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1. INTRODUCTION. The problem of selecting an effective or good or best

algorithm arises in a wide variety of situations. The context of these

situations often obscures the common features of this selection problem

and the purpose of this report is to formulate abstract models appropriate

for considering it. Within the framework established by these models we

present a variety of questions that can (and usually should) be asked in

any specific application.

It should be made clear that we do not believe that these models will

lead directly (by simple specialization) to superior selection procedures.

This will always require exploitation of the specific nature of the situa-

tion at band. Even so, we do believe that these models will clarify the

consideration of this problem and, in particular, show that some approaches

used are based on -naive assumptions about the selection assumption.

This is the first of a 'series of reports which consider the follow~ng

topics:

Abstract MOdels

Concrete Examples

Numerical Analysis - Selection of Quadrature Algorithms

Operating Systems - Selection of Scheduling Algorithms

Artificial Intelligence - Learning Algorithms

Approximation Theory for Selection Procedures

Computation of Selection Procedures

The three concrete examples which the reader can use to interpret the

abstractions in this report may be summarized as follows:

Quadrature: One is given a function f(x)., an interval [a,b] and a

tolerance e> O. One is to select an algorithm to estimate

Jb f(x)dx
a

which 1s efficient (uses few evaluations of f(x» and reliable (produces
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an estimate within the specified tolerance).

Operating Systems: One is given an environment for a large

computer operation. Information known ~ncludes the mix of jobs between

batch, interactive and semi-interactive, some basic characteristics of these

classes of jobs and the characteristics of the computer operation. One is

to select an algorithm to schedule the execution of these jobs which pro

duce (a) high batch throughput, (b) good response to interactive jobs,

(c) good service to semi-inte!8ctive jobs and (d) high priority fidelity.

Artificial Intelligence: One is given a description of the game

Tic-Tae-Toe. One is to select an algorithm to play the game which is

effective, i.e. never loses and wins whenever an opponent's mistake allows

it.

A selection procedure is invariably obtained by assigning values to

parameters in general "form lT
• Mote precisely, the selection procedure

itself is an algorithm and a specific class is chosen with free parameters

and these parameters are then chosen So as to satisfy (as well as they can)

the objectives of the selection problem. Classical forms include things

like polynomials (with coefficients as parameters) and linear mappings

(with matrix coefficients or weights as parameters). Other relevant forms

are decision trees (with size, shape and individual decision elements as

parameters) and programs (with various program elements as parameters).

The models presented here are primarily aimed at algorithm selection

problems with the follOWing three characteristics:

Problem Space: The set of problems involved is very large and quite

diverse. This set is of high dimension in the sense that there are a number

of independent characteristics of the problems which are important for the

algorithm selection and performance. There is usually considerably un

certainty about these characteristics- and their influences.
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Algorithm Space: The set of algorithms that needs to be considered

1s large and diverse. Ideally there may be millions of algorithms and prac

tically there may be dozens of them. In counting algorithms we do not

distinguish between two which are identical except for the value of 60me

numeric parameter. Again this set is of high dimensions and there is

uncertainty about the influence of algorithm characteristicB.

Performance Measure: The criteria to measure the performance of a

particular algorithm for a particular problem are complex and hard to com

pare (e.g. one wants fast execution, high accuracy and simplicity). Again

there 1s considerable uncertainty in assigning and interpreting these

measures.
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2. THE BASIC MODEL. We describe the basic abstract model by the diagram in

Figure 1. The items in this model are defined below in detail so as to

be completely clear about the nature of the model.

xE9 AEN
n

S (x) P (A. x) PEYe

SELECTION ALGORITHM PERFORMANCE PERFORMANCE

PROBLEM SPACE MAPPING SPACE MAPPING MEASURE SPACE

NORM
MAPPING

,1/
II P II • ALGORITHM PERFORMANCE

Figure 1. Schematic diagram of the basic model for the algorithm
selection problem. The objective is to determine
S(x) so 8S to have high algorithm performance.

Definitions far the basic Model:

9'" Problem space or collection

x = Member of ~ problem to be solved

~= Algorithm space or collection

A = Member of ~J algorithm applicable to problems from ~

S '" Mapping from 9 to .!iIf
""n __
~ n-dimensional real vector space of performance measures

p '" Mapping from.sd x gil to 9/n determining performance measures

II II n: Norm on ~ providi~g one number to evaluate an algorithm's

performance on a particular problem.
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For completeness we now state the:

Algorithm Selection Problem: Given all the other items in the above

model, determine the selection mapping Sex).

There must be, of course; some criteria for this selection and we present

four primary ones below:

A. Best Selection. Choose that selection mappin~ B(x) which gives

maximum performance for each algorithm:

for all AE~

B. Best Selection for a Subclass of Problems. One is to choose just

one algorithm to apply to every member of a subclass ~C:~. Choose

that selection mapping Sex) : A
O

which minimizes the performance

degradation for members of ~ (compared to choosing B(x»:

max [I Ip(B(x),x)11 - IIp(Ao),x)lll <
XE9g

max 1IIp(B(x),x)11 -/lp(A,x)ll]
xE9!o

for all AEd

C. Best Selection from a Subclass of Mappings. One 1s to restrict the

mapping Sex) to be of a certain form or from a certain subclass ~ of

all mapping from 9 to S41. •Choose that selection mapping S ex) from

~o which minimizes the performance degradation for all members of ~

•max rJlp(B(x),x)'ll- IIp(S (x),x)lll ~max rJlp(B(x),x)11 -llp(S(x),x)IIJ
xE9' xE9'

for all S E 5IQ
D. Best Selection from a Subclass of Mappings and Problems. One is to

choose just one algorithm from a

of a subclass .9"C.9. Choose that

subclass YQ to apply every member

•selection mapping S (x) from JIQ

- IIp(S(x),x)IIJmax [I Ip(B(x),x)1 I
xE90

which minimizes the performance degradation for all members of ~:

•max [ II p (B (x) ,x II - II p (S (x), x) III <
xE9g
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These four criteria do not exhaust the meaningful criteria but they do

illustrate the principal ideas. There are five main steps to the analysis

and solution of' the algorithm selection problem 85 follows

Step 1 (Formulation) Determination of the subclasses of problems

and mappings to be used.

Step 2 (Existence) Does a best selection mapping exist?

Step 3 (Uniqueness) Is there a unique best selection mapping?

Step 4 (Characterization) What properties characterize the best

selection mapping and serve to identify it?

Step 5 (Computation) What methods can be used to actually obtain

the best selection mapping.

The reader familiar with the theory of approximation of functions

will observe that this framework 1s familiar and that we may put that

classical theory within this framework. The space 9 is a function space

and the algorithm space s¥' may be identified with a subspace of 9. The

algorithm enters as the means of evaluating elements of q(~ The performance

mapping is

p(A,x) • I!x(t) - A(t) II
'9

where the norm is taken on~. Thus the performance measure space is

~l and the norm mapping is trivial.

There are two remarks needed about this observation. First, the

body of significant material in approximation theory is large. It would

require, no doubt, from 2000 to 4000 pages to present a reasonably com

plete and concise exposition of the results currently known. This

implies that there is a very rich body of material waiting to be applied

to the algorithm selection problem, either directly or by analogy. Second,

and more important. the algorithm selection problem is an essential exten-
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sian and generalization of approximation theory. We will see concrete

examples of this problem where the current theory of approximation has

nothing relevant to apply except by the faintest analogies.

We next present two concrete examples to illustrate this model:

Example 1: (A Quadrature problem). Given f(x) E C
4

[O.1] and E > D.

estimate fOx(t)dx within E by a composite Newton-Cotes formula of degree k

and with t points with a minimum number of evaluations of f(x). We see that

9. C4 [O.11 x ~1

~c 12 (where I denotes the positive integers)

n ~ 1 in the performance measure space

We choose two subclasses:

~ c {x(t)!x(t) has at most 1 inflection point}

~ = linear function of E I xeD), x(1/3), x(2/3) and xCI).

Thus Sex) would have the general form with 10 parameters

(

511 512 513 514 515)
S(x(t» •

s2l s22 s23 8 24 s25

or perhaps one might choose the more restricted form

(

5n 512) (i~oaiX(t/3)
S(x(t» = .

s2l s22 E

which has only 8 parameters.

Example 2: (As game playing problem). We are to devise an algorithm

for playing Tic-Tac-Toe. The problem space is the set of partial games of

Tic-Tae-Toe. While this number is large, there are in fact only 28 distinct

reasonable games if one eliminates blunders, symmetries and board rotations.

The space.N may be represented as a space of large tables of responses for

each situation. However, we restrict our selection to a decision tree that

involves only the existence of immediate winning positions and vacant position
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types. The algorithm form-may then be represented as shown in Figure 2.

There are 30 parameters Sij in this form of the selection mapping which

take on the values "yes" or "no", Only 15 of these are independent. In

addition there"are 16 parameters 8 1 which take on one of the following

five values.

1. Play the winning move

2. Block the opponent's win

3. Play in the center square

4. Play in a corner (first free one clockwise from upper right)

5. Play in a side (first free one clockwise from right)

QUESTION:

Do I have a winning position?

Does opponent have a winning
position?

Is the center free?

Is a corner free?

a 2

Figure 2. The form of the selection mapping for the Tic-Tae-Toe
example. Each Sij is a uyea " or "no" and each 8 1 is
one of five moves.
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An examination of this game shows that we have been overly elaborate here.

Thus we may assign 5
11

'" "yea II and 512 ... "no" and then a 1 '" Move 1 for

i" 1,2, •..• 8 1s certainly called for. However, it is -still of interest

to reflect upon how one would compute this if one had no a priori infor-

maticn about the game.
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3. THE MODEL WITH SELECTION BASED ON FEATURES. An examination of various

instances of the algorithm selection problem shows that there is another

ingredient almost always present. It is sometimes explicit and sometimes

not and we call this selection based on features of the problem. This

model is described by the diagram in Figure 3.

xE9'

PROBLEM
SPACE

F
FEATURE
EXTRACTION

•
f(xlEY- !if'

n

S(f(x» AES¥ PE.(ii'
"- p (A,x) ~ PERFORMANCE

FUTURE SELECTION ~ ALGORITHM PERFORMANCE ./
IlBASURE

SFACE MAPPING SPACE MAPFING SPACE

,
lip II = ALGORITHM PERFORMANCE

Figure 3. Schematic diagram of the model with selection based
on features of the problem.

The additional definitions for this model are:

~= Feature space identified with~m here to suggest it is simpler

and of lower dimension than ~.

F = Mapping from ~to ~ which associates features with problems.

Note that the selection mapping now depends only on the features f(x) but

yet the performance mapping still depends on the problem x. The introduc-

tion of features may be viewed as a way to systematize the introduction of-
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probl~m subclasses in the basic model.

The previous statement of the algorithm selection problem and the

criteria for selection are still valid for this new model as well as

the five steps in the analysis and solution of the problem. The deter-

mination of the features to be used is frequently part of the selection

process. often one of the most important parts. One may view the features

as an attempt to introduce an approximate coordinate system in~. Ideally,

those problems with the same featur~s would have the same performance for

any algorithm being considered. Since this ideal is rarely achieved, we

may pose several specific questions ahout the determination of features.

E. ·Best Featur.es fOl: a:-Partieular ggorithm. Given an algorithm A and

the dimension m of ~, what m features are the best for the predic-

tion·of the performance of A. Let ~(f) denote the equivalence class

of all those problems x,yE9 so that F(x) III F(y) "" f. We then

•wish to determine the mapping F and associated equivalence classes

.w*(f) so that

•d (A)' max
m fE$'

. max '"
x, yEf,f' (f)

I [P(A,x) - p(A,y)I I < max
fEY

max IIp(A,x)
x,YEY(f)

-p(A,y)[1

The selection of best features corresponds to the selection of best

approximating subspaces in approximation theory and leads one to ideas of

n-widths and entropy of the problem space 9. Roughly speaking, •if d is large
m

larger than m and, conversely, if

then "the effective dimension of ~(for the problem at hand) is probably much

d* is small then the effective dimension
m

of .9i8 close to m.

F. Best Features for a Class of Algorithms. Given a set s$OC.J:Jf.

and the dime'nsion m of ~ what m features are the best for prediction

of the performance of algorithm AE~? With the previous notation w~

wish to determine F* and ~(f) 80 that
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• • IIp(A,x) - p(A,y)1 Idm( -"If0) ; max max max.
fE~ AE.s¥O x,YE'JR (f)

< max max max IIp(A,x) - p(A,y) II
fE~ AE.s:I0 x,yE 'JR(f)

G. Best Features for a Subclass of Selection Mappings. Given a subclass

YO of selection mappings from Y to .s:Jf , what m features are the best

for prediction of the performance of algorithms? With the previous

• •notation we wish to determine F and ~ (f) so that

• IIp(S(f),x) - p(S(f),y) IId ( yO)· max max max.
m fEY SEY'O X,YE'JR (f)

< max max max IIp(S(f),x) - p(s(f),y)11
fEJP SEY'O .,YE'JR(f)

The determination of the best (or even good) features is one of the

most important, yet nebulous, aspects of the algorithm selection problem.

Many problem spaces 9 are known only in vague terms and hence an experi-

mental approach is often used to evaluate the performance of algorithms

over 9'. That Is, one chooses a sample from 9 and restricts considerations

to this sample. An appropriate sample is obviously crucial to this approach

and if one has a good set of features for ~ • then one can at least force

the sample to be representative with respect to these features. Note that

the definition of best features ·is such that they are the items of infor-

mation most relevant to the performance of algorithms for the problem at hand.

In some well understood area~ of computation there is a generally agreed

upon (if not explicitly stated) set of features. For example, consider the

problem of solving a linear system Ax c b of equations. The features in-

clude descriptors like: small order, sparse, band, diagonally dominant,

positive definite, ill-conditioned, etc. Given values for these features

an experienced numerical analyst can select an appropriate algorithm for

this problem with considerable confidence. The selection problem for quad-
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rature 1s already much more difficult and the solution of simultaneous

systems of nonlinear equations is very poorly understood. If this

situation exists for problems that have been studied for one or two

centuries then one should not be surprised by the difficulties and

uncertainties for problems that have just appeared in the past one or two

decades.
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4. ALTERNATE DEFINITIONS OF BEST FOR THE MODELS. In the preceding sections

we have uniformly taken a minimax approach to the definition of best or

optimum selection. That is, we have minimized the effect of the worst case.

It is reasonable to ignore the performance for the worst case and, instead,

consider optimizing some sort of average behavior. In this section we ex-

hibit the resulting mathematical problems corresponding to using a least

squares or least deviation approach (these correspond to L2 and L1 optimiza

tion in mathematical terms). We have identified seven problems label A

through G. Problem A is unaffected by these considerations so let us con-

sider Problem B: Best Selection for a Subclass of Problems. We use the

notation introduced with the original mathematical statement of this prob-

lem which is:

Minimax Approach

max
XE9'O

r11 P(B (x) ,x) II - II p(A*, x)11 1 < max r11 p(B (x) ,x) II - II p(A, x) III
xE9'O

for all AE.s;d

The corresponding mathematical statements for the least squares and least'

deviation approach are:

Least Squares Approach

* 2-llp(A ,x)ll] dx:=.f [llp(B(x),x)11
91J

for all AE.s¥

Least Deviations Approach

f IlIp(B(x),x)II-llp(A*,x)llldx:=.f Illp(B(x),x)11 -llp(A,x)IJjdx
9 0 9'0

for all AE9Jf

The use of integrals in these formulations implies that a topology has been

introduced in the problem space ~. Many common examples for ~ are dis-

crete in nature and in these cases the topology introduced reduces the
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integrals to sums. This technicality is unlikely to cause real difficulties

and we continue to use integrals 8S this gives the neatest formulations.

Note that the only difference between the two new formulations 1s the

exponent (2 or 1) in the integrand. Thus we may avoid repeating these fot,
mulations twice by making this a variable. say r. which has values 1 or 2.

Note that in approximation theory it is shown that minimax is the limiting

case 8S r + m 80 that all three approaches can be expressed in one formula-

tion with r as a parameter.

Recall that Problem C 1s the Beat Selection from a Subclass of Mappings.

The alternative mathematical formulation of this problem is

f\llp(B(x),x)11 - IIp(so(x),x)lllrdx.:o.flllp(B(x),x)ll- IIp(s(x),xI1IrdX
Y' Y'

for all 5 E'yo

The alternative formulation for Problem D is identical to this except that

the problem subclass ~ replace 9 as the domain of integration.

The next three problems involve features and we choose to use a con-

sistent approach for the reformulations. That is, if we use least squares

on the problem space we also use it on the feature space ~ and the algorithm,
space ~. If we set

d
r

(A,.I:f) = f
m fEY

[ If
x.y E .I:f(f)

Ifr
IIp(A,x) - p(A,y) Il r ]

then for Problem E: Best Feature for a Particular Algorithm, the objective

is to find the feature mapping F* and associated equivalence classes ~(~)

which minimize dr (A,.it') 1. e.
m

r r. J<d (A) • d (A,~) • min
m m .I:f

For Problem F we introduce

If
x,y~f)

Ifr
IIp(A.x) - p(A,y)I Ir ]
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* *and then the objective is to determine F and associated ~ (f) so that

r
min d (.w

O
,.If)

5:R m

A similar approach to Problem G yields a similar expression except that the

integral over ~ is replaced by an integral over ~.

In many practical problems there is little to guide one in the choice

of a particular formulation of the mathematical optimization problem, i.e.

should we choose r : I, 2 or~? These choices might not be particularly

significant in the larger context, but they are very significant in determining

the difficulty of the resulting mathematical optimization problem. A lesson

learned from practical approximation theory might be applicable in this larger

context. This lesson Is, roughly. that the crucial ingredients for success

are proper choices of the subclasses 9"0' .w0 and ~. Once these are made

properly then the mathematical optimisation should be made for that value of

r that gives the least difficulty. If the problem is completely linear then

r a 2 (lesst squares) almost always results in the least mathematical diffi-

culty. The situation is variable for nonlinear problems. Note that there

are practical approximation problems where the choice of r is crucial and

no doubt there are similar cases for the algorithm selection problem. We

are saying that the choice of r is important only in an infrequent number

of instances.
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5. THE MODEL WITH VARIABLE PERFORMANCE CRITERIA. We have assumed 80 far

that there 1s a fixed way to measure the performance of a particular

algorithm for a particular problem. There are, however, many situations

where it is reasonable to view the performance criteria as input to the

selection problem. Consider, for example, the selection of a program

to solve ordinary differential equations and the criteria of speed,

accuracy. reliability, and care of use. In different situations the

weight given to each of these might vary from almost zero to almost 100%.

A model for this version of the selection problem is shown in the diagram

of Figure 4.

g(p,,,)

RMANCE
NG

xE9 F f (x)E'ii'

PROBLEM FEATURE FEATURE
SPACE EXTRATION SPACE

S(f(x),") A E.JiI'
~

SELECIION ALGORITHM
HAPPING SPACE

wegeD

CRITERIA
p(A,x)
PERFO

SPACE MAPPI

PE !if"
PERFORMANCE
MEASURE SPACE

Ilpll =

AlGORITHM PERFORMANCE

Figure 4. Schematic diagram of the model with selection baaed on problem
features and variable performance criteria.
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The additional definition for this model is:

N f 1 f .-2 n .-'Z'J
n to R1 wh'ch th 1 1 hg - arm unct on rom.::n x ~ .... measures e a gor t m

performance p(A,x) with the criteria w.

Some of the mappings now have changed domains, but their nature is the same.

The choice of SII u for the criteria space 1s clearly arbitrary (and perhaps

unnecessarily restrictive) but it is natural for the most common choice of

the norm function: g(p,w) - p·w.

We can at this point formulate new versions of the algorithm selection

problem involving the criteria space. The variables of these formulations

are:

Problem subclasses .9
0

Algorithm subclasses ..s;('O

Selection mapping subclasses .YO
Feature space y

Norm mapping g

The number of interesting combinations is now quite large and we refrain

from formulating all of them. Some of the more important problems are:

H. Best Selection for a Given Criteria. We assume that g(p,w) is known,

that Y '" 9 (and F is the identity) and w is given. The problem then

is to determine that selection mapping B(x,w) which gives maximum

performance:

g(p(B(x,w),x)w) ~ g(p(A,x),w) for all AE 141

I. Best Selection from a Subclass of Mappings for a Given Criteria and

Feature Space. We restrict S to a subclass .so all mappings from

y x ~ to A and, for a particular specified value of w and problem

•x, we wish to determine the best mapping S (x,w) 50 that

•g(p(S (f(x) ,w) ,x) ,w) > g(p(S(f(x) ,w) ,x) ,w) forallSE~.
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J. Beat Selection from a Subclass of Mappings, ProbleMs and Algorithms

for a Given Criteria and Feature Space. This is a model of perhaps

the most realistic situation. We have the feature space ~ and

norm function g specified. We restrict ourselves to subclasses ~,

~ and ~ of selection mappings, problems and algorithms, respec

tively. Note we have ~: Y x 9fD .... ~. Within this framework we

•wish to select that mapping S so that

< max
we~n

max
xe9'o

max
XE9'O

•g(p(B(x,w),x),w) - g(p(S (f(x),w),x),w)

g(p(B(x.w),x),w) - g(p(S(f(x),w),x),w)

for all SE~. Note that g(p(B(x,w),x).w) is the best possible pet'

formance and the other g terms are the performances of the algorithms

actually selected.

6. CONCLUSION." The abstract model presented in this report could be elaborated

upon considerably. The study of the theoretical questions of the existence,

uniqueness and characterization of best selection mappings and features

mentioned in Section 2 can be expanded to fill a thick monograph. Those

familiar with the mathematicians ability to develop theoretical structures

from simple models can visualize how this would be done. However, the

crucial point of a model is not its theoretical structure but its relevance

to underlying real world problems. In other words, does this model allow us

to develop better insight, understanding and analysis of real algorithm

selection problems? This question is addressed in the next report.
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