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Abstract: The implementation of programming systems

that cannot leak confldential information is examined.
Unless severe restrictiona are placed on their form,

t programs of such systems cannot even be permitted to
output apparently nonconfidential information unless .
they have been proved error-free. ‘
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seulenene Satisfactory solutions are now known for a variety of protection problems ranging
‘from controlled access to prograng and data to mechanisms for debugging sub-
systems. However, a problem still requiring investigation 18 the confinement
problem; Lawpaon defines it as the problem of constwaining a "service procesa" go
‘that it ecannot leak any Information about its "cusqomer procegses" [1]. He out~
‘lines 4 golution to the problem, which in essence constrains the service process
from retatning any information after it ceases to operate on behalf of a custo-
mer process, but it way share information with another procass as long as the
‘'other process is gimilarly confined, or elaec trusted by both the customer and the
eerver. We ghall refer to his as the approach of total confinement.

Qur purpose here 1s investigating an approach to the confinement problem based on
selective rather than total confinement. A pProcess or subsyastem of processes is
regarded as belng selectively confined 1f it is free to retain or share informa-
‘tion which 1s not confidential with respect €0 @ customer process, but not infor-
wation which is; moreaver, a customer may declaesify previously confidential in-
formation for retention by the service. For example, a selectively confined
income tax computing service may be allowed to retain addrese and billing infor-
mation on its use by customerds, but not information on 1ts customers' incomes.
This type of problem has been referred to as the cooperation between mutually
suspicicus subsystems, one of which is ‘memoryless” (2].

We begin by proposing a mechanism which "obviously" provides selective confine-
ment; however, closer inspection reveals an important limitation in the mechanism.
Ve sec no easy way 2o resolve the lImitation, and we are led to the conclusion
that, in the current state of the art, no solution to the confinement problem,
short of totel confipement, is viable. -

This work was supported in part by NSF Grant GJ-~43176. Authors' present
addresges: P.J, Denning and D.I, Denning, Computer Sciences Department, Purdue
University, I/, Lafayette, Indiana 47907, U.S5.A. G.S. Graham, Departrent of
Computer Science, University of Toronte, Toronto, Ontario M55 1A7 Canada.
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if and only if certified(y), and only if Pj is not already engaged. '
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‘E;neral Properties of a Confinement Mechanism T - S —l

iIConsider a computing system with processes P v~ P_ 8nd data segments Nl....,N .
Interprocess communication i3 handled by message Beading primitives, - such™
a8 send message, get message, send reply, and get reply. The segments may be
regarded ns logical or physical data strucrtures corresponding to files, memory
unite, repisters, etc. and are partitioned into two classes: local and global
‘segments. A segment 1s local (or private) 1f it 1s accessible to exactly one
process; othervige it im global {or shared)n Note that two processes with acceas
,to the same global segment Ni may be able to communicate by transmicting data
ivia Ni'
‘Let P_ denote a customer process and Py a service process which is to operate for
P in7selectively confined mode. Let C denote data considered confidential by

P ; as will be discussed below, the size of C ean grow becsuse any data Pg {or a
pgocess called by P} derives from C will be added to C, and it can shrink in
case P_ releases 1t from confidential scatus (declassifies it). Listed below are
six gefieral properties for a mechanism of selective confinement; though they may
seem restrictive, they constitute a minimal set of constraints under which P and,
Ps are likely ro agree to operate, given their mutual susplcions. ¢ :

'
i

A central concept belov is called engagement. In general, & process P, is said
ito be engaged by its caller Py, whemever Py gende confidential data toij. How-
ever, Py wil] not be permitted by the eystem to engage Py, unless Py has previ-
ouely agreed to operate under the rules of gelective confinement, and has met all
requirements necessary for this mode of operation. We postulate a Boolean system
function centified(]) which returns true if and only if Py 1s certified to have
met the requirements for selectively confined operation. ~Then Py may engage 1='_JJ

JIn the following, asasume that Pg,F1,P3,... denotes a system of processes such
that Py = P, ig the customer, Py 1s the service Pg, Py for 1 » 1 are processes
which can be employed by P1, and cerlified(i) for 1 > 0. In the sequence, i < j
implies that Py was called earlier than Py. A single set of confidential data C,
initially provided by Py is aesumed throughout. :

1. Mutual Exclusion {one customer at a time). P, is engaged by Py as soon as Py
sands Pj a message containing data from the . “confidentisl set C, providing
that P, is not already engaged. While Py 18 engaged, it may receive confidential

data ohly from ite caller, or any processes it engages.

2. Closure. 1If P; performs an operation using any data from C, the resulr of
that operation is added to C: Any information derived from confidential data is
itself confidential. (Precisely stated, if any of xl""'kn are in C, then che
result f(xl...,xn) of operation f is added to C.)

3. Non-leankage. P4 may place an element of C in a segment N only if N 1is local
to-Py (local segments are inaccessible to other proceases).

4. Transitivity. TIf P, sends a message to By (1¥0) containing data from C, then
P4 becomes engaged by P;. Moreover, Py may not disengage itself from fte caller
until Pj disengapges icself from Py. In other words, all processes which evern-
tually receive data from Pg's set C become engaged (effec:ivgly by Po) and must
be confined.

5. Declnssification. Data may be declassified (removed from C) only by Py, on
recelpt of 2 message from P requesting declassification of data contained in the
messege. 1n general, if P, (J>1) wants data declassified, it must request so

from ite caller Py (1<i): this is repcated by a chain of messages until the orig-
inal customer Pp ie consulted. B |
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-4, Transitivity. The enpgagement operation must verlfy that 1f Py attempts to
engage Py, then Dy = (0,undefined) and cenftified(l). 1If this is true, then
Dy i= {1,1), and i is added to the engagement list Ly of its engagor Py.

-8._Declac-ification. Postulate a system operation nefedse(x) for setting the

confidentizTity tag of x to O withouc changing the value of x. This operation
could be performed only by the process (in this case Pg) which set the tag in the
first place; in terms of our mudel, refease(x) cannot be executed by any engaged
process. If Py is engaged, it can obtain the release of x only by sending a .
megsage to its engagor Py (i<j), if 1#0, Pj would forward the message to its
engagor, uad so on unt!! Vg was contacted. The declassified x would be trans-
mitted back to P} by a reverse chain of messages. . :

6. Disenpapement. P, would request disengagement by a system function disen-
gage. This function would be allowable only if the engagement list Ly is null,
whergopen 1t would have the elfects of a) removing j from the engagement list Ly,
where Dy = {l,1), then b) setcing Dj'to (0,undefined}, and c) purging from Pj
all elemen:s of C - i.e., any data whose confidentiality tag is set.

Leukage of Confidential Do i

Unforiunacely, the mechanism we have specified does not prevent leakage of con-
fidenciz) datal Although o confined process P, cannot directly leak data that is
flagged confident:ial, there 1s nothing in our mechanism to prevent it from leak-
1ng aon-coniidential dara thac 1s equal in value to confidential data. For ex-
ample, if {€C and N 1s a global segment, then the value of X can be leaked by
executing rhe scatement [
. if X = Y Lhen wnite Y 4ndo N. !
Lampsou discusses ovther subtle forms of leakage, such as leakage on “covert '
chann¢1s™ (e.g., by cleverly altering the aystem load) in [1]. : 3 |

In our effort to find a solution to this problem, we made the following observa—
tion: Many very subtla cxamples of leakage can be constructed by embedding
statements communicating non~confldencial variables in program segments condi-
tionc] on Boolean cests on confildential data. A solution ¢o the problem is then
briefly stLated as follows: Lec b be a Boolean expression and A an action con—
ditioned on b. Dv cthe closure rule, if b contains an operand XEC, then bEC.
The problen is then solved by iphibleing all communicacion by an engaged P
while Pi dIs5 execulbing A if b 1a confidential. Hence P4 would not be allowed to
srite Ince a global segment or-issue spurious messages to ancther process while
1t wys weting on coniidencial daca.

Isolating the action A, hawever, involves a complex flow analysis of the code
because of the pousibility of sfle effects. Consider, for example, the following
stateowents, vher~ ¥ 15 confidenrial and N 18 & global segment:

i X w0 Lheot Y:=0;

4§ Y - 0 then write z {info N,

Neve the actien "who”e @ 70 NV 18 indirectly conditionéd on the confidential
Beoleaa “a-'. o lectliy thle involves a flow analysis that takes into account
data trov u, well s control flow. Such a flow analysis would probably have to
be perferm ' oon the Leures cede (for efficlency as well as practicality consid-
erati-rsy and rbe rompller wonld have to delimic the body of the actions in the
machiue ~o’ Ui evuinit!ng a confldential Boolean, the hardware (with the

poseible bt 1 ° Ltvare ccut.nes) 1s then responsible for insuring that all

caomueleac 0 U L t:.;ecd while executing instructions within the body

of the ass: 1aced action. 1
A Bufe atriactive solutlon te the problem involves the use of type checking and

cowpile-tic serblf{ivation, Here the proprammer declares all variables to be
(28 ST LN L P S «ictlentlal,  Lhe compiler uges this information o _

2N Y PP VO P Y ) !
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§. Diaaggagqug& (and Non-Recention). When P digengages from its caller Py
21<15. it 19 nmot permitted to retain any data in C; to enforce this, che Bygtem
will purge from P, all remaining elements of C as part of the disengagement op-
‘eratien. (If Py refuses to agree to this, cthe Mutual Exclusion rule will guar-
- ankee tha taral lselation of PJ from the reac of the system.) i

The above rules in Ffact apecify the operation of a selectively confined eyatem of
‘precesses, with antry process P,. The system 18 the set of all selectively con-
(fired processes formed by taking the closure of the transitivity relacion sug-
gested by sule 5 (i.e., it Is the set of all gelectively confined processes that
may became engaged data either directly or indirectly by Po). The elements of
the confidential data C are distributed among the procesges of the system Pg.P1,
P2)-... The mutual exclusion rule ensures that any confidential data in an en-
-gaged process Py (1>0) 1is a member of the one get C. The closure rule ensures
IE RIEN INSCRIRZ : that any data derived in any Py 1s added to C. The nenleakage rule keeps ele-
ments of ¢ local to each Py. The transitivity rule provides that each P; is
confined, or communicates only with other confined processes. The de~
‘elassification rule permits any process Py to get data removed from C, but only
with the explicic permission of Pa. Finally, the disengagement rule guarantees
that no element of C remains accessible to Pj when it disengages itself from its
‘caller. ’
Implementation :
Let Pp,P),P7,... denote a system of selectively confined processes with customer
Pp and server Pi1. Associate with each proceas Py is an engagement list, Ly, con-
Débt du  paining Indices of all processes directly engaged by Py; initially Ly is null.
texte pour  Associate with each process Py an engagement degcriptor Dy = (e,1), in which at a
Ia 1&re prre ‘pRrticular time .
e =1 implies Pj i5 engaged by Py, and
! € = 0 fmplies P, 1s not engaged and 1 is undefiped.
Aspociate with each jdata element a speelal bit, called the confidentiality tag,
set to 1 If and only if thar element is in Ci this tag can be set to 1 for a
datum x by an unengaged process, using & system operation detlag(x). Then any
datum referenced by 7, is consi{dered confidential 1f and only if it 15 ao
flagged. This could be implemented trivially in a tagged architecrure [3].

wrulement

The iwplementarion of the six properties of selective confinement Proceeds as
follows. )

—————— .

1, Mutuel Eveivsrcy). Engagement of Py by Py is allowable only if Dy e (0,undefined)
and certif{ed(}). When allowabla, engagement has the effect of setting Dy to I
(1,1) end adding j to the engagement lisc Ly. The processes P; and Py may '
exchange messapes while Pj is engaged by P;, but Pg may communicate with no other
Procass except those it engages. L[Cngagement 1is effected by a Primitive operation
engage(Pj;xl,...,xn). vhere xj,...,%, are parameters. Transmission of messages

containing confidential data from engaged to unengaged processes is prohibited.

. i
2. Closure. To implement the closure tule we simply tag the resgult of any oper-
atlon f that 1s applied to operands ¥j,...,xp Whenever at least one of the x{ 18
tagged. This is eas{ly handled by hardware in a system with tagged architecture, |
by ORing che confidentiality tags of the operands to obtain the flag of the
resule,

3. Hon-Leakage. To implément the non-leakage rule we simply raise an error
condition if Py atcenpts cto transfer a tagged datum to a global segment. This
can be handled by 2 supervisor 1/0 rouline (1f the global segment is a file, say)
or by hardvare, In the case of tagped architecture and a acgmented virtual ‘
mamory. The effect of ralsing the error condition may result in the automatic )
purging of all confldentisl data From P4's memory,

ME RPN IR RIRE -
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determine which expressions have confidential results. By simple control
flow analysis of a program, the compiler examines all statements in the
body of each action conditioned on a confidential Boolean: it disallows
in them any ocutput statements and gives type errors if nonconfidential
variables are asaigned confidential results. For example, consider
again the program seqment

i Lf X = 0 then Y:=0;:

Li 4§ Y = 0 then wiite 2 into N;

th X declared to be confidential, and Y declared to be non-confidential. Since

the expression "X=0" 1s then known to be confidential, the compiler would detect

~-t¥Ype error with respect to Y, and the program would not ba cercified. ;

la Yére peze Thie molution is more attractive for two reasgns! the flow analysis is simple,

seuvlement

and it gllows most of the problem to be solved at compile-time. The only check
that must be performed dynamically verifies that the actual parameters (or inputs
to the program) do not exceed the declared confidentiality of the formal para-
peters,

Lloser ecrutiny, however, reveals that the preblem 1s still not solved! For
example, consider the following sequence of statements, where X is declared con-

fidential, I is declared non-confidential, and N is a global segment:
I:=0; SUM:=0;
repeat
SUM:=sSUM + X:
I:=I + 1;
white I {nto N
foreven

Pince the iteration does not appear to be conditioned on X, the compiler would
Fercify this program segment. Howu, Suppose the program executes, but after Iy
Etnrationn 5UM overflows - 1.e., the value of SUM exceede MAX, the largest number
wtorable in a register. Since the value of Ip has been put in a global segment,
another process can subsequently retrieve it and estimate X from MAX/Ig.

fhe reason for this problem ie that the Eoolean expression "SUM overflows" im- )
plicttly controls the loop, although it is not explicitly stated. If the pro="
grammer had instead written . )
[ I:aQ;SUM: =0
Afepeat

SUM:mSUM + X:

I:=T + 1;

wiite I dindo R
: until SiM overflows .
then the compiler would have datected the type error with respect to I and not
cartified the program. |

The preceding problem arises with all dynamiec error conditions, including even
softwara checks on array bounds. This is because al]l such error conditions
‘Tepresent Booleans that cannot be analyzed at compile-time. We are thus led to
our final cenclusion: the pProgram must contain no erroral The compiler can
safely certify a program for confinement if and only if it can prove the program
to be correct. This implies that the compiler must parform range checking as
well an type chacking. Hence, the programmer must specify a range of values for
each input parameter, At execution tiwe, tha system must also verify that che
valuas of the actual paramatere fall within the range of the formal parameters. |
Another possibla approach is to permit a program to execute without cartificatioen
beyond cha cype chocking mentioned earlier. Then if an error should result
during execution of the program, the owner of the confidential data would have
tha opportunity to sue for breach of confidentiality. In order to prove whether
or, ot the program had leaked data, a trace of the confinad program’s outputting

- —
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f;ehavior is required, which trace would dutomatically be tranamitred to the
(customer if the service generated am error. The court must then be able to ex-
‘amine this trace as well as the program code. In the long run, it would be
chaaper for services ro pProvide programs whose correctness can be verified,

The foregoing discussion has shown that enforcement of rhe proposed Non-Leakage
Rule (an engaged process may output only nonceonfidential data) is considerably
more difficult than superficial consideration might lead one to believe. In the
‘Present otate of the arc, the only feasible Non-Leakage Rule i3: An engaged pro-
'cess may not under any circumstances write into & global segment or communicate

Juith 8 nonengaped process, and all dara 1t has written into local segments -

NE RLIEN INSCRIAE :

‘except for declassified data - must be purged on disengagement 1if an _error has
occurred anywhere in the confined gystem. Under this rule the mechanism we have
proposed is an implementation of Lampson's totally confined system, with the '
‘Eollowing exceptiona: Data declassified by the customer may be retained in the
-local segments of a Process after disengagement, and other non-confidential data
may be retained if no errors have occurred.
] - - —_————

Conclusions

The mechanism of selective confinement described in this paper distine
guishes between two classes of data used by a subsystem, confidential

and nonconfidential. Confidential data cannot be retained in any pri-
vate subsystem segment, nor may it be copled by the subsystem into any
global segment, unless declassified by the customer. One of ocur con-
clusions is that a confined subsystem of the type described here cannot
be permitted to ocutput any data, even that tagged nonconf idential, unless
it can be certified as error-free. In our present research, we are
examining possible programming reatrictions according to which nonleakage
of confidential data can b: guaranteed without the requirement of a
pragram correctnass proof.

It is interesting to note that Fenton has recently reported on a closely
related problem, memoryless subsystems [8}. To provide a context within
which he can prove rigorously his results, Fenton poses the problem on
an abstract automaton (a Minaky machine). In this context, he showed
how to guarantee confinemsnt of confidential data when the machine's
reglsters have bazen partitioned parmanantly into two sets -~ those for
confidential data, and thoge for nonconfidential. His implementation
sultably restricts the programs for the machine to deal with the con-
fidentisal Boolean problem. Hig proof demonstrates the impossibility

of copying infarmation from the confidential to the nonconfidential
reglsters. Fenton also considers variable confidentiality classes. He
shows that if there exists a reglster whose confidentlality can be
changed (viz,, from nonsonfidential to confidential), it i1s possible

to construct a progrem which will be able to leak private information.
This latter result is sgimilar in nature to ours, in that proof of
nonleakage for varimble confidentiality class machinea is tantamount

to a program correctness proof.

Acknowledgement. We are grateful to R, Stockton Gaines and H. D,
Schwetman for halpful insights while preparing this work,
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