
Purdue University Purdue University

Purdue e-Pubs Purdue e-Pubs

Department of Computer Science Technical
Reports Department of Computer Science

1974

Selectively Defined Subsystems Selectively Defined Subsystems

Dorothy E. Denning

Peter J. Denning

G. Scott Graham

Report Number:
74-124

Denning, Dorothy E.; Denning, Peter J.; and Graham, G. Scott, "Selectively Defined Subsystems" (1974).
Department of Computer Science Technical Reports. Paper 75.
https://docs.lib.purdue.edu/cstech/75

This document has been made available through Purdue e-Pubs, a service of the Purdue University Libraries.
Please contact epubs@purdue.edu for additional information.

https://docs.lib.purdue.edu/
https://docs.lib.purdue.edu/cstech
https://docs.lib.purdue.edu/cstech
https://docs.lib.purdue.edu/comp_sci

"

SELECTIVELY CONF1NETl SUBSYSTEMS

Dorothy E. Denning
Peter J. Denning
G. Scott Graham*

Computer Sciences Department
Purdue University

West Lafayette. Indiana 47907

CSD-TR 124

*Department of Computer Science, University,of Toronto,· Toronto, Ontario
MSS 11\7, Canada

" ..

--------------------1

SELECTIVELY CONFINED SUBSYSTEMS

- I
"1£ RIEN INSCRIRE : !

I
I,,
I,

I
I

Dorothy E. Denning
Peter J. Denning
G. SCott Graham

Purdue University

Abstract: The implementation of programming systems
that cannot leak confidential information Is examined.
Unless severe restrictions are placed on their form,
programs of such systems cannot even be permitted to
output apparently nonconfldential information unless
they have been proved error-free.

D~h.. t ell
1~lCIe pcur

I~ li!'1: ~: I~

leulem~nt

".,

'Introduction

Satisfactory solutions are noW known for a variety of protection problems ranging'from controlled access [0 programs and data to mechanisms for debugging subsystems. However. a problem stlll requiring investigation 1s the confinement·problem; LSDJPson defines it as the problem of const.aining a "service process" so'that it csnnot leak any information about its "customer processes" [l}. He out:lines a solution to the problem, which in eaaence constrains the service process,from retaining any information after it ceases to 'operate on behalf of a custo~er process, but it may share information with another proces8 88 long 88 the·other procesa is similarly confined, or else trusted by both the customer nnd theserver. We shall refer to his as the approach of total confinement.
Our purpose here is investigating nn approach to the confinement problem baaed onselective rather than total confinement. A process or subsystem of processea 1s,regsrded as being selectively confined if it is free to retain or share infotllUl.-tion which is not confidential with respect to a customer process, but not information which is; moreover, a customer may declassify previously confidential information for retention by the service. For exa~ple, a selectively confined'income tax computing service may be allowed to retain address and billing information on its usc by customers, but not information on its customers' incomeS.This type of problem has been referred to 8S the cooperation between mutuallysUBpicious subsystems, one of which i6 "l1lellloryless" (2].

We begin by proposing iJ mechanism which "obviously" provides selective confinem~nt; however, closer inspection reveals an important limitation in the mechanism.We sr-e no easy vay ~o resolve the lImitation, and we arc led to the conclusionthat, in the current stat€' of the art, no solution to the confinement problem,short of total· confinement, is viabJ.e.

This work was supported in part by NSF Grant GJ-43l76. Authors' presentllddresses: P.J. Denning and 0.1:. Denning, Computer Sciences Department, PurdueUniversity, II. Lafayette, Indiana 47907, U.S.A. G.S. Graham, Department ofComputer SCience, UniverBity of Toronto, Toronto, Ontario illS lA7 Callada.

'.

General Properties of a Confinement Mechanism

,Consider a computing system with processes PO •.••• Pn snd data segmen~B N1 ••••• Nm•
lnterprocess communication 1s handled by message sending primitives, such
88 .end messlIge, ~ message, send .w..!l.. and.B.U~' The segments may be
regarded us logical or physical data structures corresponding to flIes, memory

.units. registers, etc. Bnrl are partitioned into t.wo classes: local and global
'segmenta, A segment is~ (or private) if it ia accessible to exactly one
proctl!lls; otherwise it 18 global (or shared). Note that two processes with access
,to the .ame global segment N

i
may be able to communicate by transmitting data,vi. N

1
•

3. Non-Leakage. Pi may place an element of C in a segment
,to ·Pi (local segments are inaccessible to other proceases).

,In the following, assume that PO,P l .P2 •••. denotes a system of processes such
tbat Po • Pc is the customer, PI is the aervice ps • Pi for i ~ 1 are processes
which can be employed by PI..., and ceJt.t.i.6.ie.d(1) for i ~ O. In the sequence. i <
implies that Pi was called earlier than Pj. A si~gle Bet of confidential data
initially proVided by PO. 1s assumed throughout.

J

C'I
1. Mutual Exclusion (one custOmer at a time). Pj ia engaged by Pi as soon aa Pi
lends Pj a message containing data from the confidential set C. prOViding
that Pj is not already engaged. While Pj is engaged. it may receive confidential
data only from 1ts caller, or any processes it engageS. I
-2. Closure. If Pi pet"for1lls an operation using any data from C, the result of
that operation is added to C: Any information derived from confidential data 15
itself confidential. (Pt"ecisely stated, if any of xl ••••• Xn are in C. then the
~esult f(x1 ••.• xn) of oper<ltion f 1s added to C.)

I
N only if N 1s local I

4. Transitivity. If Pi sends a message to Pj (11"0) containing data from C, then'
Pj becomes engaged by Pi. Horeover, Pi may not disengage itself from its caller
until Pj disengages itsel f from Pi. In other words, all processes which even
tually receive data from PO's set C become engaged (effectiv~ly by PO) and must
be confined.

'Let Pc denote 8 customer process and Pe a s~rvice process which is to operate for
P'e in selectively confined mode. Let C denote data considered confidential by
P ; as will be discussed below, the size of C can grow because any data Ps (or a
p~ocess c~lled by P) derives from C will be added to C, and it can ahrink in
case Pc rele,J.6es itSft"om confidential status (declassifies it). Listed below are
.Ix general properties for 3 mechaniam of selective confinement; though they may
seem restrictive, they constitute a minimal set of constraints under which P andc '
Pa ~re likely to agree to operate, given their mutual suspicions.

A central concept belo~ is called engagement. In general. a process P
j

ia aaid
;to be engaged bl' its cal let" Pi' whenever Pi sends confidential dat:e t:o Pj. How
,ever, Pi will not be permitted by the system to engage Pj. unless Pj hss previ
ously agreed to operate under the rules of selective confinement. and has met all
requirements necessary for this mode of operation. We postulate a Boolesn syst:em
function ceJt.ti.6.ied(j) which returns true if and only if Pj is certified to have
met the requirements for selectively confined operation. Then Pi may engsge P j

. if and only if ceJt.ti.6-Led(j), and only if P
j

is not already engaged.
tt~l" ; {,~

la I~T~ ::' .. '

ltulcm';'ll

NE RIEN IN3CRII1i: :

s. Dcclnssificntinn. Data may be declassified (removed from c) only by PO. on
receipt of a meS9~gc from P1 requesting declassification of data contained in the
message. III genC!ral. if Pj (j~l)ants dat:a declassified, it must request SO
from its caller Pi (i<j); this 1s repC!ated by a choin of messages until the orig
inal customer Po is consult~d. --.!

,,
'I I

I

-4. Transitivity.
engage Pj. then DJ
Dj :. (1,1), and

The eogagement operation must verify that 1f Pi .ttempt~ to
- (O,undefined) and ~~6~6£ed(j). If this 1s true. then
Is added to the engngement list Li of Its engagor Pi"

:;, ,

5. Dccla~,;!ic~~~. Postulate a system operation ~ete~e(x) for setting the
cnnfidentj~'ity tag of x to 0 vithouc changing the value of x. This operation
could be pf'dormcd only by the process (in this case PO) which set the taB in the
first plac~; in terms of our ~~del. ~eied4e(x) cannot be executed by any engaged
process. If Pj 1s eng~gcJ. it can obtain the release of x only by sending a
message to its engagor Pi (i<j), if l~O. Pi would forward the message to its
engagor, ~~d so on unt!l Po wa~ contacted. The declassified x would be trans

.mdeted back to fj by a reverse chain of messages.

6. D1sengag~ment. PJ ,,'ollid request disengagemene by a system function ,U.•!IIl.n...
gage. This function ~ould be allowable only if ehe engagement list Lj is null,
,-,heu:"pcn j t 0.',:)111<..1 h,::',~ tht <::~h:":L::; vf a) removing j from the engagement list Li.
where Dj ~ U,i), then b) setcing Dj to (O,undefined), and c) purging from Pj
all elemcu:s of C - i.e., 6ny data whose confidentiality tag is set.

UDfoTtunatl~ly, the mechill1L;m we have specified does not prevent leakage of con
fidcntb] datil! Althougl1 <J r:onfincd process Pj cannot directly leak data that is
fl<lggcd C')l;[ldclllo.,d, tl,er" i,; nothing in our mechanism to prevent it from leak
ing non--cr'llfitlcntial data chat 1S equal in value to confidential data. For ex
ample. if :-tEG and N is a global segment, then the value of X can be leaked by
executing rhe stateroent

..[6 X - y then wlLUe. y .in;t;o N.
LamPSOIL discusses uther subtle forms of leakage, sUl;h as leakage on "covert
chann"ls" (e.g., by cleveriy altering the system load) in [1].
,
In ollr effon to find a solution to this problem, we made the following observa
tion: tJany very sdbtl2 e:-: ... mples of leakage can be constructed by embedding
statements communicating non-confIdential variables in program segments condi
(;10n(,,1 on Booleen C,"StS on <.:onfidential data. A solution <'0 the problem is then
briefly .:;L.;lted .:IS follo~;5; Let b be a Boolean expression and A an action con
ditioned on b. By the closure rule, if b contains an operand XEG, then bEG.
The probl£:].; it; th",n solved by illhibiting all communicacion by an engaged P

j
~hi]e Pj is executing A if b is confidential. Hence Pj would not be allowed LO
~rite lllto ,1 glob<JI scgmcnl or ·issue spurious messages to another process while
~t "'l,:' ... c:U"b on tc1niidentloll dilta.

160lat1ng the action A, however, in~olve5 a complex flow analysis of the code
bCCHUS" oj ttn' po~~ihi.lit~· of 51·.!~ effects. Consider, for example, the followIng
otntccll'ntl<. ~'I1f'r,~ >: ~.~ ronfld"fll'1iJ] and N is a global segment:

,~ X .. 0 111('11 Y;-Oj

.i..6 y ~ 0 .thul W!LUe Z .i..nto N.
Ilc'.e ~be <l("tlr 01 ',,",,"l: (1110 ;.;" 1s inclirectly conditioned on the confidential
!l<;,}]e;,"l "}........ :' .. ",,:.1;'1:: :.1,1:... involves a flow analysis that takes into account
data l.'l'~' oJ" ...·ll ,l~ <':011uol fl,~,",. Such a flow analysis would probably have to
bE. ~1l'TI(' '1'1 • ,n 1\'<' ',0\....-" code (for efficiency as well as practicality consid
crati"r. c ' ,1'1'! rh" '·0lT.pj~l·'- '.'{luld 1', ... ",(' to tlelimit the body of the actions in the
lQ'-l::h"l" ,.(>.' I:' r:v,,]';;"ng;\ ..:onfidential Boolean, the hardware (With the
pos!'~,Llc ~" ': ".t...·,'rc' ;·,uL.i1cS) 1s th"n responsible for insuring that all
C(l"l~.\."ir'l' 'l'\·, \0' I :~;·;,cu ~hile executing instructions within the body
of th.~ a!':~., ltic{',1 art!{,n.

A mor., .,t[l..><..tlV,· "oluthJll to the problem involves the use of type checking and
t:DTllpll(·-l!. rtlficaLlon, Here the pror,rllmrner declares all vari<lbles to be
L·il· I (·,- ,,..r, .,.. '" \.!.,ntlilJ .• lll: compiier uses this information to__

(,
,,

;'

•

"
"~. Ot!enaa8em~ (and Non-Retention). When Pi disengages from its caller Pi~ it 1s Qot permitted to retain any data In C; to enforce this. the system;,,:U.l pL\{a,e from Pj a.ll remaining elements of C ss part of the disengagement op!Q~~!o~. (If PJ refuses to agree to this, the Mutual Exclusion rule will guar_4.at~e ttLe t.Qtsl isolation of P

j
fr.olll the rest of the sya,tem.)

;Tb.e above rules in fact specify the operation of a selectively confined system of'PrQcesses. with entry process PI' The system 1s the set of all selectively conif1~ed processes formed by taking the closure of the transitivity relation aug',luted by :ule 5 (i.e., it 1s the set of all selectively confined processes that=ay become engaged data either directly or indirectly by PO). The elements ofthe c.onfident.ial·dat.a C are distributed among the processes of the system PO.Pl.PZ.· ••• The mut.ual exclusion rule ensures that. any confident.ial data in an en-aaged pr9cess Pi (i>O) 15 a member of the one aet C. The closure rule enaureaIE RIEN INSCRm:::: t.hat. any data derived in any Pi 1s added to C. The nonleaksge rule keeps element.s of C local to each Pi. The transitivit.y rule provides that each Pi isconfined. or communicates only with other confined processes. The de"cl.assif.ication rule permits any process Pi to get data removed from C. but onlyvith t.he explicit pet'"mission of PO. Finally. the disengagement rule guaranteesthat no element. of C remains accessible to Pi when it disengages itself from its:caller.

l:arplementat ion

Let PO.PI.P2 •..• denote a system of selectively confined processes with customerPo and server Pl. Associate with each process Pi is an engagement list. Lt. c.onD~lHJl d~.......:talning indices of all processes directly engaged by Pii initially Li is null.tCHle POU" ,Msociate with each process Pj an engagement descriptor Dj .. (e.i). in whic.h at aIii Hr~ p~!:,e !particular time
W'ulemenl Ie .. I implies Pj is engaged by Pi' and

~ e - 0 1mpI1es P j is not engaged and i is undefined.
Associate with each data ele~ent a special bit, called the confidentiality tag •• et to 1 if and only if that element is in C; this tsg can be set to 1 for adatum x by an unengaged process, using s system operation 6etlag(x). Then anydatum referenced by ?1 i9 considered confidential if snd only if it 10 90flagged. This could De implemented trivially in a tagged architecture [3].

3. Non-Leakage. To impl~men[the non-leakage rule we simply raise an errorconditiOn if Pj attC~pt9 to [ran~fcr a tagged datum to s global segment. ThiScan be hnndled by ,; supervisor I/O roulin.:, (if the global segment is a file. say)or by hardware, In the cose of lllBged architecture and II scgrcented virtual 'IIC111ory. Thl! effect of rllising lhe- error l.:ondition mily reault in the automaticpurg1nZ of all confidantL.ll d.:lt;) from Pj'!l QICmory. J

..
NE RIEN INS:""mr::

determine which expressions have confidential results. By simple control
flow analysis of III program, the compiler examines all statement. 1n the
body of each action conditioned on III confldent1al Boolean.: it dlaal.lows
in them any output statements and gives type errors if nonconfldent.lal
variables are assigned confidential results. For example, conaldar
again the program segment'L .i6 X .. 0 then y:"o;

.i6 Y .. 0 then wJt..i.te z -i.n.:to N;
th X declared to be confidential, and Y declared to be non-confidential. Since

.!the exp't'ession "X-O" is then known to be c.onfidential. the compiler would detect
D~uut~~_~e error with respect to Y, and the program would not be certified.

Itxle po!.:,

la lire pt·~~ This solution ia more at.tractive for tva reasODS: the flov analysis is simple,
leulement and it allows most of the problem to be solved at compile-time. The only check

that must be performed dynamically verifies that the actual parameters (or inputs
to the program) do not e~ceed the declared confidentiality of the formal para
Feters.
I
Closer scrutiny, however. reveals that the problem is~ not solved I For
example, consider the follOWing sequence of statements, where X is declared con
fidential, I is declared non-confidential. and N is a global segment:

1;-0: SUM:-O;
"'PeAt

SUM: - SUM + X;.
1:-1 + 1;
WltUe r .into N

6011.evVl.
ince the iteration does not appear to be conditioned on X. the compiler would

F.e:rtifY this program segment. Uo..... suppose the program executes, but after 10
~terations SUM overflows - i.e., the value of SUM exceeds M4X, the largest number
~torable in a register. 'Since the value of 10 has been put in a global segment,
~other process can subsequently retrie~e it Bnd esttmate X fro~ MAX/Io.

;rhe reason for this problem is that the Boolean expression "SUM o'verflows" im
plicitly controls the loop, although it Is not explicitly stated. If the pro-
irammer had instead written
, IlnO;SUM:-O

AepeAt
SUM: -SUM + X:
1:"'1 + Ii
W1!.Ue I .into N

until SUM overflows
then the compiler would have detected the type error with respect to 1 and not
ceTtified' the Frogram.

The preceding problem arises with all dynamic error conditions, including even
'Boltware checks on array bounds. This is because all such error conditions
'represent Boo18ans that cannot be analyzed at compile-time. 14e are thus led to
our final CC'dcluslon: the program must contatn no errors'l The compiler can
.afely certify 8 program for confinement if and only if it can prove the program
,to be correct. This impliea that the compiler must. perform range checking as
veIl &11 type checking. Hence, the programmer must specify a range of values for
.ach input parameter. At execution time, the system must also verify that the
¥4lullS of the actual paramaters fall within the range of the formal parameters.I ' I
Another possible approach is to permit a prosram to execute without certification
~.yond the type chocking mentioned earlier. Then if an error should result
~urin8 executiOn of the program, the owner of the confidential data would hsve
~he opportunity to sue for breach of confidentiality. In order to prove whether
~~:~~.t. the program had leaked data, £\ trace of the confinad program' S ~,~:.~~~_t_inB

NE. RIEN I;":SCRlRf.:

I,
I'

NE RIEN INSCRlRE:

r -
-----..----------,;behavior is required, which tr~ce would automatically be transmitted to theIcustomer if the service generated an error. The court must then be able to ex-amine this trace as well as the program code. In the long run, it would be:chesper for serviceS to provide programs whose correctness can be verified.

The foregoing discussion has shown that enforcement of the propoBed Non-LeakageRule (an engaged process may output only nonconfidential data) is considerablyjmore difficult than superficial consideration might lead one to believe. In the~preaent stste of the art, the only feasible Non-Leakage Rule is: An engaged pro~ce88 may not under any circumstances write jnto a global segment or communicate;vith a nonengaged process, and all data it has written into local segments-except for declassified clata - must be purged on disengagement if all' error hasoccurred anywhere in the confined system. Under this rule the mechanism we haveproposed is an implementation of Lampson's totally confined system, with thefollowing exceptions: Data declassified by the customer may be retained in the_local segments of a process after disengagement, and other non-confidential data:may be retained if no errora have occurred., .._--
Conclusions

The mechanism of iselective confinement described in this paper distinguishes between two classes of data used by a subsystem, confidentialand nonconfidential. Confidential data cannot be retained in any private subsystem segment p nor may it be copied. by the subsystem into anyglobal seqment, unleas declassified by the custaner. One of our conclusions 1s that a confined subsystem of the type described here cannotbe permitted to output any data, even that tagged nonconfidential, \D'llessit can be certified as error-free. In our present research, we areexamining possible programming restrictions according to which nonleakageof confidential data can b~ guaranteed without the requlrernertt of aprogram correctness proof.

It is interesting to notc!! that Fenton has recently reported on a closelyrelated problem, mernoryle8B subsystems [8]. To provide a context withinwhich he can prove rigorously hi8 results, Fenton poses the problem onan abstract automaton (a l"l1.naky machine). In this context, he showedhow to guarantee confinem~nt of confidential data when the ffi8ch1ne'sregister$ have b~an partitioned ~tly into two sets -- those forconfldentU!il de:ta, and tho,ge for nonconfidential. His implementationsuitably restricts the programs for the machine to deal with the confidential Boolean problem. His proof demonstrates the impossibilityof copying information from the confidential to the nonconfidentialregisters. Fenton al130 considers variable confidentiality classes. Heshows t~t if there exiets a register whose confidentiality can bechanged (viz., from non...~n.f1dentlal to confidential), it i. possibleto construct 8 program '\:1hich will be able to leak Jrivate information.ThiB latter result is a1rnilar in nature to oura, in that proof ofnonleakaqe for variable confidentiality claBs machines is tantamountto a program correctneos proof.

Acknowledgement. We ere grateful to R. Stockton Gaines and H. O.Sehwetman for helpful insight. whllo 11"0po<1ng thil work.

$eferences
---~-----l

,

Denning, P.J. "Protaction - Principles and Practice."
Proc., 40, 1972 SJCC. .

on the Confinement Problem,l' Comm. ACM • .!!' 10.

Security
1973.

IEEE Irans-

--- -------"

Fourth Symposium

Time-Sharing System."

Computer J. 17, 2,

Computers."
1973.

H.L. "Implementation of
Comm. ACH, 15, 4, April

of Tagged Architecture,"
7, July 1973.

in the ADEPT-50
FJeC.

Subsystems. II

Capability Based
Principles, Oct.

in Pr9grallllJl1ng Languages," COfIlDI. ACM. 16. 1.

Controls
12.. 1969

"·'.1.'

Lamp.on, B, "A Note
Oct. 1973.

Craham, G.S. and
APIP5 Conf.

Feuliltel, E.A. "On the Advantages
Bctions on Computers. C-22,

Fabry, R.S. "The Case for
on Operating Systems

Weiosman, C. "Security
AFIPS eonf. Proc.

Fenton, J. S. "Memoryless'
(1974), 143-147.

Conway, R.W., Maxwell, W.L., and Morgan,
Structures tn Information Systems",

Kurris, J.H. "Protection
Jan. 1973.

I
I
I

!",.""", hO"- ,',

,,
I

i"
I
i7.,

i

r·
':':::~~~-r'_----

la Ure P3!J~

'l!ulcrnent

I
I

I
13 •
I

I•.
I

NE RIEN INscnIRt': is.

	Selectively Defined Subsystems
	Report Number:
	

	tmp.1307986960.pdf.mnA9y

