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ABSTRACT 

Kim, Jae Sung. Ph.D., Purdue University, December 2013. The Application and 
Analysis of Automated Triangulation of Video Imagery by Successive Relative 
Orientation. Major Professor: Dr. James S. Bethel. 
 
 

The purpose of this thesis is the analysis and evaluation of methods to 

orient a strip of images using an automated approach. Automatic orientation of 

strips of video frame imagery would facilitate the construction of three 

dimensional models with less demand on a human operator for tedious 

measurement. Often one has no control points, so only relative orientation is 

possible. The relative orientation process gives camera parameters such as 

attitudes and selected baseline components and it can be implemented by using 

either collinearity or coplanarity equations. To automate the point selection, the 

pass and/or tie points were detected by the Colored Harris Laplace Corner 

detector along a strip of images and they were matched by cross correlation 

across multiple scales. However, the matched points from cross correlation still 

include the outliers. Therefore, the Random Sample Consensus (RANSAC) 

method with the essential matrix was applied to detect only inliers of point pairs. 

Then relative orientation was performed for this series of video imagery using the 

coplanarity condition. However, there is no guarantee that three rays for a single 

point will intersect in a single point. Therefore for all photos, subsequent to the   
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first one, the scale restraint equation was applied along with the coplanarity 

equation to ensure these three rays’ intersection. At this point, the Kalman 

Filtering algorithm was introduced to address the problem of uncompensated 

systematic error accumulation. Kalman Filtering is more parsimonious of 

computing effort than Simultaneous Least Squares, and it gives superior results 

compared with Cantilever Least Squares models by including trajectory 

information. 

 To conform with accepted photogrammetric standards, the camera was 

calibrated with selected frames extracted from the video stream. For the 

calibration, minimal constraints are applied. Coplanarity and scale restraint 

equations in relative orientation were also used for initial approximation for the 

nonlinear bundle block adjustment to accomplish camera calibration. For 

calibration imagery, the main building of the bell tower at the University of Texas 

was used as an object because it has lots of three dimensional features with an 

open view and the data could be acquired at infinity focus distance. Another two 

sets of calibrations were implemented with targets placed inside of a laboratory 

room.  

The automated relative orientation experiment was carried out with one 

terrestrial, one aerial and another simulated strip. The real data was acquired by 

a high definition camcorder. Both terrestrial and aerial data were acquired at the 

Purdue University campus. The terrestrial data was acquired from a moving 

vehicle. The aerial data of the Purdue University campus was acquired from a 

Cessna aircraft. The results from the aerial and simulation cases were evaluated 
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by control points. The three estimation strategies are stripwise Simultaneous, 

Kalman Filtering and Cantilever, all employing coplanarity equations. For the 

aerial and simulation case, an absolute comparison was made between the three 

experimental techniques and the bundle block adjustment. In all cases, the 

relative solutions were transformed to ground coordinates by a rigid body, 7-

parameter transformation. In retrospect, the aerial case was too short (8 

photographs) to demonstrate the compensation of strip formation errors. 

Therefore a simulated strip (30 photographs) was used for this purpose. Absolute 

accuracy for the aerial and simulation approaches was evaluated by ground 

control points. Precision of each approach was evaluated by error ellipsoid at 

each intersected point. Also memory occupancy for each approach was 

measured to compare resource requirements for each approach. When 

considering computing resources and absolute accuracy, the Kalman Filter 

solution is superior compared with the Simultaneous and the Cantilever methods. 
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CHAPTER 1. INTRODUCTION 

1.1 Statement of the Problem 

To better reconstruct the 3D geometry of a scene from a strip of imagery, 

we analyze, evaluate and seek to better the automation of this task. This has 

been attempted since early in the twentieth century by analog means. In a digital 

environment, one could approach the task by bundle blocks adjustment or by 

successive relative orientation. The latter approach presents interesting 

possibilities for sequential estimation, and it therefore was chosen for study. To 

fully exploit this technique, we must also introduce some automation of the 

measurement task. The problem is to automate the process of image strip 

formation using the coplanarity model. 

The image rays from conjugate points intersect in space and reestablish 

the original epipolar geometry of a pair of images (Mikhail, Bethel & McGlone, 

2001). This process is called relative orientation and it gives camera parameters 

such as attitudes and selected baseline components. Since the relative 

orientation procedure requires the coordinates of conjugate points in the pair of 

images, the coordinates have to be measured either manually or automatically. 

In a real world situation, there are often more than just one pair of images, and it 

requires a lot of human effort to measure the conjugate point coordinates for the 
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entire dataset manually. Therefore, automatic measurement of conjugate points 

can reduce the effort and time required and also, it can increase the accuracy by 

preventing human measurement errors.  

 

1.2 Summary of Methodology 

The first step of automatic relative orientation is camera calibration. An 

uncalibrated camera has inaccurate values for principal point offset, focal length, 

radial distortion and tangential distortion determined by calibration. These 

inaccurate interior orientation parameters should be determined by calibration to 

guarantee high quality results. Camera calibration has re-emerged as a research 

topic along with the dynamic developments in digital camera technology. A 

calibration facility with accurately located targets is an expensive proposition. 

Therefore, a camera calibration procedure which doesn’t require control point 

information was used in this research.  

After camera calibration, one can proceed with photogrammetric 

applications. To automate the selection and measurement of pass points, the 

concept of interest points were used. There are several algorithms for interest 

point detection and they have different characteristics. Therefore, the most 

reliable method should be sought to increase the accuracy and efficiency of the 

proposed methodology. The detected interest points in each image can be 

matched between photographs by cross correlation, if the convergence angle 

between adjacent photographs is not large. To increase the reliability of cross 

correlation, matching was performed in multi-level image pyramids. Still, the 
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matching is not always correct and the wrongly matched points should be 

removed. The automatic procedure for the conjugate point coordinates 

measurement should fulfill the above requirements. Once a correct and well 

distributed set of conjugate points are prepared, they are used in the relative 

orientation procedure to estimate exterior orientation parameters. We can fix the 

orientation of one photograph of the pair, and then fix one of the orientation 

parameters (bx, by, bz, ω, φ, κ) of the second photograph and solve for the rest 

of the parameters, which gives position of the second camera in a relative sense. 

The coplanarity condition was chosen as the basic equation for the relative 

orientation procedure. Since the coplanarity condition doesn’t guarantee three 

rays’ intersection for three ray points, the scale restraint condition equation was 

introduced to force this three ray intersection. Therefore, the math model for the 

first pair of images carries five parameters, out of six possible exterior orientation 

parameters, but those from the second pair of images carry six parameters with 

the scale restraint equation introduced as just described. The six parameter 

model is used for all subsequent image pairs in the strip. 

For a series of image pairs, the exterior orientation parameters can be 

estimated by relative orientation with either sequential or simultaneous solution. 

For the sequential solution, the parameters can be estimated for the first pair of 

images, and those from second pair can be added to the first solution. This 

procedure is repeated to the last pair of images. However, systematic errors from 

lens distortion and atmospheric refraction can be accumulated in this procedure 

especially for uncalibrated case and it becomes larger as number of image pairs 
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increases, which is called the cantilever effect. So, we call this type of least 

squares solution “Cantilever” Least Squares. The cantilever effect can be 

alleviated by introducing trajectory information in simultaneous solution. However, 

simultaneous solutions incur efficiency problems because of large matrix size. 

We need a solution which can mitigate systematic error from Cantilever Least 

Squares and increase efficiency from Simultaneous Least Squares. Therefore, a 

sequential estimation technique using the Kalman Filter was introduced to 

address these problems since the Kalman Filter can reduce the cantilever errors 

by forward and backward smoothing, and it doesn’t occupy large memory 

because at each epoch, we only estimate the parameters in the state vector 

rather than the entire strip. 

 
1.3 Objectives 

The overall objective of this research is to analyze and improve fully 

automated and robust procedures for strip triangulation by successive relative 

orientations. The specific objectives are to: 

 

1.  Analyze Simultaneous, Cantilever, and Kalman Filter approaches. The 

analysis of each approach is the most important aspect in this research. 

2. Investigate prior work related to automatic relative orientation and related 

subjects through extensive literature review from the photogrammetry, computer 

vision, signal and image processing fields.  
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3.  Develop a practical camera calibration procedure with the good of 

recovering camera parameters such as principal point offsets (x0, y0), focal 

length (f), three radial distortion parameters (K1, K2, K3), and two decentering 

distortion parameters (P1, P2). The calibration should be performed without 

measurement of control points in the object space. Note that the “focal length” 

should really be designated “principal distance”, but at infinity focus, the two are 

identical. 

4. Acquire strip oriented terrestrial data from car and airborne data from 

aircraft. The data acquisition plan should be restricted to only fair weather 

conditions in both cases. The target area/object should be chosen to ensure a 

sufficient number of well defined features so that an interest point based strategy 

will be successful. The imagery will be captured as a video stream. Overlap 

between successive frames will be guaranteed by a combination of vehicle 

velocity/frame rate and selective sampling of individual frames.  

5. For both terrestrial and aerial datasets, detect interest points by the 

Colored Harris Laplace corner detector, which is considered to be a reliable 

interest point detector.  

6. Match the candidate point sets by multi scale cross correlation for each 

image pyramid by feature tracking. By this means, the interest points which are 

matched through the top of the image pyramid will survive and be input to the 

next step. 

7. Detect inliers by Random Sample Consensus (RANSAC) using the model 

of the eight point algorithm to solve for the elements of the essential matrix. 
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Because there may be still mismatched points from the cross correlation, 

RANSAC was adopted to filter out those outlier points which are mismatched.  

8. Using “clean” data and approximations from the linear solution just 

described, Solve relative orientation with coplanarity and scale restraint condition 

equations  using three frameworks: (a) Simultaneous Least Squares, (b) 

Cantilever Least Squares and (c) Sequential Least Squares (Kalman Filter). The 

results of each algorithm will be compared and the relative strengths and 

weakness of each will be addressed. 

9.  Estimate orientation in the world object space coordinate system. The first 

approach is a one step procedure using bundle block adjustment. The second 

approach is a two step procedure with relative followed by absolute orientation. 

The bundle blocks adjustment would be the conventional approach to solving this 

problem, without regard to computer resource constraint. The absolute 

orientation will be implemented by both seven parameter conformal and 

polynomial non conformal transformation. The results of the absolute orientation 

from each approach: Simultaneous, Cantilever, and Kalman Filter will be 

compared. 

 

1.4 Approach 

Images can be oriented efficiently without labor intensive manual 

measurements of conjugate image points and without acquisition of control point 

information by automation of the relative orientation procedure.  
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Camera calibration plays a key role in any photogrammetric operation. 

False calibration parameters or uncalibrated parameters (nominal values) will 

severely limit the achievable accuracy of any proposed method. Therefore, the 

chosen camera will be calibrated rigorously by the self-calibration technique with 

both signalized target points and photo ID target points in the object space. The 

calibration will be done using bundle block adjustment with added parameters. 

Since this is nonlinear, we need initial approximation. The exterior orientation 

parameters are initially approximated by the eight point algorithm. The eight point 

algorithm gives four solutions for exterior orientations and their ambiguity was 

resolved by geometric reasoning. Once exterior orientations are initially 

approximated, they can be confirmed by nonlinear estimation in the conventional 

relative orientation algorithm, then used as initial approximation for the bundle 

block adjustment with added parameters. This finally results in the needed 

calibration parameters. For the block adjustment, we use only minimal 

constraints. This alleviates any requirement for control points in the object space 

which makes the procedure very easy to accomplish.  

The proposed research will be tested against sequences of video imagery 

selected frames for terrestrial and aerial cases. The images will be captured with 

selected frames chosen to be reasonable image overlap. The performance of 

matching by cross correlation decreases if the overlap is too small or equivalently 

if the base height ratio is too large. Conversely, if the base height ratio becomes 

very small and the rays become nearly parallel, the matching works better and 

better but the geometric strength collapses. Therefore, frames were selected so 
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that the overlap ratio should be between 60~80 %.  The terrestrial data were 

taken from a moving vehicle and the aerial video imageries were taken from a 

Cessna aircraft. It should be noted that the proposed method can also be 

adapted for digital still camera cases, but it is hard to manually trigger a series of 

photos to achieve a fixed overlap ratio in a moving vehicle.  

The automatic detection of conjugate interest points is a key step which ensures 

the automation of the whole procedure of strip formation by relative orientation. 

Interest point detection is a large field of research itself and the most of reliable 

methodology was sought. From this search, the Colored Harris Laplace corner 

detector was chosen as the one most appropriate for this project. The detected 

interest points are matched across images by cross correlation and the matching 

is performed in multi-scale to increase reliability. However, there still exist outliers 

among the matched point pairs and they are excluded using the Random Sample 

Consensus (Fishler & Bolles, 1981) method. For a pair of images, relative 

orientation can be implemented by the General Least Squares method and the 

coplanarity equation. However, this approach is not sufficient for more than two 

consecutive images because there is no guarantee that three conjugate rays will 

intersect in a single point only. The scale restraint equation handles this problem 

by constraining the intersection of the three rays to a single point. Therefore, the 

condition equations of the first pair of images have only coplanarity conditions 

with five exterior orientation parameters (one of the exterior orientation 

parameters was fixed). From the second model, the condition equations include 

both coplanarity and scale restraint equations with six exterior orientation 
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parameters. This set of condition equations of multiple successive relative 

orientations can be solved by different algorithms. Three algorithms have been 

selected for study. The first case is Simultaneous Least Squares, the second 

case is Cantilever Least Squares, and the last case is Sequential Least Squares 

with a dynamic model, also known as the Kalman Filter. Subsequently they will 

be referred to as SLS, CLS, and KF. The application of KF algorithm to the strip 

formation problem, together with the automated point determination represents 

an innovative approach to the solution of this problem. It will be compared with 

the cited alternative algorithms. 
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CHAPTER 2. LITERATURE REVIEW 

The reviewed literature covers the subject of camera calibration, interest 

point detection and matching, relative orientation for pose estimation, and 

Kalman Filtering. The scope of the literatures includes publications from the fields 

of photogrammetry, computer vision, signal and image processing, statistics, and 

even biology.  

 

2.1 Camera Calibration 

Much research has been done in the field of camera calibration. Brown 

(1971) used an analytical plumb-line method which used a test field consisting of 

a series of plumb lines to calibrate close range cameras to estimated inner 

orientation elements including radial and decentering distortions. His experiment 

showed that the plumb-line method is superior in convenience and provides 

comparable accuracy with the costlier stellar calibration method. Tsai (1987) 

introduced a calibration method using a two-stage technique which computes 

both interior and exterior camera parameters. In the proposed technique, initial 

approximations are obtained for all elements of interior and exterior orientation, 

including target object points. In the next step, a bundle block adjustment with 

self-calibration is performed. He also showed that 60 points are more than 
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sufficient to obtain a good calibration. Weng, Huang, and Ahuja (1992) employed 

camera calibration to estimate principal point offset, and lens distortions such as 

radial, decentering, and prism. They estimated the principal point offset from a 

distortion free camera model by a closed form model in the first step. In the 

following step, the geometric distortion parameters were estimated by non-linear 

optimization. Cooper and Robson (1996) explained the classical camera 

calibration model in terms of principal distance, principal point offset, and radial 

and tangential distortion. They noted that the principal distance value is usually to 

the nearest 10 μm and the maximum magnitude of radial lens distortion is about 

10-20 μm for a large format metric camera. Of course this project employs a non-

metric camera. Also, they explained the multistation bundle adjustment, where 

exterior orientation, camera calibration data, and object space coordinates can 

be estimated by an Iterative Least Squares method. Robert (1996) showed a 

new one stage method of pinhole type camera calibration. Classical calibration is 

composed of two steps, which are point or a feature extraction, followed by 

estimation of the chosen parameters. But proposed method searches camera 

parameters which projects three dimensional points of pattern to the edges in the 

pattern by characterizing edge as zero crossing of Laplacian. And it didn’t extract 

image features to estimate calibration parameters, but they calibrated camera 

during the process of edge estimation.  He showed that the proposed method 

reduced systematic error than classical two stage based method. Heikkila (1997) 

suggested a four step camera calibration procedures. The first step is the linear 

and closed form solution to the direct linear transformation (DLT). The second 
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step is the nonlinear estimation of exterior orientation parameters with the initial 

estimates from DLT. The third step is the estimation of the distortion parameters. 

The fourth step is the image correction carried out by resampling of the original 

image using the physical camera parameters obtained by the previous steps. 

The experiments showed that the remaining errors were negligible and the 

procedure is recommended to the various machine vision applications requiring 

high geometrical accuracy.  Fraser (1997) described self-calibration of a digital 

CCD sensor camera. The condition equation includes the terms for sensor 

exterior orientation, the object point coordinates, and self-calibration parameters. 

The calibration parameters are radial lens distortion (K1, K2, K3), decentering 

distortion (P1, P2), interior orientation (x0, y0, c), and in-plane distortion (b1, b2), 

which gives total of 10 parameters. Clarke and Fryer (1998) explained the history 

of camera calibration and described the advantages and disadvantages of each 

method. They explained the history of stereoscopic restitution and related 

camera calibration methodologies. They reviewed math models, self-calibration 

and Least Squares applied to multi collimator calibration like USGS. Also, they 

investigated the plumb-line calibration, the additional parameters technique, and 

on-the-job calibration. Finally, they explained the application of calibration to the 

close range cameras. Sturm and Maybank (1999) presented a calibration 

algorithm for plane based object with versatile number of views and planes. The 

algorithm is consisted of computing plane homographies from feature 

correspondences, construction of equation matrix A, conditioning by rescaling 

rows and columns, and the solution by Least Squares. Experiments showed 
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satisfactory results and the calibration method could be used for economic 

calibration tool, ground plane calibration, reconstruction of piecewise planar 

objects from single views, reconstruction of indoor scenes, and augmented 

reality. Zhang (1999) suggested a flexible technique to calibrate cameras. In the 

proposed method, only a few observations to planar objects at different 

orientations are required. The method is composed of a closed form solution to 

the camera intrinsic (interior orientation) matrix, nonlinear refinement by the 

maximum likelihood criterion, and solution for radial distortions.  

 

2.2 Interest Point Detection and Matching Literature 

Moravec (1980) developed a corner detector function by moving a window 

over the image. If the windowed image region is homogeneous and it has no 

edge or no corner, then all shifts will give a small change in the function. If there 

is an edge, a shift perpendicular to the edge will give large change. And if there is 

a corner, a shift in both directions will give large change. But there are several 

drawbacks to the Moravec corner detector. It has anisotropic response, noisy 

response, and false positives at edges. Harris and Stephens (1988) addressed 

these problems in the following way. The anisotropic response occurred because 

Moravec’s corner detector considered 45 degree shift. Harris corner detector 

covers all possible small shifts by an analytic expansion. Moravec’s binary and 

rectangular window caused noisy response, which are solved by circular 

Gaussian window. The sensitivity to edges was solved by reformulating corner 

measure to the objective function comprised of eigenvalue expression, which can 
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differentiate from edge and corner better than Moravec corner detector. 

Lindeberg (1998) suggested automatic selection of characteristic scales using 

normalized Gaussian derivatives for blob and junction detection and frequency 

estimation. Characteristic scales were determined so that differential descriptors 

have the maxima over scales. Also, he suggested feature localization especially 

for detected junctions since the detected corners doesn’t guarantee the accurate 

position of points. Shmid (1997) used local grey value multi scale invariants at 

the interest points and a voting algorithm to match and retrieve images. First a 

set of differential local jet, which is the convolution of Gaussian function to the 

image with σ (the size of Gaussian) to consider multi-scale approach, was 

calculated and the mahalanobis distance and voting algorithm was applied to 

match between input images and model images. The experiment considering 

image rotation, scale changes, viewpoint variations showed successful result. 

Lowe (1999, 2004) suggested a method which extracts distinctive invariant 

features to perform matching between different views. The method was invariant 

to scale and rotation and robust to change in 3d viewpoint, addition of noise, and 

change in illumination. The approach named of Scale Invariant Feature 

Transform (SIFT) are composed of four steps such as scale space extrema 

detection using Difference of Gaussian (DoG), keypoint localization, orientation 

assignment, and keypoint descriptor. The detected features are matched by 

correlation and the outliers are detected by voting with Hough Transform.  

Montesinos, Gouet and Deriche (1998) adapted color information to differential 

invariants interest point detector to match the points in uncalibrated images. They 
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used Hilbert’s invariants with first order as local characterization for each Red, 

Green, Blue bands and generalized Harris corner detector considering color data. 

They compared each feature vectors to match points by computing likeness of 

two vectors. The result showed that color information improved matching result. 

Mikolajczyk and Schmid (2001) compared most widely used scale invariant 

interest point detectors which are Laplacian of Gaussian (LoG), Difference of 

Gaussian (DoG), gradient, and Harris with scale factor. The result showed that 

Laplacian of Gaussian detects the most points with the best accuracy. And he 

proposed interest points detector robust to scale changes, Harris Laplace corner 

detector, which detects corner points in different scale levels by scale adapted 

Harris corner detector, and chooses corners which attains local maxima LoG as 

point with characteristic scale. Mikolajczyk and Schmid (2004) gave detailed 

description of Harris Laplace corner detector and extended proposed 

methodology to adapt to significant affine transformation. In later research, 

Mikolajczyk and Schmid (2005) compared descriptors of interest region, which 

are shape context, steerable filters, PCA-SIFT, differential invariants, spin 

images, SIFT, complex filters, moment invariants, and cross correlation. They 

found out SIFT performs the best among investigated descriptors. Stöttinger, 

Sebe, Gevers and Hanbury (2007) addressed color interest point detector for 

image retrieval. They used colored scale invariant corner detector with LoG and 

quasi invariant color space. Their algorithm was tested for image retrieval by 

calculating Euclidean distances between SIFT descriptors of each image. The 

result showed that color based interest point detector is more meaningful, stable, 
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and distinct than other approaches such as Harris (1988), Lowe (1999), or 

Mikolazjczyk’s (2004) approaches because they didn’t consider color space. 

Lingua and Marenchino (2009) used SIFT operator for feature extraction 

and matching and they compared SIFT approach with Förstner operator and 

LSM (Least Squares Matching) technique. By the experiment of relative 

orientation with terrestrial and aerial images, they concluded that SIFT is good for 

large geometric and photometric distortion. Also, they could get more number of 

pairs of points than traditional method. However, SIFT operator couldn’t match 

any points for large scale images with poor texture in the experiment, they 

implemented new auto adaptive (A2) SIFT operator to fit contrast threshold to the 

texture near interest point. By their suggested method of A2 SIFT operator, the 

matching problems of images with not only high geometric distortion but also 

poor texture could be handled. 

 Fischler and Bolles (1981) suggested new paradigm for model fitting 

which is called Random Sample Consensus (RANSAC). In RANSAC, the 

minimum numbers of samples are chosen randomly n times and establish model 

from each set of sample. The best fitted model could be determined by extracting 

only inliers which have criteria less than imposing threshold and choosing the 

model with the most inliers.   

O’Neill and Denos (1996) developed automated system for pyramidal area 

correlation matching scheme. They used pixel averaging filter to texture imagery 

from coarse resolution to dense resolution in image pyramid, which is called 
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cascade system. The problem of blunder from correspondence was solved by 

disparity continuity, affine transformation and parameter constraints. 

 

2.3 Relative Orientation and Pose Estimation Literature 

One notable research related to relative orientation has been done in 

motion tracking research in computer vision discipline. In the research of Loguet-

Higgins and Prazdny (1980), relative orientation problem was investigated 

through motion vision problem. They addressed recovering the motions of 

objects relative to viewer analytically and explained each case of motion through 

a static environment and a motion relative to a visually textured surface.  In later 

research, Loguet-Higgins (1981) introduced the concept of essential matrix, 

which he derived from the relationship between two calibrated images. Eight 

corresponding points in both images gave solution to essential matrix in eight 

point algorithm and essential matrix gave 4 possible solutions of relative 

orientation problem. Weng, Huang and Ahuja (1989) dealt with the estimation of 

motion parameters and the structure of the scene from two perspectives. Feature 

correspondences between sequential images were established and the motion 

parameters were estimated for each pair. Then, the local motion was established 

according to object model dynamics. By the analysis through error simulation 

depending on motion and system parameters, it was found out that shorter focal 

length (larger field of view), large translations, translation orthogonal to the image 

plane gave more reliable estimates.  Haralick et al. (1989) addressed the 

solutions for four pose estimation. They used Closed Form Least Squares 
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solutions over 2d-2d and 3d-3d cases and a globally convergent iterative method 

for 2d perspective projections and 3d pose estimation. A simplified linear solution 

and a robust solution to the 2d-2d perspective projection were used for pose 

estimation. They concluded that Iterative Weighted Least Squares technique is 

robust to blunders. Horn (1990) addressed the mathematical solution of 

recovering baseline and orientation from essential matrix. According to his 

solution, there is no need for singular value decomposition, coordinate 

transformation or circular function. However, his solution has two possible 

combinations and reverse sign of essential matrix gives two more additional 

combinations of relative orientation solutions.  In another paper, Horn (1990) 

suggested a simple iteration method to solve relative orientation problems other 

than traditional photogrammetric iterative method which requires good initial 

approximation of parameters. The iterative methods look for global minimum 

error solution from any starting point in the parameter space by repeating 

iteration with different starting values for each rotation. He developed procedures 

for both cases where initial guess for the rotation is available or not.  Besl and 

McKay (1992) suggested a method for registration of 3-d shapes using iterative 

closest point (ICP) algorithm, which finds the closest point on a geometric entity 

to the candidate point. ICP algorithm matches global features based on shape 

complexity and local features based on shape complexity and the percentage of 

allowable occlusions. The registration is computed as translations and rotations. 

Experiments showed the capabilities of the algorithm to point sets, curves and 

surfaces. Tomasi and Shi (1993) worked on the inference of scene geometry and 
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camera motion by factorization method which uses singular value decomposition 

technique. At first, features were selected by automatic detection, and singular 

valued decomposition was computed. Finally, rotation matrix and shape matrix 

were computed. It was found out that suggested method is robust to noise and 

allows very short inter frame feature tracking. Also, Tomasi and Shi (1996) 

worked on newly developed technique, which is direction of heading from image 

deformation. They proposed a method to compute the direction of heading from 

the differential changes in the angles between the projection rays of pairs of point 

features. The condition equation was solved by minimizing residual. Advantages 

of using image deformations rather than optical flow is to remove effect of 

rotation in computation process. However, the suggested process is not fully 

explored yet and there remain problems such as residual behavior of point 

position, camera motion, camera calibration and computation efficiency in real 

time application. Faugeras  and Robert (1994) proposed methods of predicting 

features such as point, line, and curvatures in the third image from two image 

features analytically by using fundamental matrix. They experimented with real 

images and also, applied to trinocular stereo matching algorithm. Sullivan and 

Ponce (1998) proposed a method for automatically constructing G- spline models 

of 3d objects from several registered photographs. The constructed object 

models were used in pose estimation. For 100 sample poses, they position the 

camera so that silhouette of model roughly fits input data. The best fit was 

chosen as initial pose and minimization of cost through iteration gave final result. 

Overall, their approach is to minimize the distance to the continuous surface 
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rather than matching point sets or planes. Pan (1999) showed that two principle 

distances and five relative orientation parameters were recovered by suggested 

algebraic technique. He presented a direct closed form solution to the problem 

and proposed method to retrieve general coplanarity matrix, two principal 

distances, the special coplanarity matrix, the baseline vector and rotation matrix.   

Hartley and Zisserman (2000) showed the derivation, definition and 

properties of essential matrix. Also they showed how to determine rotation and 

transition matrix from essential matrix. 

 Nister (2004) suggested efficient solution to classical five-point algorithm 

which solves relative pose estimation problem. Tenth degree polynomial 

coefficients were calculated and the roots were extracted to calculate essential 

matrix, from which rotation and translation matrices were recovered. The 

suggested algorithm was applied to RANSAC as a hypothesis generator to solve 

real-time unknown structure and motion problem.  

Brückner, Bajramovic and Denzler (2008) compared eight, seven, six and 

five point algorithm for relative pose estimation problems. They showed that five 

point algorithm works well but eight point algorithm is better sometimes. 

Therefore they invented final combination algorithm which uses five point 

algorithm for RANSAC and automatically selects the best solution for final 

estimation between them. 

 Jasiobedzki, Se, Bondi, and Jakola (2008) performed keeping of Remotely 

Operated Vehicles (ROV) station and three dimensional mapping of seabed by 

relative pose estimation. For the purpose of station keeping, they implemented 
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relative pose estimation by artificial target of Space Vision Marker System 

(SVMS) and natural features. For natural features, they used Scale Invariant 

Feature Transform (SIFT) operator. For three dimensional mapping, they used 

image sequences from mobile stereo cameras and they stored SIFT keypoints to 

database. They matched SIFT features at each frame with those in the database. 

And weighted least squares was performed as a final matching step. After 

performing relative pose estimation, they represented the result by triangular 

mesh with photorealistic appearances. 

Fraundorfer, Tanskanen and Pollefeyes (2010) developed minimal case 

solution for two known orientation angles by solving relative pose problem with 

three point correspondences for calibrated data taken by smartphone. They 

suggested new algorithms such as three, four, and linear five point algorithms to 

estimate essential matrix. This is the special case for smart phones installed with 

inertial measurement unit (IMU) which measures two orientation angles. The 

eight point conditions could be reduced to 5 point condition by identifying three 

linear conditions in essential matrix of two known angles from IMU. The four point 

condition could be developed by giving zero determinant constraint to five point 

condition. The three point condition could be established by giving trace condition 

to the four point condition.  

In the photogrammetry discipline, relative orientation is also an important 

topic and approached differently from computer vision discipline in the view of 

handling weak geometry. The text of Mikhail et al. (2001) provided the full 

concept of relative orientation. The coplanarity and scale restraint conditions 

 



22 

 

were explained in detail including theory, linearization and the solution by Least 

Squares. Liang and Heipke (1996) worked for automatic relative orientation of 

aerial photographs. They used modified Moravec’s operator with coarser to fine 

image pyramid strategy using window tracking. For matching, they used not only 

radiometric constraint such as cross correlation but also geometric constrains 

such as epipolar geometry and local plane fitting. The blunders of matching were 

determined by residual analysis so that matched points with residual higher than 

certain threshold should be discarded. They experimented with ten pairs of 

images in different areas and showed satisfactory result in the view of accuracy 

and practicality. Lobonc (1996) suggested automated relative orientation 

procedure by automated pass point feature succeeded by relative orientation 

with blunder detection. He concluded that Förstner operator provided the best 

performance in general and area based correlation with subpixel interpolation 

gives high accuracy and simplicity. For blunder detection, he showed iterative 

reweighting technique performed at least as well as statistical technique. Also, he 

developed iterative orthophoto refinement algorithm where orthophotos are 

matched and elevation corrections are computed to improve DEM quality. In the 

research of Theiss (2000), aerial video frames were used as data sets for 

photogrammetric triangulation and dynamic modeling. He showed schematics of 

georegistration of airborne video imagery frames. Also, he showed invariance 

supported triangulation with single frame, two-frame camera parameter recovery, 

and image transfer and applications to three images. Habib and Kelley (2001) 

suggested automatic relative orientation algorithm using modified iterated Hough 
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transformation. They used coplanarity model with extracted edges or feature 

points. The relative orientation parameters were solved by inputting all possible 

primitive pairs and choosing the solution which received the most votes. The 

experiments showed the proposed method is robust and reliable in both urban 

and rural aerial images. Labe and Förstner (2006) showed rigorous relative 

orientation procedure, which is composed of corner detection by Lowe’s interest 

point detector which uses difference of Gaussian, matching by Scale Invariant 

Feature Transform (SIFT) descriptor, blunder detection by Random Sample 

Consensus (RANSAC) with fundamental matrix. They experimented with 

airborne imageries by bundle block adjustment and showed encouraging result. 

Since the relative orientation problem in this research was solved either by Least 

Squares or Kalman Smoothing, they were also reviewed as follows. Mikhail 

(1976) explained the aspects of Least Squares such as linear and nonlinear 

cases, general and special cases such as observation only and indirect 

observation, Least Squares with conditions and constraints, and unified approach 

to Least Squares adjustment. Welch and Bishop (1995) explained discrete 

Kalman filtering and extended Kalman filtering noting the importance of 

covariance matrix of measurement and prediction. They noted that as 

measurement error covariance matrix approaches to zero, the actual 

measurement is trusted more, while the predicted measurement is trusted less. 

As a priori prediction error covariance matrix approaches to zero, the predicted 

measurement is trusted more, and the actual measurement is trusted less. The 

text of Brown and Hwang (1997) provided the basic background theory of 
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Kalman Filtering and Smoothing. Nonlinear Kalman Filtering theory was well 

explained in the text and it is noted that parameter vectors in linear case has to 

be dealt as update values in nonlinear cases. Lee (1999) compared spline and 

first order gauss markov model to rectify HYDICE imagery. In the implementation 

of Gauss Markov process, six exterior orientation parameters were estimated 

sequentially using nonlinear Kalman Smoothing. Theiss (2000) implemented 

Kalman Smoothing to adjust video frame sensor model sequentially. His 

research showed the detailed information about photogrammetric application of 

Kalman Smoothing and the conducted experiments showed that Kalman 

Smoothing is more computationally efficient than the bundle adjustment.  
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CHAPTER 3. THE DESCRIPTION OF EQUIPMENT AND DATA 

3.1 Video Camera Equipment 

Fryer (1996) defined Photogrammetry as “The science, and art, of 

determining the size and shape of objects as a consequence of analysing images 

recorded on film or electronic media” (p.1). The Frenchman Laussedat, who is 

considered as the father of close range photogrammetry, created a map of Paris 

in the 1850’s with the photographs taken from the rooftops of Paris (Fryer, 1996). 

Silver halide film based camera was used as the sensor for many decades and 

the cathode ray tube was first used for electronic image capture imaging in 1923 

(Theiss, 2000). Video camera technology has advanced dramatically with the 

now widespread of solid state image sensors such as the CCD (Charge Coupled 

Device) and CMOS (Complementary Metal Oxide Semiconductor). Such solid 

state sensors provide excellent geometric stability, good dynamic range, 

acceptable color response, and direct recording of digital image data. 

Automatic relative orientation can be performed on any pair of frame 

images regardless of whether captured as still camera imagery or as frames from 

a video stream. However, it’s difficult to take sequential image frames by a still 
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camera on a vehicle considering the need for reasonable and constant overlap. 

Therefore, a video camera was chosen as data acquisition instrument since by 

sampling selected frames, it can provide images with reasonable overlap. 

Although video cameras are still behind still camera technology in the view of 

resolution, a modern video camera such as a full high definition (HD) camcorder 

supports the resolution of up to 1920×1080. Most modern video camera uses a 

CCD or CMOS sensor. CCD and CMOS are different in the mechanisms of 

reading the signal, such that CMOS is composed of a MOS switch and a sensing 

line, while a CCD is composed of detector sites and CCD shift registers. They 

each have their own advantages and disadvantages, but a modern consumer 

camcorder with full HD resolution has proved to be reliable instrument for the 

suggested research.  

SONY HDR CX 100 camcorder (Figure 3.1) used for data acquisition has 

a 0.2 inch CMOS sensor and records video in the format of MPEG4 AVC/H.264, 

which is one of the standards for video compression. The camcorder supports full 

HD which has ratio of 16:9. The lens type is Carl Zeiss Vario-Tessar which has a 

nominal focal length of 2.5-62.5 mm, diameter of 30 mm, and aperture range of 

F1.8-2.2. The video files can be accessed and captured by the software Picture 

Motion Browser (SONY, 2011), which has been developed by SONY. The 

software upsamples images to three megapixels (2304×1296) when capturing 

image frames from video. Any effect of upsampling will be handled by camera 

calibration.  
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3.2 Video Data Description 

The data for camcorder calibration were acquired at the University of 

Texas, Austin, and the Main building in the bell tower area was chosen for 

calibration because it has lot of three dimensional features and the building can 

be seen without any obstacles in front of it. The video was taken in superb 

weather conditions in the midday. 11 frames with diverse orientation angles at 

different positions were acquired to estimate the interior orientation parameters. 

These are the principal point offsets (x0, y0), the focal length (principal distance) 

(f), radial distortion (K1, K2, K3) and tangential distortion (P1, P2). Since the 

equivalent vidicon tube diameter is 0.2 inch, the sensor diagonal was 

approximated by 2/3 of 0.2 inch. The inner orientation parameters will be carried 

Figure 3.1 SONY HDR CX 100 Camcorder 
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in pixel units, but the absolute dimensions in length units establish the conversion 

from pixels to millimeters. Considering the aspect ratio and absolute dimensions, 

the inner parameters were initially approximated as in table 3.1.  

 

Table 3.1 Initial Approximation of Camera Calibration Parameters 

Parameter 
x0 

(pixel) 
y0 

(pixel) f 
(pixel) k1 k2 k3 p1 p2 

Initial 
(approximation) 0 0 2341.67 0 0 0 0 0 

 

Also, additional videos of different calibration targets for camera 

calibration were taken inside the Geomatics lab in the Civil Engineering Building. 

This was done twice and eight images were captured at each session. The 

camera parameters estimated are the same as described above. 

A terrestrial and an aerial video stream were taken for the strip formation 

experiment. For terrestrial data, the candidate criteria were as follows. For a 

building scene, the building should be horizontally long enough to take a lengthy 

series of photos. Also, the exterior of the building should have enough well 

defined points for unambiguous identification and measurement. Lastly, there 

should be no blocking object in the foreground of the scene because the camera 

parameters were calculated at the hyperfocal distance (infinity focus). It was 

found out that the Purdue ITAP License building satisfied the above criteria 

because it is long horizontally, the exterior material is brick which has lot of 

detailed points, and there were no parked cars or obstacles during the video 
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capture except for a few trees which are inevitable for many buildings. The car 

moved in constant velocity mode without any acceleration to make the speed of 

the car as constant as possible. Figure 3.2 shows drive path during terrestrial 

data acquisition.  

 

 

 

 

 

 

 

 

 

 

 

 

 

For aerial data, the candidate area was chosen considering the existence of 

abundant urban features such as buildings, roads and pavement. Also, the 

Purdue Airport traffic pattern was considered so that the data collection flight 

should not interfere with other aircraft traffic. Since the relative orientation results 

will be used for absolute orientation eventually as an absolute check on accuracy, 

Figure 3.2 Drive Path for Terrestrial Video Data Acquisition 
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the existence of GPS control points for the candidate area was also considered. 

The Purdue University Campus, West Lafayette, IN, which fulfilled all of the 

above conditions, was chosen as the target area for the aerial data experiment.  

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.3 shows the flight path (black line) of the aircraft for the imagery 

collection. Video was taken in clear weather conditions with no snow on the 

ground. A High wing Cessna aircraft was used as the collection vehicle so that 

the scenes would not contain any part of the aircraft wings. The aircraft banked 

frequently during flight so that the data should be taken conveniently. The 

camera was held by hand, looking out through the opened passenger window. 

Figure 3.3 Flight Path for Aerial Video Data Acquisition 
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The video was taken from taking off to landing and the most useful data was 

selected among whole dataset. 

 

3.3 Control Point Acquisition by GPS Surveying 

To assess the accuracy of the relative orientation results, and to get the 

results in the reference ground coordinate system, an absolute orientation 

procedure is required. To implement absolute orientation, we need control point 

information. Also, we will perform a bundle block adjustment with minimal 

constraints to compare with the results from relative and absolute orientation. We 

need control point information for all of these tasks. Further, we will divide the 

control points into two groups so that we can use one group as control points and 

another group as check points. This has the virtue of making the evaluation 

independent of the fitting process. We can implement two sets of experiments by 

exchanging the control and check points. Therefore, we need a sufficient number 

of control points on the images. There were existing control point datasets which 

were acquired by Real Time Kinematic (RTK) GPS surveying as shown by 

triangle with dot in Figure 3.4. These were collected using the recently 

implemented Indiana Real Time Network operated by the Indiana Department of 

Transportation. However, they were not uniformly distributed on the images and 

were not sufficient to use as both control and check points. Therefore, a new 

GPS survey was performed by both static and RTK with the equipment shown in 

figure 3.5. For static surveying, a minimum of 15 minutes were required for the 

recording time and it was shown later that 15 minutes were enough for an 
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acceptable solution in this area. For the RTK survey, minimum of 3 minutes was 

required for the recording time. The static GPS surveying data were sent to the 

Online Positioning User Service (OPUS, National Geodetic Survey, 2012) 

maintained by National Geodetic Survey (NGS) of the National Oceanic and 

Atmospheric Administration (NOAA) and OPUS returned the position result and 

corresponding uncertainty. Typical one sigma precision of each coordinate 

component is 1-2 centimeter. This is possible using a dual frequency receiver 

and using the phase observable and corresponding mixed integer estimation to 

resolve the phase ambiguities. Six new control points were measured twice by 

static GPS surveying and three new control points were measured by both static 

and RTK GPS Surveying. Figure 3.6 shows the setup for each survey type and 

Table 3.2 shows the precision as standard deviations from the surveying result. 

The typical precision was about 1cm which is more than satisfactory to be used 

as control points for this project, where the nominal ground pixel size from the  

aerial (oblique) imagery is 1.69 meter (0.3 meter foreground, 3.0 meter 

background). 
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 Table 3.2 The Precision of GPS Survey 

 σx 
(m) 

σy 
(m) 

σz 
(m) type σx 

(m) 
σy 
(m) 

σz 
(m) type 

1 0.004 0.004 0.021 static 0.004 0.004 0.019 static 

2 0.008 0.004 0.013 static 0.001 0 0.001 RTK 

3 0.006 0.004 0.024 static 0.001 0.001 0.001 RTK 

4 0.005 0.003 0.021 static 0.004 0.004 0.03 static 

5 0.004 0.003 0.013 static 0.005 0.008 0.022 static 

6 0.004 0.003 0.015 static 0.006 0.004 0.03 static 

7 0.006 0.005 0.025 static 0.007 0.005 0.016 static 

8 0.002 0.005 0.022 static 0.006 0.005 0.022 RTK 

9 0.004 0.005 0.04 static 0.001 0.001 0.001 static 
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Figure 3.4 GPS Surveying Plan 
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Figure 3.5 Top: Static GPS Antenna and Receiver. Bottom: RTK Receiver, 

Antenna, Data Collector, and Cellular Data Device 
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Figure 3.6 Static (Left) and RTK (Right) GPS Surveying 
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CHAPTER 4. AUTOMATED RELATIVE ORIENTATION 

4.1 Interest Point Detection 

The first step of the relative orientation procedure is interest point 

detection. One of the most notable interest point detectors is the Harris corner 

detector (Harris et al, 1988), by which a number of other corner detectors were 

influenced. Förstner and Gulch (1987) independently developed virtually the 

same detector as Harris, at about the same time. Harris Corner detector 

procedure is described in equation (4.1) – equation (4.3). 

 

                                                                                                                          (4.1) 

 

 

Where        and       are defined below and     represents the image inside the 

window, W.      and       represent the gradient in x and y directions as in equation 

(4.2).      represents the image and       represents a window in the image.  

 

 

                                                                                                                          (4.2) 
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Let λ1, λ2 be the eigenvalues of matrix M. If both λ1, λ2 are small, it means 

a flat region. If one is large and the other small, it means an edge. If both λ1, λ2 

are large, it means a corner. The cornerness metric can be defined as equation 

(4.3). We know that trace of a matrix is the sum of it eigenvalues, and the 

determinant is the product. 

 

)2()()det(Cornerness 2
221

2
121

2 λλλλλλ ++−=−= ktracek MM      (4.3) 

 

Where det(M) is the determinant of matrix M, trace(M) is the trace of matrix M, 

and the value for k as used was 0.04, as per Bruce and Kornprobst (2009) . The 

expression will be large when λ1 and λ2 are about the same size. 

One of the drawbacks of the Harris corner detector is that it is not invariant 

to scale and the position of the corner will change as the scale changes. To 

detect the corners as consistently as possible, a more reliable, scale invariant 

corner detector was sought. Two most common kernels for achieving some 

degree of scale invariance are DoG (Difference of Gaussian) and LoG (Laplacian 

of Gaussian).  DoG was suggested by Lowe (1999) and can be expressed as 

equation (4.4). 

 

   (4.4)   

 

Where G is 

 

),,(),,( nn yxGkyxGDoG σσ −=

 



39 

 

 

   (4.5)  

 

And Mikolajczyk and Schmid (2001, 2004) expressed LoG as interest point 

detection kernel by equation (4.6). 

 

   (4.6) 

 

Where G is described in equation (4.5) 

 

And Mikolajczyk and Schmid (2001, 2004) showed the Harris-Laplace 

Corner Detector algorithm, which uses LoG as characteristic scale criteria. The 

Harris Laplace Corner Detector Algorithm was chosen as the base platform for 

corner detector algorithm because it estimates cornerness measure of points 

which have maximum LoG through variant scales. In this research, we 

considered a color image which has red, green and blue bands. Therefore, the 

suggested step is different than the research of Mikolajczyk and Schmid (2004) 

in the view of handling multi bands. The suggested algorithm consists of two 

steps. The first step is the multi-scale corner detection and the second step is an 

iterative selection of the characteristic scale and the cornerness measure of the 

corner points. The first step is described as follows. 
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a) Decide the integration scale and differentiation scale as equation (4.7) and 

(4.8). The integration scale determines current scale where Harris points are 

detected and differentiation scale determines search space for corner. 

            

 (4.7) 

 (4.8)  

 

b) Calculate ),(),,( DD XX σσ yx LL for each band of image by Gaussian Kernel 

with scale Dσ . First, set the size of windows as equation (4.9). 

(4.9) 

 

Then, create Gaussian derivative masks as equation (4.10) and (4.11). 

 

            (4.10) 

                                   

    (4.11) 

 

Then implement convolution to each band of images as equation (4.12) and 

(4.13). 

 

   (4.12) 
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               (4.13) 

 

c) Calculate second moment matrix of color image. Mikolajczyk and Schmid 

(2004) defined second moment matrix for monochrome image as equation (4.14).  

   

  

 (4.14) 

 

Stöttinger (2007) described the second moment matrix for the colored image as 

equation (4.15) and it was used as the second moment matrix for cornerness 

measure in this research. 

 

  (4.15) 

 

 

 To implement equation (4.15), set the window size as equation (4.16) 

 

  (4.16) 

 

Then implement convolution by the Gaussian filter with above size and standard 

deviation     . For example, the [1,1] element of                       can be estimated as 

equation (4.17). 
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  (4.17) 

 

d) Calculate the cornerness metric by equation (4.18) and choose points which 

have cornerness larger than the given threshold. 

 

  (4.18) 

 

The procedure for corner detection was shown from a) to d) as the first step. The 

locations of the corner points are decided only in the first scale. The second step 

from e) to h) is composed of the calculation of the LoG of image at each scale 

and the verification of maximum LoG attainment and decision of cornerness 

measure for each detected point. 

 

e) For each corner from d), calculate the LoG for each point as equation (4.15). 

To implement equation (4.15), we created rotationally symmetric Laplacian of 

Gaussian filter of size of equation (4.15) with standard deviation     .  Then, we 

filtered each band of image with created LoG filter.  The LoG of entire band was 

calculated as equation (4.19) 

 

  (4.19) 

 

f) If n=1, calculate LoGn+1 and compare with LoGn of each detected point. If LoGn 

is larger, then we keep this cornerness measure estimated in this scale. 
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g) If 1<n<Nmax (maximum number of step), calculate LoGn-1, LoGn+1 and compare 

with LoGn of each point. If LoG of certain scale is the largest, then we keep the 

cornerness measure from this scale.  

 

h) Go to a) and increase n by 1 and repeat a) – g) until n=Nmax 

 

i) Finally each point has a cornerness measure estimated in characteristic scale 

where points have maximum LoG.  

 

4.2 Matching by Cross Correlation & RANSAC 

According to Gonzalez, Woods and Eddins (2004), the best match of w(x,y) 

in f(x,y) is the location of the maximum value in the resulting correlation image 

when we treat w(x,y) as a spatial filter and compute the sum of products (or a 

normalized version of it) for each location of w in f. Therefore, we created n by n 

pixel windows for each corner in the first image in the sequence, then computed 

the correlation at each point in the second image, and extracted maximum values 

in both directions from and to the second image. The correlation at a point can be 

computed as equation (4.20), 
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Where c is the correlation, u and v are a digital number (0-255 for 16 bit image) 

of each pixel. 

 

 The cross correlation was implemented in both ways (left image to right 

image, then right image to left image) and a pair of points in the first and the 

second image which have the largest cross correlation in both ways were 

decided as the matched points. As O’Neill and Denos (1996) outlined, image 

pyramids were created for n steps by downsampling image by 2n-1 to make cross 

correlation matching more robust. Then, matching by cross correlation was 

implemented n times to minimize false matching. Next, the points which survived 

multi-scale cross correlation matching were decided. However, it was found out 

that there were still falsely matched interest points between two images, and 

those falsely matched points were removed by Random Sample Consensus 

(RANSAC). RANSAC was developed as a paradigm for fitting a model to 

experimental data to detect inliers and outliers (Fischler & Bolles, 1981). By 

iterating N times, the parameters of the model are estimated by randomly picked 

minimum data, and the best model is chosen as giving the most inliers within the 

threshold. The iteration number N is described as equation (4.21). 

                                                                                                                                           

  (4.21) 
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Where e is the probability that a point is an outlier, S is the number of points in a 

sample, N is the number of iterations, and p is the desired probability in a good 

sample. 

                                                                                                                                    

 The model for RANSAC is the coplanarity condition expressed as 

essential matrix, which is described in chapter 4.3. By randomly selecting eight 

pairs of points, the parameters of the essential matrix can be calculated by 

equation (4.38) at each iteration. We can find the essential matrix which gives the 

most number of inliers given threshold t such as equation (4.22).  
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explained in section 4.5.  

 

Then outliers which do not satisfy equation (4.22) were removed and the only 

inliers were determined as final matched points. The inliers were input to 

following relative orientation algorithm. 
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4.3 Relative Orientation by Eight Point Algorithm 

The exterior orientation parameters (ω, φ, κ, bx, by, bz) can be estimated 

by the eight point algorithm (Theiss, 2000) with the essential matrix (E). Given 

two vectors of a and b,  
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If we arrange the elements of b


 into skew-symmetric matrix, 
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aKab 
=×        (4.25)  

 

The collinearity equation is, 
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Where XL, YL, ZL are location of the camera in the ground coordinate system, x0, 

y0, f are principal point offset and focal length, k is scale factor, and M is the 

rotation matrix of the camera such as equation (4.27). 
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Where κφω ,, is the rotation about X, Y, and Z axis. 

 

Therefore from equation (4.26),  
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The coplanarity condition between 1a and 2a is  
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Where Kb is equivalent with K in equation (4.24). 
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Where T
2b1 MKME = . 
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The matrix T
2b1 MKME = is called the essential matrix. The fundamental matrix 

can be computed as 
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Then coplanarity condition becomes, 
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And 
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Where Eij is the essential matrix defined by image i and j 
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Where eij is the (I,j)th element of the essential matrix. 

 

And equation (4.38) is equivalent to equation (4.39). 
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Since there are eight parameters in equation (4.39), eight observations 

give a unique solution to the essential matrix. According to Horn (1990), the 

baseline elements can be computed from equation (4.40) and the rotation 

elements can be computed from equation (4.41). 
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1         (4.40) 

 

Where b = [bx by bz]T  . 

 

BEERbb −=⋅ TCofactors )()(        (4.41) 

 

Where B is equivalent to K in equation (4.24) and R is the rotation matrix 

equivalent to M in equation (4.27).  
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Although the eight point algorithm is simple and straightforward, it gives 

multiple solutions and it is not as robust as least squares adjustment of 

coplanarity equation because of the small number of points. However, it could be 

used as an initial approximation of parameters for camera calibration by 

geometric reasoning and confirming by convergence and iteration number check. 

 

4.4 Relative Orientation by Coplanarity and Scale Restraint Conditions 

The relative orientation by coplanarity and scale restraint conditions can 

be explained as follows. 

 

The baseline vector is 
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And for the image space coordinate for each pair of image, 
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Then, coplanarity condition becomes equivalent to equation (4.44) 
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For the first model, we can fix one (bx) of six exterior orientation 

parameters and unknown parameters are five (by, bz, ω, φ, κ). Equation (4.44) 

can be solved by the General Least Squares approach, whose condition 

equation is the form of 

 

fBΔAv =+           (4.45) 

 

and 

 

][ 2211 yF/xF/yF/xF/A ∂∂∂∂∂∂∂∂=       (4.46) 

 

Where 2211 y,x,y,x  are the coordinates of corresponding points in a pair of 

images. 
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Where v  is the residual vector for  2211 y,x,y,x  and Δ  is the corrections to the 

parameters. 

 

From the second pair of images, we have to include the scale restraint 

equation for at least one point and the number of unknown parameters becomes 

six including bx.  For three image rays vectors (equation (4.49) – equation (4.51)), 

the three ray intersection condition becomes equation (4.53).  
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To compose condition equation, 

 

),( lfa Jacobian=           

),( Δfb Jacobian=          (4.54) 

Where l is the vector of observations, Δ is the vector of parameters. 

 

The scale restraint equation can also be expressed in computer vision 

terminology. According to Forsyth and Ponce (2011), the minimum distance 

between the rays R1, R2 and R3 is reached at the points P1, P2 and P3 so that 

the line joining each point is perpendicular to R1, R2 and R3 if they do not 

intersect as shown as equation (4.55). 

 

𝑂1𝑃1���������⃗ = 𝑧1𝑖𝑂1𝑝1���������⃗ = 𝑂1𝑂𝚤���������⃗ + 𝑧𝑖𝑂𝚤𝑝𝚤�������⃗ + 𝜆𝑖�𝑂1𝑝1���������⃗ × 𝑂𝚤𝑝𝚤�������⃗ �𝑓𝑜𝑟 𝑖 = 2,3     (4.55) 
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If cameras are calibrated and the projection matrices of the second and the third 

cameras are (𝑅2𝑇 − 𝑅2𝑇𝑡2) and (𝑅3𝑇 − 𝑅3𝑇𝑡3), equation (4.55) can be expressed in 

the first camera’s coordinate system as equation (4.56). 

 

𝑧1𝑖 = 𝑡𝑖 + 𝑧𝑖𝑅𝑖𝑝𝑖 + 𝜆𝑖(𝑝1 × 𝑅𝑖𝑝𝑖)  𝑓𝑜𝑟  𝑖 = 2,3.      (4.56) 

 

Then, the scale restraint condition can be expressed as 𝑧12 = 𝑧13. 

And the condition equation becomes equation (4.57). Equation (4.57) will 

be explained in section 5.1 in more detail. Equation (4.57) is solved by nonlinear 

General Least Squares method from equation (4.58) to equation (4.65). 
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Where A, B, and F are the matrix presented in coplanarity condition. a, b and f 

are the matrix presented in scale restraint condition. Φ is the state transition 

matrix. V is residual vector and Δ is parameter vectors 
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ΣQ 2
0

1
σ

=           (4.58) 

 

Where Q is cofactor matrix, Σ is covariance matrix and σ0 is the reference 

standard deviation. We assumed one pixel of variance of each observation and Σ 

became the identity matrix. 

 

Then, the equivalent cofactor matrix is 

 

TAQAQe =           (4.59) 

 

Then normal equation becomes equation (4.60). 

 

BWBBQBN ee
TT == −1         (4.60) 

 

fWBt e
T=           (4.61) 

 

Then update to the parameter becomes equation (4.62). 

 

tNΔ 1−=           (4.62) 

 

The residual can be calculated by equation (4.63). 
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)( BΔfWQAv e −= T          (4.63) 

 

The observations and parameters can be updated like equation (4.64) 

 

ΔXXvll 00 +=+= ,ˆ         (4.64) 

 

And the objective function is like equation (4.65). 

 

Wvvφ T=           (4.65)  

 

4.5 Camera Calibration 

In this research, the camera was calibrated by the Unified Least Squares 

approach with initial approximation by relative orientation algorithm. The exterior 

orientation parameters of each image and the object space coordinate of target 

points and camera parameters such as principal point offset (x0, y0), focal length 

(f), radial lens distortion (K1, K2, K3), and tangential lens distortion (P1, P2) were 

carried as parameters. The initial approximations of camera parameters were 

chosen as nominal values. However, the exterior orientation parameters and 

object space coordinate couldn’t be estimated by simple relative orientation with 

the fixed value of bx and the zero initial approximation of the rest of parameters 

since the image was rotated by a large amount of angles. Therefore, an eight 
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point algorithm was applied to get the initial approximation of exterior orientation 

parameters for relative orientation.  

Four possible sets of exterior orientation were calculated by the eight point 

algorithm between each image pair and their ambiguity was resolved by 

geometric reasoning. Once exterior orientations are initially approximated, they 

were confirmed by nonlinear estimation in the conventional relative orientation 

algorithm with General Least Squares. Now, we have the initial approximation of 

exterior orientation parameters for calibration. Since we know the initial 

approximation of interior orientations and exterior orientations, we can initially 

approximate model space coordinate of each measured points in the first pair of 

stereo images by intersection from equation (4.66) – (4.67). 

 

)()()(
)()()(

)(
33023013

31021011

fmyymxxm
fmyymxxm

ZZXX LL −+−+−
−+−+−

−=−      (4.66) 

 

)()()(
)()()(

)(
33023013

32022012

fmyymxxm
fmyymxxm

ZZYY LL −+−+−
−+−+−

−=−      (4.67) 

 

Where (XL, YL, ZL) is the local origin of object space coordinates at the 

perspective center, mij is the (i, j) element of rotation matrix, (x0, y0) is the 

principal distance, f is the focal length. 

Now, calibration could be implemented by the condition equation such as 

equation (4.68) – equation (4.72) by carrying interior (x0, y0, f, K1, K2, K3, P1, P2) 
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and exterior orientation (XL, YL, ZL, ω, Φ, κ) and object space coordinate (X, Y, Z) 

of corner points as parameters. 
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)()()( 131211 LLL ZZmYYmXXmU −+−+−=                (4.70) 

 

)()()( 232221 LLL ZZmYYmXXmV −+−+−=                (4.71) 

 

)()()( 333231 LLL ZZmYYmXXmW −+−+−=                         (4.72) 

 

Where K1, K2, K3 are the coefficients of radial distortion, P1, P2 are the 

coefficients of de-centering distortion. 

 

By using minimal constraints of seven exterior orientation parameters, we 

can use the Unified Least Squares approach to solve the problem. In this 

research, the variance for (XL1, YL1, ZL1, 111 ,, κϕω , XL2) were assumed to be 1.0e-

12 and the rest of them were given by 1.0e+12. The unknown parameters - 
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interior orientation parameters (x0, y0, f, K1, K2, K3, P1, P2), exterior orientation 

parameters of each image ( iii κφω ,, , XLi, YLi, ZLi) and the object space 

coordinates (Xi, Yi, Zi) of each measured points can be estimated by Unified 

Least Squares. According to Mikhail et al. (2001), the Unified Least Squares 

approach assumes that all the variables of the mathematical formulation are 

observations. For the composition of weight matrix to each observation, if an 

observation has large variance, they are assigned zero weight. Otherwise, infinity 

of weight can be assigned to observation for zero variance observation such as 

constant.  

The Unified Least Squares procedure is explained in Mikhail et al. (2001) 

as equation (4.73) to (4.81). Since estimated parameters are regarded as 

estimated observations, equation (4.73) can be composed. 

 

xvlΔxx x
0 +=+=ˆ                     (4.73) 

 

xlxfΔv 0
xx −==−                     (4.74) 

 

Where 0x , xl  are vector of parameter approximation and parameter observations. 

 

Combining condition equation of General Least Squares and equation (4.75) 

gives 
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fΔBvA  =+                       (4.76) 

 

And total cofactor matrix becomes 
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4.6 Absolute Orientation 

In this research, two-step procedure with relative and absolute orientation 

was chosen for orienting images. In this two-step procedure, the absolute 

orientation is implemented to fit the model from relative orientation to the real 

world ground control coordinates system. The absolute orientation procedure 

begins with the calculation of object space coordinates of control points by 

intersection using the exterior orientation parameters estimated from relative 

orientation. For the first step of the intersection procedure, the image space 

coordinate was measured for control points. Then X, Y, and Z coordinates in the 

object space coordinate system can be calculated by solving equation (4.66) – 

(4.67). The second step is the transformation between intersected coordinates 

and ground coordinates of control points. We can use either seven-parameter or 

polynomial transformation.  

According to Mikhail et al. (2001), seven-parameter transformation 

contains a uniform scale changes (µ), three rotations, β1, β2, and β3 and three 

translations, t1, t2 and t3.  Equation (4.82) shows the general form of seven 

parameter transformation. 

 

tMxy += µ                    (4.82) 

 

 Where M is the rotation matrix described in equation (4.83) and t is the vector of 

three translations. 
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In our case, the vector x represents the intersected coordinates and vector 

y represents the coordinates of control points. And the condition equation 

becomes equation (4.84) 

 

0=−+= ytMxµF                    (4.84) 

 

The second method for absolute orientation is the polynomial 

transformation. The most well-known polynomial transformation is Shut 

adjustment developed at the National Research Council of Canada (NRC). 

(Mikhail et al., 2001) and the condition equation is described as equation (4.85) – 

(4.87).  
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By absolute orientation either with seven parameter transformation or 

polynomial transformation, we can estimate misclosures at check points. We will 

compare the misclosures from bundle block adjustment with minimal constraints, 

seven parameter transformation and polynomial transformation. In practice, the 

order of the polynomial should be chosen by strip length and the amount of 

control point data. Low redundancy polynomial estimation produces unexpected 

undulations away from the support points. 

 

4.7 Bundle Block Adjustment 

According to Mikhail et al. (2001), a single image is regarded as a bundle 

of image rays and a position and orientation of such a bundle can be estimated 

by bundle block adjustment with given ground control information and the rays in 

the bundle. The bundle adjustment is also regarded as the most accurate and 

flexible method of triangulation. We implemented three kinds of bundle block 

adjustment. The first case is bundle block adjustment for calibrated dataset. In 

this case, we carry exterior orientations of camera, ground control points with 

known accuracy and pass point information as parameters. This is the most ideal 

case because camera parameters are estimated in a robust environment and 

control points information are most realistic. However, it is the method of high 
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cost because control point information acquisition is a very labor intensive and 

tedious procedure. The second case is the bundle block adjustment with self 

calibration. In this case, we carried principal point offset, focal length, radial lens 

distortion, tangential lens distortion as additional parameters. Although this 

procedure does not require prior information of camera parameters, it still 

requires a large number of control point information. The third case is bundle 

block adjustment with minimal constraints which requires seven fixed parameters. 

After bundle block adjustment, we can transform the result to the ground 

coordinate system by seven parameter transformation as described in chapter 

4.6. This procedure has same condition with the procedures or relative and 

absolute orientation approaches suggested in this research. Therefore, bundle 

block adjustment with minimal constraints and seven parameter transformation 

will be the criteria of accuracy assessment of the suggested research. All of the 

three types of bundle block adjustment will be implemented and the accuracies 

will be shown in both the image space as residuals and ground space by 

misclosures at check points. The control point information was acquired by GPS 

surveying as described in section 3.3 and pass point information was acquired in 

GIS environment. Pass points should be included to make stronger geometry. 

Therefore, the pass points were chosen so that the locations should be as 

uniformly distributed on the entire image space as possible. For the 

measurement in GIS environment, georeferenced aerial photography with 1m 

resolution was used as reference data and the location of pass points were 

measured. Bundle block adjustment is implemented by Unified Least Squares 
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and the condition equations are equation (4.68) and equation (4.69). The interior 

orientation parameters were estimated by camera calibration procedure 

described in chapter 4.5 and they were used in condition equations for the 

experiment with calibrated camera.  

 

4.8 Post Adjustment Statistics 

After least squares adjustment, we can assess the precision of the result 

by post adjustment statistics. According to Bethel (2004), the post adjustment 

statistics are composed of two main parts. The first part is the global test and 

confidence interval estimation, and the second is the confidence region 

estimation by error ellipses or ellipsoids. For the global test, the test statistic is 

computed by equation (4.88). 

 

 

2
2
0

~ r

TWvvstatisticTest χ
σ

=                   (4.88) 

 

where v is the residual vector, W is the weight matrix and σ0 is the reference 

variable.  

 

The chi square test is performed for test statistics with null hypothesis of 

Equation (4.89) and alternate hypothesis of Equation (4.90). 
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2
0

2
0 : σσ =H                     (4.89) 

 

2
0

2
0 : σσ >H                     (4.90) 

 

If null hypothesis is accepted, we can use the covariance matrix as the original 

form as equation (4.91) and proceed to Z test to estimate confidence interval.  

 

ΔΔΔΔ QΣ 2
0σ=                     (4.91) 

 

For the confidence region estimation, the Eigen value and Eigen vector should 

be calculated. Eigen value decides the size of error ellipsoid in major and minor 

axes and Eigen vector decides the angle of those axes. For example with semi 

major axis,  

 

1
' λσ =x                     (4.92) 

 

Then, the size of semi major axis become Equation (4.93) 

 

'
1 xCL σ⋅=                     (4.93) 

 

where C can be estimated by equation (4.94) 
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2
,PnC χ=                                 (4.94) 

 

where χ is the inverse of the chi square cumulative distribution function. 

 

For rejected null hypothesis, we should use alternate form of covariance matrix 

such as equation (4.95) and proceed to t test to estimate confidence interval. 

 

ΔΔΔΔ QΣ 2
0ˆˆ σ=                      (4.95) 

 

For the confidence region estimation, most of procedure is same with the case of 

accepted hypothesis except equation (4.94). For the rejected case, the inverse of 

F cumulative distribution function is used to estimate C as described in Equation 

(4.96). 

 

PdofnFC ,,2=                            (4.96) 

 

It should be noted that the covariance matrix should be estimated differently for 

KF compared to SLS or CLS. For SLS and CLS, cofactor matrix can be 

estimated from the inverse of Normal equation such as Equation (4.97). 

 

1−= NΔΔQ                      (4.97) 
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For KF, Dolloff (2012) derived the covariance matrix (Pmulti) as below equation 

(4.98) for the vector [ ]Tqpkqkk XXX +
++

+
+

+ . 
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Where, +
kP  is the updated estimate’s covariance, k, k+q and k+q+p are times. 

qk
kA +  is computed from equation (4.99) and (4.100) 

 

)()()( 112111 ++−+−+−+−+++
+ −Φ−Φ−= kkqkqkqkqkqkqk

qk
k HGIHGIHGIA    (4.99) 

 

Where Gk is Kalman gain, Hk is the partial derivative of condition equation to the 

parameter vectors (equivalent to B matrix in the least square), and Φ is the state 

transition matrix.  
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CHAPTER 5. ESTIMATION STRATEGIES 

 Once we have matched points from image pairs, we can estimate five 

exterior orientation parameters ( κφω ,,,, zy bb ) for the first model and six exterior 

orientation parameters ( κφω ,,,,, zyx bbb ) from the second model. For the first 

model, one of the six orientation parameters has to be fixed and bx was chosen. 

The relative orientation by coplanarity and scale restraint condition was explained 

in section 4.4. To solve the relative orientation problem, three approaches were 

considered. The first method is Simultaneous Least Square (SLS), the second is 

Cantilever Least Square (CLS), and the last is Kalman Filter Least Square (KF).  

 

5.1 Simultaneous Least Squares 

In SLS solution, the relative orientation problem with coplanarity and scale 

restraint conditions for entire models are solved at the same time by General 

Least Squares. Equation (5.1) shows the exemplary equation for n epochs of 

models. Note that this includes equations for the dynamic model, but it is 

estimated in batch mode rather than sequentially. 
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where A, B, and F are the matrix presented in the coplanarity condition. a, b and 

f are the matrix presented in scale restraint condition. Φ is the state transition 

matrix. V is residual vector and Δ is parameter vectors. For example, A3 and a3 

can be solved by equation (4.46) and (4.55). And B3 and b3 are represented as, 
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And the weight matrix can be expressed as, 
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Where Wi is the weight for coplanarity condition, wi is the weight for scale 

restraint condition, wtk is the weight for state transition, which is the inverse of 

the covariance matrix estimated from trajectory information by equation (5.5). 

 

2
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            (5.5) 

 

Where X is the exterior orientation parameters, k is the epoch number. 

 

5.2 Cantilever Least Squares 

 The exterior orientation parameters can be estimated sequentially and 

they can be added to the parameters of the previous model to solve relative 

orientation of the next epoch. This process is called Cantilever Least Squares 

(CLS) because it shows cantilever effect by the accumulation of systematic error. 
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For example, we can estimate five exterior orientation parameters such as 

11111 ,,,, κφωzy bb by solving equation (5.6). 

 

1FΔBVA 1111 =+        (5.6) 

Where A1, B1, F1 are from the coplanarity condition, and 
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 After we estimate five orientation parameters for the model by General 

Least Squares, we can estimate six orientation parameters for the second model 

by solving equation (5.7) by the General Least Squares. 
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Where A2, B2, F2 are from the coplanarity condition, a2 b2, f2 are from the scale 

restraint condition and 
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A2 and a2 can be solved as in equation (4.46) and (4.55). B2 and b2 are shown 

in equation (5.8) and (5.9). 
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And 
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The exterior orientation parameters from next models can also be estimated by 

the same manner. 

 

5.3 Kalman Filtering Least Squares 

 The adaptation of KF to strip formation by relative orientation is a 

contribution of this proposed research. For KF in this experiment, linearized 

Kalman Filtering with dynamic model was used.  The condition equation for KF is 

same with CLS except equation (5.8). In KF, the coplanarity condition can be 

composed by the current and the next model as shown in equation (5.10). 
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Grewal and Andrews (2001) described discrete linearized Kalman Filtering and it 

was applied to this experiment. Table 5.1 shows Grewal and Andrews’ (2001) 

equations and those applied in this experiment. 

 

Table 5.1 The description of matrix of linearized Kalman Filtering 
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Table 5.1 Continued. 
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It should be noted that equation (4.98) was used for post adjustment 

statistics for Kalman Filtering. In this research, the type of Kalman Filtering is 

discrete time, nonlinear, linearized Kalman Filtering, and fixed interval smoothing 
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was used as the smoothing algorithm. Figure 5.1 shows the types of Kalman 

Filtering and Smoothing. The hatched block is the type of Kalman Filtering and 

Smoothing algorithm used in this research.  

 

 

 

 

 

 

 

 

 

 

 

 

 

For the linearized perturbed trajectory model used in this research, the white 

noise term can be estimated by equation (5.11) since the state transition term in 

the Linearized approximation equation in table 5.1 is the identity matrix. 

  

1kk xx −− −= δδ1kw   (5.11) 

 

Therefore, 

Figure 5.1 The types of Kalman Filtering 

(can also be done without smoothing)  
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And covariance of parameters can be estimated from SLS. It should be noted 

that the state variables in a linearized Kalman filtering are incremental quantities, 

and not total quantities. And Kalman Filtering algorithm was applied forward and 

backward iteratively until we could get stable solution for the parameters. This 

process is called forward and backward Kalman smoothing and it is explained as 

follows using the notation of Grewal and Andrews (2001). 

 

(a) Computation of Kalman gain 

Kalman gain is computed by equation (5.13). 
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(b) Update of estimate with measurement zk 

The parameters are updated like equation (5.14) with measurement zk and 

Kalman gain Kk. 

 

)ˆˆˆ −− −+= kkkkkk xH(zKxx                                                                             (5.14) 

 

(c) Computation of Error covariance for updated estimate 
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The error covariance can be computed like equation (5.15) 

 

−−= kkkk )PHK(IP                                                                                           (5.15) 

 

(d) Projection ahead 

Then, the parameters and the error covariance matrix can be predicted like 

equation (5.16) and (5.17) 
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Where Φk is state transition matrix, Qk is the covariance matrix of state transition 

equation for white noise term 

 

(e) Computation of smoothing gain 

The smoothing gain is computed as equation (5.18). 

 

                                    (5.18)     

                                        

 

(f) Updates of the estimates of the increment of the parameter                                               
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Then, updated estimates can be computed as in equation (5.19). 

 

     (5.19) 

                                                                                                                                     

(g) Computation of covariance matrix 

The covariance matrix is computed by 

 

     (5.20) 

                                                                                                                                    

(h) State vector update 

Update state vector elements for each frame as 

 

     (5.21)                                                                                                                        

 

(g) Convergence check 

Compute the objective function as equation (5.22) 

Wvvφ T=                                                                                                           (5.22) 

 

Compute the percentage change in the objective function. If the percentage 

change is less than a threshold, it is regarded as converged. Otherwise the 

procedure described above should be repeated by forward and backward sweep 

until the convergence criteria is met. 
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CHAPTER 6. APPLICATIONS 

6.1 APPLICATION1: Camera Calibration 

For this project, camera calibration is an essential step and is carried out 

using added parameters in a bundle block adjustment (BBA) as described in 

section 4.5. For the calibration imagery, there were three approaches to image 

acquisition and target layout. In every case, the variable zoom is set to the widest 

angle setting and the focus is set to “infinity”. These settings and their potential 

for inconsistency are addressed later. The three approaches were: 

• Terrestrial imagery of a “natural” (urban) scene at ~ 30m object 

distance. This was further subdivided into three cases, with the third 

case having stronger B/H geometry. 

• Terrestrial imagery of a synthetic target array at 3 – 4 m object 

distance. 

• Aerial imagery of the project site, no special attention given to attitude 

diversity. 

 

See Figure 6.1 for illustration of these three approaches. 

In order to quantify the importance and effect of the parameters of camera 

calibration, methods akin to sensitivity analysis and error propagation were 

employed.
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Figure 6.1 Three Calibration Approaches 
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6.1.1 Calibration from Urban, Laboratory Scene 

The camera was first calibrated using the imagery in figure 6.2 by the 

procedure described in section 4.5. The parameters carried in the bundle block 

adjustment (BBA) were principal point offsets (x0, y0), focal length (f), the 

coefficients for radial lens distortion (K1, K2, K3), decentering distortion (P1, P2), 

the exterior orientation parameters ( iiiLiLiLi ZYX κφω ,,,,, ) of each image, and 

the X, Y, Z coordinates of each pass point. Figure 6.2 shows the images of the 

calibration scene. 40 points in the first pair were measured to estimate the object 

space coordinates. 20 points in each subsequent image were then measured. To 

generate initial approximations for the nonlinear BBA, I used the relative 

orientation algorithm described earlier, starting with the eight point algorithm 

followed by conventional, coplanarity based relative orientation. To resolve the 

scale, the length between two object points was measured by a steel tape and 

fixed. The a priori standard deviations for interior orientation parameters were 

chosen as in table 6.1 

 

Table 6.1 A Priori Standard Deviation of Interior Orientation Parameters 

 

 

PAR 
x0 

(pixel) 

y0 

(pixel) 

f 

(pixel) 

K1 

(pixel) 

K2 

(pixel) 

K3 

(pixel) 

P1 

(pixel) 

P2 

(pixel) 

σ 1000 1000 1000 100 100 100 100 100 
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 Figure 6.2 Calibration Target for Urban 1 and 2 
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 Figure 6.3 Calibration Target for Urban 3 
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Therefore, we can establish a weight matrix for all of the parameters in the 

unified least squares adjustment problem. The calibration was performed twice 

(different points) with the dataset in figure 6.2 and once more with the dataset in 

figure 6.3 (wider baseline). There were three estimations done with this approach. 

Table 6.2 shows the result of the first calibration. It is seen in table 6.2, that for 

most of the lens distortion parameters, the corresponding sigma is greater in 

magnitude than the parameter value. This indicates that they are not particularly 

significant, yet necessary. Table 6.3 shows the observation residuals.  The 

residuals show the calibration was satisfactory in the image space.  Table 6.4 

shows the correlation matrix of the estimated calibration parameters and we can 

see that some pairs have very high correlation. Especially, K1, K2, and K3 are 

highly correlated with each other. Also, (P1, x0) and (P2, y0) are highly correlated 

parameters. There are two consequences to this high correlation: (1) the 

estimation itself becomes numerically unstable (high condition number), and (2) 

the meaning of an individual parameter value is not as significant. Therefore, it is 

important to compare the combination effect of all the parameters rather than 

comparing individual parameters. Figure 6.4 shows the location of the pass 

points (all points on all images overlaid). Figure 6.5 shows the radial and 

decentering distortion grid plot and figure 6.6 shows the quiver plot of the first 

calibration attempt. Those two figures show the effect of calibration from all of the 

parameters.  
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Table 6.2 The Result of Calibration (Urban 1) 

parameter unit value σ σ (pixel) 

x0 (pixel) -9.99 13.75 13.75 

y0 (pixel) -2.56 11.02 11.02 

f (pixel) 2647.22 73.41 73.41 

K1  -1.46E-08 1.05E-08 2.22 

K2  3.07E-15 19.93E-15 3.87 

K3  -1.80E-21 9.43E-21 2.00 

P1  1.58E-07 8.65E-07 0.32 

P2  6.55E-07 6.45E-07 0.24 
Condition 
Number   1.70e+014 

 

 

Figure 6.4 Pass Point plot of Urban 1 
(all points on all images overlaid) 
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Table 6.3 RMS of Residuals (Urban 1, units=pixels) 

 

Table 6.4 Correlation Matrix for Calibration Parameters (Urban1) 

 x0 y0 f K1 K2 K3 P1 P2 

x0 1.00 -0.01 0.10 -0.09 0.05 -0.04 -0.96 0.01 

y0 -0.01 1.00 -0.01 0.04 -0.03 0.02 0.07 -0.93 

f 0.10 -0.01 1.00 -0.12 0.00 0.02 -0.01 0.05 

K1 -0.09 0.04 -0.12 1.00 -0.93 0.88 0.02 0.02 

K2 0.05 -0.03 0.00 -0.93 1.00 -0.99 0.01 -0.03 

K3 -0.04 0.02 0.02 0.88 -0.99 1.00 0.00 0.04 

P1 -0.96 0.07 -0.01 0.02 0.01 0.00 1.00 -0.05 

P2 0.01 -0.93 0.05 0.02 -0.03 0.04 -0.05 1.00 

 

 

 

 

 

 

 

 

 

residual vx vy Mean 

RMS 0.67 0.72 0.70 
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Figure 6.5 Grid Plot of Radial and Decentering Distortions of Urban 1 
(Effects are exaggerated by ×3) 

Figure 6.6 Quiver Plot of Urban 1 (Effects are exaggerated by ×3) 
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Table 6.5 shows the result of the second of three calibration estimates using 

imagery from the urban scene. As before the uncertainty of the distortion 

parameters is quite large. Table 6.6 shows the observation residual. The 

residuals were also in a satisfactory range. Table 6.7 shows the correlation 

matrix of the calibration parameters and we can see the high correlations as 

before. Figure 6.7 shows the location of pass points with all points from all 

photographs overlaid. Figure 6.8 shows the grid plot of radial and decentering 

distortions and figure 6.9 shows the quiver plot of the second calibration. The 

radial and decentering plot and quiver plot show a similar shape as the first 

attempt. 

 

 

 

 

 

 

 

 

 

 

 

 Figure 6.7 Pass Point plot of Urban 2 
 (all points on all images overlaid) 
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Table 6.5 The Result of Calibration (Urban 2) 

parameter unit value σ σ (pixel) 

x0 (pixel) -3.94 13.79 13.79 

y0 (pixel) -22.33 12.04 12.04 

f (pixel) 2659.30 73.59 73.59 

K1  -1.56E-08 1.03E-08 2.19 

K2  1.16E-14 1.88E-14 3.65 

K3  -6.43E-21 8.93E-21 1.90 

P1  -2.39E-07 8.32E-07 0.31 

P2  14.28E-07 6.87E-07 0.26 
Condition 
Number 1.70e+014 

 

Table 6.6 RMS of Residuals (Urban 2, units=pixels) 

 

 

 Table 6.7 Correlation Matrix of the Calibration Parameters (Urban 2) 

residual vx vy mean 

RMS 0.65 0.80 0.73 

 x0 y0 f K1 K2 K3 P1 P2 

x0 1.00 0.10 0.11 -0.04 0.00 0.02 -0.96 -0.09 

y0 0.10 1.00 -0.09 0.03 -0.01 0.00 -0.04 -0.93 

f 0.11 -0.09 1.00 -0.15 -0.06 0.10 -0.02 0.09 

K1 -0.04 0.03 -0.15 1.00 -0.92 0.86 0.00 0.02 

K2 0.00 -0.01 -0.06 -0.92 1.00 -0.98 0.03 -0.05 

K3 0.02 0.00 0.10 0.86 -0.98 1.00 -0.04 0.06 

P1 -0.96 -0.04 -0.02 0.00 0.03 -0.04 1.00 0.04 

P2 -0.09 -0.93 0.09 0.02 -0.05 0.06 0.04 1.00 
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Figure 6.8 Grid Plot of Radial and Decentering Distortions of Urban 2  (Effects are 

exaggerated by ×3)  

Figure 6.9 Quiver Plot of Urban 2 (Effects are exaggerated by ×3) 
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Table 6.8 shows the result of the third of three calibration estimates using 

imagery from the urban scene. Table 6.9 shows the observation residuals. Table 

6.10 shows the correlation matrix for the parameter vector. The correlations are 

similar to earlier results but the uncertainty was reduced for y0 and focal length.  

The cause of this will be discussed in subsequent pages. Figure 6.10 shows the 

location of pass points (all points on all photographs overlaid). Figure 6.11 shows 

the grid plot of radial and decentering distortion and figure 6.12 shows the quiver 

plot of the third calibration (urban imagery).  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6.10 Pass Point Plot of Urban 3 
(all points on all images overlaid) 
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Table 6.8 The Result of Calibration (Urban 3) 

parameter unit value σ σ (pixel) 

x0 (pixel) -3.78 11.85 11.85 

y0 (pixel) -4.85 7.61 7.61 

f (pixel) 2763.18 49.35 49.35 

K1  -6.73E-09 10.24E-09 2.17 

K2  -1.49E-14 1.37E-14 2.66 

K3  8.61E-21 6.06E-21 1.29 

P1  -12.01E-07 6.34E-07 0.24 

P2  8.38E-07 3.9E-07 0.15 
Condition 
Number 1.74e+14 

 

Table 6.9 RMS of Residuals (Urban 3, units=pixels) 

 

Table 6.10 Correlation Matrix of Calibration Parameters (Urban 3) 

 x0 y0 f K1 K2 K3 P1 P2 

x0 1.00 0.19 0.01 0.13 -0.11 0.08 -0.96 -0.13 

y0 0.19 1.00 0.10 0.08 -0.07 0.06 -0.19 -0.84 

f 0.01 0.10 1.00 -0.09 0.02 -0.02 -0.02 -0.08 

K1 0.13 0.08 -0.09 1.00 -0.93 0.86 -0.09 0.03 

K2 -0.11 -0.07 0.02 -0.93 1.00 -0.98 0.09 0.00 

K3 0.08 0.06 -0.02 0.86 -0.98 1.00 -0.07 0.00 

P1 -0.96 -0.19 -0.02 -0.09 0.09 -0.07 1.00 0.13 

P2 -0.13 -0.84 -0.08 0.03 0.00 0.00 0.13 1.00 

 

residual vx vy total 

RMS 0.68 0.71 0.70 
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Figure 6.11 Grid Plot of Radial and Decentering Distortions of Urban 3 (Effects 
are exaggerated by ×3) 

Figure 6.12 Quiver Plot of Urban 3 (Effects are exaggerated by ×3) 
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To gain more insight into the camera calibration, two more conventional 

calibrations with signalized targets were implemented as shown in figures 6.13 

and 6.14. In conventional calibration, space resection was used to initially 

approximate exterior orientation parameters. To get angle diversity, the video 

was taken at the each four corners of the room and the camera was rotated 

about 90 degrees once at each corner. Therefore there are total eight images for 

each experiment and table 6.11 – table 6.14 shows the result of calibration. 

This experiment has another purpose which is to investigate the stability of 

the zoom optics. The camcorder was zoomed in and zoomed out a lot between 

each image. Similarity of calibration parameters would imply stability of the optics 

and it will be assessed by comparing the estimated parameters, the grid plot, and 

the quiver plot.  

Both of the laboratory experiments showed small residuals in image space. 

When we compare two experiments with each other, they showed a similar 

overall tendency as shown in the radial and decentering plots, the quiver plots, 

Figures 6.16 – 6.17 and Figures 6.19 - 6.20. However, the fourth experiment 

showed positive y0 (5.03) whereas the fifth experiment showed negative y0 (-

20.12). Also, P2 of Laboratory 2 was larger than that of Laboratory 1 by more 

than factor of 10. As mentioned above, the zooming in and out seemed to affect 

the calibration and the mechanical compartments in a consumer level camcorder 

don’t seem to be as stable as photogrammetric quality equipment with fixed 

magnification optics. When we compare the last two experiments and the first 
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three experiments, the last two showed larger magnitude radial distortion 

compared to the first three experiments.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6.13 Calibration Targets for Laboratory 1 
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Figure 6.14 Calibration Targets for Laboratory 2 
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Table 6.11 The Result of Calibration (Laboratory 1) 

parameter unit value σ σ (pixel) 

x0 (pixel) 11.36 29.70 29.70 

y0 (pixel) 5.03 28.45 28.45 

f (pixel) 2749.38 19.72 19.72 

K1  -2.14E-08 1.68E-08 3.56 

K2  2.33E-14 4.69E-14 9.10 

K3  -1.63E-20 3.94E-20 8.38 

P1  -1.30E-06 1.75E-06 0.65 

P2  0.08E-06 1.76E-06 0.66 

Condition 
Number 9.10*e+11 

 

 

Figure 6.15 Pass Point Plot of Laboratory 1 

(all points on all images overlaid) 
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Table 6.12 RMS of Residuals (Laboratory 1, units=pixels) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

residual vx vy Mean 

RMS 0.22 0.27 0.25 

Figure 6.16 Radial and Decentering Distortions of Laboratory 1 
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Figure 6.17 Quiver Plot of Laboratory 1 

Figure 6.18 Pass Point Plot of Laboratory 2 

 (all points on all images overlaid) 
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Table 6.13 The Result of Calibration (Laboratory 2) 

parameter unit value σ σ (pixel) 

x0 (pixel) 8.45 31.48 31.48 

y0 (pixel) -20.12 33.30 33.30 

f (pixel) 2733.23 23.27 23.27 

K1  -2.67E-08 2.25E-08 4.77 

K2  3.76E-14 7.77E-14 15.08 

K3  -2.81E-20 8.06E-20 17.12 

P1  -1.52E-06 1.88E-06 0.70 

P2  0.95E-06 2.09E-06 0.78 

condition 

Number 
1.25e+013 

 

 Table 6.14 RMS of Residuals (Laboratory 2, units=pixels) 

 

 

 

 

 

 

 

 

 

 

 

residual vx (pixel) vy (pixel) Mean (pixel) 

RMS 0.22 0.25 0.23 
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Figure 6.19 Radial and Decentering Distortions of Laboratory 2 

Figure 6.20 Quiver Plot of Laboratory 2 
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Since we have multiple results, not completely consistent, an independent 

method was chosen to evaluate them. A bundle block adjustment was performed 

with the aerial dataset from section 6.3 and the misclosures were compared at 

check points. The misclosure at the check points was used as a metric for 

calibration quality. The results are summarized in the table 6.15. 

 

Table 6.15 The Comparison of Misclosures at Checkpoints for Each Calibration. 

Units are meters in object space. “group1” and “group2” refer to swapping the 

role of control and check points. 

 RMS x (m) RMS y (m) RMS z (m) 
RMS 

(m) 

group1 

Urban 1 3.71 2.94 3.05 3.25 

Urban 2 3.23 2.69 2.61 2.86 

Urban 3 1.70 1.07 1.72 1.53 

Laboratory 1 2.49 1.88 2.09 2.17 

Laboratory 2 3.78 2.38 3.03 3.11 

group2 

Urban 1 2.37 1.30 2.39 2.08 

Urban 2 2.05 1.04 1.98 1.75 
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Table 6.15 Continued. 

Urban 3 1.43 0.93 1.39 1.27 

Laboratory 1 2.23 1.17 2.33 1.98 

Laboratory 2 2.37 1.34 2.73 2.23 

overall RMS 

Urban 1 3.11 2.27 2.74 2.73 

Urban 2 2.71 2.04 2.32 2.37 

Urban 3 1.57 1.00 1.56 1.41 

Laboratory 1 2.36 1.57 2.21 2.08 

Laboratory 2 3.15 1.93 2.88 2.71 

 

To put table 6.15 in context, the ground sample distance (pixel size) in the 

oblique images ranged from 0.3 m to 3 m (foreground vs. background). As we 

can see in table 6.15, the bundle block adjustment with the camera parameters 

from the third calibration resulted in the smallest misclosures at the checkpoints. 

Table 6.16 shows the standard deviation for all internal camera parameters 

transformed into pixel units. The purpose of table 6.16 is to give an intuitive 

feeling for the influence of a parameter’s uncertainty. Note also that in 

circumstances with high correlation, individual sigmas are often quite large 

whereas the uncertainty of the group of parameters is much smaller. Recall that 
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the first three were done with points from an urban scene, the fourth and fifth 

runs were from signalized targets in a lab setting. Since the calibration target 

points in experiment 4 and 5 cover only small portion of images, it gave poorer 

result than experiment 3. Therefore, the third calibration results were finally 

chosen as camera parameters which were used in the strip formation 

experiments in this research. The first reason why the third calibration showed 

the best determination of the camera parameters may be that the object distance 

was closer to the “infinity” focus distance. The second reason is that the photos 

were taken with a wider baseline and this made stronger geometry compared to 

the first and second calibration. The third reason is that the points were uniformly 

distributed including corners (figure 6.10) compared to the fourth (figure 6.15) 

and fifth cases (figure 6.18). 

 

Table 6.16 The Comparison of Standard Deviations (units=pixels) 

 
0xσ  

0
yσ  

fσ  
1Kσ  

2Kσ  
3K

σ  
1Pσ  

2Pσ  Mean 

calibration 

1 
13.75 11.02 73.41 2.22 3.87 2.00 0.32 0.24 13.35 

calibration 

2 
13.79 12.04 73.59 2.19 3.65 1.90 0.31 0.26 13.47 

calibration 

3 
11.85 7.61 49.35 2.17 2.66 1.29 0.24 0.15 9.42 

calibration 

4 
29.7 28.45 19.72 3.56 9.1 8.38 0.65 0.66 12.53 

calibration 

5 
31.48 33.3 23.27 4.77 15.08 17.12 0.7 0.78 15.81 
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For the results of Urban 3, the sensitivity of radial distortion to each 

coefficient of radial distortion was analyzed. By adding noise with sigma ten 

thousand times in table 6.8 to one of parameters of K1, K2 and K3, the total radial 

lens distortion was plotted as figure 6.21. The range of radial distortion caused by 

each parameters were 199, 410, 331 pixels for each K1, K2 and K3. Those 

ranges were too large because it was estimated without considering correlation 

between each parameter. Therefore, the sensitivity analysis for independent 

parameters was not relevant in this case. Therefore, ten thousand K1, K2, K3 was 

Figure 6.21 Radial Distortion according to K1, K2 and K3 
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randomly generated by perturbing K1, K2, K3 with σ considering the correlation 

between each parameter described in table 6.10. The range of the radial 

distortion contributed from K1, K2, and K3 became 188, 153, 45 pixels and it was 

found out that the range of the radial distortion from K2, K3 were reduced. Figure 

6.22 shows the point distribution without and with correlation.  

 

 

 

6.1.2 Calibration from Aerial Imageries 

For the experiments in aerial strip formation, calibrated camera 

parameters from section 6.1 were used as described. However, prior calibration 

is not available always and it is useful to compare the results from an 

uncalibrated sensor using “self-calibration” versus the results from a calibrated 

sensor. The same dataset and configuration described in section 6.3 were used 

with the “nominal” interior orientation parameters found in table 6.17.  

 

 

Figure 6.22 The distribution of the contribution of K1, K2 and K3 (Left: 
Uncorrelated, Right: Correlated) 
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Table 6.17 Interior Orientation Parameters for Uncalibrated Camera 

 

For “self-calibration”, a camera can be calibrated in BBA by carrying the camera 

interior parameters as before, but with project imagery rather than special 

calibration imagery. For the BBA, equations (4.68) and (4.69) are used as 

condition equations. The parameters carried are interior (x0, y0, f, K1, K2, K3, P1, 

P2) and exterior orientation ( κφω ,,,,, LLL ZYX )i, and object space coordinate (X, 

Y, Z)j of control points and pass points in the ground or object coordinate system. 

The BBA was solved by Unified Least Squares (also known as regularization or 

Bayesian parameter estimation), and the a priori standard deviations for interior 

orientation parameters are given in table 6.18. The a priori standard deviations 

for the rest of the parameters are the same as section 6.5.  Table 6.19 shows the 

result of self calibration.  

 

 Table 6.18 A Priori Standard Deviations for Interior Orientation Parameters 

(sigmas chosen to represent “unknown” parameters) 

PAR 
x0 

(px) 

y0 

(px) 

f 

(px) 
K1 K2 K3 P1 P2 

value 0 0 2341.6 0 0 0 0 0 

 
x0 

(pixel) 

y0 

(pixel) 

f 

(pixel) 

K1 

(pixel) 

K2 

(pixel) 

K3 

(pixel) 

P1 

(pixel) 

P2 

(pixel) 

σ 1000 1000 1000 100 100 100 100 100 
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Table 6.19 The Result of Self Calibration Using Aerial Imagery (groups 
interchange of control and check points) 
 

parameter unit Value σ σ (pixel) 

1st group 

x0 (pixel) -247.41 56.20 56.20 

y0 (pixel) 160.03 98.95 98.95 

f (pixel) 2908.79 70.91 70.91 

K1 1.00E-07 1.18 0.14 2.93 

K2 1.00E-13 -1.28 0.17 3.23 

K3 1.00E-20 3.59 0.58 1.23 

P1 1.00E-05 4.25 0.20 0.73 

P2 1.00E-07 8.53 7.37 0.28 

2nd group 

x0 (pixel) -13.09 39.01 39.01 

y0 (pixel) 1.16 93.62 93.62 

f (pixel) 2848.20 79.27 79.27 

K1 1.00E-08 8.51 2.17 4.60 

K2 1.00E-13 -3.26 0.35 6.81 

K3 1.00E-19 1.70 0.16 3.35 

P1 1.00E-06 -6.27 1.71 0.64 

P2 1.00E-06 8.52 0.76 0.28 
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Table 6.20 RMS of Residuals for Self Calibration (units=pixels) 

 x y 

group 1 0.43 0.48 

group 2 0.36 0.82 

 

Table 6.21 RMS Misclosure at Check Points (units=meters) 

 x y z total 

group 1 42.26 20.05 33.90 33.35 

group 2 19.22 10.39 16.78 15.91 

 

Table 6.20 shows the RMS of observation residuals, which are in an 

acceptable range, and Table 6.21 shows the RMS misclosures at check points. 

The misclosures for self calibration were larger than those of calibration Urban 

1,2,3, and Laboratory 1, 2. The advantages of doing calibration with the aerial 

project data are: (1) there are many points to cover all areas of the image format, 

and (2) the object distance truly matches the focus setting of “infinity”. The 

disadvantage is that there is very little angle diversity among the strip of imagery. 

If one planned to do calibration with aerial imagery, one would fly the strip three 

or four times, each with different camera orientation.  

 Considering all of the factors, experiment three was chosen to represent 

the best calibration for this camera. Recall it had angle diversity, long object 

distance, and small misclosures at the checkpoints for the aerial data.  
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6.2 APPLICATION 2: Automated Relative Orientation -Terrestrial Case 

The automated relative orientation procedure was implemented with 

terrestrial video frames. The data was acquired from a moving car by taking 

videos of the Purdue ITAP building as described in table 6.22. The image frames 

were selected from the video stream with configuration parameters described in 

table 6.23. Figure 6.23 shows the input images for automated relative orientation 

procedure.  

 

Table 6.22 Data Acquisition 

 

Table 6.23 Data Description 

 

 

 

 

Date/Time 

Taken 

Vehicle 

Type 
Instrument Object Speed 

10/15/2009 

17:00 

Passenger 

Car 

Sony High 

Definition 

Camcorder 

HDR-CX100 

(30 FPS) 

Purdue 

ITAP building 
3.2 km/hr 

Capturing 

Time-gap 

Overlap 

Ratio 

Width 

(px) 

Height 

(px) 
Format No. Frame 

3 sec 0.7 2304 1296 JPEG 5 
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The captured image frames were processed by the algorithms described 

in sections 4.1 and 4.2 to detect and match interest points in each adjacent pair 

of images, using algorithm tuning parameters described in table 6.24. To ensure 

uniform distribution of matched points, two points were chosen from each 

quadrangle of the overlapping region of image pairs as shown in figure 6.24. 

These eight points (four pairs) were chosen randomly many times to enumerate 

inliers and outliers by the RANSAC procedure. The correlation window size was 

Figure 6.23 Input Data to Automated Relative Orientation 
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chosen to be large in this particular case because the patterns on the red bricks, 

the white panels, and the gray roof areas were ambiguous with small window 

size. To handle this problem, the correlation window size was chosen as the 

approximate, apparent height dimension of the brick region, the panel region and 

the roof region. For the scale restraint points, one point was measured manually 

considering the best position possible. 

 

Table 6.24 Parameter Setup 

Baseline 

(m) 

Correlation 

Window (pixel) 

RANSAC 

Threshold 

Outlier 

Probability e 

RANSAC 

Accuracy 

2.6667 225×225 1.0e-2 0.5 99% 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6.24 Subregion for Sampling Points 
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In figure 6.25, black and white checkerboard markers show the interest points 

detected and matched automatically for each pair of images, and I have found 

that the detection and matching were successful.  

 

 
Figure 6.25 Matched Points in Terrestrial Images 
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With the coordinate information of the matched points, the strip formation 

problem by relative orientation could be solved by SLS, CLS, and KF as 

described in chapter 5. Since there is no control point information for this 

terrestrial case, the covariance of the white noise term for SLS was estimated 

from SLS without the state transition expression. For the first pair of images, one 

of the exterior orientation parameters must be fixed, and bx was chosen to be 

fixed. Table 6.25 - Table 6.27 show the exterior orientation parameter estimation 

results from SLS, CLS and KF. Table 6.28 shows the observation residuals for 

each solution. SLS and KF showed similar residual RMS, and CLS had larger 

residual RMS. The residual RMS of every solution was less than 1 pixel and the 

relative orientation procedure was successful in image space. 

 

Table 6.25 Exterior Orientation Parameters from SLS 

image 
XL 

(m) 

YL 

(m) 

ZL 

(m) 

ω 

(Rad) 

φ 

(Rad) 

κ 

(Rad) 

1 0.00 0.00 0.00 0.00 0.00 0.00 

2 2.67 0.05 -0.04 0.00 0.01 0.01 

3 5.34 0.09 -0.09 0.00 0.02 0.01 

4 8.11 0.14 -0.14 0.00 0.00 0.01 

5 10.94 0.18 -0.14 -0.01 -0.01 0.00 

 

 

 

 



117 

 

Table 6.26 Exterior Orientation Parameters from CLS 

image XL 
(m) 

YL 
(m) 

ZL 
(m) 

ω 
(Rad) 

φ 
(Rad) 

κ 
(Rad) 

1 0.00 0.00 0.00 0.00 0.00 0.00 

2 2.67 0.05 -0.04 0.00 0.01 0.01 

3 5.34 0.09 -0.09 0.00 0.02 0.01 

4 8.11 0.14 -0.14 0.00 0.00 0.01 

5 10.94 0.18 -0.14 -0.01 -0.01 0.00 

 

Table 6.27 Exterior Orientation Parameters from KF 

image XL 
(m) 

YL 
(m) 

ZL 
(m) 

ω 
(Rad) 

φ 
(Rad) 

κ 
(Rad) 

1 0.00 0.00 0.00 0.00 0.00 0.00 

2 2.67 0.05 -0.04 0.00 0.01 0.01 

3 5.34 0.09 -0.09 0.00 0.02 0.01 

4 8.11 0.14 -0.14 0.00 0.00 0.01 

5 10.94 0.18 -0.14 -0.01 -0.01 0.00 

 

Table 6.28 Observation Residuals of Each Solution (RMS, units=pixels) 
 

 
vx vy 

CLS 0.019 1.146 

KF 0.003 0.331 

SLS 0.003 0.295 
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Table 6.29  RMS Discrepancy of CLS and KF from SLS 
 CLS (cm) KF (cm) 

 RMS_X 0.01 0.01 

RMS_Y 0.00 0.00 

RMS_Z 0.01 0.08 

RMS_Total 0.01 0.05 

 

Table 6.29 shows the RMS discrepancy of selected pass points between CLS, 

SLS and KF. In table 6.29, the differences of each result were below centimeter 

level. Figures 6.26 - 6.28 show the comparisons of RMS of X, Y and Z 

coordinates of intersected points for each model. For these figures the SLS 

coordinate estimate is taken as the reference value and shifted to exactly zero, 

and the scale of y axis is exaggerated by 43. The KF and CLS are shown relative 

to this reference. This is not an absolute evaluation. For the aerial case, I chose 

to make an absolute evaluation by including control points and check points. We 

can see there is no significant difference between these approaches. This is 

likely due to the short length of the strip. Also, the precision of each solution was 

evaluated by estimating the error ellipsoid with 90% confidence level. As it can 

be seen in table 6.30 and figure 6.29, the KF’s error ellipsoid was the smallest 

(factor of 0.8 to CLS in semi major axis). The SLS’’s error ellipsoid was the 

largest (factor of 3.4 to CLS in semi major axis). In figure 6.29, Z axis for error 

ellipsoid is camera axis, not elevation. The differing results describing precision 

conflict with (a) our intuition, which leads us to regard the simultaneous solution, 

SLS, as a more complete & rigorous model, and (b) later numerical results which 
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confirm that SLS yields the best absolute accuracy. My conclusion is that CLS 

and KF, by using simplified models, really understate the propagated variability of 

the point coordinates (precision).  In the aerial and simulation cases, the external 

comparison of solution by estimation of misclosures of check points will be 

implemented to find the real accuracy. To expand the priori explanation of 

inconsistency between precision and accuracy, the model differences will be 

presented. The model differences will cause the estimated precisions of CLS and 

KF to be unrealistically small. When the EO parameters of any image are 

estimated from CLS and KF, the scale restraint equation included in the 

estimation is only one. For example, the EOs of image 3 are estimated by scale 

restraint equation composed from the image (1, 2, 3). However, the number of 

scale restraint equations is three in SLS when estimating the EO parameters of 

any one image. For example, the EOs of image 3 are estimated by three scale 

restraint equations composed from the image triplets (1, 2, 3), (2, 3, 4) and (3, 4, 

5). See Figure 6.30. The SLS model is thus more complete and rigorous. This 

appears to inflate the precision estimates for SLS, but actually the precision 

estimates for CLS and KF are understated.  
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Figure 6.27 Comparison of Y Coordinates 

Figure 6.28 Comparison of Z Coordinates 

Figure 6.26 Comparison of X Coordinates 
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Table 6.30 Semi Major and Minor Axis of Error Ellipsoid 
 semi major semi minor 1 semi minor 2 

SLS 0.74 0.65 0.04 

CLS 0.22 0.02 0.01 

KF 0.19 0.02 0.01 

 

Figure 6.29 Error Ellipsoids from Each Approach (SLS Top Left, CLS: Top 

Right, KF: Bottom Center) 
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1 SR equation contributes to the EO 

parameters of image 3 in CLS and KF. 

 

 

 

 

3 SR equations contribute to the EO parameters of image 3 in SLS. 

 

 

Table 6.31 shows the memory occupancy of each solution to see the extent of 

computing resources each solution requires. Ranking from high to low by 

memory resources yields: SLS, KF and CLS. CLS and KF showed far smaller 

values for memory occupancy because at each epoch, they only estimate the 

parameters in the state vector rather than the entire strip. 

 

 

Figure 6.30 Scale Restraint Equations 
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Table 6.31 Memory Occupancy of Each Solution 

 

 

6.3 APPLICATION 3: Automated Relative Orientation – Aerial Case 

In this application, bundle block adjustment and absolute orientation were 

also implemented to assess the accuracies of SLS, KF, and CLS. By the use of 

control point information, absolute orientations with both seven parameter (rigid 

body) transformation and polynomial transformation were implemented. The 

results were assessed with the misclosures at check points. Also, a similar 

evaluation was done using check points from bundle block adjustment. 

 

6.3.1 Relative Orientation 

The aerial data was acquired from a Cessna aircraft with the HD 

camcorder as shown in table 6.32. The image data was captured from a video 

stream as shown in Table 6.33. Figure 6.31 shows the images which were used 

for the experiment. There are 15 frames sampled at 2 second intervals (extracted 

for video stream), which cover most of the northern campus area of Purdue 

University, West Lafayette. The overlap ratio was approximately 0.8 in the 

foreground and a larger value in the background (the images are oblique). The 

base – height ratio in the foreground was approximately 0.17. Since this is weak 

 CLS SLS KF 

memory 
(MB) 2.51 93.34 2.89 
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geometry for determining ground coordinates, a strategy to increase the base – 

height ratio was sought. The simplest way to get a dataset with a larger base 

height ratio is to increase sampling time between each image frame. In this case 

it did not require another photo mission, only selecting frames from the video 

stream with larger time interval between them. 

  

Table 6.32 Aerial Data Acquisition 

 

Table 6.33 Data Description 

 

 

 

 

Date/Time 

Taken 

Vehicle 

Type 
Instrument Flight area Flight time Note 

5/3/2010 

14:00 

High-wing 

Cessna 

Aircraft 

(like a 

172) 

Sony High 

Definition 

Camcorder 

HDR-CX100 

(30FPS) 

Purdue 

Campus, 

West 

Lafayette, IN 

45 minute 

Bank during 

flight to 

permit 

oblique imagery 

capture through the 

passenger window 

Sampling 

interval 

Overlap 

Ratio 

Width 

(px) 

Height 

(px) 
Format 

No. 

original 

Frame 

No. final 

frame 

(@ 4 sec) 

2 seconds 0.8 2304 1296 JPEG 15 8 
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Table 6.34 The Parameters for Interest Point Detection and Matching 

 

However, this will decrease the performance of any cross correlation matching 

because the larger base causes more parallax. To address this problem, the 

following strategy was adopted. Let’s call the originally selected frames 1, 2, 3,…, 

15. If we adopt every second image in this sequence, the new strip will consist of 

1, 3, 5, 7, 9, 11, 13, and 15. This new strip will have approximately twice the base 

- height ratio as the original strip. To address the issue of more difficult cross 

correlation, the following was done. Matching interest points was very successful 

between 1 and 2, 2 and 3, 3 and 4, etc. But it became challenging to match 

directly 1 and 3, 3 and 5, etc. So I retained the concept of matching between the 

original adjacent images 1 and 2, 2 and 3, etc. This was followed by matching the 

two sets of points on image 2, the 1-2 group and the 2-3 group. For every 

common point on image 2, we have implicitly found a match between image 1 

and 3. So this strategy was used throughout the new strip. That means, of course, 

that for a photo collection mission, one needs to capture the images to be used in 

the strip formation, but also intermediate images to help with the 

matching/correspondence problem. 

Harris 

Laplace 

Scale no.  

Correlation 

window size 

(px) 

Pyramid  

numbers for 

correlation 

RANSAC 

accuracy 

Expected 

matching 

error 

RANSAC 

threshold 

3 31 3 0.9 0.5 1.0e-2 
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A related problem involves getting common points between image 1, 3, 

and 5 for the scale restraint equation. This was deemed too difficult for 

automation so one scale restraint point for each model was measured manually. 

Future research could address this high B/H matching problem. Table 6.34 

shows the parameters for corner detection and matching and figure 6.32 shows 

the images selected for this experiment. As explained above, only the images in 

left columns (image 1, 3, 5, 7, 9, 11, 13, 15) were used as input for the strip 

formation by relative orientation. But the other (intermediate images) were used 

as described for the “bridge matching” procedure.  
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Figure 6.31 Aerial Dataset over Purdue Campus 
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In Figure 6.32, the black and white checkerboard markers show the 

interest points detected and matched automatically for each triplet of images, and 

using the strategy described earlier, the detection and matching were successful. 

With the coordinate data for the matched points, the relative orientation and strip 

formation problem could be solved by SLS, CLS, and KF as described in chapter 

5. For the first model, bx was fixed at its true value (187 m).  

Table 6.35, 6.36 and 6.37 show the exterior orientation parameters 

estimated from each approach. Table 6.38 shows the RMS in image space of 

residuals from each solution. They are all in the sub-pixel range.  

 

Figure 6.32 Matched Points for Each Pair of Images 1-3, 3-5, 5-7, 7-9, … . The 

intermediate images are also shown. The images are organized as triplets. 
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 Table 6.35 Exterior Orientation Parameters from SLS  

model XL 
(m) 

YL 
(m) 

ZL 
(m) 

ω 
(Rad) 

φ 
(Rad) 

κ 
(Rad) 

1 0.00 0.00 0.00 0.00 0.00 0.00 

2 187.38 -43.17 37.44 0.11 -0.03 0.03 

3 367.67 -72.96 83.54 0.07 0.04 0.13 

4 572.53 -121.83 99.97 0.03 -0.02 0.02 

5 755.45 -153.31 135.70 0.07 -0.09 -0.01 

6 938.85 -190.79 171.46 0.01 -0.09 -0.06 

7 1111.21 -209.85 223.21 0.08 -0.10 -0.02 

8 1282.81 -240.56 248.66 0.08 -0.11 0.02 

 

 

Table 6.36 Exterior Orientation Parameters from KF 

model XL 
(m) 

YL 
(m) 

ZL 
(m) 

ω 
(Rad) 

φ 
(Rad) 

κ 
(Rad) 

1 0.00 0.00 0.00 0.00 0.00 0.00 

2 187.38 -43.07 37.55 0.11 -0.03 0.03 

3 367.63 -72.76 83.80 0.07 0.04 0.13 

4 572.36 -121.60 100.19 0.03 -0.02 0.02 

5 755.13 -153.05 135.87 0.07 -0.09 -0.01 

6 938.56 -190.54 171.56 0.01 -0.09 -0.06 

7 1110.97 -209.71 223.15 0.08 -0.10 -0.02 

8 1282.61 -240.49 248.22 0.08 -0.11 0.02 
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Table 6.37 Exterior Orientation Parameters from CLS 

model XL 
(m) 

YL 
(m) 

ZL 
(m) 

ω 
(Rad) 

φ 
(Rad) 

κ 
(Rad) 

1 0.00 0.00 0.00 0.00 0.00 0.00 

2 187.38 -43.07 37.55 0.11 -0.03 0.03 

3 367.64 -72.85 83.63 0.07 0.04 0.13 

4 572.47 -121.71 100.05 0.03 -0.02 0.02 

5 755.36 -153.18 135.77 0.07 -0.09 -0.01 

6 938.73 -190.65 171.50 0.01 -0.09 -0.06 

7 1111.06 -209.71 223.23 0.08 -0.10 -0.02 

8 1282.63 -240.41 248.67 0.08 -0.11 0.02 

 

Table 6.38 Residual of Each Solution (RMS, units=pixels) 

 

Figures 6.33-6.35 show the comparisons RMS error of X, Y, and Z coordinates of 

intersected points from each solution in ground space coordinate. To show the 

strip deformation, intersected points were transformed by seven parameter 

transformation using the control points from the first model. We can see that 

there is no significant cantilever effect for X and Y coordinate. We can see that 

increasing trend in Z coordinate. However, the shape of Z coordinate is direct 

rather than cantilever and the effect is expected to be removed by seven 

parameter transformation using total control points. Overall, SLS, KF, and CLS 

 vx vy 

SLS 0.09 0.43 

KF 0.09 0.43 

CLS 0.11 0.55 
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showed no significant difference in the aerial case because numbers of strips are 

not enough to see the cantilever effect. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6.33 X Coordinate Comparison 

Figure 6.34 Y Coordinate Comparison 

Figure 6.35 Z Coordinate Comparison 
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The precision of each solution was evaluated by estimating the error 

ellipsoid with 90% confidence level. As it can be seen in table 6.39, the KF’s error 

ellipsoid was the smallest (factor of 0.49 to CLS in semi major axis) and it was 

shown that KF gave the most precise result. The SLS’s error ellipsoid was the 

largest (factor of 3.12 to CLS in semi major axis by the reason explained in 

section 6.2). Figure 6.36 shows the example of error ellipsoid for one intersected 

point for each approach. A comparison was made between two different methods 

to assign values for the covariance of the dynamic model. Originally, parameter 

differences (equation 5.5) were used. As a comparison, this covariance was 

taken from a posteriori SLS results. A comparison of the confidence ellipsoid for 

an intersected point between these two methods is shown in Table 6.40, and in 

Figure 6.36.  

 

Table 6.39 The Semi Major and Minor Axis of Error Ellipsoid  (units=meters) 

 semi major semi minor 1 semi minor 2 

SLS 43.64 21.33 13.94 

CLS 13.99 1.70 0.48 

KF 6.82 1.00 0.40 

 

Table 6.41 shows the memory occupancy of each solution, and it was in 

descending order of SLS, KF and CLS. SLS showed far larger value than KF and 

CLS. The difference between CLS and KF was far smaller than KF and SLS. 

Therefore, we can see that KF is the very efficient approach compared to SLS. 
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Table 6.40 Comparison of Confidence Ellipsoid for Original Selection of Dynamic 
Model Covariance versus Covariance from Propagation (Composite of All Points) 

 
 
Table 6.41 Memory Occupancy of Each Solution 

 

 

 semi major (m) semi minor 1 (m) semi minor 2 (m) 

SLS original 43.64 21.33 13.94 

SLS propagated 24.82 15.31 10.40 

 CLS SLS KF 

memory 
(MB) 3.58 162.06 4.43 

Figure 6.36 Error Ellipsoids from Each Approach (SLS w/ Apriori 
Covariance for White Noise: Top Left, SLS w/ Propagated Covariance for 

White Noise: Top Right, CLS: Bottom Left, KF: Bottom Right) 

 



138 

 

6.3.2 Bundle Block Adjustment (BBA) 

By using the aerial dataset in section 6.3.1, several bundle block 

adjustments (BBA) were implemented. The first BBA was implemented in a 

conventional way by applying the calibrated interior orientation parameters. The 

second procedure is the BBA with self calibration. The third procedure is the BBA 

with minimal constraints. The first two are over constrained using ground control 

points.  The result from the third procedure will be transformed by seven 

parameter transformation and we will use the results from the third case as the 

reference for accuracy assessment for relative and absolute orientation because 

it is fair to compare the procedures with the same conditions. We have a total of 

24 control points and we divided them into two groups with each 12 control points 

and used one group as control points and the other group as check points and 

did two experiments swapping control and check point groups. Therefore, there 

are a total six experiments implemented. Also, a total six of three ray pass points 

were used to strengthen the geometry. Additionally for BBA with minimal 

constraints, the corresponding points from section 6.3.1 were incorporated as 

pass points to give same conditions for comparison with relative orientation. 

Figure 6.37 and 6.38 show the configurations of control points (triangle), check 

points (large circle with dot), pass points (small circle) for the first and second 

experiment. For the BBA with minimal constraints, seven parameters were given 

very large weight to effectively fix them and those seven parameters were the six 

exterior orientation of the first image and XL of the second image.  Unified Least 

Squares was implemented to solve the BBA problems.  
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Figure 6.37 Control, Check and Pass Points Configuration (The First Group) 
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Figure 6.38 Control, Check and Pass Points Configuration (The Second Group) 
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Table 6.42 Exterior Orientation Parameters from Bundle Block Adjustment 

Image 
no XL(m) YL(m) ZL(m) ω 

(radian) 
φ 

(radian) 
κ 

(radian) 

Bundle Block Adjustment (Group 1) 

1 505862.01 4474930.74 531.71 -0.41 -0.66 4.07 

2 506001.52 4475069.70 536.08 -0.52 -0.75 4.03 

3 506145.38 4475220.98 535.00 -0.43 -0.74 4.19 

4 506270.11 4475362.86 533.92 -0.44 -0.73 4.07 

5 506396.25 4475511.32 539.51 -0.55 -0.71 3.98 

6 506526.42 4475648.69 547.72 -0.49 -0.67 3.97 

7 506645.87 4475785.58 545.75 -0.54 -0.71 3.97 

8 506761.17 4475929.23 550.08 -0.56 -0.71 3.99 

Bundle Block Adjustment with Self Calibration (Group 1) 

1 505853.40 4474942.03 543.60 -0.38 -0.75 4.10 

2 505984.49 4475080.00 546.04 -0.49 -0.85 4.05 

3 506125.44 4475222.83 542.56 -0.36 -0.84 4.24 

4 506256.78 4475371.87 546.17 -0.39 -0.83 4.11 

5 506379.17 4475524.00 544.58 -0.53 -0.82 4.00 

6 506512.85 4475650.45 561.30 -0.45 -0.77 4.00 

7 506630.43 4475798.48 555.51 -0.52 -0.81 3.98 

8 506739.83 4475935.48 548.72 -0.54 -0.83 4.01 

Bundle Block Adjustment with Minimal Constraints (Group 1) 

1 505863.22 4474931.80 530.12 -0.41 -0.66 4.06 

2 506001.32 4475067.39 536.51 -0.53 -0.74 4.02 
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Table 6.42 Continued. 

3 506136.53 4475204.23 527.19 -0.44 -0.74 4.19 

4 506273.57 4475359.62 547.93 -0.46 -0.68 4.05 

5 506404.09 4475500.28 546.44 -0.56 -0.66 3.97 

6 506539.14 4475639.31 550.46 -0.51 -0.61 3.95 

7 506666.21 4475769.35 531.36 -0.58 -0.66 3.94 

8 506785.93 4475904.97 537.40 -0.59 -0.65 3.97 

Bundle Block Adjustment (Group 2) 

1 505859.91 4474927.81 531.79 -0.40 -0.66 4.07 

2 506000.73 4475067.38 534.10 -0.52 -0.75 4.03 

3 506138.75 4475214.96 537.04 -0.42 -0.74 4.20 

4 506273.94 4475368.29 542.09 -0.44 -0.72 4.07 

5 506398.08 4475512.43 541.69 -0.54 -0.71 3.98 

6 506523.51 4475650.25 547.40 -0.49 -0.67 3.97 

7 506643.87 4475789.41 538.74 -0.56 -0.72 3.96 

8 506763.67 4475931.72 550.58 -0.57 -0.71 3.99 

Bundle Block Adjustment with Self Calibration (Group 2) 

1 505856.73 4474942.31 550.74 -0.45 -0.68 4.05 

2 505987.37 4475074.55 546.56 -0.55 -0.78 4.00 

3 506132.31 4475226.32 541.69 -0.46 -0.78 4.17 

4 506260.93 4475372.36 552.04 -0.47 -0.76 4.05 

5 506387.48 4475521.29 551.69 -0.58 -0.74 3.95 

6 506512.52 4475655.46 559.99 -0.52 -0.70 3.95 
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Table 6.42 Continued. 

7 506629.96 4475795.13 549.67 -0.59 -0.75 3.93 

8 506744.22 4475938.27 579.90 -0.58 -0.74 3.98 

Bundle Block Adjustment with Minimal Constraints(Group 2) 

1 505863.22 4474931.80 530.12 -0.41 -0.66 4.06 

2 506001.32 4475068.49 541.46 -0.53 -0.72 4.01 

3 506134.46 4475201.18 531.64 -0.44 -0.73 4.18 

4 506265.39 4475346.41 540.44 -0.46 -0.69 4.05 

5 506390.32 4475481.47 539.33 -0.56 -0.67 3.96 

6 506518.15 4475613.26 542.66 -0.52 -0.62 3.95 

7 506641.42 4475739.21 522.18 -0.59 -0.66 3.94 

8 506754.64 4475866.72 527.69 -0.60 -0.66 3.97 

 

Table 6.42 shows the exterior orientation parameters estimated by each 

BBA variation and Table 6.43 shows the RMS in image space of residuals in both 

x and y directions. In every case, the total RMS of residuals was less than one 

pixel. The camera parameters estimated from BBA with self calibration were 

already shown in table 6.19 in section 6.1. 

As mentioned before, the control points estimated from BBA with minimal 

constraints were transformed by a seven parameter (rigid body) transformation 

and table 6.44 shows the results of seven parameter transformation. 
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Table 6.43 The RMS of Residuals (units=pixels) 

 X Y total 

BBA (1st group) 0.82 0.83 0.83 

BBA /w self calibration 

(1st group) 
0.43 0.48 0.45 

BBA /w minimal constraints 

(1st group) 
0.16 0.97 0.69 

BBA (2nd group) 0.67 1.13 0.93 

BBA /w self calibration 

(2nd group) 
0.36 0.82 0.63 

BBA /w minimal constraints 

(2nd group) 
0.30 1.02 0.75 

 

Table 6.44 Seven Parameter Values for Transformation to the Control Points 

from BBA w/ Minimal Constraints 

Parameter 1st group 2nd group 

ω (radian) -0.02 -0.02 

φ (radian) 0.02 0.01 

κ (radian) -0.03 -0.02 

Scale 1.02 1.07 

Tx (m) 144417.36 86746.38 

Ty (m) -112397.28 -305449.82 

Tz (m) -82935.96 -82107.61 
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Table 6.45 shows the misclosures at check points. As we expected, BBA 

with pre-calibrated camera parameters gave the best results because the 

calibration parameters were rigorously estimated. However, the result from the 

BBA with minimal constraints and seven-parameter transformation were chosen 

as the accuracy reference since the condition of the procedure is equivalent to 

the relative and absolute orientation procedure. BBA with self calibration showed 

far larger misclosure compared to the other two procedures because of poor 

geometry as explained earlier (sec. 6. 1. 2). 

 

Table 6.45 Misclosures of Check Points (units=meters) 

 RMS X RMS Y RMS Z total 
RMS 

BBA (1st group) 1.70 1.07 1.72 1.53 

BBA /w self calibration 
(1st group) 42.26 20.05 33.90 33.35 

BBA /w minimal constraints 
(1st group) 3.42 3.88 3.37 3.56 

BBA (2nd group) 1.43 0.93 1.39 1.27 

BBA /w self calibration 
(2nd group) 19.22 10.39 16.78 15.91 

BBA /w minimal constraints 
(2nd group) 3.28 2.67 4.15 3.42 

BBA (total) 1.57 1.00 1.56 1.40 

BBA /w self calibration 
(total) 30.74 15.22 25.34 24.63 

BBA /w minimal constraints 
(total) 3.35 3.28 3.76 3.49 
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Table 6.46 The Length of Semi Major Axis of Error Ellipsoid at Pass Points 

(units=meters) 

Model no BBA BBA /w 
self calibration 

1st group 

1 2.72 4.55 

2 1.86 2.74 

3 2.50 2.73 

4 2.16 2.49 

5 1.97 2.05 

6 5.86 8.74 

mean 2.84 3.88 

2nd group 

1 4.53 7.54 

2 2.45 2.86 

3 2.67 4.28 

4 1.68 1.77 

5 3.22 3.51 

6 4.60 5.82 

mean 3.19 4.30 
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Figure 6.39 show the examples of error ellipsoid of 90% confidence and 

table 6.46 shows the length of semi major axis at pass points. The mean of semi 

major axis lengths of error ellipsoid for BBA is 3.19 meter and BBA with self 

calibration is 4.30 meter which suggests the higher precision of pre-calibration 

with strong geometry than in situ calibration with poor geometry.  

To verify the reliability of the suggested BBA approach with Unified Least 

Square, another BBA (JSK) was implemented and compared with the BBA 

results from commercial software iWitness (Photometrix, 2010). Principal point 

offset (x0, y0), focal length (f) and the coefficients of radial distortions (K1,K2,K3) 

were carried as interior orientation parameters. In BBA (JSK), the image space 

coordinates, the object space coordinates and the associated standard 

Figure 6.39 Error Ellipsoid for Pass Point2 from Group 1 

 (Left; BBA, Right: BBA with Self Calibration) 
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deviations of 18 points were adopted from iWitness. Figure 6.40 shows the 

images used for the BBA comparison with iWitness. 

 

 

 

 

 

 

 

 

 

 

Table 6.47 and table 6.48 show the comparisons of interior and exterior 

orientation parameters. It was found out that the suggested BBA approach (JSK) 

gave similar result to iWitness. Therefore, the BBA implemented in this research 

is found out to be reliable. 

 
Table 6.47 The Comparison of Interior Orientation Parameters 

 
x0(mm) y0(mm) f(mm) K1 K2 K3 

JSK -0.0170 0.0249 3.7179 -0.0091 0.0026 -0.0014 

iWitness -0.0176 0.0250 3.7051 -0.0093 0.0025 -0.0009 

 

 

Figure 6.40 The Data for the Comparison of BBA with iWitness 
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Table 6.48 The Comparison of Exterior Orientation Parameters 
Image approach XL(m) YL(m) ZL(m) ω(radian) φ(radian) κ(radian) 

1 
JSK 0.00 0.00 0.00 1.57 0.00 0.00 

iWitness 0.00 0.00 0.00 1.57 0.00 0.00 

2 
JSK 2.97 1.49 1.42 0.95 1.05 2.68 

iWitness 2.95 1.48 1.40 0.96 1.04 2.68 

3 
JSK -1.53 4.62 3.30 -0.39 -0.27 -3.02 

iWitness -1.53 4.61 3.28 -0.39 -0.27 -3.02 

4 
JSK -4.04 1.79 1.46 0.86 -1.14 0.21 

iWitness -4.02 1.81 1.45 0.86 -1.14 0.21 

 

6.3.3 Absolute Orientation for SLS, KF, and CLS 

Since the relative orientation (RO) gives the results only in relative sense, 

we need to transform those results into the real world coordinate system by the 

procedure described in chapter 4.6. Two kinds of absolute orientation (AO) were 

implemented – the first was the seven parameter (rigid body=conformal) 

transformation and the second was a non-conformal polynomial transformation. 

We used exterior orientation parameters from SLS, KF and CLS. The AO was 

implemented for two control points groups as in section 6.3.2 and the 

misclosures at the check points were estimated to compare with those from BBA 

with minimal constraints. Table 6.49 shows the results of the parameter values. 

Table 6.50 shows the misclosures at check points in each of the six cases. The 

overall accuracies from SLS, KF and CLS were similar because of small number 

of images in the strip. Misclosure (4.2m) from RO was quite similar to that from 
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BBA with minimal constraints (3.5m). The difference of misclosures between the 

first and the second groups was quite small, which suggest that the comparisons 

of misclosures at check points are reliable.  

 

Table 6.49 The Seven Parameters Estimated by Absolute Orientation 

Parameter SLS KF CLS 

The first group 

ω (radian) -0.80 -0.80 -0.80 

φ (radian) -0.03 -0.03 -0.03 

κ (radian) -1.10 -1.10 -1.10 

Scale 1.03 1.03 1.03 

Tx (m) 505851.55 505851.52 505851.50 

Ty (m) 4474921.13 4474920.84 4474921.20 

Tz (m) -186.65 -186.71 -186.89 

The second  group 

ω (radian) -0.78 -0.78 -0.78 

φ (radian) -0.04 -0.04 -0.04 

κ (radian) -1.09 -1.10 -1.10 

Scale 1.03 1.03 1.03 

Tx (m) 505852.50 505852.52 505852.45 

Ty (m) 4474921.35 4474920.83 4474921.37 

Tz (m) -200.22 -200.43 -200.43 
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Table 6.50 Misclosures at Check Points for Seven Parameter Transformation 

(units=meters) 

 

Table 6.51 shows the result of polynomial transformation by the Schut 

method and table 6.52 shows the RMS of misclosures at check points from 

Polynomial transformation. The order of the polynomial (x’, y’, z’ as function of x,y) 

was 4. In retrospect, this was too large for the length of the strip. Over 

 RMSE_X RMSE_Y RMSE_Z RMSE 

Experiment 1 

SLS 3.74 2.49 6.09 4.37 

KF 3.74 2.43 6.04 4.34 

CLS 3.73 2.48 6.07 4.36 

Experiment 2 

SLS 4.29 3.17 4.75 4.12 

KF 4.37 3.16 4.74 4.14 

CLS 4.30 3.16 4.74 4.12 

total 

SLS 4.02 2.85 5.46 4.25 

KF 4.07 2.82 5.43 4.24 

CLS 4.03 2.84 5.45 4.24 
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parameterizing polynomials is a common misstep and will account for the poor 

results at check points. 

 

Table 6.51 The Polynomial Parameters Estimated by Absolute Orientation 

Parameter SLS KF CLS 

The first experiment 

a1 506194.92 506194.91 506194.90 

a2 4474764.69 4474764.67 4474764.68 

a3 -0.34 -0.34 -0.34 

a4 0.85 0.85 0.85 

a5 0.00 0.00 0.00 

a6 0.00 0.00 0.00 

a7 0.00 0.00 0.00 

a8 0.00 0.00 0.00 

b0 -344.80 -344.90 -344.95 

b1 0.30 0.30 0.30 

b2 -0.06 -0.06 -0.06 

c1 0.00 0.00 0.00 

c2 0.00 0.00 0.00 

c3 0.00 0.00 0.00 
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Table 6.51 Continued. 

d1 0.00 0.00 0.00 

d2 0.00 0.00 0.00 

d3 0.00 0.00 0.00 

d4 0.00 0.00 0.00 

e1 0.00 0.00 0.00 

e2 0.00 0.00 0.00 

The second experiment 

a1 506174.20 506174.19 506174.18 

a2 4474767.66 4474767.65 4474767.65 

a3 -0.27 -0.27 -0.27 

a4 0.79 0.79 0.79 

a5 0.00 0.00 0.00 

a6 0.00 0.00 0.00 

a7 0.00 0.00 0.00 

a8 0.00 0.00 0.00 

b0 -297.70 -298.54 -297.91 

b1 0.72 0.71 0.72 

b2 0.38 0.38 0.38 

c1 0.00 0.00 0.00 
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Table 6.51 Continued. 

c2 0.00 0.00 0.00 

c3 0.00 0.00 0.00 

d1 0.00 0.00 0.00 

d2 0.00 0.00 0.00 

d3 0.00 0.00 0.00 

d4 0.00 0.00 0.00 

e1 0.00 0.00 0.00 

e2 0.00 0.00 0.00 

 

In table 6.52, the RMS of misclosures from the polynomial transformation 

with KF was more than five times of those from the seven parameter 

transformation. The polynomial transformation gave an inaccurate result in this 

case and polynomial transformations can be dangerous sometimes. Therefore, 

the polynomial transformation will not be considered any further. Also, it is 

suggested that the result of polynomial transformation should be compared to the 

seven parameter rigid body transformation (effectively a first order polynomial) 

before using it, if control and check points are available. 
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Table 6.52 Misclosures at Check Points for Schut Polynomial Transformation 

(units=meters) 

 

Table 6.53 shows the comparison of RMS of misclosures between ARO/AO and 

BBA/MC/AO. The RMS of misclosures of BBA/MC/AO and ARO/AO with KF 

were each 3.49 and 4.24 meters respectively. BBA was expected to give the best 

result. As mentioned before, it is hard to see the differences of misclosures 

between each approach because of the small number of images and models. 

 RMSE_X RMSE_Y RMSE_Z RMSE 

Experiment 1 

SLS 35.79 7.40 21.84 24.58 

KF 35.76 7.38 21.64 24.51 

CLS 35.77 7.39 21.81 24.56 

Experiment 2 

SLS 26.33 21.62 22.25 23.49 

KF 26.30 21.61 21.60 23.28 

CLS 26.32 21.61 22.22 23.48 

total 

SLS 31.42 16.16 22.05 24.04 

KF 31.39 16.15 21.62 23.90 

CLS 31.40 16.15 22.02 24.03 
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Since it was impractical to acquire more aerial imagery, it was decided that 

simulation with a larger number of frames would be implemented to better 

examine the cantilever effect of CLS and how it is alleviated by SLS and KF. Also 

note that BBA, being a simultaneous solution, requires memory resources on the 

order of SLS. 

 

Table 6.53 The Comparison of Misclosures for Each Method (units=meters), 

(AO=absolute orientation, MC=minimal constraints) 

 

 

6.4 APPLICATION 4: Automated Relative Orientation – Simulation 

Since there was no significant difference in misclosures in the aerial case 

between SLS, KF, and CLS (because of the small number of images), simulation 

with a larger number of images was implemented. In this experiment, relative 

orientation, absolute orientation, and bundle block adjustment with minimal 

constraints and AO/7P (absolute orientation by seven parameters) were 

implemented. The results were assessed with the misclosures at check points. 

The simulations were done with nominal flight and exposure parameters, 

 ARO with AO BBA / MC with AO 

SLS 4.25 

3.49 KF 4.24 

CLS 4.24 
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perturbed by random (pseudo random) values from a random number generator 

(RNG). In order to not be reliant on a single set of random numbers, the 

simulations were done five times. Each time, the targeted nominal values were 

perturbed by a zero mean normal random number with given standard deviation 

(sigma).  

 

6.4.1 Relative Orientation 

For simulation, the data was generated as described in table 6.54. Figure 

6.41 shows the location of each point and figure 6.42 shows a magnified view for 

the example of simulation. For simulation, random perturbations for each exterior 

orientation element, image coordinates and interior orientation parameters were 

added to the nominal values for camera parameters, image points, pass, scale 

restraint, control and check points as shown in table 6.55. As in section 6.3, there 

were two control point groups swapped between control and check point function. 

In this experiment, we wanted to investigate the effect of different 

adjustment/estimation methods, in cases where there was a significant cantilever 

effect. In order to produce such a significant cantilever effect, we re-introduced 

unmodeled, uncorrected systematic errors. In practice, of course, one would do 

everything possible to correct/compensate such errors by calibration. In this case 

we wanted to investigate the performance of strips with cantilever effects, so the 

internal camera parameters were purposely perturbed. Sigmas for these values 

are shown in table 6.55. 
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Table 6.54 The Nominal Parameters for Simulation 

 

Table 6.55 The Random Perturbations Added to Nominal Values (Sigmas for 
RNG) 

 

 

 

 

 

 

 

 

 

 

 

 

 

no of 
imageries 

Overlap 
Ratio 

base 
height 
ratio 

baseline 
no pass 

point 
/image 

No. scale 
restraint 

point 
/model 

no 
control 
points 
/image 

no 
check 
points 
/image 

30 0.6 0.6 1000m 20 1 4 4 

XL, YL ZL ω, φ, κ 
Control and 

check point 

image 

coordinate 

x0, y0, K1, K2, K3, 

P1, P2 

3m 
0.1° 

(equivalent 3m) 
1m 1 pixel 

equivalent to 

10 pixel 

Figure 6.41 Pass, Scale Restraint, Control and Check Points for 
Simulation 
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In order to visualize the extent of the cantilever effect in strip formation, the 

following steps were done. The strip formation was done by each of the three 

methods under investigation: SLS, KF and CLS. Then a limited absolute 

orientation was done by a transformation based only on control points in the first 

model. That is, it is fixed only one end, and as expected, large cantilever 

deformation appears as one moves down the strip. These deformations are 

tabulated as RMS errors within each model. Then these RMS errors, per model, 

are plotted as a function of portion along the strip. They are plotted twice, once 

with planimetric aspect ratio to exaggerate the effect, and once with 1:1 aspect 

ratio (to see the true shape of the cantilever deformation). These plots, figures 

Figure 6.42 Pass, Scale Restraint, Control and Check Points for Simulation 
 (magnified ×5) 
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6.44 to 6.53, are shown for each of the five simulations. However, prior to doing 

this, a preliminary test was done, which resulted in modifying the KF algorithm. 

Using data from simulation 5, the first plot in Figure 6.43 was generated. The KF 

algorithm took white noise covariance from equation 5.5, and had no prior 

knowledge about the parameters in the last model. As a test the KF algorithm 

was the modified in two ways: (1) The covariance of white noise was taken from 

SLS results, (equation 5.12), and (2) the end parameters of the SLS estimation 

(bx, by, bz, ω, φ, κ) were taken as fixed in the KF algorithm. There are relative 

parameters, not absolute positions and attitudes. But it had the effect of moving 

the KF solution closer to the SLS solution. This is shown in the second plot of 

figure 6.43. If one actually did this in practice, then one would lose the benefit of 

the small memory profile of the KF algorithm. Alternatively, the same information 

could be provided indirectly by ground control points in the last model or by 

auxiliary sensors (GPS for position and interior for attitude). Therefore, the 

comparisons between SLS, KF, and CLS are preordained to show better 

agreement between SLS and KF, and to show poorer agreement between these 

and CLS.  
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Figure 6.43 Strip Deformation in Z direction 

(Top: A Priori Covariance with Unfixed End Parameters, 

Bottom: Propagated Covariance with Fixed End Parameters from SLS) 
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Figure 6.44 Strip Deformation Comparison, Simulation 1, y axis is 

exaggerated by ×4.62 (Top: X, Center: Y, Bottom: Z) 
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Figure 6.45 Strip Deformation Comparison, Simulation 1, Real 

Aspect Ratio (Top: X, Center: Y, Bottom: Z) 
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Figure 6.46 Strip Deformation Comparison, Simulation 2, y axis is 

exaggerated by ×3.97 (Top: X, Center: Y, Bottom: Z) 
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Figure 6.47 Strip Deformation Comparison, Simulation 2, Real 

Aspect Ratio (Top: X, Center: Y, Bottom: Z) 
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Figure 6.48 Strip Deformation Comparison, Simulation 3, y axis is 

exaggerated by ×2.39 (Top: X, Center: Y, Bottom: Z) 
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Figure 6.49 Strip Deformation Comparison, Simulation 3, Real 

Aspect Ratio (Top: X, Center: Y, Bottom: Z) 

 



168 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6.50 Strip Deformation Comparison, Simulation 4, y axis is 

exaggerated by ×2.14 (Top: X, Center: Y, Bottom: Z) 
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Figure 6.51 Strip Deformation Comparison, Simulation 4, Real 

Aspect Ratio (Top: X, Center: Y, Bottom: Z) 
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Figure 6.52 Strip Deformation Comparison, Simulation 5, y axis is 

exaggerated by ×1.82  (Top: X, Center: Y, Bottom: Z) 
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Figure 6.53 Strip Deformation Comparison, Simulation 5, Real 

Aspect Ratio (Top: X, Center: Y, Bottom: Z) 
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Table 6.56 shows the semi major and minor axes at the 90% confidence ellipsoid.  

SLS showed the largest values and KF showed the least values. As mentioned 

earlier, we believe that the propagated uncertainty of CLS and KF are 

understated, due to a simplified modeling of the scale restraint equation. 

Therefore, while interesting, these may not represent the precision achieved in 

practice. Representative plots are shown in Figure 6.54. 

  

Table 6.56 The Semi Major and Minor Axis of Error Ellipsoid  (units=meters) 

 semi major semi minor 1 semi minor 2 

case1 

SLS 21.56 13.06 9.90 

CLS 11.70 2.97 1.39 

KF 7.71 1.99 0.91 

case 2 

SLS 20.13 13.14 10.15 

CLS 11.86 3.04 1.45 

KF 7.80 2.01 0.93 

case 3 

SLS 19.17 12.61 9.65 

CLS 11.81 2.97 1.38 

KF 7.46 1.92 0.90 
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Table 6.56 Continued. 

case 4 

SLS 23.01 14.19 10.53 

CLS 13.02 3.28 1.53 

KF 8.10 2.09 0.98 

case 5 

SLS 21.33 13.14 9.98 

CLS 13.64 3.47 1.63 

KF 7.91 2.05 0.97 

 

 

 

 

 

 

 

 

 

 

 

 

 Figure 6.54 Error Ellipsoid from Each Approach (SLS: Top Left, CLS: Top 

Right, KF: Bottom Center) 
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Table 6.57 shows the memory occupancy of each solution and they were 

in the order of SLS, KF and CLS. The memory occupancy of KF and CLS are 

significantly smaller than SLS. Also, difference between CLS and KF was not 

significant compared to the difference between SLS and KF. Therefore, it was 

found out that KF are much more efficient than SLS. 

 
 
Table 6.57 Average Memory Occupancy (MB). Note: Matlab returns slightly 
different numbers when running the same program 

 

 

6.4.2 Bundle Block Adjustment (BBA) 

Using the simulated dataset, BBA with minimal constraints was 

implemented and the results were used as the criteria for accuracy assessment 

of automated relative and absolute orientation. We have a total of 232 control 

points and we divided them into two groups each with 116 control points.  One 

 CLS SLS KF 

Simulation 1 0.44 142.68 1.36 

Simulation 2 0.52 142.86 1.28 

Simulation 3 0.68 144.38 1.56 

Simulation 4 0.50 145.91 1.04 

Simulation 5 0.47 144.31 1.55 

mean 0.52 144.03 1.36 
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group was used as control points and the other group was used as check points. 

Two experiments were implemented swapping control and check point groups. 

For the BBA with minimal constraints, seven parameters were fixed (given with 

very large weight). Those seven parameters were six exterior orientation of the 

first image and XL of the second image. Table 6.58 shows the residuals, and a 

word must be said about them because they appear quite small indicating a good 

adjustment, which is not the case. Even though this is a BBA, since (1) we have 

a minimal constraints and since (2) there is only one three ray point connecting 

adjacent triplets, the BBA is in fact performing a series of relative orientations. 

Recall that the image coordinates are corrupted by uncorrected systematic errors. 

With relative orientation the x-residual is known in advance to be effectively zero. 

Since the conjugate y-components will be corrupted by approximately the same 

magnitude, those residuals, while not zero, will be much too small. When an 

overall RMS is computed, including all of the zero and small residuals, it will 

seem unusually low, not revealing the true underlying errors. In adjustment 

parlance, the redundancy numbers are very small (near zero) forcing the errors 

into (incorrect) parameters estimation, with very little of the errors appearing in 

the residuals. This will be confirmed later when the AO shows a very poor fit to 

control points. As we mentioned before, the control points estimated from BBA 

with minimal constraints were transformed by seven parameter transformation 

and table 6.59 shows the results of seven parameter transformation. 
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Table 6.58 The RMS of Residuals (units=pixels) 

 X Y total 

Simulation 1 

BBA /w min const (1st group) 0.00 0.67 0.48 

BBA /w min const (2nd group) 0.00 0.68 0.48 

total 0.00 0.67 0.48 

Simulation 2 

BBA /w min const (1st group) 0.00 0.66 0.47 

BBA /w min const  (2nd group) 0.00 0.67 0.48 

total 0.00 0.67 0.47 

Simulation 3 

BBA /w min const (1st group) 0.00 0.64 0.45 

BBA /w min const (2nd group) 0.00 0.65 0.46 

total 0.00 0.64 0.46 

Simulation 4 

BBA /w min const  (1st group) 0.00 0.66 0.47 

BBA /w min const (2nd group) 0.00 0.68 0.48 

total 0.00 0.67 0.47 

Simulation 5 

BBA /w min const (1st group) 0.01 0.83 0.59 

BBA /w min const (2nd group) 0.01 0.84 0.59 

total 0.01 0.84 0.59 

 

 



177 

 

Table 6.59 Seven Parameter Transformation to the Control Points from BBA w/ 

Minimal Constraints 

Parameter ω 
(radian) 

φ 
(radian) κ (radian) Scale Tx (m) Ty (m) Tz (m) 

case1 

group1 -0.01 -0.06 0.00 1.01 -137.91 -32.38 406.18 

group2 0.01 -0.06 0.00 1.02 -150.86 -21.29 410.57 

case2 

group1 -0.02 0.02 -0.05 0.98 178.25 -363.35 -163.75 

group2 -0.01 0.03 -0.05 0.98 179.32 -355.73 -188.59 

case 3 

group1 -0.03 -0.10 -0.09 1.02 -24.56 -664.26 657.18 

group2 -0.03 -0.10 -0.09 1.02 -12.59 -657.71 665.56 

case 4 

group1 0.01 -0.08 0.01 0.94 441.51 154.41 643.84 

group2 -0.02 -0.08 0.01 0.93 451.31 138.03 618.56 

case 5 

group1 0.02 0.13 0.02 0.98 253.75 149.33 -852.14 

group2 -0.01 0.13 0.02 0.98 257.93 181.99 -870.64 

 

Table 6.60 shows the misclosures at check points with only minimal 

constraints applied in model 1, followed by AO. It will be compared later to the 

misclosures from SLS, KF CLS with AO.  
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Table 6.60 Misclosures of Check Points (units=meters) with only MC plus AO 

 RMS X RMS Y RMS Z total 
RMS 

Simulation 1 

BBA /w min const (1st group) 47.69 11.56 122.54 76.21 

BBA /w min const (2nd group) 48.63 10.30 115.10 72.39 

total 48.16 10.95 118.88 74.32 

Simulation 2 

BBA /w min const  (1st group) 37.34 124.78 44.44 79.45 

BBA /w min const (2nd group) 37.34 119.69 50.51 78.04 

total 37.34 122.26 47.57 78.75 

Simulation 3 

BBA /w min const (1st group) 59.36 189.98 193.57 160.30 

BBA /w min const (2nd group) 58.62 191.32 196.64 161.97 

total 58.99 190.65 195.11 161.14 

Simulation 4 

BBA /w min const (1st group) 134.19 34.03 208.05 144.28 

BBA /w min const (2nd group) 136.77 28.28 209.99 145.61 

total 135.49 31.29 209.02 144.95 

Simulation 5 

BBA /w min const (1st group) 87.96 45.19 255.90 158.39 

BBA /w min const (2nd group) 91.70 54.28 246.71 155.16 

total 89.85 49.94 251.35 156.79 
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6.4.3 Absolute Orientation for SLS, KF, and CLS 

By using EO parameters estimated by SLS, KF and CLS for RO, the AO 

was implemented for two control points groups and the misclosures at the check 

points were estimated to compare with those from BBA with minimal constraints. 

Table 6.61 shows the results of the seven-parameter transformation. We can see 

that SLS and KF showed similar values for seven parameters, but CLS showed 

different values compared to the other methods. Table 6.62 shows the 

misclosures at check points for each of SLS, KF, CLS for each simulation. Table 

6.63 shows the comparison of RMS of misclosures from SLS/AO, KF/AO, 

CLS/AO, and BBA/MC/AO.  The accuracies shown in table 6.63 are, by 

conventional photogrammetric standards, quite poor. Recall that the image 

coordinates were purposely corrupted by systematic errors attempt to induce 

exaggerated strip deformation effects. So while it can be seen that the SLS and 

KF algorithms (KF augmented by results from SLS) have lower RMSE than CLS 

and BBA/MC, there results cannot be construed as recommended procedures. In 

practice one should always do the best and most complete job of camera 

calibration, rather than devise methods to work around an absence of calibration. 
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Table 6.61 The Seven Parameters Estimated by Absolute Orientation 

Parameter 
ω 

(radian) 

φ 

(radian) 

κ 

(radian) 
Scale Tx (m) Ty (m) Tz (m) 

simulation1 

group1 

SLS 0.00 -0.04 0.00 1.02 2185.47 1223.30 1839.41 

KF -0.01 -0.03 0.00 1.01 2176.18 1227.14 1823.63 

CLS -0.01 -0.06 -0.00 1.02 2233.36 1213.28 1953.79 

group2 

SLS 0.01 -0.04 0.00 1.02 2186.68 1241.87 1837.71 

KF 0.01 -0.03 0.00 1.01 2177.41 1247.92 1821.91 

CLS 0.01 -0.06 0.00 1.02 2234.19 1249.00 1950.49 

simulation2 

group1 

SLS -0.01 0.00 -0.04 0.99 2294.06 1064.34 1646.93 

KF 0.00 0.01 -0.04 0.99 2297.00 1079.79 1614.97 

CLS -0.02 0.02 -0.06 0.98 2283.23 959.90 1544.93 

group2 

SLS -0.01 0.00 -0.04 0.99 2294.80 1065.52 1647.87 

KF -0.01 0.00 -0.04 0.99 2297.12 1081.20 1616.17 

CLS -0.02 0.02 -0.06 0.98 2283.84 964.52 1546.39 
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Table 6.61 Continued. 

simulation 3 

group1 

SLS -0.01 -0.05 -0.06 1.02 2194.18 941.57 1911.22 

KF -0.01 -0.06 -0.07 1.02 2191.63 920.77 1931.63 

CLS -0.04 -0.10 -0.09 1.02 2305.58 761.82 2148.60 

group2 

SLS -0.01 -0.05 -0.06 1.02 2194.69 945.87 1911.23 

KF -0.01 -0.06 -0.07 1.02 2192.13 921.89 1931.39 

CLS -0.03 -0.10 -0.09 1.02 2306.34 769.45 2150.19 

simulation 4 

group1 

SLS 0.01 -0.03 0.01 0.95 2555.14 1304.82 1772.44 

KF 0.01 -0.03 0.01 0.94 2599.20 1290.40 1758.42 

CLS 0.01 -0.09 0.01 0.94 2697.98 1315.84 2016.19 

group2 

SLS 0.00 -0.03 0.01 0.95 2555.14 1304.82 1772.44 

KF 0.00 -0.04 0.01 0.94 2597.97 1273.24 1758.36 

CLS -0.02 -0.09 0.01 0.94 2696.40 1259.90 2016.69 

simulation 5 
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Table 6.61 Continued. 

group1 

SLS 0.01 0.07 0.01 0.98 2306.58 1322.05 1329.48 

KF 0.01 0.08 0.01 0.97 2346.78 1326.81 1282.35 

CLS 0.02 0.13 0.01 0.98 2251.78 1360.10 1038.85 

group2 

SLS -0.01 0.07 0.01 0.98 2306.23 1303.21 1329.67 

KF -0.01 0.08 0.01 0.97 2346.81 1309.73 1282.48 

CLS -0.01 0.12 0.02 0.98 2251.37 1331.62 1041.54 

 

Table 6.62 Misclosures at Check Points for Seven Parameter Transformation 

(units=meters) 

 RMSE_X RMSE_Y RMSE_Z RMSE 

simulation 1 

group1 

SLS 51.98 13.44 64.25 48.34 

KF 52.90 11.40 69.42 50.82 

CLS 48.64 11.89 115.92 72.90 

group2 

SLS 51.68 13.11 64.31 48.23 

KF 52.66 11.61 69.50 50.79 

CLS 48.47 10.87 115.95 72.83 

simulation 2 
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Table 6.62 Continued. 

group1 

SLS 25.43 76.66 5.90 46.75 

KF 28.05 80.23 13.05 49.64 

CLS 34.67 122.30 44.53 77.77 

group2 

SLS 26.94 74.75 5.90 46.00 

KF 29.56 78.34 12.95 48.92 

CLS 36.79 119.60 43.60 76.50 

simulation 3 

group1 

SLS 63.42 130.22 88.08 97.87 

KF 66.74 135.71 92.96 102.49 

CLS 59.84 187.43 188.15 157.18 

group2 

SLS 65.06 130.95 88.69 98.74 

KF 68.54 136.27 93.14 103.19 

CLS 61.44 188.24 189.91 158.41 

simulation 4 

group1 

SLS 114.60 28.68 86.99 84.70 

KF 134.62 28.18 83.25 92.82 

CLS 137.82 35.11 207.94 145.45 

group2 
SLS 115.15 26.37 87.37 84.83 

KF 135.12 26.13 83.76 93.02 
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Table 6.62 Continued. 

 CLS 138.56 29.13 210.09 146.27 

simulation 5 

group1 

SLS 81.56 33.23 129.54 90.43 

KF 106.01 40.01 128.50 98.91 

CLS 91.08 46.76 247.93 154.87 

group2 

SLS 81.74 35.22 129.22 90.59 

KF 106.56 41.95 128.06 99.19 

CLS 91.27 53.90 247.44 155.42 

 

Table 6.63 The Comparison of Misclosures of Each Method (units=meters) 

  

misclosures from 
ARO w/ 

7 parameter 
transformation 

misclosures 
BBA w/ minimal 

constraints 

alleviation 
ratio 

simulation 1 

SLS 48.29 

74.32 

0.35 

KF 50.81 0.32 

CLS 72.87 - 

simulation2 

SLS 46.38 

78.75 

0.40 

KF 49.28 0.37 

CLS 77.14 - 
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Table 6.63 Continued. 

 
 

simulation 3 

SLS 98.31 

161.14 

0.38 

KF 102.84 0.36 

CLS 157.80 - 

simulation 4 

SLS 84.77 

144.95 

0.42 

KF 92.92 0.36 

CLS 145.86 - 

simulation 5 

SLS 90.51 

156.79 

0.42 

KF 99.05 0.37 

CLS 155.15 - 

 

 

 

 

 

 

 

 



186 

 

CHAPTER 7. CONCLUSIONS AND RECOMMENDATIONS 

7.1 Conclusions 

In this research automated approaches for relative orientation were 

analyzed, with a further investigation into sequential versus batch estimation 

strategies. A number of conclusions can be drawn from the results. 

 

(1) An HD digital video camera was calibrated using short baseline urban 

imagery, long baseline urban imagery (both with object distance ~ 30m), in a 

laboratory with a target array, and using single strip aerial imagery. These were 

evaluated using control and check points together with the aerial imagery. The 

long baseline, urban, 30m dataset gave the best results and was subsequently 

used. The long baseline provides better angle diversity by increasing the range of 

κ to 0.46 radian (Urban3) from 0.16 radian (Urban 1,2) and the longer object 

distance is more consistent with the infinity focus lens position. The misclosures 

at check points and σ for camera parameters, expressed in pixels, in Urban 2 

(narrower baseline) and Lab 1 (shorter object distance) were each 2.37m, 2.08m 

and 13.47 and 12.53 pixel. Note that high correlations permit individual sigmas to 

be larger than this actual effect. By the benefit of angle diversity and longer 

object distance of Urban 3, the misclosures and σ decreased to 1.41 m and 9.42 
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pixels. The accuracy increased by factor of 0.41, 0.32 and precision increased 

(sigma decreased) by factor of 0.30, 0.25 compared to each Urban 2 and Lab1. 

Figure 7.1 and Figure 7.2 show the comparison of misclosures and σ of each 

calibration results. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 7.1 Misclosures at Check Points of Each Calibration 

Figure 7.2 Average Standard Deviation of Each Calibration 
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(2) The large Purdue control point database was supplemented with 

addition points as required. These were acquired with either GPS/RTK using 

Indiana INCORS real time network or via static processing using OPUS. Point 

accuracy is on the order of 1 – 2 cm. This data proved extremely useful in 

evaluating imagery adjustment technique. 

 

(3) Aerial imagery was acquired through the passenger window of a 

Cessna high wing aircraft. These low oblique imagery were captured at video 

rate, then downsampled to approximately 60 and 80% overlap. This proved to be 

a successful for collecting aerial imagery without having access to a dedicated 

aerial camera with conventional nadir view and attendant expense of airframe 

modification.  

 

(4) An approach to automated relative orientation was developed using a 

colored Harris Laplace Corner Detector to find interest points. The detected 

points were matched by cross correlation across three image pyramid levels. 

Preliminary estimation and outlier removal were accomplished via RANSAC and 

the eight point algorithm. This was followed by conventional least squares using 

the coplanarity and scale restraint condition equations. This proved to be a 

successful and eminently workable approach to automated relative orientation 

and strip formation. This required an innovative interleaving of 80% and 60% 

overlap processing. The three ray scale restraints points proved resistant to 

automated detection and were measured manually. 

 



189 

 

(5) It was shown that the developed automated relative orientation (ARO) 

technique could be applied to terrestrial imagery. There was minimal strip 

deformation due to the short length of the strip. Therefore there were no 

significant differences (RMS discrepancy of 0.01cm for CLS, 0.05cm for KF from 

SLS) in 3D reconstruction between SLS, KF and CLS. 

 

(6) For the aerial data experiment, three bundle block adjustments (BBA) 

were made (a) BBA using calibrated camera parameters together with control 

points and check points (CP/CKP), (b) BBA with self-calibration and (CP/CKP), 

and (c) BBA using calibrated camera parameters and with minimal constraints at 

only the beginning of the strip followed by absolute orientation (AO) using 

CP/CKP. Case (a) gave RMSE of 1.4m, case (b) gave RMSE of 24m, case (c) 

gave RMSE of 3.4m. Case (c), without CP’s in the interior of the strip during 

adjustment, was quite similar in approach to the test strategies Simultaneous 

Least Squares (SLS), Kalman Filter (KF), and Cantilever Least Squares (CLS). In 

fact all three gave quite similar AO results (misclosures at check points - SLS: 

4.25m, KF: 4.24m CLS: 4.24m) compared to the reference, case (c). As in the 

terrestrial case, it was concluded that the short length of the strip prevented 

differences from appearing. 

 

(7) Since it was not practical to make a longer aerial collection, it was 

decided to produce such a long strip by simulation. Random perturbations did not 

produce the expected strip deformations, so such deformations were induced by 
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purposely introducing lens distortion errors. Large differences in check point error 

were now apparent between strip formation methods (For example, SLS: 48.29m, 

KF: 50.81m, CLS: 72.87m for simulation 1) but these should not be the basis for 

strong conclusions. In retrospect, little is to be gained by effectively 

experimenting with an uncalibrated camera. In fact, rigorous camera calibration is 

always recommended.  

 

7.2 Recommendations 

(1) In related testing, the eight point algorithm used in this research 

occasionally gave incorrect results. We believe that we found a workaround in 

those cases, see Benziger (2013), but this needs further study and confirmation. 

 

(2) Matching by cross correlation is valid when the disparity function is 

constant within the match window. When this assumption is not met, pixel 

matching rather than area matching may have some benefits. This should be 

studied further. 

 

(3) Matching for pass point selection for strip formation could be followed by 

matching for generation of a scene surface model. The geometric frame work 

supplied by the pass points would provide a rich starting point for surface model 

generation. 
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Appendix A Static GPS Survey Log 

 
FILE: pt1.tps OP1340054656154 
 
 2005   NOTE:  The IGS precise and IGS rapid orbits were not available 
 2005   at processing time.  The IGS ultra-rapid orbit was/will be used to 
 2005   process the data. 
 2005   
                              NGS OPUS-RS SOLUTION REPORT 
                              ======================== 
 
All computed coordinate accuracies are listed as 1-sigma RMS values. 
For additional information: http://www.ngs.noaa.gov/OPUS/about.jsp#accuracy 
 
USER:                       DATE: June 18, 2012 
RINEX FILE: pt1_170k.12o                            TIME: 21:39:19 UTC 
 
 
 SOFTWARE: rsgps  1.37 RS64.prl 1.81              START: 2012/06/18 10:48:13 
 EPHEMERIS: igu16931.eph [ultra-rapid]              STOP: 2012/06/18 11:17:21 
 NAV FILE: brdc1700.12n                        OBS USED:  3132 /  3195   :  98% 
 ANT NAME: JPSREGANT_SD_E  NONE             QUALITY IND.  30.93/ 37.55 
 ARP HEIGHT: 1.5                           NORMALIZED RMS:        0.309 
 
 
 REF FRAME: NAD_83(2011)(EPOCH:2010.0000)              IGS08     
(EPOCH:2012.46301) 
       
         X:       261532.204(m)   0.004(m)            261531.412(m)   0.004(m) 
         Y:     -4855068.640(m)   0.018(m)          -4855067.249(m)   0.018(m) 
         Z:      4114418.162(m)   0.013(m)           4114418.075(m)   0.013(m) 
 
 LAT:   40 25 42.51704      0.004(m)        40 25 42.54499      0.004(m) 
 E LON:  273  5  0.31719      0.004(m)       273  5  0.28682      0.004(m) 
 W LON:   86 54 59.68281      0.004(m)        86 54 59.71318      0.004(m) 
 EL HGT:          155.385(m)   0.021(m)               154.239(m)   0.021(m) 
 ORTHO HGT: [Geoid Model Not Yet Available w/ NAD83 (2011).] 
                        UTM COORDINATES    STATE PLANE COORDINATES 
                        UTM (Zone 16)         SPC (1302 IN W) 
Northing (Y) [meters]     4475319.075           575106.951 
Easting (X)  [meters]      507076.122           914149.962 
Convergence  [degrees]     0.05409869           0.10814037 
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Point Scale                0.99960062           0.99996913 
Combined Factor            0.99957625           0.99994476 
 
US NATIONAL GRID DESIGNATOR: 16TEK0707675319(NAD 83) 
 
 
 
                              BASE STATIONS USED 
PID       DESIGNATION                        LATITUDE    LONGITUDE DISTANCE(m) 
DM5395 INWL WEST LAFAYETTE CORS ARP        N402728.468 
W0865534.309    3368.7 
DM5385 INMO INDOT MONTICELLO CORS ARP      N404333.353 
W0864509.945   35825.9 
AH5611 WLCI WOLCOTT CORS ARP               N404830.241 W0870307.129   
43718.3 
DM5391 INRN RENSSELAER CORS ARP            N405646.977 W0870822.514   
60524.3 
DM5393 INTP TIPTON CORS ARP                N401649.307 W0860319.846   
74975.9 
DL2760 INHC HENDRICKS COUNTY CORS ARP      N394524.651 
W0863123.536   81775.0 
DM5389 INPL PLAINFIELD CORS ARP            N394130.687 W0862339.851   
93138.9 
DM4642 INCL CLOVERDALE CORS ARP            N393211.116 W0864805.530   
99537.2 
DM5966 INWB WABASH CORS ARP                N404929.023 W0854811.622  
103970.0 
 
                 NEAREST NGS PUBLISHED CONTROL POINT 
LB0872      PURDUE UNIV RESET 1959         N402543.    W0865449.        251.9 
 
This position and the above vector components were computed without any 
knowledge by the National Geodetic Survey regarding the equipment or 
field operating procedures used. 
 
FILE: second_pt_1.tps OP1340204307244 
 
2005   NOTE:  The IGS precise and IGS rapid orbits were not available 
2005   at processing time.  The IGS ultra-rapid orbit was/will be used to 
 2005   process the data. 
 2005   
                              NGS OPUS-RS SOLUTION REPORT 
                              ======================== 
 
All computed coordinate accuracies are listed as 1-sigma RMS values. 
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For additional information: http://www.ngs.noaa.gov/OPUS/about.jsp#accuracy 
 
USER:                       DATE: June 20, 2012 
RINEX FILE: seco171b.12o                            TIME: 15:21:17 UTC 
 
 
 SOFTWARE: rsgps  1.37 RS43.prl 1.81              START: 2012/06/19 01:42:49 
 EPHEMERIS: igu16932.eph [ultra-rapid]              STOP: 2012/06/19 01:57:37 
 NAV FILE: brdc1710.12n                        OBS USED:  1584 /  1719   :  92% 
 ANT NAME: JPSREGANT_SD_E  NONE             QUALITY IND.  19.39/ 32.09 
 ARP HEIGHT: 1.5                           NORMALIZED RMS:        0.284 
 
 
 REF FRAME: NAD_83(2011)(EPOCH:2010.0000)              IGS08 
(EPOCH:2012.46469) 
       
         X:       261532.194(m)   0.004(m)            261531.402(m)   0.004(m) 
         Y:     -4855068.683(m)   0.015(m)          -4855067.292(m)   0.015(m) 
         Z:      4114418.185(m)   0.013(m)           4114418.098(m)   0.013(m) 
 
 LAT:   40 25 42.51672      0.004(m)        40 25 42.54467      0.004(m) 
 E LON:  273  5  0.31667      0.004(m)       273  5  0.28629      0.004(m) 
 W LON:   86 54 59.68333      0.004(m)        86 54 59.71371      0.004(m) 
 EL HGT:          155.433(m)   0.019(m)               154.286(m)   0.019(m) 
 ORTHO HGT: [Geoid Model Not Yet Available w/ NAD83 (2011).] 
 
                        UTM COORDINATES    STATE PLANE COORDINATES 
                         UTM (Zone 16)         SPC (1302 IN W) 
Northing (Y) [meters]     4475319.065           575106.941 
Easting (X)  [meters]      507076.110           914149.950 
Convergence  [degrees]     0.05409859           0.10814028 
Point Scale                0.99960062           0.99996913 
Combined Factor            0.99957624           0.99994475 
 
US NATIONAL GRID DESIGNATOR: 16TEK0707675319(NAD 83) 
 
 
 
                              BASE STATIONS USED 
PID       DESIGNATION                        LATITUDE    LONGITUDE DISTANCE(m) 
DM5395 INWL WEST LAFAYETTE CORS ARP        N402728.468 
W0865534.309    3368.7 
DN2118 P775 PURDUE_U__IN2010 CORS ARP      N402831.380 
W0865931.483    8255.4 
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DM5385 INMO INDOT MONTICELLO CORS ARP      N404333.353 
W0864509.945   35826.0 
AH5611 WLCI WOLCOTT CORS ARP               N404830.241 W0870307.129   
43718.4 
DM5391 INRN RENSSELAER CORS ARP            N405646.977 W0870822.514   
60524.3 
DM5393 INTP TIPTON CORS ARP                N401649.307 W0860319.846   
74975.9 
DL2760 INHC HENDRICKS COUNTY CORS ARP      N394524.651 
W0863123.536   81775.0 
DM5389 INPL PLAINFIELD CORS ARP            N394130.687 W0862339.851   
93138.9 
DM4642 INCL CLOVERDALE CORS ARP            N393211.116 W0864805.530   
99537.2 
 
                 NEAREST NGS PUBLISHED CONTROL POINT 
LB0872      PURDUE UNIV RESET 1959         N402543.    W0865449.        251.9 
 
This position and the above vector components were computed without any 
knowledge by the National Geodetic Survey regarding the equipment or 
field operating procedures used. 
 

 

 

 

 

 

 

 

 

 

 



207 
 

 

Appendix B RTK GPS Survey Log 

 

Table B.1 RTK GPS Survey Log 
RTK for No 9  

Icon  
Name 99 

Grid Northing (m) 4474669.128 

Grid Easting (m) 506329.065 

Elevation (m) 156.762 

Code  
Control  
Note  

Photo Notes  
Layer 0 

Source  
Std Dev n (m) 0.001 

Std Dev e (m) 0.001 

Std Dev u (m) 0.002 

Std Dev Hz (m) 0.001 

Point Symbol  
Geoid Separation (m)  

Color  
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Appendix C Exterior Orientation Parameters from Simulation 

 
Table C.1 Simulation 1 

SLS 

XL(m) YL(m) ZL(m) ω(rad) φ(rad) κ(rad) 

0.00 0.00 0.00 0.00 0.00 0.00 

1004.75 -0.09 9.42 0.00 -0.01 0.00 

1994.39 -1.77 25.54 0.00 -0.01 0.00 

2989.44 -4.32 40.47 0.00 -0.01 0.00 

3995.66 1.58 55.90 0.01 -0.02 0.00 

4994.23 2.58 72.68 0.00 -0.02 0.00 

5989.15 11.49 88.64 0.00 -0.02 0.00 

6978.75 11.61 99.63 0.00 -0.02 0.00 

7968.39 14.62 127.00 0.00 -0.02 0.00 

8962.45 21.26 151.04 0.00 -0.02 0.00 

9943.49 15.35 173.10 0.00 -0.02 0.00 

10932.81 7.64 193.55 0.00 -0.02 0.00 

11908.55 3.11 218.69 0.00 -0.03 0.00 

12886.49 0.94 244.18 0.00 -0.03 0.00 

13864.20 5.46 274.83 0.00 -0.03 0.00 
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Table C.1 Continued. 

14842.25 4.89 303.90 0.00 -0.03 0.00 

15818.85 3.79 335.68 0.00 -0.03 0.00 

16781.79 2.68 378.12 0.00 -0.04 0.00 

17760.47 -2.65 419.80 0.00 -0.04 0.00 

18725.08 -8.11 461.18 0.00 -0.05 0.00 

19690.46 -9.35 508.62 0.00 -0.05 0.00 

20662.46 -10.67 555.03 0.00 -0.05 0.00 

21625.41 -2.14 602.34 0.00 -0.05 0.00 

22595.24 -20.42 656.51 0.00 -0.05 0.00 

23557.09 -17.04 699.24 0.00 -0.05 0.00 

24515.83 -19.32 757.89 0.00 -0.05 0.00 

25471.99 -19.60 812.70 0.00 -0.06 0.00 

26439.39 -29.38 872.87 0.00 -0.06 0.00 

27390.33 -26.30 932.81 0.00 -0.06 0.00 

28351.04 -24.53 991.24 0.00 -0.06 0.00 

KF 

0.00 0.00 0.00 0.00 0.00 0.00 

1004.75 -0.33 9.69 0.00 -0.01 0.00 

2009.49 0.80 23.10 0.00 -0.01 0.00 
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Table C.1 Continued. 

3013.24 0.94 31.14 0.00 -0.01 0.00 

4024.56 3.31 41.08 0.00 -0.01 0.00 

5031.73 0.93 51.40 0.00 -0.01 0.00 

6033.81 6.48 59.94 0.00 -0.01 0.00 

7030.64 1.99 62.87 0.00 -0.01 -0.01 

8033.47 0.97 80.14 0.00 -0.01 0.00 

9033.06 3.96 92.79 0.00 -0.01 -0.01 

10018.31 -3.53 104.49 0.00 -0.01 0.00 

11012.95 -13.05 115.77 0.00 -0.01 0.00 

11996.33 -18.38 132.32 0.00 -0.02 0.00 

12982.42 -20.43 148.60 0.00 -0.02 0.00 

13966.55 -15.98 170.16 0.00 -0.02 0.00 

14951.04 -18.62 189.90 0.00 -0.02 0.00 

15934.08 -21.31 213.24 0.00 -0.02 0.00 

16905.62 -25.43 246.90 0.00 -0.03 0.00 

17892.28 -30.36 278.56 0.00 -0.03 0.00 

18858.95 -33.80 311.06 0.00 -0.04 0.00 

19832.57 -32.92 350.33 0.00 -0.04 0.00 

20812.98 -34.64 387.94 0.00 -0.04 0.00 
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Table C.1 Continued. 

21780.68 -25.49 426.81 0.00 -0.04 0.00 

22757.06 -43.55 473.36 0.00 -0.04 0.00 

23723.06 -39.65 509.27 0.00 -0.05 0.00 

24685.85 -43.44 562.05 0.00 -0.05 0.00 

25641.15 -41.85 612.86 0.00 -0.05 0.00 

26607.00 -52.75 671.85 0.00 -0.06 0.00 

27562.13 -49.12 732.52 0.00 -0.06 0.00 

28522.83 -47.35 790.94 0.00 -0.06 0.00 

CLS 

0.00 0.00 0.00 0.00 0.00 0.00 

1004.75 -0.33 9.69 0.00 -0.01 0.00 

1994.88 0.38 26.18 0.00 -0.01 0.00 

2990.51 1.64 40.05 0.00 -0.01 0.00 

3992.77 5.19 58.20 0.00 -0.02 0.00 

4988.14 2.75 79.89 0.00 -0.02 0.00 

5979.18 10.45 102.42 0.00 -0.02 0.00 

6967.53 8.81 122.38 0.00 -0.02 0.00 

7960.55 9.71 158.95 0.00 -0.03 0.00 

8950.93 15.80 193.35 0.00 -0.03 0.00 
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Table C.1 Continued. 

9929.35 9.60 228.09 0.00 -0.03 0.00 

10915.77 0.90 264.39 0.00 -0.04 0.00 

11891.25 -2.34 307.14 0.00 -0.04 0.00 

12869.01 -2.42 351.59 0.00 -0.05 0.00 

13844.72 3.23 403.27 0.00 -0.05 0.00 

14821.99 0.94 454.58 0.00 -0.06 0.00 

15798.43 -1.39 510.57 0.00 -0.06 0.00 

16762.41 -4.75 577.64 0.00 -0.07 0.00 

17742.72 -9.10 644.29 0.00 -0.07 0.00 

18702.05 -9.98 712.23 0.00 -0.07 0.00 

19668.94 -8.67 788.07 0.00 -0.08 0.00 

20642.55 -9.91 863.29 0.00 -0.08 0.00 

21603.09 -0.57 940.53 0.00 -0.08 0.00 

22571.44 -17.25 1027.06 0.00 -0.08 0.00 

23531.52 -13.10 1103.64 0.00 -0.09 0.00 

24487.25 -16.50 1197.70 0.00 -0.09 0.00 

25436.48 -15.04 1290.15 -0.01 -0.10 -0.01 

26395.48 -26.02 1391.60 0.00 -0.10 0.00 

27342.44 -21.64 1494.48 -0.01 -0.11 -0.01 

28305.48 -23.28 1596.84 -0.01 -0.11 0.00 
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Table C.2 Simulation 2 

 

SLS 

XL(m) YL(m) ZL(m) ω(rad) φ(rad) κ(rad) 

0.00 0.00 0.00 0.00 0.00 0.00 

992.48 -4.62 -4.45 0.00 0.00 0.00 

1993.26 -11.58 0.29 0.00 0.00 -0.01 

2994.17 -18.55 -3.64 0.00 0.00 -0.01 

3999.74 -26.24 4.24 0.00 0.00 -0.01 

5004.33 -40.40 6.08 0.00 0.00 -0.02 

6009.27 -60.32 7.96 0.00 0.00 -0.02 

7011.18 -80.76 12.61 0.00 0.00 -0.02 

8019.39 -109.03 11.84 0.00 0.00 -0.03 

9025.53 -138.42 12.87 0.00 0.00 -0.03 

10031.12 -166.54 10.49 0.00 0.00 -0.03 

11038.94 -202.61 11.14 0.00 0.00 -0.03 

12044.38 -240.32 14.36 0.00 0.00 -0.03 

13046.41 -278.07 9.27 0.01 0.00 -0.03 

14052.15 -316.57 10.31 0.00 0.00 -0.04 

15068.30 -355.09 17.43 0.00 0.00 -0.04 

16074.43 -396.92 13.58 0.00 0.00 -0.04 
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Table C.2 Continued. 

17091.09 -438.48 18.57 0.00 0.00 -0.04 

18088.23 -478.84 16.26 0.00 0.00 -0.04 

19108.90 -533.78 10.71 0.00 0.00 -0.05 

20122.57 -580.75 21.11 0.00 0.00 -0.05 

21136.56 -637.75 11.72 0.00 0.00 -0.06 

22150.36 -696.21 6.03 0.00 0.00 -0.06 

23162.88 -757.46 11.77 0.00 0.00 -0.06 

24175.32 -818.67 12.58 0.00 0.00 -0.07 

25188.98 -880.75 16.81 0.00 -0.01 -0.07 

26210.30 -950.21 18.34 0.00 0.00 -0.07 

27224.82 -1019.87 10.03 0.00 0.00 -0.07 

28232.28 -1085.31 15.53 0.00 0.00 -0.08 

29243.42 -1172.32 21.02 0.00 0.00 -0.08 

KF 

0.00 0.00 0.00 0.00 0.00 0.00 

992.48 -4.58 -4.36 0.00 0.00 0.00 

1984.95 -12.18 2.51 0.00 -0.01 -0.01 

2991.40 -19.07 1.00 0.00 0.00 -0.01 

3998.07 -27.34 10.26 0.00 -0.01 -0.01 
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Table C.2 Continued. 

5004.22 -43.34 13.22 0.00 -0.01 -0.01 

6017.83 -62.59 14.66 0.00 0.00 -0.01 

7024.45 -74.79 17.65 0.00 0.00 -0.02 

8040.02 -96.63 13.16 0.00 0.00 -0.02 

9049.94 -120.99 9.81 0.01 0.00 -0.02 

10063.36 -143.78 1.56 0.01 0.01 -0.02 

11078.64 -175.99 -6.08 0.01 0.01 -0.02 

12091.41 -205.00 -13.62 0.00 0.01 -0.03 

13092.08 -238.66 -28.13 0.01 0.01 -0.03 

14098.79 -274.73 -35.47 0.01 0.00 -0.04 

15115.06 -312.77 -35.43 0.01 0.00 -0.04 

16125.22 -353.75 -45.47 0.01 0.00 -0.04 

17144.32 -394.56 -46.86 0.01 0.00 -0.04 

18147.89 -436.02 -54.22 0.01 0.00 -0.04 

19174.24 -489.09 -67.23 0.01 0.00 -0.04 

20190.11 -532.99 -63.22 0.01 0.00 -0.05 

21205.46 -588.37 -78.12 0.01 0.00 -0.05 

22220.16 -641.18 -87.53 0.01 0.00 -0.05 

23243.50 -699.94 -86.57 0.01 0.01 -0.06 
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Table C.2 Continued. 

24267.23 -760.58 -93.72 0.01 0.01 -0.07 

25281.64 -821.38 -98.38 0.01 0.00 -0.07 

26306.91 -889.58 -105.48 0.01 0.01 -0.07 

27312.60 -949.25 -118.09 0.01 0.00 -0.07 

28322.73 -1009.04 -112.45 0.00 0.00 -0.08 

29333.87 -1096.04 -106.96 0.00 0.00 -0.08 

CLS 

0.00 0.00 0.00 0.00 0.00 0.00 

992.48 -4.58 -4.36 0.00 0.00 0.00 

1993.36 -9.78 0.59 0.00 0.00 -0.01 

3002.46 -18.47 -4.43 0.00 0.00 -0.01 

4015.23 -28.15 -0.47 0.00 0.00 -0.02 

5023.88 -45.06 -4.02 0.00 0.00 -0.02 

6038.48 -68.94 -9.14 0.00 0.00 -0.02 

7046.73 -86.38 -12.71 -0.01 0.01 -0.03 

8062.46 -115.09 -23.26 -0.01 0.01 -0.03 

9074.12 -149.76 -32.38 0.00 0.01 -0.03 

10091.32 -185.32 -47.01 0.00 0.01 -0.04 

11108.70 -230.56 -61.50 0.00 0.02 -0.04 
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Table C.2 Continued. 

12124.61 -274.44 -76.70 -0.01 0.02 -0.04 

13127.44 -323.85 -98.98 0.00 0.02 -0.05 

14138.26 -375.64 -115.55 -0.01 0.01 -0.06 

15163.70 -431.56 -127.54 -0.01 0.02 -0.06 

16175.43 -493.65 -151.57 -0.01 0.02 -0.06 

17197.98 -555.99 -167.60 -0.01 0.02 -0.06 

18204.90 -621.54 -191.02 0.00 0.02 -0.07 

19235.56 -699.96 -221.63 -0.01 0.02 -0.07 

20253.72 -769.35 -236.55 -0.01 0.02 -0.08 

21271.93 -853.29 -270.97 -0.01 0.02 -0.08 

22291.85 -935.88 -301.64 0.00 0.02 -0.08 

23317.55 -1025.52 -323.62 -0.01 0.03 -0.09 

24346.00 -1121.05 -354.97 -0.01 0.03 -0.10 

25363.14 -1216.73 -385.87 -0.01 0.03 -0.10 

26390.75 -1321.64 -420.62 0.00 0.03 -0.10 

27408.72 -1428.59 -465.25 0.00 0.03 -0.10 

28422.02 -1528.35 -496.35 0.00 0.04 -0.11 

29440.99 -1651.50 -529.69 0.00 0.04 -0.11 
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Table C.3 Simulation 3 

SLS 

XL(m) YL(m) ZL(m) ω(rad) φ(rad) κ(rad) 

0.00 0.00 0.00 0.00 0.00 0.00 

1000.98 -5.95 12.99 0.00 -0.01 -0.01 

2000.08 -16.98 22.23 0.00 -0.01 -0.01 

3008.20 -28.61 34.96 0.00 -0.02 -0.02 

3997.28 -48.16 57.82 0.00 -0.02 -0.02 

4986.41 -74.42 82.95 0.00 -0.03 -0.03 

5974.33 -101.92 117.08 0.00 -0.03 -0.03 

6967.71 -129.42 151.65 0.00 -0.03 -0.03 

7960.17 -157.45 189.68 0.00 -0.03 -0.03 

8952.02 -204.16 227.36 0.01 -0.04 -0.04 

9932.38 -250.86 263.96 0.01 -0.04 -0.04 

10916.50 -298.17 298.82 0.01 -0.04 -0.05 

11897.63 -345.77 347.39 0.01 -0.04 -0.05 

12875.35 -401.40 389.40 0.01 -0.04 -0.05 

13853.26 -458.63 431.75 0.01 -0.05 -0.05 
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Table C.3 Continued. 

14831.23 -515.22 474.28 0.02 -0.05 -0.05 

15799.21 -578.83 527.83 0.01 -0.05 -0.06 

16767.52 -645.58 578.55 0.02 -0.06 -0.07 

17738.31 -713.42 631.84 0.01 -0.06 -0.07 

18702.86 -782.90 694.96 0.01 -0.06 -0.08 

19659.96 -868.54 754.52 0.01 -0.07 -0.08 

20620.72 -945.96 820.70 0.02 -0.07 -0.09 

21582.74 -1039.61 893.66 0.02 -0.07 -0.09 

22529.31 -1127.71 968.61 0.01 -0.08 -0.10 

23474.29 -1228.11 1039.01 0.02 -0.08 -0.10 

24419.12 -1324.39 1126.06 0.01 -0.09 -0.11 

25363.95 -1431.64 1204.93 0.02 -0.10 -0.11 

26306.57 -1543.44 1302.20 0.01 -0.10 -0.12 

27248.15 -1657.61 1396.65 0.02 -0.10 -0.12 

28186.50 -1774.92 1497.54 0.02 -0.10 -0.12 

KF 

0.00 0.00 0.00 0.00 0.00 0.00 
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Table C.3 Continued. 

1000.98 -6.05 13.01 0.00 -0.01 -0.01 

2001.96 -18.23 22.11 0.00 -0.01 -0.01 

2999.86 -24.25 37.94 0.00 -0.02 -0.01 

3998.41 -43.20 65.04 0.00 -0.03 -0.02 

4999.93 -78.15 90.97 0.01 -0.03 -0.03 

5989.56 -107.02 122.48 0.01 -0.03 -0.03 

6990.13 -141.27 152.83 0.01 -0.03 -0.03 

7982.62 -172.19 187.17 0.01 -0.03 -0.04 

8962.82 -219.29 224.72 0.01 -0.04 -0.04 

9941.79 -266.41 262.88 0.01 -0.04 -0.05 

10927.64 -316.64 299.15 0.01 -0.04 -0.05 

11899.54 -369.90 349.21 0.01 -0.05 -0.05 

12876.95 -428.48 395.21 0.01 -0.05 -0.06 

13850.46 -491.81 442.19 0.02 -0.05 -0.07 

14824.11 -562.57 491.40 0.02 -0.06 -0.07 

15784.56 -636.46 553.75 0.02 -0.06 -0.07 

16751.61 -712.67 615.28 0.02 -0.07 -0.08 
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Table C.3 Continued. 

17723.47 -790.50 679.26 0.02 -0.07 -0.08 

18700.55 -870.54 749.03 0.02 -0.07 -0.09 

19658.88 -962.71 810.41 0.02 -0.07 -0.09 

20619.64 -1046.78 877.18 0.02 -0.07 -0.09 

21578.78 -1146.28 949.86 0.02 -0.07 -0.09 

22523.22 -1237.94 1026.75 0.02 -0.08 -0.10 

23467.30 -1342.61 1098.48 0.02 -0.09 -0.11 

24413.95 -1441.22 1186.39 0.02 -0.09 -0.11 

25358.97 -1548.31 1264.91 0.02 -0.10 -0.11 

26295.53 -1655.20 1361.55 0.01 -0.10 -0.12 

27232.90 -1765.35 1457.70 0.02 -0.10 -0.12 

28171.25 -1882.65 1558.59 0.02 -0.10 -0.12 

CLS 

0.00 0.00 0.00 0.00 0.00 0.00 

1000.98 -6.05 13.01 0.00 -0.01 -0.01 

1998.70 -17.69 22.58 0.00 -0.02 -0.01 

2989.92 -25.73 41.28 0.00 -0.03 -0.02 
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Table C.3 Continued. 

3984.14 -46.96 73.70 0.00 -0.03 -0.02 

4980.06 -83.15 107.16 0.01 -0.04 -0.03 

5959.94 -115.78 148.73 0.00 -0.04 -0.04 

6945.78 -148.77 198.68 0.00 -0.05 -0.04 

7928.34 -185.50 255.84 0.00 -0.06 -0.05 

8904.15 -238.50 321.46 0.00 -0.07 -0.06 

9879.10 -298.33 390.14 0.00 -0.07 -0.06 

10862.66 -362.37 459.10 0.00 -0.07 -0.07 

11828.18 -428.25 543.21 0.00 -0.08 -0.07 

12798.69 -497.59 628.15 -0.01 -0.09 -0.08 

13765.68 -574.06 716.90 -0.01 -0.09 -0.09 

14729.71 -658.17 812.29 0.00 -0.10 -0.09 

15687.47 -750.93 923.47 -0.01 -0.11 -0.09 

16649.85 -845.91 1035.37 -0.01 -0.12 -0.10 

17617.54 -947.28 1151.51 -0.01 -0.12 -0.11 

18576.50 -1048.40 1277.39 -0.01 -0.13 -0.11 

19526.68 -1165.43 1400.37 -0.01 -0.13 -0.12 
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Table C.3 Continued. 

20479.40 -1276.64 1531.49 -0.01 -0.14 -0.12 

21430.33 -1401.54 1672.12 -0.01 -0.14 -0.13 

22367.81 -1523.95 1817.18 -0.01 -0.15 -0.14 

23307.03 -1660.08 1958.56 -0.01 -0.16 -0.14 

24245.21 -1791.40 2116.95 -0.01 -0.16 -0.15 

25180.96 -1937.71 2267.11 -0.01 -0.17 -0.15 

26108.27 -2081.66 2436.48 -0.02 -0.17 -0.16 

27035.53 -2228.13 2605.96 -0.02 -0.18 -0.17 

27959.99 -2385.32 2782.98 -0.01 -0.18 -0.17 
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Table C.4 Simulation 4 

SLS 

XL(m) YL(m) ZL(m) ω(rad) φ(rad) κ(rad) 

0.00 0.00 0.00 0.00 0.00 0.00 

994.48 -1.80 -1.97 0.01 0.00 0.00 

1997.95 1.62 7.23 0.00 -0.01 0.00 

3011.18 -12.18 2.38 0.01 -0.01 0.00 

4024.51 -6.31 5.57 0.00 -0.01 0.00 

5042.95 -1.76 19.38 0.00 -0.02 0.00 

6049.97 1.77 37.32 0.00 -0.03 0.00 

7072.26 -2.01 56.52 0.00 -0.03 0.00 

8099.88 -10.82 77.71 0.00 -0.03 0.00 

9133.00 -13.25 99.55 0.01 -0.03 0.00 

10158.09 -8.52 134.16 0.00 -0.03 0.00 

11194.65 -0.68 158.69 0.00 -0.04 0.00 

12225.92 0.30 196.43 0.00 -0.05 0.00 

13274.70 9.21 239.42 0.00 -0.05 0.00 

14326.21 17.85 282.97 0.00 -0.05 0.01 

15386.33 9.67 323.32 0.00 -0.05 0.01 

16445.65 16.23 363.60 0.01 -0.04 0.00 

17504.97 22.66 401.49 0.01 -0.05 0.01 
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Table C.4 Continued. 

18570.97 40.85 449.84 0.01 -0.05 0.01 

19637.18 45.65 498.22 0.01 -0.05 0.01 

20703.47 56.91 549.34 0.01 -0.06 0.01 

21769.36 61.53 612.53 0.01 -0.07 0.01 

22838.31 61.50 680.15 0.01 -0.07 0.01 

23928.10 75.40 745.44 0.01 -0.07 0.01 

25016.96 76.24 827.69 0.01 -0.07 0.01 

26105.91 90.26 903.85 0.01 -0.08 0.01 

27196.26 104.49 973.44 0.01 -0.08 0.01 

28293.44 111.57 1057.39 0.01 -0.08 0.01 

29391.10 124.32 1138.33 0.01 -0.09 0.01 

30488.95 143.79 1232.87 0.01 -0.09 0.01 

KF 

0.00 0.00 0.00 0.00 0.00 0.00 

994.48 -1.54 -1.68 0.00 -0.01 0.00 

1988.95 3.78 8.11 0.00 -0.01 0.00 

2991.17 -9.29 7.28 0.00 -0.02 0.00 

4004.39 -2.50 14.88 0.00 -0.02 0.00 

5020.73 4.53 31.46 0.00 -0.02 0.00 
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Table C.4 Continued. 

6025.20 4.59 53.61 0.00 -0.03 0.00 

7047.32 4.93 74.56 0.00 -0.03 0.00 

8070.82 6.31 99.50 0.00 -0.03 0.00 

9099.86 5.29 127.64 0.00 -0.04 0.00 

10125.95 11.77 168.72 0.00 -0.04 0.00 

11168.72 26.46 198.24 0.00 -0.04 0.01 

12201.45 29.63 238.87 -0.01 -0.05 0.00 

13253.47 39.65 284.18 0.00 -0.05 0.01 

14311.22 45.08 332.11 0.00 -0.05 0.01 

15365.52 42.51 376.01 0.00 -0.05 0.01 

16434.72 48.72 423.13 0.00 -0.05 0.00 

17499.85 54.74 465.46 0.00 -0.05 0.01 

18570.14 70.96 518.36 0.00 -0.06 0.01 

19644.22 75.91 571.30 0.00 -0.06 0.00 

20729.82 87.76 624.28 0.00 -0.06 0.01 

21800.96 95.21 687.62 0.00 -0.07 0.01 

22878.27 96.75 756.37 0.00 -0.07 0.01 

23983.24 109.81 821.53 0.00 -0.07 0.01 

25074.70 109.66 903.74 0.00 -0.08 0.01 
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Table C.4 Continued. 

26176.15 117.80 981.22 0.01 -0.08 0.01 

27276.18 128.27 1052.03 0.01 -0.08 0.01 

28373.05 130.82 1140.23 0.01 -0.09 0.01 

29498.35 135.94 1228.16 0.01 -0.09 0.01 

30596.20 155.42 1322.69 0.01 -0.09 0.01 

CLS 

0.00 0.00 0.00 0.00 0.00 0.00 

994.48 -1.54 -1.68 0.00 -0.01 0.00 

1997.88 1.85 8.64 0.00 -0.01 0.00 

2998.22 -10.22 9.88 0.00 -0.02 0.00 

4006.55 -4.83 24.92 0.00 -0.03 0.00 

5022.89 4.91 54.35 0.00 -0.04 0.00 

6030.27 7.75 92.36 0.00 -0.05 0.00 

7051.78 8.54 133.11 0.00 -0.05 0.00 

8079.56 11.79 181.39 0.00 -0.06 0.00 

9106.72 14.98 236.70 0.00 -0.07 0.00 

10135.95 24.62 308.48 0.00 -0.07 0.01 

11178.77 42.02 371.86 0.00 -0.08 0.01 

12214.42 47.01 450.07 0.00 -0.09 0.00 
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Table C.4 Continued. 

13267.35 59.68 536.18 0.00 -0.09 0.01 

14316.44 71.72 628.09 0.00 -0.09 0.01 

15365.46 75.30 723.42 0.00 -0.10 0.01 

16418.87 84.30 829.73 0.00 -0.11 0.01 

17481.53 95.63 939.35 0.00 -0.11 0.01 

18550.05 117.55 1062.30 0.00 -0.12 0.01 

19623.67 127.91 1188.43 0.00 -0.13 0.01 

20705.48 145.23 1318.39 0.00 -0.13 0.02 

21775.66 158.83 1460.47 0.00 -0.14 0.02 

22848.69 168.02 1610.86 0.00 -0.15 0.02 

23944.01 191.06 1764.60 0.00 -0.16 0.01 

25025.53 201.76 1938.86 0.00 -0.16 0.01 

26111.08 225.44 2116.53 0.00 -0.17 0.02 

27201.27 247.95 2293.84 0.00 -0.18 0.01 

28288.53 265.09 2493.75 0.00 -0.19 0.02 

29395.14 284.88 2698.61 0.00 -0.20 0.02 

30499.02 314.79 2918.00 0.00 -0.20 0.02 
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Table C.5 Simulation 5 

SLS 

XL(m) YL(m) ZL(m) ω(rad) φ(rad) κ(rad) 

0.00 0.00 0.00 0.00 0.00 0.00 

1009.21 2.50 -10.40 0.00 0.01 0.00 

2003.70 1.46 -23.07 0.00 0.02 0.00 

2990.11 -4.04 -52.17 0.00 0.02 0.00 

3979.02 -5.29 -77.62 0.00 0.02 0.00 

4970.93 -8.06 -106.57 0.00 0.02 0.00 

5972.34 7.97 -136.33 0.00 0.03 0.00 

6974.06 5.59 -171.17 0.00 0.03 0.01 

7976.63 15.62 -219.24 0.00 0.04 0.01 

8979.14 22.11 -265.17 0.00 0.04 0.01 

9975.01 25.44 -310.12 0.00 0.04 0.01 

10992.88 29.38 -365.38 0.00 0.05 0.01 

12001.62 34.07 -413.79 0.00 0.05 0.01 

13017.49 38.86 -478.80 0.00 0.06 0.01 

14028.63 55.72 -527.95 0.00 0.06 0.01 

15053.00 63.76 -593.13 0.00 0.06 0.01 

16081.91 77.49 -663.73 0.00 0.07 0.01 
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Table C.5 Continued. 

17110.92 92.86 -733.87 0.00 0.07 0.01 

18139.70 110.87 -818.07 -0.01 0.07 0.01 

19169.07 136.39 -896.15 -0.01 0.07 0.02 

20202.48 142.15 -987.76 -0.01 0.08 0.02 

21237.18 172.61 -1089.02 -0.01 0.09 0.02 

22269.88 193.24 -1186.27 -0.01 0.10 0.02 

23311.86 211.96 -1296.01 -0.01 0.10 0.02 

24360.47 230.78 -1404.10 -0.01 0.11 0.02 

25406.49 247.98 -1532.40 -0.01 0.11 0.02 

26443.56 269.02 -1649.54 -0.01 0.11 0.02 

27481.55 290.37 -1777.79 -0.01 0.11 0.02 

28524.00 313.18 -1904.92 -0.01 0.12 0.02 

29584.95 337.38 -2051.15 -0.01 0.12 0.02 

KF 

0.00 0.00 0.00 0.00 0.00 0.00 

1009.21 2.60 -10.29 0.00 0.01 0.00 

2018.41 1.23 -24.57 0.00 0.02 0.00 

3008.94 -5.35 -56.01 0.00 0.02 0.00 

4020.03 -5.69 -86.76 0.00 0.03 0.00 

 



231 
 

 

Table C.5 Continued. 

5022.22 -10.98 -124.78 0.00 0.03 0.00 

6033.54 2.65 -162.64 0.00 0.04 0.00 

7047.62 -2.10 -207.15 0.00 0.04 0.00 

8056.86 6.87 -262.28 0.00 0.04 0.00 

9071.90 10.24 -313.44 0.00 0.05 0.00 

10093.70 8.31 -368.22 0.00 0.06 0.01 

11124.49 11.34 -435.80 0.00 0.06 0.01 

12150.76 14.90 -497.53 0.00 0.06 0.01 

13175.53 18.10 -575.28 0.00 0.07 0.01 

14218.29 32.61 -642.46 0.00 0.07 0.01 

15251.68 39.42 -726.28 0.00 0.08 0.01 

16292.80 50.84 -814.31 0.01 0.08 0.01 

17337.56 66.28 -901.71 0.00 0.08 0.01 

18384.37 82.93 -1003.66 0.00 0.09 0.01 

19430.89 108.87 -1098.25 0.00 0.09 0.02 

20476.88 126.20 -1201.60 -0.01 0.09 0.02 

21533.83 156.43 -1314.24 -0.01 0.10 0.02 

22590.54 176.10 -1421.96 -0.01 0.10 0.02 

23655.52 194.28 -1541.52 -0.01 0.10 0.02 
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Table C.5 Continued. 

24724.75 223.70 -1657.33 -0.01 0.11 0.02 

25799.84 239.08 -1791.76 -0.01 0.12 0.02 

26874.07 260.44 -1920.17 -0.01 0.12 0.02 

27931.58 284.53 -2058.73 -0.01 0.12 0.02 

29005.89 310.75 -2195.24 -0.01 0.13 0.02 

30066.84 334.95 -2341.46 -0.01 0.12 0.02 

CLS 

0.00 0.00 0.00 0.00 0.00 0.00 

1009.21 2.60 -10.29 0.00 0.01 0.00 

2005.30 1.72 -22.87 0.00 0.02 0.00 

2994.19 -4.32 -52.63 0.00 0.02 0.00 

4003.40 -2.54 -84.67 0.00 0.03 0.00 

5003.12 -7.01 -127.21 0.00 0.04 0.00 

6011.06 8.28 -172.45 0.00 0.05 0.00 

7025.99 4.81 -228.53 0.00 0.05 0.01 

8034.97 18.05 -300.90 0.00 0.06 0.01 

9043.98 25.23 -372.72 0.00 0.07 0.01 

10062.02 28.55 -452.41 0.00 0.08 0.01 

11085.47 35.07 -548.28 0.00 0.09 0.01 
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Table C.5 Continued. 

12103.49 43.78 -641.24 0.00 0.10 0.01 

13120.69 52.51 -753.47 0.00 0.10 0.01 

14154.39 71.79 -859.90 0.00 0.11 0.02 

15175.71 84.01 -985.35 0.00 0.12 0.01 

16205.06 102.42 -1118.53 0.00 0.13 0.02 

17238.39 120.92 -1254.90 0.00 0.13 0.02 

18270.52 142.33 -1409.86 0.00 0.14 0.02 

19304.21 175.26 -1562.12 0.00 0.15 0.03 

20332.64 197.82 -1726.57 -0.01 0.16 0.03 

21371.95 235.08 -1905.02 -0.01 0.16 0.03 

22411.42 261.97 -2083.88 -0.01 0.18 0.03 

23454.87 290.24 -2279.56 -0.01 0.18 0.03 

24499.21 328.95 -2474.38 -0.01 0.19 0.03 

25545.35 356.10 -2690.72 -0.01 0.20 0.03 

26591.54 387.78 -2903.81 -0.01 0.21 0.03 

27629.32 424.48 -3133.02 -0.01 0.21 0.04 

28668.52 459.43 -3365.79 -0.01 0.22 0.04 

29719.85 496.26 -3620.49 -0.01 0.23 0.04 
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