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ABSTRACT 

Peterson, Benjamin D. M.S., Purdue University, May 2012.  Security Implications of the 
Cisco Nexus 1000V.  Major Professor:  Phillip Rawles. 

 

Virtualization is a technology that has become increasingly popular with those wishing to 

reduce the energy consumption of their datacenters. This is especially true since 

virtualization technology allows multiple physical servers to be consolidated onto a 

single physical server in the form of virtual machines. Virtual networking devices have 

been created to allow these virtual machines to communicate amongst each other and 

with outside networks. Initially these virtual networking devices were crude; however, 

partnerships such as the one between Cisco and VMware have led to products such as the 

Nexus 1000V that have improved this network functionality. Despite the creation of the 

Nexus 1000V, the security implications of using the virtual switch have remained 

unclear. This research aimed to solve this. The outcomes of this research included tests of 

vulnerabilities previously or currently found on physical switches, an analysis of the 

communications used by the Nexus 1000V to support distributed switching, and an 

analysis of the effects of the switch existing as a virtual machine.  
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CHAPTER 1. INTRODUCTION 

Virtualization technologies have been used for decades. In recent years it has been 

used to reduce the energy consumption of datacenters. This has been possible because the 

technology has been used to consolidate multiple servers onto fewer servers, with the 

consolidated servers being known as virtual machines.  The resulting consolidation 

allows datacenters to reduce their number of physical machines therefore providing a 

significant reduction in the power necessary for running and cooling the servers.  

In order to facilitate communication between the virtual machines, it has been 

necessary to provide the virtual devices with network functionality. Although initially 

primitive, this network functionality eventually evolved until the virtual switches 

mimicked the basic functionality of traditional network switches. Despite allowing the 

virtual machines to communicate with each other and outside of the virtual realm, these 

virtual switches did not provide the same functionality as physical switches. To close this 

gap, Cisco and VMware teamed up to create the Cisco Nexus 1000V. The touted benefits 

of the Nexus 1000V, ranging from improved networking functionality to more flexible 

management, were clear; however, the security implications of its use were not as clear. 

The goal of this research was to determine the security ramifications of using the 

Nexus 1000V. It analyzed whether the vulnerabilities found in physical switches 

persisted into the virtual environment and determined whether it introduced new 

vulnerabilities.  

An architecture utilizing the Nexus 1000V was created and its vulnerabilities 

were assessed. This architecture consisted of five servers running VMware’s 

virtualization software ESXi. One of these servers was used to host VMware’s 

virtualization management software, vCenter. The other four servers running ESXi had 

virtual machines installed on them as well the Nexus 1000V. All five of the servers were 
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connected to each other to allow communication amongst them. A sixth server was then 

used to run the traffic capturing software tcpdump.  

1.1.  Statement of the Problem 

The Nexus 1000V has brought features previously only found in physical 

switches into the virtual realm. To accomplish this, some of the core functionality of 

physical switches was modified to better fit within the virtual environment. With these 

changes, there has been the potential for security issues of the virtual switches to be 

eliminated. Conversely, it has also been possible for new security issues unique to the 

Nexus 1000V to have been introduced. This research attempted to answer what the 

security implications of using a Nexus 1000V were. 

1.2. Significance of the Problem 

As companies have looked to increase the sustainability of their IT departments, 

many have turned to virtualization technology. Such virtualization technology has 

allowed for massive consolidation of servers, ultimately helping companies to reduce 

their hardware expenditures, energy usage, and maintenance. Traditionally, the 

technologies used to facilitate the virtualization of the servers have required the use of 

virtual switches that lack a majority of the functionality provided by traditional physical 

switches. However, Cisco’s collaboration with VMware changed this. Together they 

created the Cisco Nexus 1000V switch. This virtual switch aimed to bring the 

functionality found in Cisco’s physical switches to the virtual environments created by 

VMware’s products.  

 Although the Nexus 1000V provides a multitude of features for its users, it was 

imperative that the security implications of its adoption were considered. As with all new 

networking equipment, it was vital that newly introduced security issues be determined. It 

is also important to determine which security vulnerabilities found in physical switches 

persist, and could now be found in the Nexus 1000V.   
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 Failure to recognize and react to these security implications could not only put the 

integrity of the virtual networks at risk but it could also leave businesses facing 

significant financial losses. Intentionally triggered or not, an unrecognized security 

vulnerability in the new switch could leave the virtual networks crippled, rendering 

virtual servers unreachable. If a virtual switch was not properly protecting the data that it 

it handled and protected information reached an unintended party, businesses could face 

civil lawsuits and be at risk of regulatory incompliance. Without proper attention to these 

security aspects, there is a significant risk of a dramatic reduction or elimination of the 

return on investment for this technology.  

1.3. Statement of the Purpose 

The purpose of this study was to examine the functionality of the Cisco Nexus 

1000V to determine the security implications of its use. This was to help determine 

whether Cisco’s transition from physical switches to virtual switches had brought with it 

the inherent vulnerabilities of physical switches as well as whether or not it introduced 

new vulnerabilities unique to the virtual environment.  

1.4. Definitions 

This section defines the key terminology used throughout the research: 

• Host: A server that runs virtualization software that facilitates the hosting of 

virtual machines on itself (VMware, 2009). 

• Hypervisor: The software platform that runs on a host, that allows multiple 

operating systems to run at once (VMware, 2009). 

• vCenter: A server platform made by VMware, that serves as a single point of 

management for the VMware virtual enviorment (VMware, 2009).  

• Virtual Distributed Switch (vDS):  A virtual switch that resides on multiple hosts 

and is configured from a single management point (VMware, 2009). 

• Virtual Machine (VM): “A software computer that, like a physical computer, runs 

an operating system and applications” (VMware, 2009). 
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• Virtual Network Interface Card (vNIC): The virtual piece of hardware present on 

virtual machines, that allows the virtual machines to connect to vSwitches and 

pass network traffic (Cisco, 2009). 

• VMware ESXi: Virtualization software made by VMware. VMware ESXi 

provides virtual machines with the environment and resources necessary to run 

(VMware, 2009). 

• vSwitch: A software based switch that resides within the hypervisor and provides 

switching functionality within the virtual environment (Cisco, 2009). 

1.5. Assumptions 

 The assumptions for this research were: 

• The security of a single architecture with two distributed Cisco Nexus 1000V was 

representative of the security of all architectures involving distributed Nexus 

1000Vs. 

• An attacker could gain access to a virtual machine connected to a Nexus 1000V 

and would carry out attacks against it. 

• The Nexus 1000V would have its default security features left it place. 

• No security features existed on the virtual machines to prevent an attacker from 

manipulating the Nexus 1000V. 

• If the Nexus 1000V were to use a form of Spanning Tree Protocol, it would be 

either the original Spanning Tree Protocol or Per VLAN Spanning Tree Protocol 

Plus. 

• The features enabled by default on the Nexus 1000V represented the core 

functionality used. 

• Datacenters would use 802.1Q VLANs to isolate the different groups of virtual 

machines. 
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1.6. Limitation 

The limitations of this research were: 

• The research was limited to the virtual environment and the physical switch to 

which the servers were connected. 

• The research was focused on the security implications introduced by the use of 

the Nexus 1000V. 

1.7.  Delimitations 

The delimitations for this project were: 

• The research did not look into weaknesses in the encryption used to protect 

communications.  

• The research did not focus on how an attacker might compromise a virtual 

machine from which it could launch attacks against the Nexus 1000V. 
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CHAPTER 2. LITERATURE REVIEW 

 Research covering the security of distributed virtual switches (dvSwitches), 

specifically the security of the Cisco Nexus 1000V, was rather limited at the time of this 

research; however, the topics that led to the creation of dvSwitches and the Cisco Nexus 

1000V had been researched extensively.  It was possible to group the precursor topics of 

the security of dvSwitches and the Cisco Nexus 1000V into four main categories: 

• Switching 

• Switch Vulnerabilities 

• Virtualization  

• Virtual Networking 

 In an attempt to discover thorough sources of information, several media were 

utilized.  This media consisted of traditional books, product literature, and electronic 

databases. Topics extensively covered for many years were primarily researched using 

books.  Information related to the Cisco Nexus 1000V and the specific virtual 

environments that supported it, was researched through the reading of product literature.  

Electronic databases were used to find information on topics that were still relatively 

current and had been covered in detail.  The electronic databases used ranged from ones 

specific to computer related topics to others that were topic neutral.  The predominantly 

used databases consisted of: 

• Association of Computer Computing Machinery (ACM) Digital Library 

• Compendex 

• Institute of Electrical and Electronics Engineers (IEEE) Xplore 

• Inspec 

• Google Scholar 
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2.1. Switching 

Switching has had an integral role in allowing electronic communication between 

two parties.  In the first forms of electronic communications, a dedicated direct 

connection between the two communicating parties was necessary.  With the increased 

usage of electronic communications, it was necessary to find a method that provided 

parties with a way to communicate with each other without requiring dedicated direct 

connections (Goldman & Rawles, 2004).  The primary goal behind switching was to 

eliminate the need for dedicated direct connections by creating some form of path that 

allowed the electronic communication to reach its intended destination. Switching can be 

categorized into two different types, circuit switching and packet switching.  

Circuit switching involves a dedicated path being temporarily created to facilitate 

the communications taking place.  Prior to the electronic transmission beginning, the path 

is created.  Soon after the communications have ceased, the created connection can be 

deconstructed. During the transmission, all of the circuit’s resources are dedicated to the 

parties involved. The classic example for this type of switching is the public switched 

telephone network (PSTN).  

 Packet switching involves the use of many shared communication lines, over 

which the information is directed to its destination.  These shared communication lines 

are referred to as networks.  With this type of switching, the electronic communications 

are specially crafted and referred to as packets.  As defined by Goldman and Rawles 

(2004), “Packets are specially structured groups of data that include control and address 

information in addition to the data itself” (p. 60).  Devices that connect the networks to 

each other determine the path the communication travels. These devices use control and 

address information that is contained within the packet to determine the path it travels to 

reach its destination.  To help in this decision, the devices take into consideration the 

current state of the network.  Because of this, packets from the same source will not 

always take the same path to a destination.  When communications are taking place on 

packet switched networks, the parties involved in communications have to share the 

resources of the network with all other parties using the network.  The Internet is an 

example of a packet switched network. 
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 One of the devices used to make decisions in packet switched networks is the 

appropriately named, switch.  Switches use the information contained within packets to 

direct communications to their destinations.  The information contained in these packets 

is determined by the protocols and frame standards used by the networks.  For the sake of 

this paper, it is assumed that all network traffic uses Ethernet frames and the TCP/IP 

protocols.  While other frame standards and protocols exist, Ethernet and TCP/IP are 

currently the most commonly used. The process switches use to make decisions is known 

as switching.  There are four primary types of switching (Froom, Sivasubramanian, 

Frahim, & Houston, 2007).  These types of switching are: 

• Layer 2  

• Layer 3  

• Layer 4  

• Layer 7  

 In layer 2 switching, switches analyze the destination MAC address that is 

contained within the packet’s “header”, a subset of the packet, to determine where to send 

it next (Froom, et al., 2007). This MAC address serves as a unique identifier for devices 

that are connected to the network. Network traffic contains a source MAC address for 

listing where traffic originated from, as well as a destination MAC address that denotes 

where the traffic is destined.  Layer 2 switches makes their decisions by looking at the 

destination MAC address and comparing it with their content addressable memory 

(CAM) table.  CAM tables contain information about the devices connected to the 

switch. This information is typically the MAC addresses associated with each port, along 

with the port’s virtual local area network (VLAN) information (VLANs will be explained 

in the following paragraph).  Switches populate the MAC address information by 

analyzing traffic’s source MAC address.  When a switch detects a new source MAC 

address, it will add it to the CAM table.  These entries are not permanent and switches are 

typically configured to have the entries expire after five minutes of the switch not seeing 

the MAC address.  If traffic is destined to a MAC address that is not in the CAM table, 

the switch will pass the traffic to all of the devices connected to it.  
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 VLANs are logical networks that are used to segment networks. Network devices 

have the ability to send out a type of message known as a broadcast message (Farrow, 

2003). On a switch without VLANs, if a device sends out a broadcast message, all of the 

devices attached to the switch receive the broadcast message.  This can create a 

significant amount of network traffic when there are many devices connected to the 

switch. The purpose of VLANs is to breakup broadcast domains.  Without VLANs, all 

devices on a switch would be in the same broadcast domain.  There are two main 

protocols used for VLANs, Cisco Inter-Switch Link (ISL) and 802.1Q (Bastien, Nasseh, 

& Degu, 2006).  These protocols require VLAN traffic to have tags that specify the 

VLAN to which it belongs.  Switches are often configured to extend their VLANs to 

other switches; this is accomplished using trunk ports. Trunk ports allow tagged VLAN 

traffic to be sent between switches.  To help facilitate the creation of trunk ports, Cisco 

developed a protocol known as Dynamic Trunk Protocol (DTP). Switch ports configured 

with this protocol detect whether connecting devices supports trunking. DTP can then be 

configured to dynamically configure the switch port as a trunk port, giving the connected 

device access to all of the VLANs.  

 IP addresses are used to make decisions in layer 3 switching.  Just as layer 2 

switches analyzed the MAC addresses of traffic to make their decisions, layer 3 switches 

analyze IP addresses to determine where to send packets (Froom, et al., 2007). Layer 3 

switches ultimately make their decisions based off routing tables. In order to be aware of 

the IP addresses connected to other layer 3 devices, switches often employ routing 

protocols such as Routing Information Protocol (RIP), Enhanced Interior Gateway 

Routing Protocol (EIGRP), and Open Shortest Path First (OSPF).  

 Layer 4 and layer 7 switching are very similar to each other. Their decisions are 

determined by data in the packet that reflects what the packet is going to be used for 

instead of where it is destined (Froom, et al., 2007).  The usage of this type of switching 

is typically application specific.  For instance, it is possible to use layer 7 switching to 

determine whether a voice over internet protocol (VoIP) phone call is destined for a long 

distance phone number or a local number.  With this information, the switch would be 

able to direct the traffic accordingly.  
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2.2. Switch Vulnerabilities 

 Throughout time, people have attempted to gain access to information and 

resources not intended for them.  Networks have been no exception to this. 

Unfortunately, there have been vulnerabilities found in the functioning of switches that 

make them susceptible to this (Bastien, et al., 2006).  These vulnerabilities have made it 

possible for attackers to compromise networks.  It is possible to group the most widely 

exploited vulnerabilities into six categories. These categories are: 

• CAM Overflow Attacks 

• VLAN Hopping 

• Spanning Tree Protocol Manipulation 

• Address Resolution Protocol Poisoning 

• Private VLAN Attack 

• Dynamic Host Configuration Protocol Starvation 

 CAM overflows allow an attacker to take advantage of the CAM tables that were 

previously discussed.  As was stated earlier, CAM tables record the MAC addresses 

associated with the switch’s ports.  It is important to note that these tables have a finite 

capacity (Bastien, et al., 2006).  In this attack, an attacker floods the switch with traffic 

containing falsified MAC addresses, eventually filling the entire CAM table.  Once the 

CAM table is full, the switch is unable to learn new MAC addresses.  Because of this, the 

switches are forced to transmit traffic destined for unknown MAC addresses out all of its 

interfaces until there is free space in the CAM table.  This in turn, presents the attacker 

with network traffic not intended for it.  

 VLANs are often implemented to provide isolation between different groups of 

devices (Farrow, 2003).  Attackers are able to use a technique known as VLAN hopping 

to gain access to networks meant to be isolated from the network the attacker resides on 

(Bastien, et al., 2006). Attackers primarily use two techniques for carrying out this type 

of attack.  

 The first method involves an attacker taking advantage of a switch that has DTP 

configured on it (Bastien, et al., 2006). To achieve this, the attacker uses software that 

allows their computer to communicate as though it were a switch wishing to connect via 



11 

 

a trunk port. The attacker then has the software attempt to setup a trunk port with the 

switch to which it is connected.  This tricks the victim’s switch into creating a trunk port, 

giving the attacker full access to all of the VLANs on the victims switch.  

 The second method involves a technique known as “double tagging” (Bastien, et 

al., 2006).  Double tagging is when an attacker creates a packet that contains two 802.1q 

tags, one with the VLAN that the attacker is supposed to be on and the other with the 

VLAN the attacker is wishing to reach. The packet is then sent to the switch it is attached 

to, the switch removes the first tag and then passes it on to the next switch.  This second 

switch checks the packet, sees the second tag that was not removed, assumes that it is 

legitimate, and forwards the packet to the attacker's intended destination.  This attack 

bypasses any restrictions that may have been in place between the two VLANs. It is 

important to note that this type of attack is unidirectional, as the contacted machine will 

continue to be affected by the restrictions that the attacker bypassed.  

   Attackers presently use the two mentioned attacks; however, another method 

existed during the early implementations of VLANs (Farrow, 2003).  This attack took 

advantage of the fact that VLANs prevented other VLANs from being aware of the MAC 

addresses that resided within.  At the time, VLANs offered no other form of isolation.  In 

this method, an attacker that was aware of the MAC address of the machine it wished to 

communicate with, could still communicate with it by manually specifying the MAC 

address.  As VLANs matured, this vulnerability was resolved. 

 Spanning Tree Protocol (STP) is a protocol used to prevent loops within switched 

environments (Bastien, et al., 2006).  It is used when multiple switches are connected to 

each other.  In brief, the protocol works by having the switches elect a “root” switch.  

This election is based off which switch has the lowest priority.  This priority is can be 

manually configured. If two devices have the same priority value assigned to them, the 

devices MAC addresses are you to determine the root switch.  Once a root switch has 

been determined, all of the other switches determine a path to it.  This allows the switches 

to identify redundant connections that need to be shutdown to prevent loops.  During the 

course of this process, the network is unusable.  An attacker can manipulate STP by 

tricking the switches into believing the attacker is wishing to partake in the root switch 
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election process.  When communicating with the switches, the attacker uses a priority 

that causes the switches to determine a new root switch. This then causes the network to 

be unusable as the switches re-determine redundant links. It is important to note that there 

are different versions of STP. In fact, Cisco has created their own version of it known as 

PVST+ (Vyncke & Paggen, 2008). Although it is a different version, it is still susceptible 

to such manipulations 

 Address Resolution Protocol (ARP) is a protocol used to relate IP addresses to 

MAC addresses (Bruschi, Ornaghi, & Rosti, 2003).  When a host does not know the 

MAC address for an IP address, it broadcasts an ARP request.  This request broadcasts to 

all hosts on the same IP subnet and requests the MAC address associated with the IP 

address.  The other hosts on the subnet that receive it will check their own IP address to 

see if it is the one being requested.  If the IP address is not associated with the host, the 

host will ignore the request.  However, if the host is associated with the requested IP 

address, it will respond to the requester with an ARP reply.  This reply will inform the 

requester of its MAC address.  On most operating systems, the received address is cached 

on the requesting host to eliminate the need for repeating this process later.  Another type 

of ARP message is a gratuitous ARP (Bastien, et al., 2006, 292).  This type of message is 

sent out by a host to announce their IP address to the other devices on the network.  In 

doing so, machines accepting gratuitous ARP messages will record the announced 

address information.  Attackers are able to manipulate machines on the network by 

sending out spoofed ARP messages in a method known as “ARP poisoning” (Bruschi, et 

al., 2003).  ARP poisoning consists of the attacker sending out spoofed ARP replies to 

hosts that they wish to manipulate.  This causes the compromised machines to send 

traffic meant for another host to a host of the attacker’s choosing.   

 Private VLAN attacks are similar to VLAN hopping, except they do not involve 

taking advantage of vulnerabilities in the VLAN protocols.  Like the double tagging 

method of VLAN hopping, it facilitates a one-way communication with a machine that is 

on a protected VLAN (Bastien, et al., 2006).  To carry out this type of attack, the attacker 

spoofs a packet so that it contains the destination IP address of the machine they are 

wishing to communicate with and a destination MAC address of a router connected to the 
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switch to which the attacker is connected.  When the switch passes the packet to the 

router, the router then updates the destination MAC address to reflect the victim 

machine’s MAC address and then forwards it onto the victim machine.  The packet is 

able to bypass restrictions imposed by the router since the router is tricked into believing 

it sent the packet.  

 Dynamic Host Configuration Protocol (DHCP) is used to automatically send 

network configuration information, such as IP addresses allocations, to network devices 

connecting to a network (Bastien, et al., 2006).  DHCP servers have a finite number of 

addresses that can be allocated to hosts.  An attacker can take advantage of DHCP servers 

by flooding the server with spoofed DHCP requests, eventually causing the DHCP server 

to run out of addresses.  Once the DHCP server has run out of addresses, devices that do 

not have addresses manually assigned to them will not be able to access the network. In 

addition, an attacker could run a rogue DHCP server and send network configurations 

that cause the victims to send their network traffic to the attacker instead of their intended 

destinations.  

2.3. Virtualization  

 Virtualization is a technology that facilitates the abstraction of a computer’s 

hardware allowing them to run software they were not designed for and to host other 

independent computers, known as virtual machines (VM). The use of virtualization 

technology dates back to the 1960s (Nanda & Chieueh, 2005; Smith & Nair, 2005).  

When virtualization technologies were first created, they were meant to provide time 

sharing and resource sharing, as well as allow multiple operating systems to be installed. 

During the 1970s and 1980s, computer hardware became cheaper, causing less of a 

demand for virtualization technologies (Nanda, 2005).  In the 1990s they became popular 

once again but this time they were used for a variety of new purposes such as power 

saving, server consolidation, application consolidation, and debugging (Nanda, 2005; 

VMware, 2009).  With the wide variety of purposes, many different types of 

virtualization technologies emerged.  For the sake of maintaining a manageable paper 
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length, only virtualization at the Hardware Abstraction Layer (HAL) will be covered, as 

it is most applicable to the research that was carried out.   

 Virtualization taking place at the HAL allows for software known as a Virtual 

Machine Monitor (VMM) to run on a host’s base hardware, much like an operating 

system would (Nanda, 2005).  VMMs are often referred to as hypervisors (VMware, 

2009).  The VMM is used to map the host’s physical resources to the virtual 

environment, allowing them to be allocated to and used by the VMs (Nanda, 2005).  The 

ultimate goal of the VMM is to create “… a complete, persistent system environment that 

supports an operating system along with its many users processes” (Smith, 2005, p. 34).  

To aid in this, resources can be allocated using two different methods.  The first method 

that can be used is known as physical partitioning.  For this method, the host’s physical 

resources are assigned and dedicated to a specific VM. The second method that can be 

used is known as logical partitioning.  This method allows for the sharing of host’s 

resources amongst the VMs. VMware’s ESX and ESXi are both examples of 

virtualization technologies that run at the HAL (Nanda, 2005). 

 As companies have turned to virtualization, many have adopted VMware’s ESX 

and ESXi products. Both of these solutions provide a virtualization layer that runs on the 

hosts and provides abstraction of resources into the virtual environment (VMware, 2009). 

The main difference between ESX and ESXi is that ESX has a built in service console. 

While ESXi lacks a service console, it can be embedded into a server’s firmware. In 

order to provide more features and management capabilities to groups with datacenters 

running ESX, ESXi, or both, VMware created vSphere. 

 VMware states “vSphere virtualizes and aggregates the underlying physical 

hardware resources across systems and provides pools of virtual resources to the 

datacenter” (VMware, 2009, p. 7). It is important to note that ESX and ESXi still play a 

fundamental role in this solution. Both provide virtual environments to which vSphere 

interfaces.  vSphere consists of four component layers.  The first component layer is 

infrastructure services. This layer is responsible for providing the ability to share 

resources, storage and network capabilities amongst the hosts.  The second component 

layer is the application services layer, which is responsible for ensuring high availability, 



15 

 

security, and scalability. The VMware vCenter Server component layer is responsible for 

providing management functionality for the virtual environment.  The final component 

layer is the clients layer that is made up of the clients that interact with the virtual 

environment.  

 vSphere offers its users a multitude of features for improving their datacenters.  

vMotion allows VMs to be moved from one host to another without affecting the 

availability of the VM (VMware, 2009).  The Distributed Resource Scheduler (DRS) and 

Distributed Power Manager (DPM), allows datacenters to reduce their power 

consumption (VMware, 2009).  To accomplish this, the DRS dynamically allocates 

resources to the VMs, as they are needed. The DPM analyzes the hosts that are in use and 

determines whether VMs could be consolidated to a fewer number of hosts.  If it is 

determined, that host consolidation is possible, the VMs are moved, and the unnecessary 

hosts are powered down.  

2.4. Virtual Networking 

 With multiple VMs on a single host, it was necessary to establish a way for the 

VMs to communicate effectively with each other as well as outside of the virtual 

environment.  To facilitate network communications, VMs were provided with a virtual 

network interface card (vNIC) that allowed them to transmit network communications 

(Zhou, 2010). Initially VM’s vNICs were connected via virtual hubs.  The use of virtual 

hubs caused the VMs to see all network traffic going through the hub regardless of the 

traffic’s destination.  As the number of VMs on a host increased, the virtual hubs became 

a performance bottleneck.  Software based network bridges was introduced in the late 

1990s (Pettit, Gross, Pfaff, Casado, & Crosby, 2010).  Virtual switches that provided 

layer 2 switching followed soon after. The virtual switches integrated into the VMMs and 

used the host’s resources, just as the VMs did (Luo, Murray, & Ficarra, 2010).  

Originally, these virtual switches lacked management features (Zhou, 2010).  As they 

matured, they included a subset of features commonly found in physical switches.  These 

included basic security features, VLANs, and portgroups.  Portgroups provided a way in 

which administrators could create a standardized network configuration for their virtual 
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machines.  This was accomplished by assigning network configurations to portgroups.  

Instead of administrators having to manually configure the network settings for each VM, 

a portgroup could be selected to apply the predetermined configuration associated with 

the portgroup.  

 Despite the improvements made to the network functionality in the virtual 

environment, there were still some unmet needs. It was still necessary for the repeated 

configuration of the virtual switches and portgroups on each host (Zhou, 2010).  This 

proved to be especially daunting for ensuring consistent configurations across large 

datacenters. To overcome this issue, distributed virtual switches (dvSwitches) were 

developed. 

 The concept behind dvSwitches was to allow virtual switches to communicate 

with each other so that they could share state and configuration information with each 

other. One of the earliest examples, presented at a conference, allowed virtual switches to 

be aware of the MAC addresses associated with the virtual switches it was connected to 

(Davoli, 2005). This conceptual example consisted of two components, vde_switches, 

and vde_cables. The vde_switches were responsible for handling the basic switching 

functionality and the vde_cables were used to connect two vde_switches together. The 

vde_cables were made up of two components, vde_plugs, and an interconnection 

mechanism. Vde_plugs were added to both of the vde_switches that were to be 

connected. The purpose of the vde_plugs was to create a stream of information to be sent 

to the other switch. Very little restrictions were placed on what could serve as the 

interconnection mechanism. The only requirement was that the interconnection 

mechanism must allow transmission from one end to another. Examples of possible 

interconnection mechanisms included Secure Shell (SSH), Remote Shell (RSH) and 

SLIRP.  It is important to note that this implementation was meant as a proof of concept 

and had limited practical applications. 

 As dvSwitches matured, they became more common in virtualization solutions.  

One of the main advantages to their use was that they provided a single point of 

management for multiple virtual switches that resided on multiple hosts (Zhou, 2010).  

Portgroups that were configured on dvSwitches were known as dvPortgroups. Another 
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important feature provided by dvSwitches was the concept of dvPorts. dvPorts allowed 

for a VM’s network configuration to be moved with the VM. This helped facilitate the 

transition of VMs from one host to another without minimal service interruptions.  

 Despite the features provided by dvSwitches, many of features required by 

network security devices, such as intrusion detection systems, were still absent. In 

response to this and other issues, application programmable interfaces (APIs) for the 

virtualization technologies were created (Zhou, 2010). Such APIs allowed third parties to 

develop their own switching solutions that integrated into the virtual environment. This 

gave third parties the freedom to add their own features.  Two current examples of 

technologies that utilize these APIs are the Open vSwitch (Pettit, et al., 2010) and Cisco 

Nexus 1000V (Zhou, 2010). 

 The Cisco Nexus 1000V was Cisco’s first product to take advantage of the Cisco 

VN-Link technology (Cisco, 2010). The goal of VN-Link technology was to provide 

Cisco’s switching features and configuration options to the virtual environments (Cisco, 

2009).  To help it integrate with the virtual environments, it aimed to “provide policy-

based virtual-machine networking” (Cisco, 2010, p. 6). VN-Link technology was able to 

achieve this by utilizing the APIs in VMware’s vSphere to integrate into the virtual 

environment’s VMM.  

 Using Cisco’s VN-Link technology, the Cisco Nexus 1000V is able to provide 

network functionality in the virtual environment.  The virtual switch runs the Cisco’s 

NX-OS operating system to provide an interface and configuration similar to Cisco’s 

physical switches (Cisco, 2011b).  Two key components, the virtual Ethernet modules 

(VEM) and the virtual supervisor modules (VSM) provide its functionality (Cisco, 2009, 

p. 6; Cisco, 2010, p. 7).  The VEM is used for providing switching functionality, as well 

as other network functionality such as security features. The VSM allows for the 

management of the switch.  It provides an interface that allows for the “… configuration, 

management, monitoring, and diagnostics of the overall system (that is, the combination 

of the VSM itself and all the VEMS that it controls) as well as integration with VMware 

vCenter” (Cisco, 2009; Cisco, 2010). The Cisco Nexus 1000V supports up to 64 VEMs 

and two VSMs spanned across 64 hosts (Cisco, 2011b). Each VEM allows for 512 
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VLANs, with each VLAN being able to support 1024 MAC addresses. Another important 

characteristic of the Cisco Nexus 1000V is that it does not use STP within the virtual 

environment; instead, it relies on specially designed forwarding logic to prevent loops in 

the network.  

2.5. Summary 

While little research existed on the security of dVSs and the Cisco Nexus 1000V, 

it was possible to find valuable insight into the precursors of these technologies. Research 

allowed for a historical and operational understanding of switches. Information on the 

vulnerabilities in switches served to highlight possible issues that may have been still 

present in the Cisco Nexus 1000V. Since the Cisco Nexus 1000V resides within virtual 

environment it was imperative to understand the technology used to facilitate the virtual 

environments. Finally, it was necessary to review as much literature as possible about the 

Cisco Nexus 1000V to gain an understanding of how it functions.  In summary, while this 

research was not specific to the security implications of the use of the Cisco Nexus 

1000V, this information provided a strong survey of the precursor topics that will serve 

as a solid foundation for this experiment. 
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CHAPTER 3. METHODOLOGY 

This research was focused on determining the security implications of using the 

Nexus 1000V with respect to a traditional physical switch. In order to carry out this 

research it was necessary to break the research in to four distinct steps. The first step was 

to create an architecture in which the Nexus 1000V would reside. It was imperative that 

this architecture demonstrated the functionality used in real-world situations. The next 

step was to analyze the security of the virtual switch against vulnerabilities found or 

previously found in physical switches. To accomplish this, attack methods previously and 

currently used against switches were carried out against the Nexus 1000V to determine 

whether it was vulnerable to attack. After establishing which switching vulnerabilities 

persisted from the physical switching environment into the virtual switching 

environment, an analysis of the communications used by the Nexus 1000V to facilitate 

distributed switching were conducted.  This analysis consisted of determining how the 

switches were able to communicate, an analysis of the communications, and an attempt at 

manipulating these communications. The final step in this research was to look at the 

effects of duplicating the Nexus 1000V virtual machines. 

3.1. Preface 

Prior to beginning the experiment, it was necessary to clarify the definition of a 

security implication. It was decided that a security implication would be any type of 

activity that caused the Nexus 1000V to act in way it was not intended. While any 

diversion from normal operation may seem drastic to deem a security implication, it is 

important to consider that vulnerabilities are often used as “stepping stones” for 

accomplishing objectives that are more nefarious. 
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It was determined that there were a variety of methods in which an attacker could 

have potentially affected the Nexus 1000V’s standard operation. These were primarily 

methods that had been used against physical switches. Such vulnerabilities included: 

• CAM overflows 

• VLAN Hopping 

• STP Manipulation 

• ARP Poisoning 

• Private VLAN Vulnerabilities 

It was also possible that the Nexus 1000V introduced new vulnerabilities. In 

particular, it was possible that the means of communication used to facilitate distributed 

switching had vulnerabilities in it. There was also potential that the mere fact the Nexus 

VSM resided as a virtual machine could also pose as a security implication. Regardless of 

whether the potential vulnerabilities had previously existed in physical switches or were 

introduced with the transition to the virtual realm, each posed a potential security 

implication. A graphical depiction of the stated vulnerabilities is depicted in Figure 3.1. 

 

CAM Overflows
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STP Manipulation

ARP Poisoning
Security 
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Virtual Machine 
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Figure 3.1. A visual depiction of the security implications. 
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3.2. Test Architecture  

Before the analysis of the security implications of the Cisco Nexus 1000V could 

begin, it was imperative to establish a test architecture that accurately represented other 

implementations of the Nexus 1000V.  Since any security implication affecting the core 

functionality of the Nexus 1000V would affect other implementations of the Nexus 

1000V, only one sample was necessary. This sample however needed to provide the core 

functionality found in implementations of the Nexus 1000V.  To accomplish this, it was 

first necessary to establish what functionality was utilized. While the Nexus 1000V is 

commonly implemented within datacenters, it would have been impossible to simulate a 

datacenter with the available resources. Therefore, it was necessary to determine a scaled 

down architecture that accurately represented the core functionality of the Nexus 1000V. 

The final step was to create a working implementation of the determined architecture. 

The first step was to determine what functionality was commonly used in 

implementations of the Nexus 1000V. To make this determination it was necessary to 

first determine what virtualization software would be used. The Nexus 1000V is only 

supported by architectures running VMware’s ESX or ESXi and vCenter (Cisco, 2011b). 

This made it necessary to have a virtual environment with ESX or ESXi servers being 

managed by vCenter. It was also realized that the research would be most relevant if the 

most current versions of the virtualization software was used.  

The second step was to determine the common deployments of the Nexus 1000V. 

Since the Nexus 1000V was designed to be implemented in environments running 

VMware’s vCenter, which was developed for use in datacenters (VMware, 2009), it was 

safe to assume that it would commonly be implemented in datacenters. With it being used 

in a datacenter environment, it was assumed that at least five servers hosting the 

virtualization software would be in use. Companies with datacenters often use some form 

of redundancy in an attempt to minimize downtime. In an attempt to provide this, it was 

determined that it would be likely that two servers would have VSMs on them and all of 

the other servers would have VEMs running on them.  It was also assumed that 

implementations using the Nexus 1000V would have multiple VLANs to isolate the 

virtual machines.  
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With the typical implementation determined, it was possible to establish an 

architecture that represented the architectures commonly used in datacenters. The goal 

was to find the least number of servers necessary to provide the functionality commonly 

used with implementations involving the Nexus 1000V. It was determined that it would 

be necessary to have one server running vCenter to provide the management functionality 

for the virtual environment. The most current version of vCenter at the beginning of this 

research was vCenter Server 5 and it was therefore used. vCenter’s standard license 

supported the necessary functionality and was used as well. The decision as to whether 

ESX or ESXi should be used was found to be indiscriminate, as both provided the same 

functionality with the only difference being how they can be managed (VMware, 2009). 

It was also decided that ESXi 5.0 would be used, as it was the most current version 

available at the start of the experiment. To allow the Nexus 1000V to be integrated into 

the virtual environment, it was necessary to utilize Enterprise Plus licenses. The number 

of necessary virtualization hosts was related to the number of VSMs and VEMs required. 

Although, it was possible to have one VSM, having only one would mean that the 

redundant supervisor functionality and VSM to VSM communications would be non-

existent. With this, it was decided that it would be necessary to have two VSMs instead 

of one, as having only one would limit the areas this research explored. To simulate 

redundant VSMs, it was concluded that at least two of the virtualization servers needed to 

have virtual machines running the Nexus 1000V configured as a VSM (Cisco, 2011a). It 

was determined that it would be necessary to have at least two hosts, each with a VEM to 

provide VEM to VEM communications. Finally, in order to be able to monitor the 

communication between the ESXi hosts, a separate server with network monitoring 

software was deemed necessary. 

Once the requirements were determined, it was possible to create the necessary 

virtual environment. To accomplish this, six servers and one physical switch were 

necessary. Due to the resources available, there was a heterogeneous variety of servers 

used. They were composed of a mixture of two Dell Optiplex 745s, two Dell Optiplex 

755s, one Dell Optiplex 990, and a Dell Optiplex GX620. These servers were then 

connected to one another using a Cisco 3750-24TS-S running Cisco IOS 12.2. Each of 
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the servers had physical network connections to the network, one to be used for 

management of the server and the other for providing the server’s intended functionality.  

Further detail on the specific hardware is available in Table 3.1 and the physical network 

is detailed in the diagram depicted in Figure 3.1.   

 

Table 3.1. 

Summary of Hardware Used in the Test Architecture 

Machine Model Processor Memory 

ESXi10 Dell Optiplex 755 Intel Core 2 Duo E6750  4 GB 

ESXi11 Dell Optiplex 745 Intel Core 2 Duo 6400 4 GB 

ESXi12 Dell Optiplex 745 Intel Core 2 Duo 6400 4 GB 

ESXi13 Dell Optiplex 755 Intel Core 2 Duo E6750  4 GB 

ESXi14 Dell Optiplex 990 Intel Core i7-2600 8 GB 

Sniffer Dell Optiplex GX620 Intel Pentium D 2 GB 

 

 
Figure 3.2. The physical server architecture used to represent typical 

implementations of the Nexus 1000V. 
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With the architecture’s physical network connections in place, it was then 

necessary to configure the physical switch. The switch was configured so that each of the 

server’s management interfaces was on VLAN 1935. Four additional VLANs were 

created to facilitate the Nexus 1000V’s functionality for carrying out this security 

assessment. The created VLANs and their purpose are detailed in Table 3.2. Once the 

VLANs had been configured, a trunk port to ESXi10, 11, 12, 13, and 14 was created that 

carried each of the created VLANs. For further detail on the physical switch, refer to its 

configuration file in Appendix A. 

 

Table 3.2. 

VLANs Used in the Test Architecture 

VLAN Name Purpose 

971 Control Internal Nexus 1000V Communication 

972 Packet Virtual machine network traffic 

973 SecureVLAN Virtual machine network traffic 

974 PrivateVLAN Isolated virtual machine network traffic  

1935 Management Management of the servers and virtual machines 

 

After the physical switch had been configured, VMware’s ESXi 5.0 was installed 

and configured on ESXi10, 11, 12, 13, and 14. It should be noted that in order to install 

ESXi on ESXi14, it was necessary to use a custom installation that included drivers for 

the Intel 82579LM network card.  The ESXi10 host hosted a virtual machine running 

Windows Server 2008 R2 standard. On this virtual machine, vCenter 5.0 was installed 

and configured to manage the other ESXi hosts. Once vCenter had been configured to 

manage the ESXi hosts, each of the managed ESXi host’s non-management network 

interfaces was configured with a vSphere Standard Switch that provided connectivity to 

the Control, Packet and Management VLANs.   

On ESXi10 and ESXi14, a virtual machine running the Nexus 1000V configured 

as a VSM installed on it. The VSM was installed according to the steps detailed in the 

Cisco Nexus 1000V Installation and Configuration Guide (Cisco, 2012). Following this 
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guide, the VSM was installed using the Nexus 1000V Installation Management Center, 

which had been downloaded onto the virtual machine running Windows Server 2008. For 

this installation, ESXi14 was selected for the installation host. During the installation, 

“HA” (high availability) was selected for the redundancy mode. When configuring the 

port-groups, “L2” (layer two) was selected for the port-group type and the Control, 

Packet and Management port-groups were associated with their respective VLANs. After 

the VSM virtual machines had been created, the Nexus 1000V Installation Management 

Center was used to migrate the port groups and network adapters from the standard 

switch to the VSM. The final step of this process was to migrate the secondary VSM 

from the ESXi14 host to the ESXi10 host. 

With the creation of the VSMs on the two ESXi hosts, the VEMs were then 

installed on ESXi11 and ESXi12. This was accomplished through using Nexus 1000V 

Installation Management Center. As with the installation of the VSM, the guidelines laid 

out in the Cisco Nexus 1000V Installation and Configuration Guide were followed 

(Cisco, 2012). Once VEM installation had completed, the installation was verified by 

ensuring that the port-groups associated with the port-profiles on the VSM were now 

available on the ESXi11 and ESXi12 hosts. After the Nexus 1000V’s VSMs and VEMs 

had been successfully been deployed, the switch was configured so that the VLANs 

previously created on the physical switch were accessible through the Nexus 1000V. 

Next, port-profiles were created that allowed these VLANs to be assigned via the port-

groups in vCenter. For further detail on the VSM’s configuration, refer to the VSM 

configuration file in Appendix B. 

With the Nexus 1000V deployed and configured, virtual machines were added to 

each of the hosts. Although, most datacenters would consist of a heterogeneous mixture 

of operating systems, it was decided that this would not be necessary. This determination 

was due to the research being focused on the functionality of the switch rather than 

underlying operating systems. Since the majority of network traffic adheres to standards 

regardless of the operating system, the operating system that was most appropriate for 

tests was used. In this case, virtual machines running CentOS 5.4 and Backtrack 5 were 

used. CentOS virtual machines were used to create legitimate network traffic and a 
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combination of CentOS and Backtrack virtual machines were used to carry out the 

security tests. A CentOS machine virtual machine for creating legitimate traffic was then 

placed on each of the ESXi hosts. The CentOS and Backtrack virtual machines were then 

added to the hosts as well. All of the virtual machines that were created were created with 

the “flexible” type of network interface. All of these machines contained only one 

network interface, except for the CentOS attack machines. These machines were 

configured with two network interfaces, with one being used for administering the virtual 

machine and the other being used for carrying out tests. As these virtual machines were 

created, they were placed into the Packet port-group that had been created during the 

installation of the Nexus 1000V. In addition to these virtual machines, an additional 

virtual machine running CentOS was added to each of the ESXi hosts. The purpose of 

these virtual machines was to capture network traffic between the virtual machines. To 

facilitate this, they were created with two network interfaces. One interface was placed 

into the Management port-group to allow for the administration of the virtual machine. 

The second interface was then added to the Packet port-group. It is important to note that 

throughout this research the port-groups and port-group configurations changed as noted 

in the experiments. It was also necessary to move the virtual machines amongst the hosts 

to facilitate some of the tests. This is also noted in the experiments. For further detail on 

the created virtual machines refer to Appendix C, which contains a VMX file for each 

type of virtual machine that was used and Appendix D, which contains the MAC 

addresses used by the virtual machines.  

In order to allow for the analysis of network traffic between the virtualization 

servers, a server running CentOS 5.4 was used. This server came with the network 

monitoring software, tcpdump, installed on it, and was added to the same physical switch 

to which the others had been added. Like the virtual monitoring servers, this server also 

had two network interfaces, with one being used for management and the other for 

monitoring network traffic. For further detail on this and the previously mentioned 

machines refer to Figure 3.3, which depicts the logical network architecture that was used 

for this research. 
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Figure 3.3. The logical architecture used for this research. 

3.3.  Physical Switch Vulnerabilities 

To gain a perspective as to how the Cisco Nexus 1000V compares to physical 

switches, the previously stated vulnerabilities commonly found or previously found on 

physical switches were sought out on the virtual switch. To assess whether these 

vulnerabilities existed on the Nexus 1000V, it was necessary to use the same tools that 

were used to carry out the attacks on physical switches. Each of these vulnerabilities was 

tested from either a CentOS or Backtrack attack virtual machine that resided on the 

virtual networks being serviced by the Nexus 1000Vs.   
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CAM overflows were tested against the Nexus 1000V using the macof tool (Song, 

n.d.). This tool was designed specifically for testing switches’ vulnerability to CAM 

overflows. To achieve this, the tool rapidly generated network traffic that contained 

forged MAC addresses. The switch to which the virtual machine running macof was 

connected was then forced to handle and interpret this crafted traffic. To test for this in 

this specific environment the command “macof -i eth1” was used on Attack2, the virtual 

machine running Backtrack on ESXi host ESXi12. This virtual machine was connected to 

the Nexus 1000V and placed on VLAN 972. In order to verify that legitimate traffic was 

impacted by this attack, ICMP traffic was generated between three of the CentOS hosts.  

To test for VLAN hopping vulnerabilities, it was necessary to use two tools. 

Nemesis, a packet-crafting tool was used to create packets destined for MAC addresses 

on other VLANs (Nathan, n.d.). Yersinia was used to create packets with two 802.1Q 

headers in an attempt to carry out VLAN hopping (Omella & Berrueta, n.d.).  

Nemesis was used on the Attack1 a virtual machine running CentOS that was 

placed on ESXi12. For this test, Attack1 was placed onto VLAN 974, which had had an 

access list preventing its devices from communicating with devices on VLAN 972. On 

the attack machine, Nemesis was used to create an ICMP request with the MAC address 

of the CentOS2 virtual machine that also resided on ESXi12 but was on VLAN 972. The 

command used to create the ICMP request was “nemesis icmp -D 10.97.2.102 -M 

00:50:56:AB:56:3C -B 10.97.4.102”.  

Yersinia was used on the same CentOS attack virtual machine as the used in the 

first VLAN hopping test; however, the port-profile for this virtual machine was updated 

so that the switch port it was connected to was on VLAN 1, the native VLAN. It is 

important to note that the switch port was still configured in access mode.  For this test 

Yersinia was run in interactive mode by entering the command “yersinia –I”. Once in 

interactive mode, the protocol mode was set to “DTP” and the “Trunking” attack was 

executed. With the “Trunking” attack continuing to execute, the protocol mode was 

switched to “802.1Q”.  In the 802.1Q mode, the packet configuration was configured so 

that its initial 802.1Q header tagged it as VLAN 1 and the second header had the packet 

tagged as VLAN 972. In doing so, the header containing VLAN 1 would be removed but 
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the VLAN 972 tag would persist. Figure 3.4 depicts the updated configuration dialog that 

was used. After the configuration was set, the “802.1Q Double Encoded Packet” attack 

was executed.   

 

 
Figure 3.4. The Yersinia configuration used to test for VLAN hopping. 

 

Although the switch utilized an algorithm that was meant to eliminate the need for 

STP, there was potential that it would still process the STP communication in some 

manner. To check its vulnerability, falsified STP communications were sent from the 

virtual machines to the Nexus 1000V. Yersinia was once again used, as it allowed for the 

creation of falsified STP packets (Omella, n.d.). In particular, it was used to test whether 

the switch was vulnerable to manipulation from STP packets matching the original STP 

standard. Because Yersinia did not support the sending of PVST+ STP packets, it was 

necessary to create these packets using Nemesis.  

For the first test, Yersinia was used to create falsified STP packets meeting the 

original STP standard. For this test, the CentOS attack machine previously used was 

placed on VLAN 972 and two STP manipulations were attempted. The first manipulation 

was a Configuration BPDU denial-of-service and the second was a Topology Change 

Notification BPDU denial-of-service. Both of these attempts were accomplished by again 

using Yersinia’s interactive mode. This time however, the “STP” attack group was 

selected. The configuration for these packets was based on the information detailed by 

Vyncke and Paggen (Vyncke, 2008). Figure 3.5 reflects the updated configuration dialog 

that was used. After the configuration had been updated, the two tests were carried out. 

 

  
Figure 3.5. The Yersinia configuration used to test for STP vulnerabilities. 
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For the second attempt at STP manipulation, it was necessary to use Nemesis to 

create PVST+ packets. This was accomplished by capturing a PVST+ packet that had 

been sent by the physical switch and modifying it. Once the PVST+ packet had been 

captured, it was analyzed in hexadecimal form. First, its Ethernet header was removed 

and then the BPDU type was updated to “80”, so that it would be classified as a topology 

change notification. The Topology Change Notification bit was also incremented from 

“0” to “1”, changing the BPDU flag from “3c” to “3d”. Once the payload had been 

updated, it was necessary to convert the payload from hexadecimal to binary. This was 

accomplished by using a perl script named hex2bin (B4rtm4n, 2005). With the payload 

converted to binary, it was possible to send the payload using Nemesis; however, since 

Nemesis did not offer a feature that assigned a random source MAC address, it was 

necessary to create a script that did so. This was accomplished by creating a BASH shell 

script that generated a random MAC address and used it as the source parameter while 

executing Nemesis. In order to generate the random MAC address, code by the internet 

user Vaporub was used (Vaporub, 2009). With the source address being randomly 

generated, “01:00:0c:cc:cc:cd” was used for the destination MAC address, as this the 

destination address used by PVST+ (Vyncke, 2008). The final step in the creation of the 

script was to have it continuously loop, causing the switch to be flooded with PVST+ 

BPDUs from random MAC addresses. Figure 3.6 depicts the script that was used for this 

test. After the Topology Notification Change test had completed, the payload was 

updated so that the packet type was “00” and would be interpreted as a Configuration 

BPDU. Following the updates, the Configuration BPDU test was carried out. 

 

 
Figure 3.6. The script used for testing for PVST+ vulnerabilities. 

 

Testing the Nexus 1000V’s vulnerability to ARP poisoning was possible through 

the use of a tool known as ettercap. It was found that it was possible to use this tool to 

create falsified ARP responses that were sent to the other virtual machines (Ornaghi & 
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Valleri, 2005). Ettercap was used from the same Backtrack attack virtual machine that 

had been previously used for the CAM overflows. It was also placed on the 972 VLAN, 

the same VLAN to which the other CentOS hosts were connected. To test the 

vulnerability to ARP poisoning, ettercap was used in an attempt to cause the other virtual 

machines on the 972 VLAN to direct network traffic to the attack virtual machine. The 

specific command used to carry out this test was “ettercap -i eth1 -T -q -M arp:remote 

/10.97.2.2-110/ -P autoadd”. To generate traffic that was to be intercepted, ICMP 

communications were sent amongst the CentOS hosts that resided on VLAN 972.  

Nemesis was used to find whether the Nexus 1000V was susceptible to private 

VLAN attacks (Nathan, n.d.). Using Nemesis, packets were created with the destination 

MAC address of the gateway that the virtual machine was using (Nathan, n.d.). For this 

experiment, the CentOS hosts were moved to VLAN 974, which had been configured as 

a private VLAN for this experiment. In particular, this VLAN had been configured in 

isolation mode so that none of the hosts would be able to communicate with each other. 

To enable private VLANs, it was necessary to issue several commands. It was ultimately 

necessary to reload the switch with the updated configuration. For further detail on the 

configuration used, refer to the configuration file in Appendix E. Once on the private 

VLAN, it was verified that the hosts could not communicate with each other. After this 

had been verified, Attack1, the attack virtual machine running CentOS, was also added to 

the private VLAN. This virtual machine was then used in an attempt to send packets to 

the legitimate CentOS hosts. To do this it was necessary to use Nemesis to create a 

custom ICMP packet that had the attacking virtual machines source IP address and the 

intended destinations IP address. The critical part of this packet was to have the 

destination MAC address be that of the default gateway. It was hoped that doing so 

would push the packet to the default gateway, which would then forward the packet to the 

supposedly protected CentOS host. To accomplish this with Nemesis, the following was 

used “nemesis icmp -d eth0 -S 10.97.4.66 -D 10.97.4.102 -M 00:1c:0f:5c:00:40”. 

To verify the impacts of these tests a variety of data sources were checked. The 

communications between the attacking machines and the affected parties were analyzed 
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with tcpdump.  In some of the tests, it was necessary to look at the logs of the Nexus 

1000V to find whether the vulnerability tests had manipulated the switch. 

Several tools were necessary to determine whether the Nexus 1000V was 

vulnerable to each of the vulnerabilities. In some instances, it was necessary to use more 

than one tool to test for the specific vulnerability. The effects of these potential 

vulnerabilities were then assessed through several means. A summary of the 

vulnerabilities and the tools used is depicted in Table 3.3.   

 

Table 3.3. 

Summary of Tools Used to Test for Vulnerabilities 

Vulnerability Tool 

CAM Overflow Macof 

VLAN Hopping Nemesis and Yersinia  

STP Manipulation Nemesis and Yersinia 

ARP Poisoning Ettercap  

Private VLAN Vulnerabilities Nemesis 

3.4. Distributed Switch Communication Vulnerabilities 

This research also examined the communication mechanisms used by the Nexus 

1000V to facilitate the VSM to VSM, VSM to VEM, and VEM to VEM 

communications. With the limited amount of information detailing the communication 

mechanisms used, it was necessary to first analyze the communication between the 

distributed switches. This was accomplished by mirroring the port of the physical switch 

that was being used by one of the ESXi servers so that it would be received by the 

network-monitoring server. By using tcpdump on the physical monitoring server, it was 

possible to capture and analyze the traffic being passed between the distributed switches. 

Traffic was generated by making configuration changes. In particular, virtual machines 

were moved from one port-group to another through vCenter and changes were also 

made to the port-profile through the VSM. Specifically, CentOS2 was moved from the 
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Packet port-group to the SecureVLAN group and later after being placed back in the 

Packet port-group, the Packet port-group’s port-profile was updated to access VLAN 

973. The network traffic generated was then assessed; to do this, it was first necessary to 

determine characteristics of the Nexus’s communication traffic to distinguish this 

network traffic from the other network traffic. Once the identifying characteristics for the 

distributed switch communication traffic had been determined, the traffic was then 

analyzed. This analysis consisted of attempting to ascertain the protocols being used and 

any mechanisms that might be employed to protect the communications. The final step 

was to attempt to disrupt the communication taking place between the switches. 

Disruption of the communication was attempted by using the tool tcprelay, which allows 

captured packets to be replayed (Turner, 2010).  

3.5. Virtual Machine Manipulation 

The final step of this research was to take a look at the impact an attacker might 

have were they to create multiple VSM instances. This research began with an analysis of 

whether it would be possible for an attacker with a compromised ESXi host to add an 

additional VSM to the network. In particular, it looked at the authentication and 

authorization mechanisms used by the Nexus 1000V to ensure that that only a legitimate 

VSM could be added. The second stage of this research involved looking at the 

repercussions of cloning a VSM. First, a standalone VSM was cloned. The goal of this 

was to see how vCenter and the VSM handled multiple VSMs. To carry out this test, it 

was necessary to change the redundancy of the test architecture from high availability to 

standalone. This was accomplished by powering down the secondary VSM and entering 

the command, “system redundancy role standalone” at the configuration prompt on the 

primary VSM. Once the VSM was in standalone mode, the VSM was duplicated through 

vCenter. 

Following the testing of the standalone VSM, the duplicate VSM was deleted and 

the architecture was reverted to high availability mode. The high availability mode was 

enabled by powering the secondary VSM back on and issuing the command, “system 

redundancy role primary” at the configuration prompt on the primary VSM. Once the 
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Nexus 1000V was back in high availability mode, the effects of cloning the primary 

VSM were assessed. Following this, the same process was repeated for the duplication of 

the secondary VSM. 

3.6. Summary 

In this chapter, the methodology used to evaluate the security implications of the 

Cisco Nexus 1000V versus traditional physical switches was detailed. It consisted of four 

steps. The first step was to determine and then create an architecture that accurately 

reflected the functionality commonly found in implementations of the Nexus 1000V. 

After the representative architecture had been created, the Nexus 1000V was assessed to 

find whether it suffered from the common vulnerabilities found on current and previous 

physical switches. The third step of this research was establishing whether the 

communication mechanism used between the distributed switches was vulnerable to 

malicious actions. This research’s final step was to assess the adding of VSMs and to 

identify any negative effects as a result of adding additional VSMs. 
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CHAPTER 4. RESULTS AND CONCLUSIONS 

Throughout the steps of this research, multitudes of results were captured. The 

purpose of this chapter is to examine the results that were gathered as the steps of the 

experiments progressed and to draw conclusions from the results. This chapter will begin 

with a look at the findings following the creation of the test architecture. Following this, 

the results found while testing for vulnerabilities currently and previously found in 

physical switches will be examined. The third section of this chapter will cover what was 

found while examining and analyzing the internal communications used by the Nexus 

1000V. After this section, the results of attempting to create additional VSMs will be 

discussed. Finally, this chapter will conclude with a summary of the covered results and 

the conclusions that can be drawn from them. 

After the creation of the architecture, it was possible to verify the functionality 

offered by the Nexus 1000V. This was done by utilizing both vCenter’s management 

interface and the Nexus 1000V’s remote command line interface, that provides the same 

method of configuration found in physical switches. It was found that the configuration 

changes made within the Nexus 1000V was capable of being applied directly through 

vCenter. For instance, it was possible to create new port-profiles through the command 

line while connected into the VSM. These port-profiles would then appear as a new port-

group in the network adapter dialog used to configure virtual machines. Conversely, the 

changes such as a change in port-group assignment for a virtual machine, was noticeable 

in the Nexus’s remote access when issuing commands such as “show interface status” 

and “show port-profiles”. Furthermore, it was found that the virtual machines that had 

been connected to the Nexus 1000V, had proper network connectivity and were able to 

communicate with one another as well as outside the virtual environment.  
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 The creation of the architecture also provided a better understanding of the inner-

workings of the Nexus 1000V. In particular, it was found that the Nexus 1000V required 

a minimum of three VLANs. These VLANs were the Control, Packet, and Management 

VLANs. The control VLAN was found to be used to facilitate VSM to VSM and VSM to 

VEM communications. Later in this chapter, the communications mechanisms used will 

be discussed in further detail. It was found that the packet VLAN served as the VLAN 

that was meant to provide network connectivity. It should be noted that network 

connectivity was not limited to this VLAN. Configuration changes on the Nexus 1000V 

allowed additional VLAN to be used and were assigned to the port-groups described in 

the methodology section. Finally, the management VLAN was used by the Nexus 1000V 

to provide remote access. In particular, it allowed the switch to be accessed via Secure 

Shell (SSH).  

4.1. Physical Switch Vulnerabilities 

The first tests of this research took a look at the vulnerabilities that presently or 

had previously been found on physical switches and sought to determine whether they 

affected the Nexus 1000V. To make this determination, a variety of tests were carried 

out. In the remainder of this section, the results of the tests for physical switch 

vulnerabilities will be detailed. It will conclude with a summary of the findings and 

conclusions that can be made from the results.  

4.1.1. CAM Overflows 

Using macof it was possible to test the switch’s vulnerability to CAM overflows. 

The functionality of macof was verified by capturing packets on the virtual monitoring 

servers residing on each of the ESXi hosts. These virtual monitoring servers were also 

connected to VLAN 972. It is important to note that the VSM had no port or VLAN 

mirroring configured; instead, the monitoring servers only received the same traffic the 

other virtual machines on the VLAN received. Figure 4.1, shows a subset of the packets 

generated by macof. The reason for only providing a subset is that presenting all of the 
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packets would have required excessive space and would have provided little to no 

additional value.  

 

 
Figure 4.1. CAM overflow packets generated by macof. 

 

 As the packets were being generated by macof, the impact that it was having on 

the switch was verified by checking the number of MAC addresses the Nexus 1000V was 

tracking. This was achieved by issuing the command “show mac address-table count vlan 

972”. It was found that the Nexus was tracking 12,288 MAC addresses for the VLAN 

972. After the attack was completed, the packets captured by the three virtual monitoring 

servers were assessed. It was found that two of the virtual machines had received ICMP 

packets that had been meant for one of the legitimate CentOS hosts. In each case, the 

traffic had originated from a virtual machine that existed on the same ESXi host as the 

virtual monitoring server. The observed ICMP packets are depicted in Figures 4.2 and 

4.3.  
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Figure 4.2. ICMP packets captured on vSniff1. 

 

 
Figure 4.3. ICMP packets captured on vSniff3. 

4.1.2. VLAN Hopping  

 The use of Yersinia allowed for the testing of two techniques of VLAN hopping. 

Before the tests could be carried out, it was necessary to ensure that there was indeed an 

access list preventing communication from the 974 VLAN to the 972 VLAN. This was 

accomplished by monitoring the attack virtual machine’s console and configuring the 

VSM to replicate all traffic entering and leaving the attack machine that was residing on 

the 974 VLAN. An attempt to ping the CentOS2 virtual machine residing on the 972 

VLAN was then made. Through monitoring the console of the attack host, it was found 

that traffic was being blocked, as the response received was “From 10.97.4.1 icmp_seq=1 

Packet filtered”, with the sequence number incrementing with each ping attempt. This 

was then verified by the packets captured on the virtual monitoring server that had 
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received the replicated network traffic. A subset of the packets captured is depicted in 

Figure 4.4. 

 

 
Figure 4.4. Packet capture verifying packet filtering was taking place. 

 

Upon verification that traffic between VLAN 974 and 972 had been restricted, the 

first method of VLAN hopping was attempted. To verify that Yersinia was correctly 

creating packets with the destination MAC address of the CentOS 2 virtual machine, the 

monitoring setup used to verify the VLAN restrictions was again used. By monitoring 

VLAN 974, it was possible to analyze the packets being sent by Yersinia. It was found 

that Yersinia was correctly creating manipulated packets. Figure 4.5 shows a collection of 

the captured packets and the manipulated destination MAC address.  

 

 
Figure 4.5. Packets generated by Yersinia with manipulated MAC addresses. 
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 With the manipulation of the packet verified, whether the packet reached the 

virtual machine needed to be ascertained. This was accomplished by again making use of 

the virtual monitoring server; however, this time the VSM was configured to replicate the 

traffic destined for the CentOS2 virtual machine to the vSniff2 virtual monitoring server. 

This setup allowed the monitoring server to capture all of the network traffic going to and 

from the CentOS2 virtual machine. It was found that the Nexus 1000V was not ignoring 

the VLANs and forwarding the packets, as none of the packets that were created by the 

attack machine reached the CentOS2 virtual machine.  

 The second VLAN hopping test involved the creation of packets with two 802.1Q 

headers. Like several of the other experiments, Yersinia was used to create these packets. 

Before the Nexus 1000V’s handling of packets with two 802.1Q headers could be 

assessed, it was necessary to verify that Yersinia was properly creating these packets. 

This was achieved by running packet capture software on the CentOS attack virtual 

machine. With this, it was found that Yersinia was indeed creating packets with two 

802.1Q headers. Figure 4.6 shows one of the captured packets that contain two 802.1Q 

headers.  

 

 
Figure 4.6. Packets generated by Yersinia with two 802.1Q headers. 

 

It was also necessary to ensure that the Nexus 1000V was removing the initial 

802.1Q header while keeping the second header. This was achieved by configuring the 
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VSM to replicate the traffic on VLAN 1, the native VLAN, and to send this traffic to the 

virtual monitoring server vSniff 1. Figure 4.7 shows one of the captured packets, with its 

initial 802.1Q header removed. 

 

 
Figure 4.7. Packets generated by Yersinia with one 802.1Q header removed that 

were received on the Nexus 1000V. 

 

 The last step in looking at this type of VLAN hopping was to determine if this 

packet was being sent to the physical switch. By configuring the physical switch to 

replicate the traffic on VLAN 1 and 972 and having it sent to the physical monitoring 

server, Sniffer, monitoring of the traffic was possible. It was found that the crafted packet 

was indeed being processed and forwarded by the Nexus to the physical switch. 

Interestingly, the packet stayed on the native VLAN and did not “hop” over to VLAN 

972. Nonetheless, this observation meant that it is possible for a virtual machine to create 

a packet that could “hop” into another VLAN after it has been passed to another physical 

switch. Figure 4.8 depicts one of the crafted packets that was captured on the Sniffer 

physical monitoring server. 
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Figure 4.8. Packets generated by Yersinia with one 802.1Q header removed 

received on the physical switch. 

4.1.3. STP Manipulation 

 CentOS2 was used again, this time to test whether the Nexus 1000V was 

susceptible to STP manipulation. In the tests, two different STP manipulations were 

attempted, with both attempting a different form of denial-of-service attack. For each of 

these attacks it was necessary to verify that Yersinia was generating the appropriate 

packets. This was accomplished using a monitoring virtual machine and having the VSM 

replicate all of the attack virtual machine’s traffic to the virtual monitoring server. A 

subset of the packets captured for verification of the Configuration BPDU denial-of-

service and the Topology Change Notification BPDU denial-of-service are depicted in 

Figures 4.9 and 4.10 respectively. 

 

 
Figure 4.9. STP Configuration BPDUs generated during the denial-of-service 

attempt. 
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Figure 4.10. STP Topology Change Notification BPDUs generated during the 

denial-of-service attempt. 

 

  After the packets being sent by Yersinia had been verified, their impact on the 

Nexus 1000V was assessed. The most apparent observation was that the switch’s 

functionality had persisted despite the attempted manipulations. Had the attack been 

successful, the switch would have been overwhelmed and its functionality would have 

been impacted. If the attempted attacks were successful, it would cause the switch to run 

processor intensive computations Because of this, the CPU usage of the VSM in vCenter 

was checked to further verify the impact of the attempts. It was found that the CPU usage 

had remained at a level consistent with normal usage. The graph depicted in Figure 4.11 

shows the CPU usage of the VSM virtual machine as noted by vCenter. The 

Configuration BPDU denial-of-service attempt ran from 4:10 P.M. to 4:20 P.M. and the 

Topology Change Notification ran from 4:30 P.M. to 4:40 P.M. For both attempts, there 

was little to no deviation from the normal CPU usage on the VSM. 



44 

 

   
Figure 4.11. The CPU usage on the primary VSM during the STP denial-of-

service attempts. 

 

 To determine whether the manipulations’s impact had been limted to the VEM 

residing on the host on which the attacker existed, the CPU usage of the ESXi host was 

examined. As depicted in the CPU usage graph in Figure 4.12, it was found that during 

the attacks, the CPU usage on the ESXi host spiked dramatically during the attempted 

manipulations. When compared with the CPU usage of the attack virtual machine, it was 

found that the increase in CPU usage was likely due to the usage by the attacker virtual 

machine and the switch handling the excessive number of packets being recieved. The 

CPU usage of the attacking virtual machine during both of the attacks is depicted in 

Figure 4.13.  
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Figure 4.12. The CPU usage on the attacker’s ESXi host during the STP denial-

of-service attempts. 

 

 
Figure 4.13. The CPU usage on the attacker’s virtual machine during the STP 

denial-of-service attempts. 
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 The second portion of the STP tests involved testing whether the Nexus 1000V 

would be affected by Cisco’s proprietary version of STP, PVST+. For this test, it was 

necessary to use Nemesis along with a script that would automatically generate random 

MAC addresses. Using Nemesis and the created script, it was possible to attempt 

Configuration and Topology Change Notification BPDU denial-of-service tests. Packets 

from these tests were captured in the same manner as the previous STP tests. Once 

captured, these packets were verified to ensure that the tests were being properly carried 

out. Figures 4.14 and 4.15 respectively depict a subset of the packets captured from the 

Configuration BPDU and Topology Change Notification BPDU denial-of-service 

attempts. 

 

 
Figure 4.14. PVST+ Configuration BPDUs generated during the denial-of-service 

attempt. 
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Figure 4.15. PVST+ Topology Change Notification BPDUs generated during the 

denial-of-service attempt. 

 

 As with the first set of STP tests, it was found that the PVST+ tests did not impact 

the network functionality provided to the virtual machines. Like in the previous tests, the 

CPU usage of the VSM was monitored to look for clues that it might be processing the 

packets and recalculating the STP topology. Figure 4.16 depicts the CPU usage of the 

VSM during the two attacks. It should be noted that the Configuration BPDU test began 

5:30 PM and ended at 5:40 PM. The Topology Change Notification BPDU test began at 

5:50 PM and ended at 6:00 PM. 

 
Figure 4.16. The CPU usage on the primary VSM during the PVST+ denial-of-service 

attempts. 
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Just as in the initial STP tests, the CPU usage of the ESXi host that the attacker 

resided on was examined in an attempt to verify whether the VEM had been affected. It 

was found that during the attacks, the CPU usage on the ESXi host spiked dramatically 

during the attempted manipulations. These results are depicted in Figure 4.17. When 

compared with the CPU usage of the attack virtual machine, it was found that the 

increase in CPU was likely due to the processor usage by the attacker virtual machine and 

the switch handling the received packets. The CPU usage of the attacking virtual machine 

during these attacks is depicted in Figure 4.18. 

 

 
Figure 4.17. The CPU usage on the attacker’s ESXi host during the PVST+ 

denial-of-service attempts. 

 

 
Figure 4.18. The CPU usage on the attacker’s virtual machine during the PVST+ 

denial-of-service attempts. 
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4.1.4. ARP Poisoning 

The tool, Ettercap allowed for the Nexus 1000V’s vulnerability to ARP poisoning 

to be assessed. After the ARP poisoning had been carried out, it was possible to verify its 

effectiveness by capturing the packets being received on the attacking virtual machine. It 

was found that the Nexus 1000V was susceptible to ARP poisoning as traffic that was 

meant for other virtual machines was being received by the attacking machine. Figure 

4.19 depicts a capture of some of the packets created by Ettercap and Figure 4.20 depicts 

a subset of the captured ICMP packets that were supposed to be amongst the legitimate 

CentOS hosts residing on the VLAN. 

 

 
Figure 4.19. ARP traffic generated by Ettercap. 

 

 
Figure 4.20. ICMP packets that were captured during the ARP poisoning test. 
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4.1.5. Private VLAN Vulnerabilities 

The final physical vulnerability that was tested for was private VLAN 

vulnerabilities. Prior to testing for this vulnerability, it was necessary to ensure that the 

private VLAN in isolation mode was indeed preventing the hosts from communicating 

with one another. This was accomplished by having the VSM mirror the private VLAN 

so that the packets on the private VLAN could be monitored by the virtual monitoring 

server. While the packets were being captured, CentOS2 and CentOS3 attempted to ping 

each other. These attempts failed and the machines reported that the destination was 

unreachable. In Figure 4.21, it can be seen that while the virtual machines attempted to 

ping each other, they needed to learn the MAC addresses of each other but were unable to 

learn the necessary information. 

 

 
Figure 4.21. A packet capture of the virtual machines on the private VLAN 

attempting to ping each other. 

 

To verify that the virtual machines still had network connectivity, both virtual 

machines attempted to ping their default gateway. Both of the virtual machines were able 

to ping their gateway successfully. Figure 4.22 shows both of the virtual machines being 

able to ping their gateway successfully. 
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Figure 4.22. A packet capture of the virtual machines on the private VLAN 

pinging their gateway. 

  

 With the functionality of the private VLAN verified, it was then possible to assess 

the Nexus 1000V’s susceptibility to private VLAN attacks. As stated in the methodology 

section, this test was carried out by using Nemesis. Through the use of Nemesis, it was 

found that like physical switches, the Nexus 1000V was vulnerable to private VLAN 

attacks. This determination was made because the crafted packet from the Backtrack 

virtual machine was able to reach CentOS2, despite both machines being on the private 

VLAN. It should be noted that this communication was unidirectional, as the CentOS2 

virtual machine was still unable to ascertain the MAC address of the Backtrack virtual 

machine and therefore was unable to respond. Figure 4.23 depicts a packet capture where 

the Backtrack virtual machine was able to transmit ICMP traffic to the CentOS2 virtual 

machine. 
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Figure 4.23. Packet capture of the attacking Backtrack virtual machine 

successfully sending ICMP traffic to the CentOS2 host. 

4.1.6. Physical Switch Vulnerabilities Summary and Conclusions 

Upon completion of the tests for vulnerabilities that currently or have previously 

affected physical switches, a better understanding of the Nexus 1000V had been gained. 

In particular, where it stood against physical switches in terms of security was better 

understood. It was found that some of the vulnerabilities that affect physical switches are 

also present in the Nexus 1000V. Of those tested for, it was found that the Nexus 1000V 

is vulnerable to CAM overflows, 802.1Q double-header VLAN hopping, ARP poisoning, 

and private VLAN vulnerabilities. Although these vulnerabilities exist on the Nexus 

1000V and potentially threaten the security of the switch, there are methods for 

mitigating their risk. Indeed, many measures that have been used to protect physical 

switches are available on the Nexus 1000V. For instance, it is recommend to use Cisco’s 

port security features, which are available on the Nexus 1000V, to prevent both ARP 

poisoning and CAM overflows (Bastien, et al., 2006). To prevent 802.1Q double-header 

VLAN hopping, it is suggested that the native VLAN not be used for anything other than 

switch-to-switch communications. In other words, if the Nexus 1000V is properly 

configured and the native VLAN is not accessible to the virtual machines, this issue can 

be mitigated. Finally, private VLAN vulnerabilities can be eliminated if the router that is 
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used as the gateway is configured with an access-list that prevents the devices on the 

private VLAN from communicating with one another. 

STP manipulation and the VLAN hopping technique that used manual MAC 

addresses were found to not affect the Nexus 1000V. Both of these results were 

somewhat logical. In the product literature provided by Cisco, it was stated that the 

Nexus 1000V no longer used STP to eliminate network loops (Cisco, 2011b). Despite 

this, the tests were carried out to ensure that there was no lingering aspect of the STP that 

could affect the security of the Nexus 1000V. In the end, it was found that there were no 

apparent remnants of STP or PVST+ causing security issues. The absence of VLAN 

hopping using manual MAC addresses was also logical since the preventative VLAN 

techniques that Farrow described in high-end switches in 2003, are now commonplace 

(Farrow, 2003). 

Although some of the vulnerabilities found on physical switches have been found 

to affect the Nexus 1000V, if proper configuration considerations are made these issues 

can be mitigated. Furthermore, it was found that unlike most physical switches, the 

Nexus 1000V does not use a form of STP and is therefore not vulnerable to its 

manipulation. Because of the possibilities for mitigation in the found vulnerabilities and 

the absence of STP manipulation, it was determined that within the context of the tested 

vulnerabilities, the security implications of the Nexus 1000V were less than those 

presented by using physical switches. 

4.2. Distributed Switch Communications 

Through the use of packet captures, it was possible to gain a better insight into the 

inner-workings of the Cisco Nexus 1000V. These packets were captured in hopes of 

overcoming the limited amount of information available about how the VSMs and VEMs 

communicated amongst each other. Furthermore, they allowed for a better understanding 

of potential security concerns that might exist. 
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4.2.1. Initial Analysis 

To capture the packets, it was first necessary to understand where the VSM and 

VEM communications were taking place. In the installation and configuration guide, it 

was noted that the Control VLAN was used to facilitate communications amongst the 

virtual switches (Cisco, 2012). Because of this, the control VLAN was examined. What 

was thought to be communications between the VSMs and VEMs was found. Since the 

captured communications were using a data link protocol, the MAC addresses of the 

communications and the MAC addresses stored in the MAC address table of the Nexus 

1000V were then compared. This analysis of the MAC addresses made it possible to 

identify the switches that were communicating with each other. It was found that there 

were communications being sent amongst the VSMs and VEMs. After analyzing the 

packets, it was also found that the VEMs did not appear to communicate with each other. 

Instead, the captured VEM communications were only with the VSM. During normal 

conditions, the primary VSM would send out a broadcast message. After receiving the 

message, both of the VEMs responded to the primary VSM, which then followed up 

with another response packet. These communications repeated every second. It is 

important to note that that the secondary VSM was not involved with any 

communications with the VEMs and did not respond to the broadcast message sent by 

the primary VSM.  Figure 4.24 depicts a subset of the captured communications between 

the primary VSM and the VEMs. 



55 

 

 
Figure 4.24. Packet capture of normal VSM to VEM communications. 

 

Communications between the primary and secondary VSM were also captured. 

Figure 4.25 shows a subset of packets captured between the primary VSM and the 

secondary VSM. In this packet capture, it can be seen that the VSMs are in near constant 

communications with one another. It appeared that these communications would begin 

when the primary VSM would send a packet with a length of 276 bytes. After the initial 

packet was sent by the VSM, between seven and twelve packets were sent amongst the 

primary and secondary VSMs. These exchanges were found to repeat every second. 

 

 
Figure 4.25. Packet capture of the normal VSM to VSM communications. 



56 

 

4.2.2. Analysis of Configuration Communications 

Initially only the traffic during normal conditions was examined. To gain a better 

understanding of how configuration changes were sent between the primary VSM and 

VEMs, a virtual machine’s port-group was changed. The packets sent between the 

VSMs and the VEMs were then captured. After analyzing the packet capture, it was 

found that there were two bursts of traffic between the primary VSM and the VEMs. The 

first burst of traffic began right after the port-group assignment had been changed and 

the second burst of traffic took place just more than 5 seconds after the initial burst had 

begun. It was found that this burst in communications was between the primary VSM 

and the affected VEM. No additional communications took place between the primary 

VSM and the unaffected VEM. Figure 4.26 depicts the packets per second sent between 

the primary VSM and the VEMs. It was also found that there were bursts in network 

traffic between the primary and secondary VSM during the same period of increased 

traffic between the primary VSM and the affected VEM. Figure 4.27 depicts the packets 

per second sent between the primary and secondary VSM. 

 
Figure 4.26. Packets sent per second between the primary VSM and VEMs after a 

virtual machine’s port-profile assignment had been changed. 
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Figure 4.27. Packets sent per second between the primary and secondary VSM 

after a virtual machine’s port-profile assignment had been changed. 

 

Once the port-group change initiated from vCenter had been analyzed, the effect 

of changing a port-profile configuration through the VSM was assessed. Using the 

captured packets, it was possible to once again analyze the traffic patterns generated by 

the changes. Unlike the previous test, it was found that there were three bursts in traffic 

between the primary VSM and the affected VEM. As with the previous test, no 

additional communications were sent between the VSM and the unaffected VEM. Figure 

4.28 depicts the packets per second sent between the primary VSM and the VEMs. After 

analyzing the primary VSM to VEM traffic, the traffic between the primary VSM and 

the secondary VSM was analyzed. It was found that there were two spikes in 

communications that coincided with the first and third spike of the primary VSM to 

VEM communications. Figure 4.29 depicts the packets per second sent between the 

primary and secondary VSM. 

 

 
Figure 4.28. Packets sent per millisecond between the VSM and VEMs after a 

port-profile’s configuration had been changed. 
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Figure 4.29. Packets sent per millisecond between the VSM and VEMs after a 

port-profile’s configuration had been changed. 

 

After analyzing the content of the packets being sent between the VSMs and the 

VEMs, it was found that the communications were taking place at the data link layer. 

The data link layer protocol was not capable of being decoded by Wireshark. In an 

attempt to learn more information about the protocol being sent by the VSMs, the SNAP 

header in the packet was examined. Within the SNAP header, it was found that the 

protocol’s organization code was 0x00000C, which Wireshark noted as being Cisco’s 

organizational code. It was also found that the protocol ID was 0x0132. Research into 

this protocol ID proved inconclusive. With this, it was assumed that the protocol was a 

proprietary one that had been developed by Cisco. This was validated when a post from 

a Cisco employee was found on a Cisco support message board stated that the protocol 

used on the Control VLAN was AIPC, a Cisco proprietary protocol (Mipetrin, 2010). 

Also in the post, the employee stated that the protocol was encrypted.  

 Although one might expect the same protocol to be used to for communication 

between the primary and secondary VSM, this turned out to not be necessarily true. 

Initially it was thought the same protocol was being used due to the VSM to VSM traffic 

being a data link protocol and with it having the same identifiers in its SNAP header. 

Unlike the VEM traffic, these communications did not appear to be encrypted. The most 

obvious characteristic that led to this determination was the VSM configuration being 

sent in clear text from the primary VSM to the secondary VSM. One of the captured 

packets that show the configuration in clear text is displayed in Figure 4.30. 
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Figure 4.30. A captured packet containing clear text sent from the primary VSM 

to the secondary VSM.  

4.2.3. Analysis of Clear text Communications 

Since clear text communications were found, these communications were 

explored further in search of manipulating them. Before these communications could be 

manipulated, it was necessary to better understand how the protocol was structured. This 

was accomplished by reviewing the packets and identifying characteristics and patterns 

of the communications.  

One of the most apparent characteristics identified was that the packets containing 

clear text configuration information sent by the primary VSM all had a length of 584 

bytes. The only exception to this was the packet containing the final portion of the 

switch’s configuration. This packet’s length appeared to be dependent on the amount of 

the configuration that needed to be sent. It should be noted that of all of the other 
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communications sent by the VSM, only packets containing clear text had a length of 584 

bytes. Next, it was found that following each clear text configuration communication sent 

by the primary VSM, the secondary VSM appeared to acknowledge the primary VSM’s 

communications. This was evident in the packets with a length of 72 bytes that followed 

each of the primary VSM’s packets. 

 It was also found that although the primary VSM’s traffic contained clear text 

configuration information, there was some non-clear text data in the packet’s payload. In 

particular, this data appeared in the 50 bytes of the payload before the clear text data. It 

was found that this data was consistent amongst several packet captures. After comparing 

the payload data found in the primary and secondary VSMs communications, it was 

found that both parties’ communications during the configuration exchange had a similar 

format for the first 50 bytes of data. After further inspection of the data, it was found that 

the first 8 bytes of each packet’s payload contained “03802b02”. This was then followed 

by the recipient’s MAC address and then the source’s MAC address. The remaining data 

consisted of fixed and variable fields. Some of the fields incremented by one, while two 

of the fields decremented by one as each packet was sent. Other fields remained constant, 

keeping the same value in all of the packet captures. Table 4.1 reflects the findings after 

analyzing the packets sent during the clear text configuration communications.  
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Table 4.1. 

Observations in the Clear Text Communications 

Bytes Observation 

0-3 Fixed value, 03802b02 

4-9 Recipient’s MAC address 

10-15 Sender’s MAC address 

16-19 Fixed value, 08004500  

20-23 Incrementing value 

24-27 Fixed value, 00004011 

28-29 Decrementing value 

30-43 Fixed value, unique to each VSM 

44-45 Decrementing value 

46-49 Incrementing value 

   

The final test of the distributed communications involved resending captured 

communications. This was accomplished through the use of tcpreplay. For this test, the 

primary VSMs communication of the configuration was replayed to the secondary VSM. 

By capturing packets, it was found that the secondary VSM was responding in a similar 

fashion as it had during the original communications. The only difference found was that 

the responses contained different values in the incrementing and decrementing fields. 

Figure 4.31 depicts the replayed communications and the secondary VSM’s response to 

the replayed communications. 
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Figure 4.31. Packet capture depicting the replaying of the captured clear text 

configuration packets. 

 

 Although the secondary VSM appeared to be acknowledging the replayed 

communications, it was unclear whether it was accepting the replayed communications. It 

was found that due to command restrictions imposed on secondary VSMs, it was 

impossible to issue the command “show running-configuration”, which would normally 

be used to verify configurations. Due to this limitation, it was necessary to verify the 

configuration through other means. This was accomplished by repeatedly replaying 

configuration communications that differed from the configuration currently being used. 

As these communications were continuously replayed, the primary VSM was powered 

off, causing the secondary VSM to become the primary VSM. After the switchover, it 

was found that the legitimate configuration was still in use by the switched over VSM. 

4.2.4. Distributed Switch Communications Conclusions 

This research's investigation significantly improved the understanding of the 

communications used to facilitate the Nexus 1000V's distributed switching functionality. 

This is especially true since there was very little information available about the inner-

workings of this switch. After assessing the results, the communication patterns used 

amongst the VSMs and the VEMs were learned. The results of this research also pointed 

to a potential security implication in the Nexus 1000V. 
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It was found that the VSMs and the VEMs communicate with one another over 

the Control VLAN. A proprietary protocol that operates at the data link layer is used by 

the switches to carry out these communications. Unfortunately, since the protocol is 

proprietary, information about it extremely limited. Nonetheless, the communications 

were still analyzed and it was found that the primary VSM maintains regular 

communications with the VEMs through the use of broadcasted packets. It was found that 

upon receiving the broadcast packets, the VEMs would respond to the primary VSM 

apparently acknowledging they had received the packet. This exchange would terminate 

with the primary VSM responding to each of the VEMs that had responded to it. It was 

also noticed that the VEMs did not communicate with one another. When configuration 

changes were made, it appeared as though the primary VSM would only communicate 

these changes to VEMs that were affected by the change. In other words, the VEMs only 

contained port-profile configuration information about the port-profiles in use on the 

particular VEM. It was also found that the primary VSM to VEM communications were 

likely encrypted. The basis for this was that the packets sent by the VSM to the VEM had 

seemingly random data with no identifiable patterns.  

Like the primary VSM to VEM communications, it was found that the primary 

and secondary VSMs would communicate with one another using a data link protocol. It 

was also found that the VSMs were in constant communication with one another. This 

was likely a heartbeat check, that would allow the secondary VSM to recognize if the 

primary VSM had become unavailable, allowing it to promptly take over the primary 

VSMs role. When configuration changes were made, it was found that the primary VSM 

would transmit its entire running configuration file to the secondary VSM in clear text. 

This practice could mean that an attacker that had access to the Control VLAN could 

learn the VSM’s configuration, making it easier for them to find other potential security 

issues. After analyzing several packet captures with this configuration exchange, several 

observations were made in regards to the potential fields used by the proprietary protocol 

during the transmissions of the configuration. It was also found that when packets 

previously sent by the primary VSM were replayed to the secondary VSM, the secondary 

VSM would respond with packets similar to those that were used when the configuration 
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was initially sent. The only noticeable difference was in the fields that had been found to 

found to increment or decrement in the other packet captures. 

 After exploring the communication mechanisms employed by the Nexus 1000V 

to facilitate its distributed switching, no security implications were found in the 

communications between the primary VSM and the VEMs and one potential security 

implication was found in the communications used between the VSMs. Like the security 

issues found in the physical switch vulnerabilities section, the security implications 

related to the distributed communications could be mitigated by configuring the network 

correctly. To prevent an unauthorized person from being able to eavesdrop on 

configuration communications being sent on the control VLAN, it should be ensured that 

the Control VLAN is used for nothing other than the communications between the VSMs 

and VEMs. 

4.3. Virtual Machine Manipulation 

The final test carried out, involved looking at the ramifications of having the 

VSMs as virtual machines. In particular, the ability to add and duplicate VSMs was 

assessed. This was done by first looking the security mechanisms used to allow a VSM to 

connect to an existing VSM. Second, it took a look at what happened if a standalone 

VSM were to be duplicated through vCenter. The third step involved looking at the 

effects of duplicating a primary VSM. The fourth and final step looked into the effects of 

duplicating a secondary VSM. 

When assessing the processes of adding a VSM to vCenter, it was found that there 

were security mechanisms in place meant to prevent an unauthorized person from doing 

so. In order to add a new VSM to vCenter, a person is required to know the IP address of 

vCenter, as well as have administrative access to vCenter. In other words, a person would 

need to not only know the IP address of the server but also would need to have login 

credentials with administrative access. Once inside vCenter, it would then be possible to 

duplicate or even delete the VSM. It was found that additional information was necessary 

to create a new secondary VSM that would connect to the primary VSM. In addition to 

needing the IP address of vCenter and login credentials, one attempting to add a 
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secondary VSM must also know the primary VSM’s IP address and the primary VSM’s 

administrative login credentials. 

4.3.1. Standalone VSM Duplication 

After examining the security mechanisms preventing unauthorized VSM creation, 

the effects of duplicating a VSM were assessed. Initially a standalone VSM was 

duplicated through vCenter. It was found that network functionality on the virtual 

machines continued unhindered. Even though the network functionality provided to the 

virtual machines remained unmolested, the original VSM was aware of the duplicate 

VSM and logged a message every minute and forty seconds. It was ultimately found that 

the VSM was detecting the duplicate VSM and that there was another machine using the 

address as it. Figure 4.32 depicts a subset of the messages that were logged while the 

duplicate standalone VSM was present. 

 

 
Figure 4.32. Messages logged during the presence of a duplicate standalone 

VSM. 

4.3.2. Primary VSM Duplication 

Following the duplication of the standalone VSM, the test architecture was 

reverted to high availability mode and the secondary VSM was powered back on. Once 

high availability mode had been restored, the primary VSM was duplicated in the same 

manner as the previous test. Once again, it was found that the virtual machine’s network 

connectivity was unhindered. After looking at the switches logs, the warnings depicted in 

Figure 4.33 were found. 
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Figure 4.33. Messages logged during the presence of a duplicate primary VSM. 

4.3.3. Secondary VSM Duplication 

 The final test looking at the manipulation of the VSM virtual machines sought to 

duplicate a secondary VSM. This test was carried out after the duplicate primary VSM 

had been deleted and the architecture was back to its original state. Like in the other two 

tests discussed in this section, the duplication of the VSM did not affect the network 

connectivity of the virtual machines. Instead, the only noticeable result was found within 

the logs of the VSM, where it was noted that another machine was sharing the same 

address. Figure 4.34 depicts a selection of the errors that were found in the VSM’s log. 

 

 
Figure 4.34. Messages logged during the presence of a duplicate secondary VSM 

4.3.4. Virtual Machine Manipulation Conclusions 

Upon completion of this section of the research, a better understanding of effects 

of duplicating a VSM had been gained. It was found that in all three of the tested 

scenarios the network functionality provided to the virtual machines remained unaffected, 

despite the creation of the duplicate VSMs. The only noticeable implications were found 

within the log of the VSM. Furthermore, it was found that in order for this attack to take 

place, it would be necessary for an attacker to have administrative access to vCenter. 

Because of these findings, it was determined that the duplication of the VSM virtual 

machines does not present itself as a security implication. 
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4.4. Summary and Conclusions 

In this section, the results of this research’s experiments were presented and 

conclusions that could be drawn from these results were discussed. The differences in the 

Nexus 1000V’s vulnerability in comparison to physical switches was better understood. 

Knowledge and potential issues with the distributed communications between the 

primary and secondary VSMs was also gained. It also pointed out the effects of creating 

duplicate instances of the VSMs. Finally, the implications these results have were 

discussed in detail. 

With respect to results of the tests carried out in this research, it can be concluded 

that if proper configuration considerations are made, the Nexus 1000V does not present 

additional security implications in comparison to physical switches. In fact, it can be said 

that it presents fewer issues as its independence of STP means there is no concern of STP 

manipulation. That being said, if proper configurations are not made, the Nexus 1000V 

will be susceptible to CAM overflows, VLAN hopping, ARP poisoning, and Private 

VLAN vulnerabilities. In addition to these vulnerabilities that are commonly found in 

physical switches, if the Nexus 1000V is not configured correctly, an attacker could gain 

access to the Nexus 1000V’s configuration that is being sent from the primary VSM to 

the secondary VSM in clear text. With respect to the creation of additional VSMs, there 

was no observed reason to be concerned about rogue VSMs being added to the network 

because of the need for administrative access to vCenter. The tests in this research also 

showed that even if VSMs are duplicated, the effects are only noticeable within the logs 

of the Nexus 1000V and the network connectivity provided to the virtual machines is 

unaffected. 

These conclusions mean, if proper configuration considerations are made, 

organizations wishing use virtualization, whether it for lessening the environmental 

impact of their datacenters or for any other reason, no longer need to sacrifice network 

functionality. They can now use the Nexus 1000V to provide the virtual machines with 

robust network functionality without creating additional security concerns. This 

functionality provided by the Nexus 1000V gives the virtual machines with the same 

network functionality that is offered by physical switches but has been absent in 
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traditional virtual switches. It also provides its users with a configuration interface that 

network administrators are familiar with, as it is the same that has been used to configure 

physical switches. This familiar interface allows network administrators to use the same 

security practices and configurations that they have previously used with their physical 

switches. In conclusion, if configuration recommendations are heeded, the Cisco Nexus 

1000V does not present any additional security implications with respect to physical 

switches; however, if the configuration recommendations go unheeded, the security of 

the Nexus 1000V could be affected by the switch configuration being sent in clear text, in 

addition to other security implications that affect physical switches. 
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CHAPTER 5. FUTURE WORK 

With the completion of this research, many results had been gathered, and 

conclusions were drawn from these results. Despite this, there were still multiple 

areas for future work. These areas stem from the information learned during the 

research, the scope of this research and the limitations of the resources available for 

this research. 

 The first area for future work is to further explore the clear-text communications 

being sent from the primary VSM to the secondary VSM. Although these clear-text 

communications were captured and patterns in the protocol used were noted, the 

exact purpose of the observed fields was not known. There is still much information 

about this protocol to be determined. Such information could potentially be used to 

manipulate the Nexus 1000V. There is also potential that the replay attempts from 

this research could be improved if a better understanding of the protocol is gained. 

 The second area for future work involves analyzing the communications between 

the VSM to the VEMs. These communications appeared to be encrypted; however, 

the standard of encryption being employed remained unknown. Should this be 

discovered, there is potential that there is an inherent vulnerability in the encryption 

being used. Furthermore, there is potential that the encryption is not being 

implemented, negating the security offered by the encryption. 

 The third area of for future work involves assessing the security of the Nexus 

1000V in a datacenter environment. Although the results of this research carried out 

should be representative of those found in a datacenter, there is potential that 

additional issues will be introduced or made more apparent as the deployment size of 

the Nexus 1000V is scaled. There is also potential that additional vCenter 

components could influence the functionality of the Nexus 1000V. 
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 The final area for future work involves using a different physical switch. In 

particular, a non-Cisco physical switch should be used. Although theoretically other 

vendor’s equipment should work with the Nexus 1000V, there is potential that the 

slight differences in functionality could create additional security implications.  
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Appendix A Physical Switch Configuration 

version 12.2 

no service pad 

service timestamps debug uptime 

service timestamps log uptime 

service password-encryption 

! 

hostname Switch 

! 

enable secret 5 $1$zeOn$DBN.J.seCiJkN2xC8B6ij1 

! 

username admin password 7 08205C4158480A4641 

aaa new-model 

aaa authentication login loc local 

! 

aaa session-id common 

switch 1 provision ws-c3750-24ts 

vtp mode transparent 

ip subnet-zero 

ip domain-name 555.cit.lcl 

! 

no file verify auto 
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! 

spanning-tree mode mst 

spanning-tree extend system-id 

no spanning-tree vlan 300 

! 

vlan internal allocation policy ascending 

vlan dot1q tag native  

! 

vlan 971 

 name Control 

! 

vlan 972 

 name Packet 

! 

vlan 973 

 name secureVlan 

! 

vlan 974 

 name privateVLAN 

! 

vlan 1935 

 name Management 

! 
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interface FastEthernet1/0/1 

 description ESXI Host 10 - MGMT 

 switchport access vlan 1935 

 switchport mode access 

 switchport nonegotiate 

 no cdp enable 

! 

interface FastEthernet1/0/2 

 switchport mode access 

 switchport nonegotiate 

 no cdp enable 

! 

interface FastEthernet1/0/3 

 description ESXI Host 11 - MGMT 

 switchport access vlan 1935 

 switchport trunk encapsulation dot1q 

 switchport mode access 

 switchport nonegotiate 

 no cdp enable 

! 

interface FastEthernet1/0/4 

 switchport mode access 

 switchport nonegotiate 
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 no cdp enable 

! 

interface FastEthernet1/0/5 

 description ESXI Host 12 - MGMT 

 switchport access vlan 1935 

 switchport mode access 

 switchport nonegotiate 

 no cdp enable 

! 

interface FastEthernet1/0/6 

 switchport mode access 

 switchport nonegotiate 

 no cdp enable 

! 

interface FastEthernet1/0/7 

 description Network Sniffer 

 switchport mode access 

 switchport nonegotiate 

 no cdp enable 

! 

interface FastEthernet1/0/8 

 switchport mode access 

 switchport nonegotiate 



78 

 no cdp enable 

! 

interface FastEthernet1/0/9 

 description ESXI/vCENTER 

 switchport access vlan 1935 

 switchport mode access 

 switchport nonegotiate 

 no cdp enable 

! 

interface FastEthernet1/0/10 

 switchport mode access 

 switchport nonegotiate 

 no cdp enable 

! 

interface FastEthernet1/0/11 

 switchport trunk encapsulation dot1q 

 switchport mode trunk 

 switchport nonegotiate 

 no cdp enable 

! 

interface FastEthernet1/0/12 

 switchport mode access 

 switchport nonegotiate 
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 no cdp enable 

! 

interface FastEthernet1/0/13 

 description ESXI Host 10 - dvSwitch 

 switchport trunk encapsulation dot1q 

 switchport mode trunk 

 switchport nonegotiate 

! 

interface FastEthernet1/0/14 

 description ESXI HOST 14 - MGMT 

 switchport access vlan 1935 

 switchport mode access 

 switchport nonegotiate 

 no cdp enable 

! 

interface FastEthernet1/0/15 

 description ESXI Host 11 - dvSwitch 

 switchport trunk encapsulation dot1q 

 switchport mode trunk 

 switchport nonegotiate 

! 

interface FastEthernet1/0/16 

 switchport mode access 
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 switchport nonegotiate 

 no cdp enable 

! 

interface FastEthernet1/0/17 

 description ESXI Host 12 - dvSwitch 

 switchport trunk encapsulation dot1q 

 switchport mode trunk 

 switchport nonegotiate 

! 

interface FastEthernet1/0/18 

 switchport mode access 

 switchport nonegotiate 

 no cdp enable 

! 

interface FastEthernet1/0/19 

 description ESXI Host 14 - dvSwitch 

switchport trunk encapsulation dot1q 

 switchport mode trunk 

 switchport nonegotiate 

 no cdp enable 

! 

interface FastEthernet1/0/20 

 switchport mode access 
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 switchport nonegotiate 

 no cdp enable 

! 

interface FastEthernet1/0/21 

 description SnifferMgmt 

 switchport access vlan 1935 

 switchport mode access 

 switchport nonegotiate 

 no cdp enable 

! 

interface FastEthernet1/0/22 

switchport mode access 

 switchport nonegotiate 

 no cdp enable 

! 

interface FastEthernet1/0/23 

 switchport mode access 

 switchport nonegotiate 

 no cdp enable 

! 

interface FastEthernet1/0/24 

 description UPLINK 

 switchport trunk encapsulation dot1q 
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 switchport trunk allowed vlan 971-974,1935 

 switchport mode trunk 

 switchport nonegotiate 

 no cdp enable 

! 

interface GigabitEthernet1/0/1 

! 

interface GigabitEthernet1/0/2 

! 

interface Vlan1 

  

 no ip route-cache 

! 

no ip route-cache 

! 

interface Vlan971 

 ip address 10.97.1.2 255.255.255.0 

! 

interface Vlan972 

 ip address 10.97.2.2 255.255.255.0 

! 

interface Vlan973 

 no ip address 



83 

! 

interface Vlan974 

 description protectedvlan 

 ip address 10.97.4.3 255.255.255.0 

! 

interface Vlan1935 

 description management_access 

 ip address 10.19.35.2 255.255.255.0 

! 

ip default-gateway 10.19.35.1 

ip classless 

ip route 0.0.0.0 0.0.0.0 10.19.35.1 

ip http server 

ip http secure-server 

! 

radius-server source-ports 1645-1646 

! 

control-plane 

! 

line con 0 

line vty 0 4 

 login authentication loc 

line vty 5 15 
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! 

monitor session 1 source vlan 971 

monitor session 1 destination interface Fa1/0/7 

! 

end 
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Appendix B VSM Configuration 

version 4.2(1)SV1(5.1) 

no feature telnet 

feature private-vlan 

 

username admin password 5 $1$EyzSqiwo$EE7qs0xQTT80dpVWOlhaZ.  role network-

admin 

username ben password 5 $1$P3nTU.oq$EttRTOP/zFqOxSvDskr3y.  role network-

operator 

 

banner motd #Nexus 1000v Switch# 

 

ip domain-lookup 

hostname Nexus100V 

vlan dot1Q tag native 

system default switchport 

logging event link-status default 

vem 3 

  host vmware id 44454c4c-5300-1043-8036-b9c04f304731 

vem 4 

  host vmware id 44454c4c-4e00-1037-8044-b7c04f574331 

vem 5 
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  host vmware id 44454c4c-5600-1038-8044-c7c04f574331 

snmp-server user ben network-operator auth md5 

0x1800e04e7dcfa9c4906ed37a9659fb30 priv 0x1800e04e7dcfa9c4906ed37a9659fb30 

localizedkey 

snmp-server user admin network-admin auth md5 

0x1800e04e7dcfa9c4906ed37a9659fb30 priv 0x1800e04e7dcfa9c4906ed37a9659fb30 

localizedkey 

 

vrf context management 

  ip route 0.0.0.0/0 10.19.35.1 

vlan 1,971-974,1935 

vlan 1 

vlan 971 

  name Control 

vlan 972 

  name Packet 

vlan 973 

  name SecureVLAN 

vlan 974 

  name PrivateVLAN 

vlan 1935 

  name Management 
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port-channel load-balance ethernet source-mac 

port-profile default max-ports 32 

port-profile type ethernet Unused_Or_Quarantine_Uplink 

  vmware port-group 

  shutdown 

  description Port-group created for Nexus1000V internal usage. Do not use. 

  state enabled 

port-profile type vethernet Unused_Or_Quarantine_Veth 

  vmware port-group 

  shutdown 

  description Port-group created for Nexus1000V internal usage. Do not use. 

  state enabled 

port-profile type vethernet n1kv-system-control 

  vmware port-group 

  switchport mode access 

  switchport access vlan 971 

  no shutdown 

  system vlan 971 

  state enabled 

port-profile type vethernet n1kv-system-management 

  vmware port-group 

  switchport mode access 

  switchport access vlan 1935 
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  no shutdown 

  system vlan 1935 

  state enabled 

port-profile type vethernet n1kv-system-packet 

  vmware port-group 

  switchport mode access 

  switchport access vlan 972 

  no shutdown 

  system vlan 972 

  state enabled 

port-profile type ethernet n1kv-uplink0 

  vmware port-group 

  switchport mode trunk 

  switchport trunk allowed vlan 1,971-974,1935 

  switchport trunk native vlan 1 

  channel-group auto mode on mac-pinning 

  no shutdown 

  system vlan 971-974,1935 

  state enabled 

port-profile type vethernet secureVlan 

  vmware port-group 

  switchport access vlan 973 

  no shutdown 
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  description second data vlan 

  state enabled 

port-profile type vethernet ProtectedVLAN 

  vmware port-group 

  switchport access vlan 1 

  switchport mode access 

  no shutdown 

  description Protected data vlan 

  state enabled 

port-profile type vethernet VirtualSniffer 

  vmware port-group 

  switchport mode access 

  no shutdown 

  description Virtual Sniffer 

  state enabled 

port-profile type vethernet Native 

  vmware port-group 

  switchport access vlan 1 

  no shutdown 

  state enabled 

 

system storage-loss log time 30 

vdc Nexus100V id 1 
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  limit-resource vlan minimum 16 maximum 2049 

  limit-resource monitor-session minimum 0 maximum 2 

  limit-resource vrf minimum 16 maximum 8192 

  limit-resource port-channel minimum 0 maximum 768 

  limit-resource u4route-mem minimum 1 maximum 1 

  limit-resource u6route-mem minimum 1 maximum 1 

  limit-resource m4route-mem minimum 58 maximum 58 

  limit-resource m6route-mem minimum 8 maximum 8 

 

 

interface port-channel1 

  inherit port-profile n1kv-uplink0 

  vem 3 

 

interface port-channel2 

  inherit port-profile n1kv-uplink0 

  vem 4 

 

interface port-channel3 

  inherit port-profile n1kv-uplink0 

  vem 5 

 

interface mgmt0 
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  ip address 10.19.35.99/24 

 

interface Vethernet1 

  inherit port-profile n1kv-system-control 

  description Nexus1000v, Network Adapter 1 

  vmware dvport 64 dvswitch uuid "73 40 2b 50 c6 ff f6 e0-fc 81 34 cb 42 63 19 6c" 

  vmware vm mac 0050.56AB.2E44 

 

interface Vethernet2 

  inherit port-profile n1kv-system-management 

  description Nexus1000v, Network Adapter 2 

  vmware dvport 100 dvswitch uuid "73 40 2b 50 c6 ff f6 e0-fc 81 34 cb 42 63 19 6c" 

  vmware vm mac 0050.56AB.2E45 

 

interface Vethernet3 

  inherit port-profile n1kv-system-packet 

  description Nexus1000v, Network Adapter 3 

  vmware dvport 128 dvswitch uuid "73 40 2b 50 c6 ff f6 e0-fc 81 34 cb 42 63 19 6c" 

  vmware vm mac 0050.56AB.2E46 

 

interface Vethernet4 

  inherit port-profile n1kv-system-management 

  description VMware VMkernel, vmk0 
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  vmware dvport 101 dvswitch uuid "73 40 2b 50 c6 ff f6 e0-fc 81 34 cb 42 63 19 6c" 

  vmware vm mac 0019.B934.8420 

 

interface Vethernet5 

  inherit port-profile n1kv-system-management 

  description VMware VMkernel, vmk0 

  vmware dvport 102 dvswitch uuid "73 40 2b 50 c6 ff f6 e0-fc 81 34 cb 42 63 19 6c" 

  vmware vm mac 0019.B932.BF94 

 

interface Vethernet6 

  inherit port-profile n1kv-system-packet 

  description CentOS Host 1 (101), Network Adapter 1 

  vmware dvport 131 dvswitch uuid "73 40 2b 50 c6 ff f6 e0-fc 81 34 cb 42 63 19 6c" 

  vmware vm mac 0050.56AB.2E2A 

 

interface Vethernet7 

  inherit port-profile n1kv-system-control 

  description BackTrack (111), Network Adapter 1 

  vmware dvport 66 dvswitch uuid "73 40 2b 50 c6 ff f6 e0-fc 81 34 cb 42 63 19 6c" 

  vmware vm mac 0050.56AB.2E47 

 

interface Vethernet8 

  inherit port-profile n1kv-system-packet 
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  description CentOS Host 2 (102), Network Adapter 1 

  vmware dvport 132 dvswitch uuid "73 40 2b 50 c6 ff f6 e0-fc 81 34 cb 42 63 19 6c" 

  vmware vm mac 0050.56AB.563C 

 

interface Vethernet9 

  inherit port-profile n1kv-system-packet 

  description BackTrack2, Network Adapter 1 

  vmware dvport 133 dvswitch uuid "73 40 2b 50 c6 ff f6 e0-fc 81 34 cb 42 63 19 6c" 

  vmware vm mac 0050.56AB.563B 

 

interface Vethernet10 

  inherit port-profile n1kv-system-packet 

  description attack, Network Adapter 1 

  vmware dvport 129 dvswitch uuid "73 40 2b 50 c6 ff f6 e0-fc 81 34 cb 42 63 19 6c" 

  vmware vm mac 0050.56AB.2E40 

 

interface Vethernet11 

  inherit port-profile n1kv-system-packet 

  description Virtual Sniffer 10.19.35.197, Network Adapter 1 

  vmware dvport 135 dvswitch uuid "73 40 2b 50 c6 ff f6 e0-fc 81 34 cb 42 63 19 6c" 

  vmware vm mac 0050.56AB.563E 

 

interface Vethernet12 
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  inherit port-profile n1kv-system-management 

  description Virtual Sniffe...19.35.197, Network Adapter 2 

  vmware dvport 103 dvswitch uuid "73 40 2b 50 c6 ff f6 e0-fc 81 34 cb 42 63 19 6c" 

  vmware vm mac 0050.56AB.563F 

 

interface Vethernet13 

  inherit port-profile n1kv-system-management 

  description attack, Network Adapter 2 

  vmware dvport 102 dvswitch uuid "73 40 2b 50 c6 ff f6 e0-fc 81 34 cb 42 63 19 6c" 

  vmware vm mac 0050.56AB.1E7A 

 

interface Vethernet14 

  inherit port-profile VirtualSniffer 

  description Virtual Sniffer 2, Network Adapter 1 

  vmware dvport 640 dvswitch uuid "73 40 2b 50 c6 ff f6 e0-fc 81 34 cb 42 63 19 6c" 

  vmware vm mac 0050.56AB.1E7B 

 

interface Vethernet15 

  inherit port-profile n1kv-system-management 

  description Virtual Sniffer 2, Network Adapter 2 

  vmware dvport 104 dvswitch uuid "73 40 2b 50 c6 ff f6 e0-fc 81 34 cb 42 63 19 6c" 

  vmware vm mac 0050.56AB.1E7C 
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interface Vethernet16 

  inherit port-profile n1kv-system-control 

  description Virtual Sniffer 3, Network Adapter 1 

  vmware dvport 65 dvswitch uuid "73 40 2b 50 c6 ff f6 e0-fc 81 34 cb 42 63 19 6c" 

  vmware vm mac 0050.56AB.1E7D 

 

interface Vethernet17 

  inherit port-profile n1kv-system-management 

  description Virtual Sniffer 3, Network Adapter 2 

  vmware dvport 101 dvswitch uuid "73 40 2b 50 c6 ff f6 e0-fc 81 34 cb 42 63 19 6c" 

  vmware vm mac 0050.56AB.1E7E 

 

interface Vethernet18 

  inherit port-profile secureVlan 

  description CentOS Host 3, Network Adapter 1 

  vmware dvport 480 dvswitch uuid "73 40 2b 50 c6 ff f6 e0-fc 81 34 cb 42 63 19 6c" 

  vmware vm mac 0050.56AB.1E7F 

 

interface Ethernet3/2 

  inherit port-profile n1kv-uplink0 

 

interface Ethernet4/1 

  inherit port-profile n1kv-uplink0 
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interface Ethernet5/1 

  inherit port-profile n1kv-uplink0 

 

interface control0 

line console 

boot kickstart bootflash:/nexus-1000v-kickstart-mz.4.2.1.SV1.5.1.bin sup-1 

boot system bootflash:/nexus-1000v-mz.4.2.1.SV1.5.1.bin sup-1 

boot kickstart bootflash:/nexus-1000v-kickstart-mz.4.2.1.SV1.5.1.bin sup-2 

boot system bootflash:/nexus-1000v-mz.4.2.1.SV1.5.1.bin sup-2 

monitor session 1  

  source vlan 972 rx 

  source vlan 1 both 

  destination interface Vethernet14 

  no shut 

monitor session 2  

  no shut 

svs-domain 

  domain id 555 

  control vlan 971 

  packet vlan 972 

  svs mode L2   

svs connection vcenter 

  protocol vmware-vim 
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  remote ip address 10.19.35.50 port 80 

  vmware dvs uuid "73 40 2b 50 c6 ff f6 e0-fc 81 34 cb 42 63 19 6c" datacenter-name Lab 

  max-ports 8192 

  connect 

vsn type vsg global 

  tcp state-checks 

vnm-policy-agent 

  registration-ip 0.0.0.0 

  shared-secret ********** 
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Appendix C VMX Configuration Files 

Backtrack Attack VMX Configuration File 

.encoding = "UTF-8" 

config.version = "8" 

virtualHW.version = "8" 

pciBridge0.present = "true" 

pciBridge4.present = "true" 

pciBridge4.virtualDev = "pcieRootPort" 

pciBridge4.functions = "8" 

pciBridge5.present = "true" 

pciBridge5.virtualDev = "pcieRootPort" 

pciBridge5.functions = "8" 

pciBridge6.present = "true" 

pciBridge6.virtualDev = "pcieRootPort" 

pciBridge6.functions = "8" 

pciBridge7.present = "true" 

pciBridge7.virtualDev = "pcieRootPort" 

pciBridge7.functions = "8" 

vmci0.present = "true" 

hpet0.present = "true" 

nvram = "BT5R2-GNOME-VM-64.nvram" 

virtualHW.productCompatibility = "hosted" 
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powerType.powerOff = "hard" 

powerType.powerOn = "hard" 

powerType.suspend = "hard" 

powerType.reset = "hard" 

displayName = "Attack 2" 

extendedConfigFile = "BT5R2-GNOME-VM-64.vmxf" 

vcpu.hotadd = "true" 

scsi0.present = "true" 

scsi0.sharedBus = "none" 

scsi0.virtualDev = "lsilogic" 

memsize = "768" 

mem.hotadd = "true" 

scsi0:0.present = "true" 

scsi0:0.fileName = "BT5R2-GNOME-VM-64.vmdk" 

scsi0:0.deviceType = "scsi-hardDisk" 

sched.scsi0:0.shares = "normal" 

sched.scsi0:0.throughputCap = "off" 

ide1:0.present = "true" 

ide1:0.fileName = "No Devices available" 

ide1:0.deviceType = "atapi-cdrom" 

ide1:0.startConnected = "false" 

usb.present = "true" 

ehci.present = "true" 
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guestOS = "ubuntu" 

uuid.bios = "56 4d b2 59 29 b8 d0 67-de ef 09 22 8c 26 77 5e" 

vc.uuid = "50 2b 1e 13 58 b6 3a f3-a5 f4 f6 2d 4b a2 9f fd" 

snapshot.action = "keep" 

sched.cpu.min = "0" 

sched.cpu.units = "mhz" 

sched.cpu.shares = "normal" 

sched.mem.min = "0" 

sched.mem.shares = "normal" 

tools.upgrade.policy = "manual" 

usb.vbluetooth.startConnected = "TRUE" 

replay.supported = "FALSE" 

unity.wasCapable = "FALSE" 

replay.filename = "" 

scsi0:0.redo = "" 

pciBridge0.pciSlotNumber = "17" 

pciBridge4.pciSlotNumber = "21" 

pciBridge5.pciSlotNumber = "22" 

pciBridge6.pciSlotNumber = "23" 

pciBridge7.pciSlotNumber = "24" 

scsi0.pciSlotNumber = "16" 

usb.pciSlotNumber = "32" 

ehci.pciSlotNumber = "35" 
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vmci0.pciSlotNumber = "36" 

usb:1.present = "TRUE" 

tools.remindInstall = "FALSE" 

vmotion.checkpointFBSize = "4194304" 

usb:1.speed = "2" 

usb:1.deviceType = "hub" 

usb:1.port = "1" 

usb:1.parent = "-1" 

ethernet0.present = "TRUE" 

ethernet0.networkName = "" 

ethernet0.addressType = "vpx" 

ethernet0.generatedAddress = "00:50:56:ab:2e:47" 

ethernet0.dvs.switchId = "73 40 2b 50 c6 ff f6 e0-fc 81 34 cb 42 63 19 6c" 

ethernet0.dvs.portId = "66" 

ethernet0.dvs.portgroupId = "dvportgroup-185" 

ethernet0.dvs.connectionId = "1806113617" 

vmci0.id = "-1943636130" 

tools.syncTime = "FALSE" 

uuid.location = "56 4d e1 40 c6 ba 29 49-f0 8a 27 dd 49 9a ac f1" 

cleanShutdown = "FALSE" 

sched.swap.derivedName = "/vmfs/volumes/4f58d85a-cf6241e0-77de-

0019b9348420/BackTrack/BT5R2-GNOME-VM-64-5954086a.vswp" 

ethernet0.pciSlotNumber = "33" 
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hostCPUID.0 = "0000000a756e65476c65746e49656e69" 

hostCPUID.1 = "000006f2000208000000e3bdbfebfbff" 

hostCPUID.80000001 = "00000000000000000000000120000800" 

guestCPUID.0 = "0000000a756e65476c65746e49656e69" 

guestCPUID.1 = "000006f200010800800022010febfbff" 

guestCPUID.80000001 = "00000000000000000000000120000800" 

userCPUID.0 = "0000000a756e65476c65746e49656e69" 

userCPUID.1 = "000006f2000208000000e3bdbfebfbff" 

userCPUID.80000001 = "00000000000000000000000120000800" 

evcCompatibilityMode = "FALSE" 

floppy0.present = "FALSE" 

usb:0.present = "TRUE" 

usb:0.deviceType = "hid" 

usb:0.port = "0" 

usb:0.parent = "-1" 
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CentOS Attack VMX Configuration File 

.encoding = "UTF-8" 

config.version = "8" 

virtualHW.version = "7" 

pciBridge0.present = "true" 

pciBridge4.present = "true" 

pciBridge4.virtualDev = "pcieRootPort" 

pciBridge4.functions = "8" 

pciBridge5.present = "true" 

pciBridge5.virtualDev = "pcieRootPort" 

pciBridge5.functions = "8" 

pciBridge6.present = "true" 

pciBridge6.virtualDev = "pcieRootPort" 

pciBridge6.functions = "8" 

pciBridge7.present = "true" 

pciBridge7.virtualDev = "pcieRootPort" 

pciBridge7.functions = "8" 

vmci0.present = "true" 

nvram = "CentOS 2.nvram" 

virtualHW.productCompatibility = "hosted" 

powerType.powerOff = "soft" 

powerType.powerOn = "hard" 

powerType.suspend = "hard" 
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powerType.reset = "soft" 

displayName = "Attack" 

extendedConfigFile = "CentOS 2.vmxf" 

floppy0.present = "true" 

scsi0.present = "true" 

scsi0.sharedBus = "none" 

scsi0.virtualDev = "lsilogic" 

memsize = "256" 

scsi0:0.present = "true" 

scsi0:0.fileName = "CentOS 2.vmdk" 

scsi0:0.deviceType = "scsi-hardDisk" 

sched.scsi0:0.shares = "normal" 

sched.scsi0:0.throughputCap = "off" 

ide1:0.present = "true" 

ide1:0.deviceType = "cdrom-image" 

floppy0.startConnected = "false" 

floppy0.fileName = "" 

floppy0.clientDevice = "true" 

ethernet0.present = "true" 

ethernet0.dvs.switchId = "73 40 2b 50 c6 ff f6 e0-fc 81 34 cb 42 63 19 6c" 

ethernet0.dvs.portId = "129" 

ethernet0.dvs.portgroupId = "dvportgroup-187" 

ethernet0.dvs.connectionId = "1353964179" 
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ethernet0.addressType = "vpx" 

ethernet0.generatedAddress = "00:50:56:ab:2e:40" 

ethernet1.present = "true" 

ethernet1.dvs.switchId = "73 40 2b 50 c6 ff f6 e0-fc 81 34 cb 42 63 19 6c" 

ethernet1.dvs.portId = "102" 

ethernet1.dvs.portgroupId = "dvportgroup-186" 

ethernet1.dvs.connectionId = "1353979804" 

ethernet1.addressType = "vpx" 

ethernet1.generatedAddress = "00:50:56:ab:1e:7a" 

tools.syncTime = "TRUE" 

guestOS = "centos" 

uuid.bios = "42 2b 39 1f 45 2b d0 3f-5b e3 e9 9c 47 9a c0 c1" 

vc.uuid = "50 2b 11 4f ff 21 05 ef-bc a6 b1 9c 6e 96 76 5c" 

snapshot.action = "keep" 

sched.cpu.min = "0" 

sched.cpu.units = "mhz" 

sched.cpu.shares = "normal" 

sched.mem.minsize = "0" 

sched.mem.shares = "normal" 

tools.upgrade.policy = "upgradeAtPowerCycle" 

replay.supported = "FALSE" 

debugStub.linuxOffsets = 

"0x0,0xffffffff,0x0,0x0,0x0,0x0,0x0,0x0,0x0,0x0,0x0,0x0,0x0,0x0" 
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replay.filename = "" 

scsi0:0.redo = "" 

pciBridge0.pciSlotNumber = "17" 

pciBridge4.pciSlotNumber = "21" 

pciBridge5.pciSlotNumber = "22" 

pciBridge6.pciSlotNumber = "23" 

pciBridge7.pciSlotNumber = "24" 

scsi0.pciSlotNumber = "16" 

ethernet0.pciSlotNumber = "32" 

vmci0.pciSlotNumber = "33" 

vmotion.checkpointFBSize = "4194304" 

hostCPUID.0 = "0000000a756e65476c65746e49656e69" 

hostCPUID.1 = "000006f2000208000000e3bdbfebfbff" 

hostCPUID.80000001 = "00000000000000000000000120000800" 

guestCPUID.0 = "0000000a756e65476c65746e49656e69" 

guestCPUID.1 = "000006f200010800800022010febfbff" 

guestCPUID.80000001 = "00000000000000000000000120000800" 

userCPUID.0 = "0000000a756e65476c65746e49656e69" 

userCPUID.1 = "000006f2000208000000e3bdbfebfbff" 

userCPUID.80000001 = "00000000000000000000000120000800" 

evcCompatibilityMode = "FALSE" 

tools.remindInstall = "true" 

ethernet1.features = "1" 
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ethernet1.pciSlotNumber = "34" 

vmci0.id = "1201324225" 

uuid.location = "56 4d 4e 9a 09 0c e4 6c-c8 cd ab cf a0 dd 7f e0" 

cleanShutdown = "FALSE" 

sched.swap.derivedName = "/vmfs/volumes/4f58d85a-cf6241e0-77de-

0019b9348420/attack/CentOS 2-4747535c.vswp" 
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CentOS VMX Configuration File 

.encoding = "UTF-8" 

config.version = "8" 

virtualHW.version = "7" 

pciBridge0.present = "true" 

pciBridge4.present = "true" 

pciBridge4.virtualDev = "pcieRootPort" 

pciBridge4.functions = "8" 

pciBridge5.present = "true" 

pciBridge5.virtualDev = "pcieRootPort" 

pciBridge5.functions = "8" 

pciBridge6.present = "true" 

pciBridge6.virtualDev = "pcieRootPort" 

pciBridge6.functions = "8" 

pciBridge7.present = "true" 

pciBridge7.virtualDev = "pcieRootPort" 

pciBridge7.functions = "8" 

vmci0.present = "true" 

nvram = "CentOS Host 1.nvram" 

virtualHW.productCompatibility = "hosted" 

powerType.powerOff = "soft" 

powerType.powerOn = "hard" 

powerType.suspend = "hard" 



109 

powerType.reset = "soft" 

displayName = "Cent Host 1" 

extendedConfigFile = "CentOS Host 1.vmxf" 

floppy0.present = "true" 

scsi0.present = "true" 

scsi0.sharedBus = "none" 

scsi0.virtualDev = "lsilogic" 

memsize = "256" 

scsi0:0.present = "true" 

scsi0:0.fileName = "CentOS Host 1.vmdk" 

scsi0:0.deviceType = "scsi-hardDisk" 

sched.scsi0:0.shares = "normal" 

sched.scsi0:0.throughputCap = "off" 

ide1:0.present = "true" 

ide1:0.deviceType = "cdrom-image" 

floppy0.startConnected = "false" 

floppy0.fileName = "" 

floppy0.clientDevice = "true" 

ethernet0.present = "true" 

ethernet0.dvs.switchId = "73 40 2b 50 c6 ff f6 e0-fc 81 34 cb 42 63 19 6c" 

ethernet0.dvs.portId = "131" 

ethernet0.dvs.portgroupId = "dvportgroup-187" 

ethernet0.dvs.connectionId = "1870144902" 
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ethernet0.addressType = "vpx" 

ethernet0.generatedAddress = "00:50:56:ab:2e:2a" 

tools.syncTime = "true" 

guestOS = "centos" 

uuid.bios = "42 2b e7 19 52 fa 5d ab-cf ae cd a5 d5 a9 13 9b" 

vc.uuid = "50 2b bc 79 71 43 2c 9c-4a 8e 36 8b c7 92 b1 e3" 

snapshot.action = "keep" 

sched.cpu.min = "0" 

sched.cpu.units = "mhz" 

sched.cpu.shares = "normal" 

sched.mem.minsize = "0" 

sched.mem.shares = "normal" 

tools.upgrade.policy = "upgradeAtPowerCycle" 

replay.supported = "FALSE" 

debugStub.linuxOffsets = 

"0x0,0xffffffff,0x0,0x0,0x0,0x0,0x0,0x0,0x0,0x0,0x0,0x0,0x0,0x0" 

replay.filename = "" 

scsi0:0.redo = "" 

pciBridge0.pciSlotNumber = "17" 

pciBridge4.pciSlotNumber = "21" 

pciBridge5.pciSlotNumber = "22" 

pciBridge6.pciSlotNumber = "23" 

pciBridge7.pciSlotNumber = "24" 
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scsi0.pciSlotNumber = "16" 

ethernet0.pciSlotNumber = "32" 

vmci0.pciSlotNumber = "33" 

vmotion.checkpointFBSize = "4194304" 

hostCPUID.0 = "0000000a756e65476c65746e49656e69" 

hostCPUID.1 = "000006fb000208000000e3fdbfebfbff" 

hostCPUID.80000001 = "00000000000000000000000120100800" 

guestCPUID.0 = "0000000a756e65476c65746e49656e69" 

guestCPUID.1 = "000006fb00010800800022010febfbff" 

guestCPUID.80000001 = "00000000000000000000000120100800" 

userCPUID.0 = "0000000a756e65476c65746e49656e69" 

userCPUID.1 = "000006fb000208000000e3fdbfebfbff" 

userCPUID.80000001 = "00000000000000000000000120100800" 

evcCompatibilityMode = "FALSE" 

tools.remindInstall = "TRUE" 

vmci0.id = "-710339685" 

uuid.location = "56 4d 79 bf fa 4e 36 12-34 d9 7c 18 ac c0 51 80" 

cleanShutdown = "TRUE" 

sched.swap.derivedName = "/vmfs/volumes/4da486d8-e905eb60-42de-

001e4fc7d51f/CentOS Host 1 (101)/CentOS Host 1-db6c189d.vswp" 
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CentOS vSniffer VMX Configuration File 

.encoding = "UTF-8" 

config.version = "8" 

virtualHW.version = "7" 

pciBridge0.present = "true" 

pciBridge4.present = "true" 

pciBridge4.virtualDev = "pcieRootPort" 

pciBridge4.functions = "8" 

pciBridge5.present = "true" 

pciBridge5.virtualDev = "pcieRootPort" 

pciBridge5.functions = "8" 

pciBridge6.present = "true" 

pciBridge6.virtualDev = "pcieRootPort" 

pciBridge6.functions = "8" 

pciBridge7.present = "true" 

pciBridge7.virtualDev = "pcieRootPort" 

pciBridge7.functions = "8" 

vmci0.present = "true" 

nvram = "CentOS Host 1.nvram" 

virtualHW.productCompatibility = "hosted" 

powerType.powerOff = "soft" 

powerType.powerOn = "hard" 

powerType.suspend = "hard" 
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powerType.reset = "soft" 

displayName = "Cent Host 1" 

extendedConfigFile = "CentOS Host 1.vmxf" 

floppy0.present = "true" 

scsi0.present = "true" 

scsi0.sharedBus = "none" 

scsi0.virtualDev = "lsilogic" 

memsize = "256" 

scsi0:0.present = "true" 

scsi0:0.fileName = "CentOS Host 1.vmdk" 

scsi0:0.deviceType = "scsi-hardDisk" 

sched.scsi0:0.shares = "normal" 

sched.scsi0:0.throughputCap = "off" 

ide1:0.present = "true" 

ide1:0.deviceType = "cdrom-image" 

floppy0.startConnected = "false" 

floppy0.fileName = "" 

floppy0.clientDevice = "true" 

ethernet0.present = "true" 

ethernet0.dvs.switchId = "73 40 2b 50 c6 ff f6 e0-fc 81 34 cb 42 63 19 6c" 

ethernet0.dvs.portId = "131" 

ethernet0.dvs.portgroupId = "dvportgroup-187" 

ethernet0.dvs.connectionId = "1870144902" 
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ethernet0.addressType = "vpx" 

ethernet0.generatedAddress = "00:50:56:ab:2e:2a" 

tools.syncTime = "true" 

guestOS = "centos" 

uuid.bios = "42 2b e7 19 52 fa 5d ab-cf ae cd a5 d5 a9 13 9b" 

vc.uuid = "50 2b bc 79 71 43 2c 9c-4a 8e 36 8b c7 92 b1 e3" 

snapshot.action = "keep" 

sched.cpu.min = "0" 

sched.cpu.units = "mhz" 

sched.cpu.shares = "normal" 

sched.mem.minsize = "0" 

sched.mem.shares = "normal" 

tools.upgrade.policy = "upgradeAtPowerCycle" 

replay.supported = "FALSE" 

debugStub.linuxOffsets = 

"0x0,0xffffffff,0x0,0x0,0x0,0x0,0x0,0x0,0x0,0x0,0x0,0x0,0x0,0x0" 

replay.filename = "" 

scsi0:0.redo = "" 

pciBridge0.pciSlotNumber = "17" 

pciBridge4.pciSlotNumber = "21" 

pciBridge5.pciSlotNumber = "22" 

pciBridge6.pciSlotNumber = "23" 

pciBridge7.pciSlotNumber = "24" 
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scsi0.pciSlotNumber = "16" 

ethernet0.pciSlotNumber = "32" 

vmci0.pciSlotNumber = "33" 

vmotion.checkpointFBSize = "4194304" 

hostCPUID.0 = "0000000a756e65476c65746e49656e69" 

hostCPUID.1 = "000006fb000208000000e3fdbfebfbff" 

hostCPUID.80000001 = "00000000000000000000000120100800" 

guestCPUID.0 = "0000000a756e65476c65746e49656e69" 

guestCPUID.1 = "000006fb00010800800022010febfbff" 

guestCPUID.80000001 = "00000000000000000000000120100800" 

userCPUID.0 = "0000000a756e65476c65746e49656e69" 

userCPUID.1 = "000006fb000208000000e3fdbfebfbff" 

userCPUID.80000001 = "00000000000000000000000120100800" 

evcCompatibilityMode = "FALSE" 

tools.remindInstall = "TRUE" 

vmci0.id = "-710339685" 

uuid.location = "56 4d 79 bf fa 4e 36 12-34 d9 7c 18 ac c0 51 80" 

cleanShutdown = "TRUE" 

sched.swap.derivedName = "/vmfs/volumes/4da486d8-e905eb60-42de-

001e4fc7d51f/CentOS Host 1 (101)/CentOS Host 1-db6c189d.vswp" 
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Appendix D Virtual Machine MAC Addresses 

Table D.1. 

MAC Addresses Used by the Virtual Machines 

Virtual Machine Interface MAC Address 

Attack1 eth0 00:50:56:AB:2E:40 

Attack1 eth1 00:50:56:AB:1E:7A 

Attack2 eth1 00:50:56:AB:2E:47 

Attack3 eth2 00:50:56:AB:56:3B 

Attack4 eth0 00:50:56:AB:1E:B7 

Attack4 eth1 00:50:56:AB:1E:B8 

CentOS1 eth0 00:50:56:AB:2E:2A 

CentOS2 eth0 00:50:56:AB:56:3C 

CentOS3 eth0 00:50:56:AB:1E:7F 

CentOS4 eth0 00:50:56:AB:1E:A1 

vSniffer1 eth0 00:50:56:AB:56:3E 

vSniffer1 eth1 00:50:56:AB:56:3F 

vSniffer2 eth0 00:50:56:AB:1E:7B 

vSniffer2 eth1 00:50:56:AB:1E:7C 
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Table D.1. Continued 

vSniffer3 eth0 00:50:56:AB:1E:7D 

vSniffer3 eth1 00:50:56:AB:1E:7E 

vSniffer4 eth0 00:50:56:AB:1E:B5 

vSniffer4 eth1 00:50:56:AB:1E:B6 
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Appendix E Private VLAN VSM Configuration 

 

version 4.2(1)SV1(5.1) 

no feature telnet 

feature private-vlan 

 

username admin password 5 $1$EyzSqiwo$EE7qs0xQTT80dpVWOlhaZ.  role network-

admin 

username ben password 5 $1$P3nTU.oq$EttRTOP/zFqOxSvDskr3y.  role network-

operator 

 

banner motd #Nexus 1000v Switch# 

 

ip domain-lookup 

hostname Nexus100V 

system default switchport 

logging event link-status default 

vem 3 

  host vmware id 44454c4c-5300-1043-8036-b9c04f304731 

vem 4 

  host vmware id 44454c4c-4e00-1037-8044-b7c04f574331 

vem 5 
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  host vmware id 44454c4c-5600-1038-8044-c7c04f574331 

snmp-server user ben network-operator auth md5 

0x1800e04e7dcfa9c4906ed37a9659fb30 priv 0x1800e04e7dcfa9c4906ed37a9659fb30 

localizedkey 

snmp-server user admin network-admin auth md5 

0x1800e04e7dcfa9c4906ed37a9659fb30 priv 0x1800e04e7dcfa9c4906ed37a9659fb30 

localizedkey 

 

vrf context management 

  ip route 0.0.0.0/0 10.19.35.1 

vlan 1,971-974,1935 

vlan 1 

 

vlan 971 

  name Control 

vlan 972 

  name Packet 

vlan 973 

  name SecureVLAN 

  private-vlan isolated 

vlan 974 

  name PrivateVLAN 

  private-vlan primary 
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  private-vlan association 973 

vlan 1935 

  name Management 

 

port-channel load-balance ethernet source-mac 

port-profile default max-ports 32 

port-profile type ethernet Unused_Or_Quarantine_Uplink 

  vmware port-group 

  shutdown 

  description Port-group created for Nexus1000V internal usage. Do not use. 

  state enabled 

port-profile type vethernet Unused_Or_Quarantine_Veth 

  vmware port-group 

  shutdown 

  description Port-group created for Nexus1000V internal usage. Do not use. 

  state enabled 

port-profile type vethernet n1kv-system-control 

  vmware port-group 

  switchport mode access 

  switchport access vlan 971 

  no shutdown 

  system vlan 971 

  state enabled 
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port-profile type vethernet n1kv-system-management 

  vmware port-group 

  switchport mode access 

  switchport access vlan 1935 

  no shutdown 

  system vlan 1935 

  state enabled 

port-profile type vethernet n1kv-system-packet 

  vmware port-group 

  switchport mode access 

  switchport access vlan 972 

  no shutdown 

  system vlan 972 

  state enabled 

port-profile type ethernet n1kv-uplink0 

  vmware port-group 

  switchport mode private-vlan trunk promiscuous 

  switchport trunk allowed vlan 1,971-974,1935 

  switchport private-vlan trunk allowed vlan 1,971-974,1935 

  switchport private-vlan mapping trunk 974 973 

  channel-group auto mode on mac-pinning 

  no shutdown 

  system vlan 971-974,1935 
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  state enabled 

port-profile type vethernet secureVlan 

  vmware port-group 

  switchport access vlan 973 

  switchport mode private-vlan host 

  switchport private-vlan host-association 974 973 

  no shutdown 

  description second data vlan 

  state enabled 

port-profile type vethernet ProtectedVLAN 

  vmware port-group 

  switchport mode access 

  switchport access vlan 1 

  switchport trunk native vlan 1 

  no shutdown 

  description Protected data vlan 

  state enabled 

port-profile type vethernet VirtualSniffer 

  vmware port-group 

  switchport mode access 

  no shutdown 

  description Virtual Sniffer 

  state enabled 
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system storage-loss log time 30 

vdc Nexus100V id 1 

  limit-resource vlan minimum 16 maximum 2049 

  limit-resource monitor-session minimum 0 maximum 2 

  limit-resource vrf minimum 16 maximum 8192 

  limit-resource port-channel minimum 0 maximum 768 

  limit-resource u4route-mem minimum 1 maximum 1 

  limit-resource u6route-mem minimum 1 maximum 1 

  limit-resource m4route-mem minimum 58 maximum 58 

  limit-resource m6route-mem minimum 8 maximum 8 

 

 

interface port-channel1 

  inherit port-profile n1kv-uplink0 

  vem 3 

 

interface port-channel2 

  inherit port-profile n1kv-uplink0 

  vem 4 

 

interface port-channel3 

  inherit port-profile n1kv-uplink0 

  vem 5 
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interface mgmt0 

  ip address 10.19.35.99/24 

 

interface Vethernet1 

  inherit port-profile n1kv-system-control 

  description Nexus1000v, Network Adapter 1 

  vmware dvport 64 dvswitch uuid "73 40 2b 50 c6 ff f6 e0-fc 81 34 cb 42 63 19 6c" 

  vmware vm mac 0050.56AB.2E44 

 

interface Vethernet2 

  inherit port-profile n1kv-system-management 

  description Nexus1000v, Network Adapter 2 

  vmware dvport 100 dvswitch uuid "73 40 2b 50 c6 ff f6 e0-fc 81 34 cb 42 63 19 6c" 

  vmware vm mac 0050.56AB.2E45 

 

interface Vethernet3 

  inherit port-profile n1kv-system-packet 

  description Nexus1000v, Network Adapter 3 

  vmware dvport 128 dvswitch uuid "73 40 2b 50 c6 ff f6 e0-fc 81 34 cb 42 63 19 6c" 

  vmware vm mac 0050.56AB.2E46 

 

interface Vethernet4 

  inherit port-profile n1kv-system-management 
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  description VMware VMkernel, vmk0 

  vmware dvport 101 dvswitch uuid "73 40 2b 50 c6 ff f6 e0-fc 81 34 cb 42 63 19 6c" 

  vmware vm mac 0019.B934.8420 

 

interface Vethernet5 

  inherit port-profile n1kv-system-management 

  description VMware VMkernel, vmk0 

  vmware dvport 102 dvswitch uuid "73 40 2b 50 c6 ff f6 e0-fc 81 34 cb 42 63 19 6c" 

  vmware vm mac 0019.B932.BF94 

 

interface Vethernet6 

  inherit port-profile n1kv-system-packet 

  description CentOS Host 1 (101), Network Adapter 1 

  vmware dvport 131 dvswitch uuid "73 40 2b 50 c6 ff f6 e0-fc 81 34 cb 42 63 19 6c" 

  vmware vm mac 0050.56AB.2E2A 

 

interface Vethernet7 

  inherit port-profile n1kv-system-packet 

  description BackTrack, Network Adapter 1 

  vmware dvport 129 dvswitch uuid "73 40 2b 50 c6 ff f6 e0-fc 81 34 cb 42 63 19 6c" 

  vmware vm mac 0050.56AB.2E47 

 

interface Vethernet8 
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  inherit port-profile secureVlan 

  description CentOS Host 2, Network Adapter 1 

  vmware dvport 480 dvswitch uuid "73 40 2b 50 c6 ff f6 e0-fc 81 34 cb 42 63 19 6c" 

  vmware vm mac 0050.56AB.563C 

 

interface Vethernet9 

  inherit port-profile n1kv-system-packet 

  description BackTrack2, Network Adapter 1 

  vmware dvport 132 dvswitch uuid "73 40 2b 50 c6 ff f6 e0-fc 81 34 cb 42 63 19 6c" 

  vmware vm mac 0050.56AB.563B 

 

interface Vethernet10 

  inherit port-profile secureVlan 

  description attack, Network Adapter 1 

  vmware dvport 482 dvswitch uuid "73 40 2b 50 c6 ff f6 e0-fc 81 34 cb 42 63 19 6c" 

  vmware vm mac 0050.56AB.2E40 

 

interface Vethernet11 

  inherit port-profile n1kv-system-packet 

  description Virtual Sniffer 10.19.35.197, Network Adapter 1 

  vmware dvport 135 dvswitch uuid "73 40 2b 50 c6 ff f6 e0-fc 81 34 cb 42 63 19 6c" 

  vmware vm mac 0050.56AB.563E 
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interface Vethernet12 

  inherit port-profile n1kv-system-management 

  description Virtual Sniffe...19.35.197, Network Adapter 2 

  vmware dvport 103 dvswitch uuid "73 40 2b 50 c6 ff f6 e0-fc 81 34 cb 42 63 19 6c" 

  vmware vm mac 0050.56AB.563F 

 

interface Vethernet13 

  inherit port-profile n1kv-system-management 

  description attack, Network Adapter 2 

  vmware dvport 104 dvswitch uuid "73 40 2b 50 c6 ff f6 e0-fc 81 34 cb 42 63 19 6c" 

  vmware vm mac 0050.56AB.1E7A 

 

interface Vethernet14 

  inherit port-profile VirtualSniffer 

  description Virtual Sniffer 2, Network Adapter 1 

  vmware dvport 640 dvswitch uuid "73 40 2b 50 c6 ff f6 e0-fc 81 34 cb 42 63 19 6c" 

  vmware vm mac 0050.56AB.1E7B 

 

interface Vethernet15 

  inherit port-profile n1kv-system-management 

  description Virtual Sniffer 2, Network Adapter 2 

  vmware dvport 105 dvswitch uuid "73 40 2b 50 c6 ff f6 e0-fc 81 34 cb 42 63 19 6c" 

  vmware vm mac 0050.56AB.1E7C 
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interface Vethernet16 

  inherit port-profile n1kv-system-packet 

  description Virtual Sniffer 3, Network Adapter 1 

  vmware dvport 137 dvswitch uuid "73 40 2b 50 c6 ff f6 e0-fc 81 34 cb 42 63 19 6c" 

  vmware vm mac 0050.56AB.1E7D 

 

interface Vethernet17 

  inherit port-profile n1kv-system-management 

  description Virtual Sniffer 3, Network Adapter 2 

  vmware dvport 106 dvswitch uuid "73 40 2b 50 c6 ff f6 e0-fc 81 34 cb 42 63 19 6c" 

  vmware vm mac 0050.56AB.1E7E 

 

interface Vethernet18 

  inherit port-profile secureVlan 

  description CentOS Host 3, Network Adapter 1 

  vmware dvport 481 dvswitch uuid "73 40 2b 50 c6 ff f6 e0-fc 81 34 cb 42 63 19 6c" 

  vmware vm mac 0050.56AB.1E7F 

 

interface Ethernet3/2 

  inherit port-profile n1kv-uplink0 

 

interface Ethernet4/1 

  inherit port-profile n1kv-uplink0 
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interface Ethernet5/1 

  inherit port-profile n1kv-uplink0 

 

interface control0 

line console 

boot kickstart bootflash:/nexus-1000v-kickstart-mz.4.2.1.SV1.5.1.bin sup-1 

boot system bootflash:/nexus-1000v-mz.4.2.1.SV1.5.1.bin sup-1 

boot kickstart bootflash:/nexus-1000v-kickstart-mz.4.2.1.SV1.5.1.bin sup-2 

boot system bootflash:/nexus-1000v-mz.4.2.1.SV1.5.1.bin sup-2 

monitor session 1  

  source vlan 973-974 both 

  destination interface Vethernet14 

  no shut 

monitor session 2  

  no shut 

svs-domain 

  domain id 555 

  control vlan 971 

  packet vlan 972 

  svs mode L2   

svs connection vcenter 

  protocol vmware-vim 

  remote ip address 10.19.35.50 port 80 
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  vmware dvs uuid "73 40 2b 50 c6 ff f6 e0-fc 81 34 cb 42 63 19 6c" datacenter-name Lab 

  max-ports 8192 

  connect 

vsn type vsg global 

  tcp state-checks 

vnm-policy-agent 

  registration-ip 0.0.0.0 

  shared-secret ********** 

  log-level  
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