Grain Bin Floors and Foundations (Preliminary)

Purdue University Cooperative Extension Service

Follow this and additional works at: https://docs.lib.purdue.edu/agext

Agultural Engineers' Digest

For current publications, please contact the Education Store: https://mdc.itap.purdue.edu/

This document is provided for historical reference purposes only and should not be considered to be a practical reference or to contain information reflective of current understanding. For additional information, please contact the Department of Agricultural Communication at Purdue University, College of Agriculture: http://www.ag.purdue.edu/agcomm

This document has been made available through Purdue e-Pubs, a service of the Purdue University Libraries. Please contact epubs@purdue.edu for additional information.
The information in this digest is for the smaller government grain bins that are being sold as used bins. For a new bin, follow the manufacturer's instructions. For the large government bins, write the manufacturers of the bin for installation instructions.

INTRODUCTION
The foundation and floor for a new or used grain bin must protect the grain from moisture and rodents, and anchor the bin. A method for removing the grain must be provided.

A vapor barrier of 4 mil polyethylene, or equivalent, should be placed under the floor to prevent moisture from coming through the concrete.

FLOOR TYPES
SLOPING FLOOR
Slope 1"/10' 4" Concrete
Gravel 2-#3 Bars Vapor Barrier

FLAT BOTTOM
Cover Plate for Auger 6" Auger to Center 2-#3 Bars
8" to 10" Metal Pipe

ALTERNATE

CONCRETE HOPPER
12 8 4" Concrete
Vapor Barrier
4" Tile to Relieve Water Pressure

LOCATION
Bins should be located in or near the farmstead. The site should be well drained, free from surface water, and away from any possible flooding. An area protected from snow drifts and mud holes is desirable. Provide an easy access route for convenient filling and emptying.

FILLING
Before placing any grain on the floor, allow the concrete to cure and dry for 30 days. If you must place and store the grain during the 30 days curing time, cover the floor with 4 mil polyethylene.

WALL ANCHORS

Mastic
8" Bolts
Angle Iron 2-#3 Bars

1" Anchor Bolt 6"x6" 10/10 Wire Mesh

6"x6" 10/10 Wire Mesh #9 Wire 1/2" Bolt

4" Concrete

Gravel, Concrete or Block

Have a minimum of 4 posts per bin. Set the posts 2½ to 3 ft. in the ground and extend 4 ft. above the ground. Place #9 wire around the bin near the top and bottom of the posts and stretch tightly. Fasten the posts to the bin with ½ in. bolts near the top and bottom of each post.
BIN WALL SEALS

Place mastic or sealing compound on both sides of the bin wall. Check each year and replace damaged sealer.

FORMING

Steel, hardboard, or plywood form
Carpenter's Level
Top of Floor
3' to 4' apart
Stakes
#9 Wire

2½"x3" rod
or 2½"x4" stake

Remove the rod or stake after the concrete has set and fill the hole with concrete grout.

CONCRETE USAGE

Do not change the water-cement ratio.

The forms should be rigid and well braced. Oil the forms before placing the concrete. Spade or vibrate next to forms to prevent honeycombs.

Level the concrete, float when the water sheen disappears, then use a steel trowel for the final finish. Smooth concrete makes unloading the bin much easier.

Keep the surface of the concrete damp at least 5 days. Leave the forms in place at least 5 days.

Several methods have been suggested for forming the ledge shown on page 1.

Method 1. As soon as the concrete is firm, remove the concrete around the edge with a steel trowel. Then float with a wooden float.

Method 2. After the concrete is firm, use a tiling spade and trowel to remove the edge. Make the ledge smooth and level. The rest of the surface can be left rough as roughness will give a better surface for grouting. After the bin has been placed on the ledge, grout in a concrete seal.

Do not place concrete over frozen ground. In cold weather, use Type III portland cement, or Type I with calcium chloride dissolved in the mixing water at the rate of 2 lb. per bag of cement. Heat the mixing water (not over 180°) and the aggregates if necessary so the mix will be 50° to 70°. Keep the concrete at 50° for 7 days for Type I cement, or 4 days for Type III. This is usually done by covering the concrete, and insulating it with 6" to 12" of straw or hay.

<table>
<thead>
<tr>
<th>Max. size aggregate</th>
<th>Gal. of water added for each sack of cement, using:</th>
<th>Suggested mixture for 1-sack trial batches</th>
<th>READY-MIX Sacks</th>
<th>Cement, in</th>
<th>Aggregates, in</th>
<th>Cement, in</th>
<th>Sacks</th>
<th>Cement, in</th>
<th>Sacks</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Damp 1 sand</td>
<td>Wet 2 (average) Sand</td>
<td>Very Wet Sand</td>
<td>Cement, sacks (cu. ft.)</td>
<td>Aggregate</td>
<td>Fine, cu. ft.</td>
<td>Coarse, cu. ft.</td>
<td>Per Yard</td>
<td></td>
</tr>
<tr>
<td>1"</td>
<td>5 ½</td>
<td>5</td>
<td>4 ½</td>
<td>1</td>
<td>2 ½</td>
<td>3</td>
<td>6 ½</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1½"</td>
<td>5 ½</td>
<td>5</td>
<td>4 ½</td>
<td>1</td>
<td>2 ½</td>
<td>3½</td>
<td>6</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>