches to code generation from a non-procedural re-
quirements statement merely translate logical descriptions into
highly inafficientlcode, regardless of the quality of the original
logical description. For example, deficiencies include the

|
|
-21- i



..zz-.

IDEMTIFICATION DIVISION.

PROGRA'~ID. . PAYROLL-CALCULATLON ..

ENVIROMENT DIVISION.
COMTIGURATION SECTION.
BOURCE-COMPUTER. €500,
OBJECT-COMPUTER. §500.
IRPUT-QUTPUT SECTION.
FILE~CONTROL.

SELECT TIME-CARD~FILE ASSIGN TQ INPUT.
SELECT PAY-REPFORT ASSIGN TO OUTFUT.

SELECT EMPL-MASTER-FILE-IN ASSIGN TO TAPE(QL.
SELECT EMPL-MASTER-LILE-OUT ASSIGN TO TAPEG2.

A DATA DIVISION.
PILE SECTION.
FD TIMF-CARD-FILE
DATA RECORD IS TIME-CARD
LABEL RECORDS OMITTED
RECOAD CONTAINS 18 CHARACTERS.
01 TIME-CARD.

A PROCEDURE OIVISION.
.| OPEM-FILES. N ] ;
OPE!l INPUT TIME-CARU-FILE, EMPL-MASTER-FYLE-TNW.
OPE OUTPUT PAY-REFORT, EMPL-MASTER-FILE-ODT.
MOVE SPACES TO PAY- AEPORT-REC,
READ-TIHE~CARD.
READ TIME-CARD-FILE k® END GO TQ END-TIME~CARD-PILE,
READ-EMPL-HASTCR.
READ FMPL~MASTER-FILE-IN AT END GO TO NO-MATCH,
IP TIME-CARL~85N SQOUALS EMPL~SSN-IN THEW
PERFORM PROCESS-TIME-CARD
GO TO READ-TIME-CARD,
IF EMPL-S3N-IM LESS TIME-CARD-55N THEN
G0 TO READ-EMPL-MASTER.
IF EMPL-~SSN-IM GREATER TIME-CARD-SSN THEN
GO TG MO-MATCH ELAF
MNVE ASYSTEM ERRORF TO PAY-REPORT-NAME
WHITE PAY-REPORT-REC
GO TO CLOSE-FILES,
PROCESS-TIME-CARD.

g; bt vl gig;ﬂzi :5:;: MOVE EMPL-MASTER-REC-IN TO EMPL-MASTER-REC-OUT.
3 M cano e PIGTURE $ (3} MOVE ENPL-SSN-IN TG PAY-REPORT-SSN.
"t oAy e ChRO-HRS I : MOVE EMPL-NAME-IN TO PAY-REPORT-NANE.
DATA BECORD IS PAY-REPORT~REC PERFORM COMPUTE-WAGES THRU COMPUTE-WAGES-EXIT.
D L EeoORDS . OMrTTED I?S ADD WAGES TO EMPL~YTC-WAGES-IN GIVING EMPL-YTD-WAGES-OUT.
MOVE WAGES TO PAY-REPORT-WAGES.
RECORD COMTAINS 136 CRARACTERS. VRITE Eob - Aa e N REC oD
n pgv 35:021 REC. PICTURE X{9) WRITE PAY-RFPQRT-REC.
02 FILLE . MOVE SPACES TO PAY-REPORT-REC.
02 PAY-REPORT-SSN PICTURE 9{5)}. PO T INE CARECF ILE
02 FILLER PICTURE X{10). D LOoE < TE CMRE FILE
}\ 02 PAY-REPORT-NAME PICTURE X(18). COpyroar TiNE-Ch .
02 FPILLER . PICTURE X{10). READ EMPL-MASTER-FILE-IN INTO EMPL-MASTER-REC-OUT
02 PAY-REPORT-WAGES PICTURE $§55.99. D B LMASTER-EILE-1N INT
02 FILLER PICTURE X(73). GO TO COPY-EMPL-WASTER -
PO EMPL-MASTER-FILE-IN o MASTER.
DATA RECORD LS E'LPL-MASTER-REC-IN MOVE PNO MATCH TIMT CARDY TO PAY-REPORT-HAME.
LABEL RECORDS OMITTED WRITE PAY~REPORT-REC
RECORD CONTAINS 4D CHARACTERS. CLonBITE PAY .
01 EMPL-HASTER-REC-1IN. CLOSE TINE-CARD-FILE.
02 EMPL-SSH-1N :§g$g:§ :Eg;i CLOSE-MASTER
02 EPL-NAVE-IN . "R, —_— -
03 Eubr A F STATUS-IN PIGTORE 5. ggggERE:PL-MASTER-FIL:-IN. EMPL-MASTER-FILE-OUT, PAY=REPORT.
88 HOURLY VALUE 1. _' '
83 SALANIED VALUE 2. A COMPUTE-UAGTE .
02 FMPL-RATE-IN PICTURE 99V9%, IF SALARIFD TIIFH
02 EMPL-YTD-WAGES-IN PICTURE 9 (6)V$9. MOVE EMPL-MATE-IN TO WAGES
FO EMPL-MASTER-FILE-OUT GO TO COMPUTE-UWAGRS-EXIT,
DATA RECORD IS EMPL-MASTER-REC-OUT IF HOURLY THEH
LABEL RECORDS OMITTED IP TIME—CARD-HRS LESS OR EQUAL 40 THEN
AECORD CONTAINS 40 CRARACTERS. COMDUTE WAGES = TIMF-CARD-HRS * EMPL-RATE-IN
01 EMPL-MASTER-REC-OUT. C GO TO COMPUTE-WAGES-EXIT ELSE
02 EMPL-SSN-OUT PICTURE 9(9). COMPUTE WAGES = (40 + {TIME-CARD-HRS ~ 40) ¢ 1.8) »
02 EMPL-NAME-OUT FICTURE X{19). EMPL-RATE-IN
02 IMPL-WAGE-STATUS-OUT PICTURE 9. GO TO COMPUTE-WAGES-EXIT ELSE
02 EMPL-RATE-OUT PICTURE 99V99. MOVE PINVALID WAGE STATUSE TO PAY- REPORT-NAME
02 EMPL-YTD-WAGES-OUT PICTURE 5(6)VY9. WOVE TERO TO WAGES.
KORKING-STORAGE SECTION. COMPUTE-WAGES-EXIT.
¥ 0l WAGES PICTURE 9(4)V99. W  ExIrT.
Figure 4: COBOL Program Fxample



restriction of a one-to-one correspondence of reports and progrhm
modules with absolutely no consideration for module grouping. In
addition, failure to consider volume and frequency of access with
regard to the various history data items defined eliminates any
possibility for generating optimal file structures. Capabilities
of computer-aided analysis should include specification of optimal
file designs and grouping of single report generating modules in
order to eliminate excessive transport of data from files to pro-
grams. Thesa capabilities can only be achieved by extension of
forms-oriented programming specification techniques like ADS to
true requirements statement techniques providing supplementary
_volume and timing data to the Sptimization software. Then, the
potential of the computer to aid the problem definer during the
gystem design cycle can be fulfilled.

EXPERIENCE WITH A LARGE APPLICATION

The work specifically reported in this paper was done for
the United States Navy Material Command Support Activity (NMCSA).
The statement of requirements for a financial management system
was expressed in ADS by a largé Accounting Firm. An ADS analyzer,
developed at the University of Michigan [9, 10) was used to check
the ADS statement of requirements for completeness, consistency
an¢ logical accuracy. The ADS analyzer produced information and
reports that were used by the SODA Statement Analyzer. S8ODA was
then used tc (1) generate prelimihary designs of program structure
and logical data base structure for the batch application part of
the system and (2) to recommend a computer system for the entire
financial management system.

Experience With ADS

NMCSA personnel, engaged in financial manage 2nt, are
currently using ADS to state the requirements of a large information
system. This integrated financial management system is a large-
scale design and implementation effort for more effective financial

-23-




management, particularly procurement accounting, within the agency.
The systems design effort commenced in May, 1971, and is expected
to continue for 4 to 5 years at a cost of 12 million dollars.

A systems design effort of this magnitude has an impact
upon many different offices within the complex organization of the
agency. Financial managers, the end-users of the system, are
scattered among many offices engaged in complicated communication
of varied information requirements.

The purpose of the system is to centralize information flow
and . satisfy the information requirements of a variety of decision
makers. The principal communicators in the system are the requirina
manager or financial manager, participating manager, and procure-

.ment marager. The decision makers observe a hierarchy of authority
delegation and reverse order for accountability.

Iritial authority is received by the Comptroller of the
Navy, from the office of the Secretary of the Navy. 1In the case
of a fund allocation, the comptroller issues a program fund al-
location with program values at the line item budget level. The
funding then proceeds through the responsible office to the ad-
ministering office. Here funding proceeds to the requiring/
financial manager level where responsibility lies for execution,
modification, and delivery of the system within cost and schedule
objectives. At this level monthly approval is considered for
interim actions. The requiring/financial manager issues project
directives which delegate specific authority to the participating
manager level operatives.

Fund status inquiries are used to maintain fund control
at the project directive line item level. Contract status inquiries
are used to control delivery dates and funds for contract items.

Fund status inquiries are characterized by funded project
directives and planning project directives. The planning project
directive allows for procurement of long-lead-time items. The
funded project directive serves a shorter cycle time and there-
fore has a high activity level of inquiry and update.

Contract status inquiries are primarily identified with
the procurement manager. Once a funded project directive is
established, the information updates revolve around completion

-24-



status of tasks in line with procurement. The procurement manager
updates the contract status which is observed by the participating
manager and the requiring/financial manager.

The basic objective is to significantly improve the time-
liness of accounting/financial management information reported
by the agency's accounting system to reduce input, processing, and
reporting time. This facilitates elimination of most memorandum
record systems.

The first module of the system to be implemented is the
procurement accounting and reporting subsystem. This subsystem
is intended to rormalize information flow concerning procurement
accounting., This subsystem includes:

Fiunds Accounting

Planning Documents

Contract Accounting

Fiscal and Program Status

Other items related to appropriations.

(Vo R PSR L

ADS was selected as the requirements statement technique
for system documentation. This phase has now been completed and
experience has indicated that ADS served effectively as a tool
for systems documentation. The ADS statement for the system
includes descriptions for 79 reports and for the accompanying
history files, computations, and inputs which define 791 data
elements.

BEHAVIORRL EXPERIENCE WITH ADS

The first objective of the introduction of ADS into any
environment is gaining user acceptance. ADS represents deviation
from the established practices and initial resistance to change
often occurs. As'a result, many questions regarding ADS and its
impact upon the organization are raised.

In response to this initial user reaction, an ADS training
program is advisable. However, ADS is simple and straightforward
80 less than one day of intensive training is all that is necessary
to adequately prepare individuwals to begin using ADS. Then, further
training is required only to deal with the specific restrictions
imposed upon the uge of’ADS by the ADS Analyzer software. For

\



example, the Analyzer restricts the length of data element names
to forty characters. ,

The use of a form-oriented procedure such as ADS still
requires a significant investment of time and effort to realize
the return of a complete and consistent logical systems design.
Still, a number of users with ADS experience agree that ADS has
saved them considerable time during the specification of logical
system design.

This savings is realized by the capability of the ADS
Analyzer to provide feedback info}mation to the user. The user
should be ak'e t> do a bstter job of specifying his requirements
because he receives feedback much sooner in the system design
cycle utilizing computer analysis of ADS. Ordinarily, in a com-
pletely manual narrative system, ambiguities and omissions in the
logical system description are not discovered until physical design
or even coding 1s well underway. By then, many aspects of the
system design have been specified so that resolution of difficulties
may be impossible.

Physical system design is not the responsibility of the
ADS user. Completion of the ADS logical description is followed
by the physical system design process that provides the specifi-
cations for programming.

Performance of ADS

Experience has demonstrated that ADS is adequate for
specification of the logical system. However, an ADS description
does not provide sufficient information for optimization of physi-
cal system design. Data on system performance requirements was
collacted to supplement the ADS description in SODA Statement
Language. Relevant data includes specification of the frequency
of occurrence of each ADS - described input and report and of the
volume of each input, report,and history. )

Other needed enhancements to computer~aided ADS include
facilities for describipg data structures and look-up tables
and for decision tables expressing processing logic and input
validation rules. Finally, additional software for generating

-26~



report layouts and program test data would add significantly to
computer-aided ADS capabilities. Many of these enhancements are
included in the SODA Statement Analyzer.

PROGRAM MODULE GROUPING FOR THE NAVY EXAMPLE

For the information system under consideration SGA generated
62 program modules to produce the 79 ADS~specified reports. For
erach prenqram module, SGA provides the following information to
the SODA Performance Evaluator (SPE).

* Brief program module title.
« Frequency of nccurrence.
" Program module size, in K bytes.
* History files required for processing.
- File device type.
Size, in bytes, of each history record input.
* Number of history records input for processing.
" Volume, in number of lines, of printed output.

. For each program module, module size and number of arithmetic
operations are derived from the quantity and complexity, e.g, al-
ternative logic paths, of computations in the summary produced by
SGA. Volume and size of' history records input are derived from
the history input summary produced by SGA. SGA performs surmary
analysis on all ADS-specified inputs required to produce each
history item. User-provided data on input requirements was then
used to derive the volume of the history item under scrutiny. The
size of the history item is provided in the ADS description.
Finally, twenty record groups were generated with each group con-
taining history items that are used together in a fashion that
implies logical connectivity. Each group of records forms the
basis for defining history file structures. An overview of the
program module specifications for fiscal reporting tasks is pre-
sented in Table 1l: Batch Program Module Workload Summary.

Note that process grouping into modules and history record
érouping into files were performed in a manner that spreads the
workload equally among the modules to the greatest extent possible,
Workload sharing is made possible by minimizing the variance in
the number of computations in each module and by minimizing the
variance in the number of records in each file grouping.

-27-



BATCH PROGRAM MODULE WORFKLOAD SUMMARY

—sz.-

- - - -Application/. © ooTagk-----Pregq/— - Memory ‘Required ——--—- - - File Medium - --Avg. Recozd . . .Record Avg. Output.
Program ID Type  Month (K bytes) Lanquage "~ ID Code Length (char.} Volume Length (Line
A. Fiscal Reporting

1. Procgram Budget COBOL H1l R4
Status Print 1 150 HS H11 Disk B6l 2200 340
2. DAppa. Status by COBOL Hl HS
FY and Acct. Print 1 50 Hll Disk 243 2200 23000
3. Report on COBOL H1 H4 Disk 232 225 24000
Reimbursables Print 1 as
4. Report on COBOL Al H4
Obligations Print 1 100 HS Disk 437 2000 1000
5. Analysis of COBOL H1 H4
Appropriations and 1/year ) H5 H11l Disk 47¢ 2200 B0O
Fund Balances Print June 50
6. Line Item . : COROL Hl R4 bisk 232 225 24000
Report - Print 1 as
. COBOL Hl RS
7. Summary Line H1l Disk 263 2200 4700
Item Report Print 1 50 : .
COBOL H1 BS
8. Procurement Program Hll Disk 268 2200 4000
Progress Report Print 1 35
COBRORL H1 HS5 Disk 141 2000 4000
9. Worksheet Print 2/year 25 .
June, Dec.

Table 1: Batch Program Module Workload Summary



FUTURE RESEARCH

Extensions to the computer-aided analysis techniques
described in thims paper are presently being developed at Purdue
University. The many software packages for aiding in the design
process are being incorporated into a system called GPLAN/SODA.
GPLAN: Generalized Data Base Planning System {4, 5].

The GPLAN approach provides an effective framework for
the solution of problems involving the design and optimization of
large information processing systems. GPLAN/SODA, a Generalized
-Data Base Planning System containing System Optimization and Design
Algorithms, provides capabilities ranging from the construction of
an information system described by SSL problem statement to the
optimization of individual system performance factors such as input
and output.

Following the GPLAN outline, the major components of GPLAN/
SODA include:

l. A data base containing general-purpose programming
language (GPPL) and SSL descriptions of the information
system being designed. COBOL is the GPPL for implementa-
tion of the type of information system designed by GPLAN/
SODA: business data processing systems composed of
small (in relation to the size of data files) programs
manipulating large data files.

2. A collection of software packages including:

a. SODA 8tatement Analyzer (SSA), a Requirements
Statement Analyzer for SSL.

b. SODA Generator of Alternatives (SGA), a procedure
to generate -alternative hardware (CPU, core,
auxiliary memory devices) and software {progran
module and file structure) configurations.

C. SODA Performance Evaluator (SPE), a collection
of models that produce cost and performance pro-
Jection reports in order to evaluate the alter-
native designs generated by SGA. SPE includes:

* Simulators for batch and teleprocessing systems.
+ Blocking factor selection model.

* Model for file assignment to physical devices.

- Program module scheduling model.

d. Code generator to map selected program module and
file structures to programming language (GPPL)
representation for selected hardware configuration.

-29-




e. . Program re-organizer including capabilities such
as [3):

* Combination of.similar data passes on the same
file to minimize transport volume.

+ Merging of loops t0 enable elimination of
code and of intermediate data files.

£. COBOL-to~ADS translator for existing system (see
the discussion of SSL for a description of ADS).

g. ADS-to-COBOL generator for a new system.

3. A query language to enable man-machine interaction

during all phases of GPLAN/SODA operation.

GPLAN/SODA facilitates communication among the users, de-
signers, and implementers of an information system throughout
the life of that system by providing a central clearinghouse of
data relevant to any operational aspect of information processing.
Problem definition facilities are provided for the user to express
his requifements to the designers and implementers. Current manual
project management methods often prove inadequate for insuring the
integrity of up-to-date information concerning system implementation
and for distributing this information among the designers and im-
plementers. GPLAN/SODA maintains a single, up-to-date copy of all
relevant data in a central location easily accessible to all de-
signers and implementers. Data administration and standards en-
forcement are effective because all data name usages and pro-
cessing specifications must pass through the GPLAN/SODA control
software before being accepted and stored.

Second, the potential for expansion and improvement is
available through the definition of an interface between each
software package and the other components of GPLAN/SODA. The
addition of a new software package requires knowledge of the input/
output characteristica and the operational capabilities of the
package so that the Generalized Data Management System (GDMS),
query language, and extraction file definitions can be modified
to make the new package avajilable to the user community. The
input/output characteristics must be added to the data definitions
of the GDMS to enable the new package to use the data base. The
‘query language and its analyzer must be extended to include the
query components made possible by the added capabilities of the
package. The extraction file structure may require modification

=30~
S



to accommodate the needs of the new package.

Finally, GPLAN/SODA provides the man-machine interaction
so necessary for the convenient use of any computer-aided tool
while isolating the non-technical user from the intricacies of
the tools applied and the data manipulation that would be required
by these tools in a more conventional environment.

Refer to Figure 5 for an overview of GPLAN/SODA.

Data Mmagement

Srites " -
Proplam Dofimition : tatesent Languoge
Hardwars Data nterface . el
alyzsr
Softwars Data Oparations Kuage
' orator of Altermatlives
Uner Rrquirements 1. %at up Nodals Parformance Cvelustiom

2. Arrangs Dsta
for Models

I

Coatrol Program
-d
Systems Design Ald

Figure 5: Overview of GPLAN/BSODA

CONCLUSION

BODA system models were utilized in arriving at the soft-
ware module design for the procurement accounting module of the
financial system of a large governmental agency. In addition, SODA
performed selection of hardware suitable for implementation of the
proposed design.

All constraints and system objectives were incorporated into
an ADS/S8SL problem statement. Program modules were created based
on an ahalysis of the data and information flow relationships.

~31-




REFERENCES

Nunamaker, J. F. Jr. 1971. A methodology for the design and
optimization of information processing systems. Proc, 1971
SJCC 38, May 1971, AFIPS Press, 283-294.

Nunamaker, J. F. Jr. and Whinston, A. A macro approach to
the planning and cost allocation of computer gexvices.
Management Informatics 2, 4, August 1973. {(To appear)

Nunamaker, J. F. Jr., Nylin, W. C. and Konsynski, B., Processing .
Systems Optimization through Automatic Design and Reorganization
of program Modules, Proceedings of 4th COINS Conference, Decem-
ber 1972, to be publIEﬁEa-Tﬁ_§§73, Academic Press.

Nunamaker, J. F. Jr., Swenson, D. and Whinston, A. B., Specifi-
cations for the Design of a Generalized Data Base Planning
System, Proceedings of the National Computer Conference, AFIPS
Press, June 1973.

Nunamaker, J. F. Jr., Pomeranz, John, and Whinston, A. B.,
Automatic Interfacing of Application Software in the GPLAN
Framework, CSDTR 95, Computer Science Department, Purdue
University, West Lafayette, Indiana, May 1973.

Lynch, H. J. ADS: A technique in system documentation. Data-
base 1, 1, Spring 1969, 6-18.

National Cash Register Company. A Study Guide for Accurately
Dafined Systems. 1968. Dayton, Ohio.

MacDougall, M. H. Computer System Simulation: An Introduction.
omputing Surveys 2, 3, (September 1970), 191-210.

Mertem, A., and Teichroew, D. The Impact of Problem Statement
Languages in Software Evaluation, Proceedings of FJCC 1972,
APIPS Press, November 1972, 849-858.

Thall, R. 1970. A manual for PSA/ADS: a machine-aided approach
to analysis of ADS. 1ISDOS Working Paper No. 35 (October 1970),

Department of Industrial and Operations Engineering, University

of Michigan, Ann Arbor, Michigan.



	Specification and Design of an Information System Using Computer Aided Analysis
	Report Number:
	

	tmp.1307986960.pdf.pJWYL

