6-24-2017

Board # 113 : EEGRC Poster: Characterizing Trade-off Decisions in Student Designers

Molly Goldstein
Purdue University

Follow this and additional works at: http://docs.lib.purdue.edu/enegs
Part of the Engineering Education Commons

Custom Citation

This document has been made available through Purdue e-Pubs, a service of the Purdue University Libraries. Please contact epubs@purdue.edu for additional information.
EEGRC Poster: Characterizing Trade-off Decisions in Student Designers

Ms. Molly H. Goldstein, Purdue University, West Lafayette

Molly Goldstein is a Ph.D. candidate in the School of Engineering Education at Purdue University, West Lafayette with a research focus on characterizing behaviors in student designers. She previously worked as an environmental engineer specializing in air quality influencing her focus in engineering design with environmental concerns. She earned her B.S. in General Engineering (Systems Engineering & Design) and M.S. in Systems and Entrepreneurial Engineering from the University of Illinois in Urbana-Champaign.
CHARACTERIZING TRADE-OFF DECISIONS IN STUDENT DESIGNERS

Molly H. Goldstein
SCHOOL OF ENGINEERING EDUCATION
PURDUE UNIVERSITY

BACKGROUND

Although design and decision-making are intertwined for practicing engineers, students from elementary school through college are not taught to think through uncertain situations in which information is limited or outcomes are not guaranteed. Trade-offs are a complex element of decisions, as the decision-maker weighs possible outcomes against their respective costs. Understanding how students characterize their design trade-offs would allow educators a better glimpse into students’ systems design thinking. Without such knowledge at the K-16 level, we cannot create suitable design activities for students to improve on their decision-making skills, inhibiting their effectiveness as future engineers.

OBJECTIVES

The purpose of this poster presentation is to provide a brief overview of my dissertation work to date on an NSF-funded research project, Collaborative Research: Large-Scale Research on Engineering Design Based on Big Learner Data Logged by a CAD tool. In particular, I will briefly summarize my pilot work that guided my research questions and discuss my ongoing work and next steps.

PARTICIPANTS

<table>
<thead>
<tr>
<th># Students</th>
<th>Grade</th>
</tr>
</thead>
<tbody>
<tr>
<td>463</td>
<td>7th Grade</td>
</tr>
<tr>
<td>152</td>
<td>8th Grade</td>
</tr>
<tr>
<td>140</td>
<td>Mixed High School</td>
</tr>
<tr>
<td>23</td>
<td>Mixed High School</td>
</tr>
</tbody>
</table>

PILOT STUDY

Profiles of student designers
High school students (n=107)
4 design features: construction, analysis, simulation & reflection

Student 'clusters'
Hierarchical agglomerative clustering resulted in 5 groups

How big will our data be?
Cumulative count of all actions across design project
Hierarchical agglomerative clustering resulted in 5 groups
Per student per project, this log data sums 4,000 to 6,000 actions that are collected through automatic, unobtrusive logging as students design.
Per student, this log data sums 4,000 to 6,000 actions that are used to reconstruct her design process.
A mixed methods approach will be used to investigate designer student trade-off behavior using process data, artifact trade-off results, electronic notes (i.e. reflections), and design artifacts are collected through automatic, unobtrusive logging as students design.

METHODS

RQ1: What is the relationship between design artifact trade-off values and profiles of design behaviors that differentiate students?
RQ2: What do student reflections tell us about how students characterize their design decisions?
RQ3: What is the relationship between student changing conceptions of the importance of making trade-offs and profiles of design behaviors that differentiate students?

CONCEPTIONS OF DESIGN

(adapted from Adams & Fralick, 2010)

Of the design activities below, which 5 would you consider as the MOST important in terms of producing a high quality design? For one of the selected terms, explain why:

- Analyzing data
- Brainstorming
- Building
- Communicating
- Conducting Tests
- Evaluating
- Planning
- Prototyping
- Refecting
- Sketching
- Shaking goals
- Surrogate

CONTACT INFORMATION

Molly H. Goldstein
goldstm@purdue.edu
Purdue University
School of Engineering Education
Neil Armstrong Hall of Engineering
701 West Stadium Avenue
West Lafayette, Indiana 47907

Website: http://web.ics.purdue.edu/~goldstm/