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1. Introduction.

In [6] the notion of Abstract Family of Languages (AFL) was

introduced to describe language classes which were closed under certain

types of transformations. In most of the literature on AFL theory,

specifically [6a, b] and [9], AFLs are generally characterized by some

generating class of languages or family of acceptors. From a practical

point of view, the theory gives very little explicit information concern­

ing the nature of the underlying class of grammars that is associated

with a given AFL. The obvious exceptions to this statement are the

classes of right (left) linear grammars, the context-free, context­

sensitive and general phrase structure grammars. However, this set of

examples is by no means exhaustive. It is our ~urpose here to describe

two distinct hierarchies of "abstract families of grammars" (AFG)

which exhaust the class of all derivation bounded grammars studied by

Ginsburg and Spanier [7]. By "abstract family of grammars ll we shall

mean any class of grammars for which the corresponding class of lan­

guages forms an AFL. An APG is a useful concept only if there is some

decision procedure for identifying members of the family -- a property

which is not enjoyed by AFLs. One of our results is the specification

of such a decision procedure for the class of grammars we have undertaken

to study.

The technique we employ involves defining certain relations on

the nonterminal alphabet of context-free grammars. By requiring that

these relations be irreflexive we are able to isolate the class of all

derivation bounded grammars. As pointed out in [7], this class of

grammars defines an abstract family of languages properly included in

the context-free. By virtue of the irref1exive property of our
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relations, which we have chosen to call the "generalized left and right

dominant relations", we are able to associate a pair 0.£ nonnegative

integers tdeg(G) and rdeg(G) with every reduced derivation bounded

grammar. G. These integers represent the "degree of left and right

dominance". respectively, of G. For each integer k > 0 we define

~ (k) (~(k» to be the class of all derivation bounded grammars, G,, r

for which ~deg(G) ~ k (rdeg(G) ~ k). Our main results state that for

each k > 0 J the classes ~ (k) and !§ (k) generate full AFLs.
r

Furthermore, it is shown that the class of languages, ~(k)(jJ1r(k»

associated with the grammar class j!.t (k) (!fr (k» is properly included

in the class of next higher degree. Although the scope of our invest i-

gation has been limited to context-free grammars, we feel that perhaps

the techniques employed here may have extensions which isolate classes

of AFG which include context-sensitive or general phrase structure

grammars.

The paper is divided into five other sections. In section 2 we

present the basic notation and terminology used throughout the remain-

ing sections. In addition, section 2 also presents -results from other'

sources which are referre~ to in the sequel.

In section 3 we introduce the class of strictly linear languages

which are fundamental to our characterization of the classes tt;, (k)

(~(k)) presented in section 5.

Section 4 introduces the generalized left and right dominance

relations referred to above. These relations are denoted ~t and /}.,
r

respectively. It is in this section that we also define the notion of

"degree" of left and right dominance which allows us to describe the

grammar hierarchies. -'9', (k) and -'9'r (k) • k > 0 The three maj or

results of this section are theorems 4.4. 4.8 and 4.9. Theorem 4.4

establishes the equivalence of the derivation bounded (nonexpansive)
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grammars to the class of context-free grllllll:l<tt's for which tJt(ll.r) iR

irreflexive. Theorem 4.8 places another interesting class of grammars,

the nonterminal hounded grammars [2]. within the hierarchy of left and

right dominant grammars. We conclude this section with theorem 4.9 which

gives an effective procedure for computing tdeg(G) (rdeg(G» for an

arbitrary reduced context-free grammar. G.

In section 5 we give a characterization of the language classes

~(k) and M' (k)
r in terms of substitutions applied to strictly

linear languages. The class of substitutions we allow are restricted

to having their range sets lie in certain language classes which are

determined by the domain alphabet. To obtain the characterizations in

a relatively straight forward manner it was necessary to introduce new

relations (Pk and Ak) which refine the classes !PR, (k) and

into yet another hierarchy of subclasses. The characterization of

§ (k)
r

~(k)(~(k» is expressed in terms of the subclasses of la~guages

determined by the refinement of ~(k)(~r(k» imposed by the relation

ok (Ak ) .

Section 6 contains most of the major results of this paper. It is

shown that ~R,(k)(~r(k» forms a full AFL and that for each k ~ O.

~(k)'t~(k + 1) (~(k)~ ~(k + 1)). Theorem 6.5 is s somewhat

surprising result in that it is shown that ~(O) - ~r(k) ~ ~ for

each k > 0 and similarly ~ (0) -.M1 (k) rf. ~ for each k > O.
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II. Notation, Definitions and Background results.

For the most part, our notational conventions and basic defini-

tions follow those commonly found in the literature concerning language

theory. Any background material not explicitly presented in this section

can be found in Ginsburg [5] or Hopcroft and Ullman [11].

Definition 2.1. A context-free grammar is a four-tuple. G = (V, T, P, a),

where V (nonterminals)J T (terminals) and P (productions) are finite

non-empty sets. The start SymbOl, n belongs to V. Elements of V

will usually be denoted by small Greek letters, while elements of Twill

usually be denoted by small letters early in the English alphabet.

Definition 2.2. Let G = (V, T, P, a) be a context-free grammar and let

p : B -). w denote an element of P. If w ET*, P is said to be a ter-

minating production. If WET*VT* (VT*, T*V) , p is said to be linear

(left-linear, right-linear). If all productions of G are linear or

terminating, then G is said to be a linear grammar. The language

generated by G will be denoted by .!JQL.

Notation. Let (p 8 -). w) EP. If u. vE (VUT)*, then we write

P
u~v whenever

G
and If with

"1 < i < n. then we write u~v if and only if there exists
G

1 < i < n.
+

We write u==:z+v if there exist.s 1T

G

words ziE (VUT)*.

Pi

zi_l ==+- zi'
G

"such that u ==jov.
G

o < i < n such that u = zo' v = z and
n

Furthermore,
*

U ====IiJ,v if u = v or
G

+
u~v.

G
The sequence 1f in the

above context is called a derivation of v from u in G. The words
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1 < i < n, will be called u-sentential forms or, more simply,z1'

sentential forms if u is understood. In case Pi in TI is always

applied to the left-most (right-most) nonterminal of we call

a left-most (right-most) derivation and write u .. v (u ,*v).
1m rm

If S is a set, then lsi denotes the number of elements in S.

If x E (VUT)*. then llxll denotes the length of x. "e:" denotes the

string of length zero. If sE(VUT), then Ilxll
s

represents the

number of Dccurances of 5 in x.

\ole define 2:
sES Ilxll .s

Definition 2.3. Let G m (V, T, P, a) be a context-free grammar.

G is said to be reduced "if for every

"2
such that B ~xET*.

G

6ev, there exists and

The class of nonterminal bounded grammars and their corresponding

languages have received considerable attention in the literaturej e.g.,

Banerji [2], Fleck [4], Ginsburg and Spanier [7], Gruska [12] and

Moriya [11] have studied a number of different and interesting proper-

ties of these grammars. Ginsburg and Spanier [7] were the first to study

the more general, but related class of derviation bounded grammars and

languages. This latter class of languages seems to be a "natural"

subclass of context-free languages in the sense that they form a full

AFL. a result also established in [7].

The next definition describes the aforementioned grammars.
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Definition 2.4. Let G: (V, T. P, a) be a context-free grammar.

1. G is said to be -nonterminal bounded if and only if there

exists a fixed k > 0 such that fOr every derivation n in

n
G, ",=+WE(VUT)* implies Ilwll

v
< k.

G

2. G is said to be derivation bounded if and only if there exists

k> a such that for every xEL(G) there exists a derivation

11" 1 1T 2

1I of x which has the following property: a ~w ====t-x
G G

implies Ilwll V.:: k, for all 'll"11T2 = TT.

3. G is said to be nonexpansive if and only if for every BE V,

+
B~w E (VUT)* implies Ilwll B < 1.

G

The following theorem due to Ginsburg and Spanier [7] characterize

the derivation bounded grammars and the languages they generate.

Theorem. 2.5. Let L ~ T*. The following statements are equivalent.

(1) L is generated by some derivation bounded grammar.

(2) L is generated by some nonexpansive grammar.

(3) L belongs to the smallest family of languages containing

all linear languages and closed under abitrary substitution

of sets in the family for letters.

One of our major results of this paper concerns the existence

of hierarchies of grammars which generate full ALFs of derivation bounded

languages. The concept of full AFL is presented in our next definition

due to Ginsburg and Greibach [6].
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Definition 2.6. Given an infinite set of symbols, r. an abstract fam1~

of languages (AFL) is a family ~ of subsets of r~ such that,

(1) For each L E5f there is a finite Bet T C r such that

L <;,:;;' T*.

(2) There exists some nonempty LE~ .

(3) ~ 1s closed under the operations, finite union, concatena-.

tion, +. inverse-homomorphism, E-£ree homomorphism and

intersection with regular sets.

(4) L is said to be full if it is closed under arbitrary homo-

morphism.

The following theorem due to Greibach and Hopcroft [9] will be useful

in section 6. The original statement of this theorem is a stronger

result than we shall need, we have therefore taken the liberty to present

a weaker version which 1s more suitable for results presented in the sequel.

Theorem 2.7. If 5f is a family of languages closed under union and

tintersection with a regular set, regular substitution and homomorphism •

then 5f is also, closed under inverse homomorphism.

t: The theorem as originally stated in [9] required closure only under

a restricted type of regular substitution and required only that ~ be

closed under e-free homomorphism.



8

3. Strictly Linear Grammars and Languages.

In this section we introduce the strictly linear languages. This

class of languages is a proper subclass of the class of all linear lan­

guages. Their distinguishing property is that every string z in a

strictly linear language has the form xy, where x and yare strings

over disjoint alphabets. Furthermore, the set of all x's (y'g) is

a regular set. An example of such a language is {a~n I n ~ OJ. The

importance of the strictly linear languages rests in the fact that they

provide the basis for a characterization of the left and right dominant

languages of degree k introduced in section 4 and representing the main

object of study in this paper.

Proposition 3.4 is a simple but useful result which states that

every linear lansuage is the homomorphic image of some strictly linear

language. Lemma 3.5 describes closure properties of the strictly linear

languages under regular substitution.

Another fundamental concept developed in this section is the notion

of " subgrammar". A subgrammar of a given context-free grammar is the

grammar obtained by reducing the original relative to one of its oon­

terminals. Subgrammars become useful when one attempts to isolate and

describe local properties of a given grammar. The language generated by

a subgrammar can be described. under appropriate conditions. in terms of

a substitution applied to a corresponding "restricted subgrammar". In

a restricted subgrammar. a set of Donterminals are treated as terminal

symbols. Lemma 3.7 is the last result of this section and provides a

characterization of subgrammars in terms of a substitution applied to

restricted subgrammars. This lemma is a valuable tool in proving key

results of section 4.
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Definition 3.1. Let G = (V, T, p.~) be a context-free grammar. G is

said to be linear over (T
t

, Tr ) biased left if and only if

(1) G is a linear grammar,

(3 ) p C V x (T*VT*UT*)
- 1 r .£.

G is said to be biased right if (3) is replaced by.

(3') P ~ V x (TtVT~UT~)

If in addition to (1), (2) and (3) or (3'), G satisfies (4), then
•

G is said to be strictly linear over (T
t

, Tr ) biased left (right). where

(4) TinT
r

~ •.

A language, ~. is said to be (strictly) linear~ (T1 , Tr ) biased left

(right), if there is a so-named grammar, G, such that L = L(G);

If G satisfies (1), (2) and either (3) or (3'). then we simply say

that G is linear over (Tn. T ). similarly. if G satisfies (1), (2),
" r'

(4) and either (3) or (3') we say G is strictly linear over (T
t

, Tr ).

In subsequent sections we will need special notation for represent-

ing a set of abstract symbols disj~int and in one-to-one correspondence

with a given set. In addition, a special homomorphism will often be

required to identify members of the abstract set with corresponding

members of the original. These notational conventions are given formal

status by the next definition.

Definition 3.2. Let S by any set, then S =. (slsES} denotes a set of

abstract symbols disjoint from S. In addition. the homomorphism

h: (SUS}* + S* defined by h(s) = h(s) = s, for all sES. will henceforth

be designated as the unmarking homomorphism on S .
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The following definition points out that the class of linear

grammars are in one-to-one correspondence with the strictly linear

grammars of left (right) biaB.

Definition 3.3. Let G'" (V, T, P, a) be a linear grammar. The strict

image of G biased left is the grammar G
t

~ (V,~, Pt,.a), strictly

linear over (~£' ~r) biased left, where

(i) ~t ~ T is the smallest alphabet such that

(ii) ;l;r '" T C T,r- where T C T
r-

1s the smallest alphabet such

that pC V x (T*VT*UT*)·
- r'

{(e + u)EP I uET*}U

{B -+ UBIV' 1 (B -I- uB'v) EP, 8 1 EV and

(h 1s the unmarking homomorphism on T)

The strict image of G biased right is the grammar G = (V, ~, P a) ,
r r'

strictly linear over (;I;~, 1:r ) biased right, where

(i) ;I;~ '" TtCT, where T~ c:;; T is the smallest alphabet such that,

PC V x (T!VT*UT*) ;

(ii) ;I; C Tr- is the smallest alphabet such that PC V x (T*V1:*U1:*)
- r r

(iii) P • {(e + v}EP I vET*)
r

Finally, L(G
t

) (L(Gr » is called the strict image of L(G) biased

left (right).
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The next proposition is a simple consequence of the definitions ahove and

therefore no proof will be given. It emphasizes the fact that every linear

language 1s a homorphic copy of its strict image.

Proposition 3.4. Let G'" (V, T. p. a) be a linear grammar. Then

where h is the unmarking homomorphism on

T and Gt(G
r

) is the strict image of G biased left (right) .

Lemma 3.5. Let G • (V, T, p, a) be strictly linear over (T£' T )r

For each aET.\'.. let R C:I:- be e regular set; similarly, for eacha - t

bET let V:;:I:: be a regular set.r

Then .(L(G» 1s linear over ~'%r) with the same bias as L(G).

where L is the substitution defined by T(e) = R
e

for all cET.

= then T(L(G» is strictly linear.

Proof. He construct a grammar G' ... (VI,~, pi, a) which is linear over

(~t' I r ) and having the same bias as G such that T(L(G» = L(G').

p' and Vi are described as follows. For each aE Tt let G be a
a

right-linear grammar generating R
a

and similarly. let be a left-

linear grammar generating ~ for each bET
r

We shall assume that the

nonterminal sets of all such grammars are pair-wise disjoint and disjoint

from V. Let PI' PZ' •.•• Pk be some ordering of the productions of

P. then we call (c. i. j) an occurence of c

if and only if e appe~rs in the right-part of Pi and Pi has the form.

Pi
. S + ucv. where IJue II - J if CET

t
or Ilevll - J if.

eET . Clearly if (e, i, j) and (ct. it. J ') are two occurances ofr

e, c l ET, then (c. i. j) ~ (c I • i'. jl) . Por each occurance (e, i, j)

of eE T let Gij be a unique copy of G obtained by renaming tbee e
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nonterminal symbols; that is, if yEV
c

(the-nonterminal set of G )
c

then will be the corresponding nonterminal of in

and

j

Let G
ij = (V

ij 2:, pij ",ij) where 2: = I if
c c' c C J 'e' c i

2; = ~ if c E T Clearly L(G
ij

) - L(G ) = R for all i anderr c c c

and furthermore all nonterminal sets, v ij are pair-wise disjoint
c

and disjoint from V.

The property we. desire for G' is the power of "simulating" a

single production. p, of G by using only left or right linear produc-

tions which generate words in R
c

for each occurrance of c introduced

by production p. We describe the productions of G' that are con-

structed for each type of production p in G.

(a) if PiEP is of the form (6-+e:) or (6-+8'), where

p' •tothen addBTe V, Pi

(b) If PiE P is a terminating production of the form

Case k '" 1. For this case add to p' ,

In addition, add all productions of

where is the start symbol of

to p' .

Case k > 1. For this case we identify two subcases which

are associated with the bias of G.

Left bias: Add a + yi,l to pI •
c

1
For each j < k

are replaced by

where the terminatingadd all productions of

productions.

to p'

o +
i,j+l

wy
c j +l

Finally, add all productions of 'to p' .
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Right bias: Let the right-part of Pi be written as

Follow the same construction given for left-

bias except that w and
i,j+l

should be reversed.y
c j +1

..._----- .._-
(e) If PiE P is of the fonn l3 -+ c1cz". ockS' or B+ S'ckck_1o .. c1

k > 1, where alE v, then follow the construction given in (b)

with the change that if (6 -+ w) is a terminating production

replace it by a -+ war if is right-linear

and by 0 -+ S'w if Pi is left-linear.

(d) If (Pi

8 1 EV, then let 6 ' be a unique abstract symbol not alreadyi

defined. Let and

be formed from

1
from Pi and

p t " Add to pi the productions constructed

2
Pi according to (c).above.

Finally, let

v' = VU(B' I B'i i is defined by (d) . i j
above)U( U V' )

et , j I C

It is not difficult to show that

*

(p . B+uS'v)EP, UVET*,i .

BIEV, if and only if S--•• xB'y, where xEl"(u) and yE't"(v) •
G'

And similarly, (Pi'B+w)EP, wET*{T*)
t r

if and only if

*
e .xE1"{w) ~ 2;t(~~), where aEV'nV

G'
Therefore it follows

*
that a~xEL(G)

G

*
if and only if a " y E or (x) and that the bias of

G'

G' agrees with the bias of G.
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Definition 3.6. Let G m (V, T, P, a) be a context-free grammar. The

subgrammar of G relative to BEV denoted GeS) is the grammar

Ges) = (VeS). T, PCS), B) obtained by reducing (V, T, P, S) • For

every subset U C V and BE V - U define G(B, U) to be the subgrammar

of G relative to B restricted on U obtained by reducing

(V - U, TUU, P, S)

It should be noted that if G is reduced and a 1s the start symbol

of G, then G '" G(a) '" G(a, oIl) The notion of a 5ubgrammar is useful

in identifying the nonterminals and productions involved in derivations

originating from a fixed nonterminal. A subgrammar restricted on a set,

U, of nonterminals is a means of describing all sentential forms derivable

in the original grammar from some fixed nonterminal where members of U

are treated as terminals; that is, members of U cannot be re-written once

they are introduced in a sentential form of some derivation. The next

lemma explores a useful property of certain types of restricted Bubgrammars.

Lemma 3.7. Let G = (V. T, p. a) be a reduced context-free grammar and

let G(a) = (V(a). T, pea), a) be the subgrammar of G relative to

aEV. If U is any subset of V - {a} such that for all yEU,

+

Y~w implies wE (TUU)*, then L(G(S}) = o(L(G(S,U))), where 0
G

is a substitution defined by.

aCt) = t for all tET and

o(Y) = L(G(y)) for all yEU.

Furthermore. if G(a. U) = (V", T U U, p". a). then

V' = V(S) - U and

p' = PCB) - ( U pry)).
YEU
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Proof. If U = lJI. then G(S.U) = G(S) J a becomes the identity

homomorphism and the conclusions of the lemma follow trivially. Assume.

therefore. that u.,. 4i. We now establish an important property of G.

n
CA) For every BEV - U and derivation 1T such that B==*,w E(TUV)*

G
n'

there exists a permutation n" of 1r such that B==)w and such
G

that no" = ni1T2J where TIl f E rewrites only elements of V - U and

1T2, if non-null, rewrites only elements of U. To establish (A) let

'IT be any derivation from aEV - U. If w rewrites only elements

of V - U. then 1T = n" = nf (1T2= E) and the result is immediate.

If for some k ~ 1 where 1Ti 1 • 1 < i < k.

represents a sequence of productions which rewrite elements of V - U

and 1 < i ~ k. represents a sequence of productions rewriting

elements of U. Furthermore. for k = 1, nk2 = n12 # £. and if

k > 1. then for 1 < i ..::. k-l. 1Ti2 # £. That n must begin with a

sequence nIl follows from the fact that BEV - U. We now show

that can be interchanged with ~i+l.l to obtain an equivalent

derivation and consequently reducing the value of Ilk" for the

resulting sequence.

If k = 1 initially. then n is already in the desired form and we

are finished. Assume that k > 1 and consider the sequence nllnlZTIZl
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for some r~l. Since rewrites only

elements of U and since cannot introduce elements of V - U

into the sentential form (an assumption of the lemma), then the 000-

terminal rewritten by PI must have been introduced by uII · We may

therefore permute PI and If

r = 1 we have succeeded in permuting and
IT21' otherwise we

can apply the same argument to the sequence nlllT12lT21' where

Thus it follows that the sequence

By permuting

the left-most pair, and •. I I'1+ ,
we have reduced the number of

such paired sequences. In this way the original sequence n may be

modified to produce an equivalent derivation lT~ of the desired form.

Returning now to the main proof we establish that V~ = V(S) - U and that

P' = PCB) - CUPCY)).
yEU

Since G is reduced it follows that for every

•
a E V there exists n such that a~ ET*.

G
Thus a--Ev(a) if and only

•
if a" '" 13 or there exists 1T such that a~ua"vJ where UVE(TUV)*.

G

•
As a consequence of this we have that 13 .. w implies

GCB. U)

n

13 =to w.
GCB)

Thus Y' <;; YCB) - U and P' <;; PCB) - CU PCy))·
yEU

Now suppose a"E Vern - Ii.

Then there exists n such that a~wla"w2 for some w1wZE(TUV)*.
G
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By (A) "
B7wIB~W2J where TT" = '1'1111 2 and 11 1 rewrites elements of

v - U and '2 rewrites elements of U. As argued before. if B'EV-U

then B' be introduced by TIl" Thus "1
for somemust B a.. w'S'w"

G(B,U) 1 2

w"'w" implying S"EV"; we conclude V'" = V(S) ~ U. From this equality1 2

and the assumption that G is reduced it also follows that p' = PCB) - ( UP(y».
YE U,

"If B • w E L(G(B,U)), then B • w. Now if W ET*. then
G(e, U) G(B)

a(w) = wE L(G(B). If w = yyly····yy· where Y y .... y ET* ando 1 n n a 1 n

x. E L(G(y.).
1 1

But
+

implies
+

and therefore
+

w ~===~~ 0 (w) .
G(e)

It follows that o(L(G(B,U))) c:::. L(G(B)).

"Now suppose 8 _ .,
G(B)

'lrl '1'12
xE T*. Then- by (A) S~ w ------.. x. where 1T l'

G G

rewrites elements of V - U and 1Ti rewrites elements of U. Since

WE(TUU)*, then wEL(G(B,U)). Now if '2 = E then x = wEL(G(B,U))

c:::. o(L(G(o,U))).XEcr(w)thusx. ,
1

+
implies

+

Yi~=-" x.
G(e) 1

nT' c:::. o(L(G(B,U))). If w =yy.y ....yy, where YoyI···ynET* ando 1 1 n n

'2 +
Yi EU. 1 < i ~ fl. then w I xE T* implies Yi ~ x. ET*.

G(B) G(B) 1

But

This establishes the reverse inclusion and hence the relation L(G(S)) =

o(L(G(B,U))) .
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Right and Left Dominant Grammars and Languages of Degree k.

Banerji [2] introduced a "dominancell relation on the nonterminal

set of a context-free grammar. The class of grammars for which this

relation is irreflexive corresponds precisely to the class of nonter-

minsl bounded grammars [2] which have been treated in a variety of

contexts by other authors; e.g., Fleck [3, 4], Ginsburg and Spanier [8]

and Marlys [12]. In this section we introduce the "generalized left

and right dominance relations", denoted ll9. and II • respectively.
<

These relations are defined on the nontermlnal Bet of a context-free

grammar and are based upon a type of self-embedding exhibited by non-

terminals. One of the principal results of this section is theorem 4.4

which essentially states that the class of derivation bounded grammars

[7] corresponds precisely to the class of context-free grammars for

which h.g. and A
<

are irreflexive. In this fashion h.£ and A
r

represent generalizations of Banerji's dominance relation by virtue

of characterizing a much larger class of grammars and languages.

For any ,set, S, and any relation R on that set we define the

"degree" of an element, sE S, with respect to the relation, R,

denoted deg(s, R). By choosing R = h.
t

0< A
<

and letting s repre-

sent the nonterminal,set of some grammar we are able to classify all

derivation bounded grammars according to their "degree of generalized

left (right) deminance." For each k > 0 we denote the class of all

reduced context-free grammars of "left-degree" k or less by ~(k).

The corresponding class of languages is denoted ~(k). We call this

class of languages the "Left Dominant -LangUages 'of Degree ktl
• In a

similar fashion we define ~r(k) and ~(k) .
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Theorem 4.8, presented at the end of this section, gives a

quantitative measure of the complexity of the clsss of nonterminal

bounded grammars relative to the clasB of all derivation bounded

grammars. In this result we show that G 1s nonterminal bounded if

and only if G belongs to !fi (O)n~ (0).

We end this section by presenting an algorithm for computing the

least k such that" Ge~t(k), where G is an arbitrary reduced

context-free grammar. The algorithm also determines if such a k exists.

Definition 4.1. Let S be a non-empty set and let R be a relation on

S. For each 5 E S define

C(5) = {kl there exists a sequence so,sl' ".J sk of elements in

,

s such that and (5.. l' s.)ER
1- 1

for l.<i<k}.

The degree of 5 under R. denoted deg(s,R). is defined by,

deg(s-,R) = "', if C (5) is infinite

= Max C(s), if 0 <Ic (s) 1< ~ and

= 0, ifC(s) = o.

It is obvious that if S is a finite set, then R is irreflexive

if and only if deg(s, R) <", for all SES. The next lemma describes

some general properties of deg(s, R) where R is defined on the

nonterminal set of a context-free grammar and satisfies certain conditions

with respect to derivations. This lemma will apply to the generalized

dominance relations 6
r

introduced in definition 4.3. Another

class of relations satisfying the conditions of this lemma is intro-

duced in section 5.
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Lemma 4.2. Let G = (V, T, P, a) be a reduced context-free grammar

and let R be a relation on V satisfying,

+
(1) a==+ua'v and <a', IJ")ER implies <6, 13 1 ')ER. where

G

uv E (VUT)*

+
(ii) (6. a')ER implies a~ua'v for some uvE(VUT):tIi: .

G

Then,

(A) R is transitive.
+

(B) For S, g'ev. 6-=o+uB'v
G

deg(S. R) > deg(S', R)

uv E (VUT)*, implies

(C) degeS, R) ::. deg(a, R) for all BeV; if R is irreflexive,

then deg(., R) < [V[

(D) If R is irreflexive, then (8, B')E R implies

deg(S, R) > deg(S', R) .

(E) If R is irreflexive, then degeS, R) > 0 implies there

exists B'EV such that deg(S', R) = deg(S. R) -.1 .

+
(F) deg(S, R) > (degeS', R) implies Br~uav for any

G

uvE (VUT)* •
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+
Property (ii) implies Bl~ua2v

G

,

This together with property (1) implies <6 1 , .6 3) E R, thus R is

transitive.

+
(B): Let a===to uB' v

G

If deg(S'. R) = 0, then (B) 1s immediate.

Assume, therefore, that deg(S', R) ~ O. Then there exists a chain

property (1) it follows that (8. I\)ER and thus (8. 1\), (81 , 82).

.• ', (13
k

_
I

, 13
k

) is a chain in R initiated by B. Since for each

such chain initiated by a ' there is a corresponding chain of equal

length initiated by S, then it follows that deg(S. R) ~ deg(S', R) .

+
(C): Since G is reduced. then a. ====t'uSv for all B" a. in V. Thus

G

by (B). deg(a, R) ,::.deg(S, R) for all BEV. Let (8 1 ,82),

Then there exists

1 < i < j < k such that 81 = Bj
By transitivity of R we obtain

Thus k > Iv] if and only if R is irreflexive. It

follows that if R is irreflexive, then deg(a, R) ~ IVI - 1 .
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Property (li) and (B) imply degeS, R) > degeS'. R).

If R is irre£lexive, then by (C) degeS', R) < Ivl. If

degeS', R) = 0, then (6. a')ER implies degeS, R) > 1 and CD) holds

immediately. Suppose deg(S'. R) = k > a and let (6', 61), (Si. 82),

Then since (8, e')ER we can form-the chain

This implies deg (6. R) > k + 1

> deg(S'. R) = k.

(E): Supose R is irreflexive and suppose k ~ deg(S. R) > O. Let

by 6. The existence of such a chain implies deg(Sl' R) ~ k - 1.

CD) implies deg(S!, R) < degeS, R). We therefore conclude that

deg(6
1

, R) • k - 1.

(F): This is the contrapositive of CB).

The relations 6 l and l::. are called the "generalized left and
r

right dominance relations", respectively. Our choice of the tags "left"

and "right ll for these relations was made for a reason that is not at

all clear from the definition. In Workman [13] it is shown that for

reduced context-free G, deg(a, 6
t

(G» a 0 if and only if the set of

left-most derivations for G is regular (a denotes the start symbol of

G); similarly deg(a, • (G)) • 0
r

if and only if the set of right-most
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derivations of G is regular. The choice of notation and terminology

here is based on these characterizations in terms of the one-sided

derivation sets. It should be pointed out that in [13] the designators

"left" and "right" are reversed from their use here.

Definition 4.3. Let G = (V. T, p. 0) be a context-free grammar.

Define the relations At(G) and ~ (G) on V as follows:
r

(61 , 82)EA
t

CG) (alternatively, ll.rCG)) if and only if at least one

of the following conditions hold in G.

+
(1) Bl===touBlvBZW for some uvwE(VUT)*

G
+

(alternatively, 81~u82valw).

G
+

(2) there exists e' E V such that 8
1
==+ua~v

G .

+
for some uv E (VU T) * and e' • xB "'yazz

G

for some

+

xyzE (VUT)* (alternatively,
I,

e'·~-•• xezYVz).
G

~ illustrate definition 4.3 by determining the relationsExample.

,
r for the following grammar, G. Let G = (V. T, P, a), where

T={a,bl
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p = 0: a-+S 1aB2

2: B1-+B2B
1

3: SI~E3E4

4: E2~E2E4

5: 82+8
3

6: 6
3

-+8

7: S4+b

B: a-+c }

'. = {(a.. E
2
), (0, E

3
), (0, E

4
), (E 2 ' E

4
) }

, = { (0, E
I
), (0, E2), (~J E

3
), (0, E

4
), (E

I
, E

2
), (E

I
, E

3
), (E

I
, S4) l.r

Note that and are irreflexive
,'. , and transitive.r

Note also that G is nonexpansive.

Theorem 4.4 gives a characterization of the derivation bounded

(nonexpansive) grammars in terms of the relations ~t and ,
r

Theorem 4.4. Let G ~ (V, T, P, a) be a r~duced context-free grammar.

The following are equivalent.

(I) G is nonexpansive J

(2) '. (G) is irreflexive.

(3) , (G) is irreflexive.r

Proof. We show equivalence of (1) and (2) by showing that G is not

nonexpansive if and only if 8t (G) is not irreflexive. The proof of

equivalence of (1) and (3) is similar and will not be given.
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If G is not nonexpansive. then there exists BE V such that

+

8 ===+-uSvBw for some uvw E (V U T)*. By definition of I::.
t

(G) it follows
G

that (8,8) E I::.£CG) and hence I::.t(G) is not irreflexive. Conversely.

In the former case it is
+

a~~xB~Y6zJ where uvwxyz E (V T)*.
G

suppose Then either
+

8 ====t-uBv6w or
G

+
B~uB~v and

G

immediate that G is not nonexpansive. In the latter case we may obtain

+

8~ • X8~yua~vz which also implies G is not nonexpansive.
G

Lemma 4.5. I::. t (6 r ) satisfy properties (i) and (ii) of lemma 4.2.

Thus if I::.t(l::.r ) are irreflexive for some grammar. G, the conclusions

of lenuna 3.9 hold for ',(G) ('r(G)).

Proof. A proof will be given for ll..I!.; the proof for ,
r is similar

and will not be presented. Property (ii) of lemma 4.2 is immediate from •

the definition of l::.i(G).
+

To show property (i) suppose B~uB"'y for
G

some uv E (V U T) * and suppose (B .... B..... ) E 6R, (G). Then either

+
B"'===IiJ. xB .oyB.o.oz

G

+
or B' I'u"yv"

G

+
and y~x"yy"'6""z'.

G
In the former

case (a, a") EA,(G) by (2) of definition 4.3. In the latter case we

+
obtain 6~uu"'yv'v.

G

+
which together with y~x"yy"'8""z'" also implies

G

Thus (i) of lemma 4.2 holds for 6
t

(G).
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If G is a reduced context-free grammar for which 0t(G) (and

hence 6r (G» is irreflexive. then by virtue of lemma 4.2 we can

assign to G a unique pair of nonnegative integers deg(a) 8
t

(G» and

deg(a, 8 (G», where a is the start symbol of G. These integers.
r

called the "left degree" and "right degree" of G. respectively, induce

natural hierarchies of grammar classes within the class of all deriva-

tion bounded grammars. The next definition formalizes these ideas and

introduces the grammar classes, ~i(k), ~r(k). and their correspond­

ing language classes, ~i(k) and hfr(k). We shall refer to the class

!1.2, (k) (tilt (k» as the class of u1eft dominant grammars (languages)

of degree kll
•

Definition 4.6.

We similarly describe !# (k) (tr/ (k» .
r r

Let G = (V, T. p. a) be a reduced context-free grauunar.

The left-degree of G (right-degree of G), denoted fdeg(G) (rdeg(G)) J

is defined by.

deg(G) = deg(a.6,)

Furthermore define.

(rdeg(G) = deg(a,6 )).
r

jff(k) = {GIG is a reduced context-free grammar such that

'deg(G) ~ kl,

jrrCk) = {GIG is a reduced context-free grammar such that

rdeg(G) ~ kl,

.Iifi:(k) = {L(G)IGE~,(k)l.

iff (k) = {L(G)!G E.o/(k)l,
r . r

~, = (G! there exists k<oo such that GE~ (k)),

~r = {GI there exists k<oo such that GE~(k)l,
r

Ni = {L(G) I GE~},

~ = {L(G) I GE!9: 1,
r
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Theorem 4.7. Let ~ be the class of all reduced, nonexpansive

context-free grammars and let ~ be the corresponding class of languages.

Then.

(1) !9'. =!9'r =!9'.

(2) if. =1£ =1JI/.• r

Proof. This follows directly from the fact that deg(a~ 6tCG)) < ~

(deg(a. ArCG)) < ai) 'if and only if 6.9., (G) (ll.rCG)) is irreflexive and

theorem 4.4.

Theorem 4.7 simply states the fact that the left (right)

grammars of finite degree exhaust the class of all reduced derivation

bounded grammars. The following result places the nonterminal bounded

grammars of Banerji [2] within the hierarchies ~t and !#r .

Theorem 4.8. If G is a reduced context-free grammar. then G 1a

nonterminal bounded if and only if GE~(O)n~ (0).

Proof. The nonterminal bounded context-free grammars were characterized

in Banerji [2] as those grammars for which the "dominance" relation. :> •

is irreflexive. This relation is defined on the nonterminal set of

G = (V. T. p. a) as follows:

131 ~ 62 if and only if where uv E (VUT)* - T*.

What we shall demonstrate is that ~ is irreflexive if and only if

Suppose;> is not irreflexive, then 6~a for some 6EV. This

+
implies that 6 =-=+u6v, where uv E (VUI)* - I* .

G
Thus either
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u ~ x6'y or v = xe'y for 80me a'EV. In the former case, (8, B')E" (G).
r

In the latter case (a, e')EA9.(G). It follows from lenuna 3.9 that

Now suppose deg(a. At(G» ~ a or deg(a, " (G)) , O.
r In the former

case we have that (a, B) E Ai, (G) for some BE V. Therefore either

implying a? a ,
+

or a =Il-uB'v and
G

+
Sl ~x.Bly.Bz,

G

implying S';> S I • Thus ~ is not irreflexive. The argument is' similar

if deg(a, A (G» ~ O. This completes the proof.r

Corollary. ~(O)(I~(O) contains the class of all nonterminal bounded

languages.

Theorem 4.9. Let G = (V, T. p. a) be a reduced context-free grammar.

There 1s an effective procedure for computing deg(a. At(G» and

deg(a, " (G)).
r

Proof. For each BEV define DCB) "" {BIE V I
•uvE (VUT) }. It is easily shown that there is

for determining D(B).

•
B~u6 I v for some

G
an effective procedure

The algorithm described below computes deg(a, ~i(G». The procedure

for computing deg (a, " (G))r is analogous and will not be given. To

this end let 61 , 62, .•• , 6n be some enumeration of V and let

... , be the set of all productions of p for which

the right-part of Pj , 1 ~ j ~ r, contains at least two occurrences

of nonterminal symbols.
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Step O. If pi -~, then G 1s a reduced linear grammar and by

theorem 4.8, GE91R,. (0).

continue to step 1.

ThuB deg(a J 6
t

(G» - O. If pl,~, then

Step 1. For i::: 1, 2, "0' n compute

*UVWE(VUT)}, It is easily seen that

*
ai~uaiV.B'w if and only 1f there exists liED(S!) such thatG .

*(VUT) and S1 E D(y)

and /3'ED(y')U{Y'}. ThuB we obtain the following procedure for deter-

lao Set j = 1.

l<s<m.
- j

Letlb.
0-+ xOYjlXl ••• YjmjXmj)Epr,

*xOxj ... X
mj

E T and YjsEV,

where

Ie. If oED(S!), then continue, else go to Ie.

ld. For s = 1, 2, ... , m - 1
j set

there exists t. < 9 such that I3
t

ED(Y
jt

)

Ie. Increment j. If j < r. then go to lb, else go to la

with the next value of i.

Step 2. Since 6R,.(G) is not,irreflexive if and only if there exists

*
BE V Buch that 6 ==+u6vBw, then At (G) is not irreflexive if and

G

only if BEQ(B) for 60me BEV. If this is the case, then halt

with deg(a, 6 t (G» C~, otherwise continue.



30

Step 3. For each 1, 1 ~ 1 ~ TI, determine RCS
t
)-

Upon entry to this step it is known that 6£(G) is irreflexive.

Therefore since 6t CG) is also transitive (lemma 4.2 A), then it

follows that for some aE V, RCS):::I 4J. Thus RCB) =- 4> if and only

Step 4. Set So - (BEV I R(B) - ~). O}

Set k = 0 and continue.

Step 5. If aE Sk' then halt with deg(lX, ll.t(G» = k. Otherwise set

k :::: k + 1 and continue.

Step 6. Set
k-l
U

j-O

k-l
R(B) C U Sj}

j-O
Go to step 5.

If for some k > 0, Sk:::: e. then either

k-l
V· U Sj

j-O
or for all BEV -

k-l
U S

j=O j
it holds that R(B) n(V -

If the latter csse is true it follows from transitivity of ll.t(G) ,

that for some in
k-l

V - U Sj .
j-O

This is in contra-

diction to the fact that ll.t(G) is known to be irreflexive at this point

of the computation.

Suppose that aE Sk for some k and Sk+l:1 $. Since G 1s

reduced it follows that D(a) II:! V and hence R(S) C R(a) for all aEV.
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But if BE Sk+l and a E Sk' then we have that

k-l
while R(a) ~ U SJ .

JoO
This implies RCB) i RCa) • a

contradiction. This implies that C/. E Sk I where k is the least integer

for which Sk+l =~. The loop defined by steps 5 and 6 must therefore

terminate with a assigned to the last non-void set Sk' computed in

step 5.

Finally, by a simple inductive argument it can be shown that BE Sk

if and only if deg(S. ~t(G» = k. Thus the procedure eventually halts

having determined deg(a, 6
t

(G» c tdeg(G) •
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5. A Characterization of the Right and Left Dominant Languages.

The major results of this section are theorems 5.5 and 5.6. They

present a characterization of the classes ~(k) and ~r(k).

respectively. in terms of special types of substitution applied to the

class of strictly linear languages.

To establish the characterizations we introduce, for each k ~ 0,

a relation Pk defined on the nonterminal set of grammars for which 6£

is lrreflexive. Lemma 5.2 establishes that is irreflexive and

satisfies lemma 4.2. As a consequence of the properties of P
k

we

are able to decompose ~(k) into a hierarchy of grammar classes,

~(k, j) • j ~ O. Our characterization in theorem 5.5 is based on this

decomposition. In a similar manner. relations A
k

, k > 0, are defined

to obtain an analogous decomposition of the grammars in

k > -0 •

~(k) •

Lemma 5.3 is a technical result which is used primarily to simplify

the proof of theorem 5.5. Definition 5.4 introduces the substitution

mechanism employed in the characterization theorems.

Definition 5.1. Let G = (V. T. p. ll)E~ (see theorem 4.7). For

each i > 0 define

For each i > 0 define the relations

p. (G) and A. (G) on V as follows:
1 1
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uvwE(V UT)*;

similarly.

where and

irreflexive and satisfy properties (i) and (ii) of lemma

Lenuna 5.2. Let G E!#. Therefore each i ~ 0 Pi (G) and A.(G)
1

4.2.

are

Proof. We will prove these properties for Pi (G). i;::.. 0; the proof for

A_(G) is similar and will therefore be omitted.
1

Since G E!§', then II R. (G) is irreflexive by theorem 3.12. If

P. (G) is not irreflexive. then for some BE V it must be the case that
1

This implies that and there exists

+
such that e---.uBvS"'w for some uvwE (VUT)*.

G
But by definition of

1!..e(G) it follows that (B.S--)Ell.R, implying by lemma 4.2 that

This contradicts the fact that

Thus p. (G) must be irreflexive.
1
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By definition of p. (G) it follows at once that property (ii) of
1

+
lemma 4.2 is satisfied. To show property (i) suppose that e~ua~v

G

for some uv E (V UT) .. and suppose that (S',S") Ep. (G).
1

Then

+

e~ x8'" "yyz, where
G

and xyzE (VUT)*. But then we have

+

that 13 ~UXI3:'''yyZV and it follows that (13,13 ..... ) E Pi (G).
G

the proof.

This concludes

Lemma 5.3. Let G = (V, T, P, a)E~ and let Zij = (SEVldeg(S,II,(G)) = i

and deg(S,p. (G)) = j).
1 If k = 'deg(G) = deg(a,II,(G)), then

(A) For each i , o < i :: k, there exists

k ni
such that V = U (U Z.. ) where Z.. "~ if and only if 0 < i < k

i=O j =0 J.] 1J

and 0 < j < n. and Z.. n Zrs = ~ if i "r or j "s.1 1J

(B) For all 13 E Z. .•
1J

+

I3~uI3"v implies
G

S'E Zrs' where either

o < r < i and 0 < s < n or r = i and 0 < 5 < j (uv E (VUT) *).- r

(e) For all a < i 2.. k, O<j <n.,
- 1

the grammar G(S ,U.. )
1J

is linear over (T U U..• T U U:") biased left, where
1J 1

u:- = 41 if ]. = O.
1

U: = U(U Zqj) if i > 0,1
q<i f<n-q

U.. = u: if j = 0 and
1J 1

U.. = u: U ( Uz. ) if j > O.1J 1 q<j 1q
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(D) For all o < i < k and a < j < n .•
- 1

L(G(E)) = o(L(G(E,U .. ))),
lJ

where a is the substitution defined by o(a) = a for all aET and

o(y) = L(G(y)) for all yEll ...
lJ Furthennore, if

*
for all

and some uvE (V U T)*, then = (Z ..• T U U.. ,P ..• BL
1J 1) 1J

Proof of (A). Since GE!#. ll.t(G) is irreflexive. Thus by lemma 4.2C

O 2 deg(E, ",(G) 2 deg(a, ",(G» • k < Ivl for all EEV. It follows

that Zij = 41 for all i > k. Lemma 4.2E guarantees that

exists and Zij = t for all j > n
t

. What remains to be shown

Zij =F $ for 0 ~ j .:: nt • Clearly Zin
t

" 4>. Suppose BEZ
ij

j > O. From the proof of lemma 4.2E it follows that there exists

for each i <.k (see definition 5.1). By lemma 5.2 Pi(G) is irreflexive

for each i> 0 and by lemma 4.2C 0 ~ deg(B, Pi(G» ~ deg(a, Pi(G» < [vi

for all BEV. !I-hus for each i. 0..:: i..:: k. TIt'" max {deg(B, Pi(G»1

EEV(i) },
is that

for some

B'E V such that (E, E')EPi(G) and deg (,B , , Pi(G» = j -l. By definition

of Pi (G) it follows that E'EV(i) and thus Zij_l + ~. It follows that,
Zij + ~ for O<j<n.

- - i

Finally, since deg( .• ht(G» and deg(., Pi(G» are functions, it

follows that Zt/""\ Zrs CI o%l whenever i;' r or j;' s

Froet of (B).
+

If f3 ~UB'V for some uvE (VUT)*. then by
G

lemma 4.2(B,F) it follows that deg(S', 6
f

(G» ~ deg(s. 6
t

(G» and

The result:followsdeg(S', Pi(G» ~ deg(S. Pt(G» for all i> O.

immediately from these relations and the definition of Zij'
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Proof of ee). Suppose S EZ .. for some i and j and let (S-+w)EP.1)

I\hat must be shown is that,

(1 ) WE (Uij U Zij U T) * and

(2) if W = uS"'v. where S"'E Z..' then
1)

UE(U·.UT)* and v E (U~ U T)*.1) 1

+
Since (S+w)EP, then l3~w. Therefore if W = uB"'v, S"E V. it

G

follows from (B) above that a" E Zij U U
ij

. Thus W E (U . . U z.. U T) * .
1) 1)

In the remainder of the proof we drop the "(G)'l when referring to

Now suppose (S+uS'v) E P, where S'E Z.. C Veil
1) - t Either vET*

or v = xS .....y, where xyE (V U T)* and S.... EU
ij

U Zij" Assume the

latter case and suppose D"E veil" .. Since and since

+
B-==t-uS ...xS ....y.

G
then by definition of p. it follows that

1

By lemma 4.2D, j = deg(S",p.) < deg(B.p.) = j, a contradiction. Thus
1 1

S"EU.. - veil = U~ and
1) t 1 But this is

possible only if i > O. Thus if i = a we must conclude that v E T* =

(~UT)*= (UOUT)*.

all i > O.

In either case it follows that v E (U.:' U T)'" for
1
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Again, either uET* or u = xa ......y. where XYE (V U T)*

and If S"E vCil
l '

+
then a=+xB~"ya"v and it follows

G

that (B.S .... )EPi which implies by lemma 4.2D that degCS",P.) < degCS,p.) = j.
1 1

This is possible only if j > O. Thus if j > O. and S"EV Ci )
l '

then

S"E Z. for some q < j.1q If j = 0. then S...., v~i) and by (B) above

it follows that deg(8 ..... ~~) < i. But this is possible only if i > O.

Therefore, if i > a and j = O. then S"E U~.
1

Finally. if i = 0 and

j = 0. then a..... cannot exist and we conclude uET*.

UE(UijUT)*.

In all cases

Finally, note that if B + w is a terminating production of

is biased left over

G(B, U
ij

), then w

above, wE (TUU
ij

)*

(TUUij , TUUi)·

contains no elements of

and

Thus from (1)

Proof of (D). Clearly U.. cv-Z,.)..1) - Furthermore, if y E U
ij

and

+

Y=====Joouy"v for some y"EV and UVE(V UT)*. then by (B) above it
G

follows that Thus by lemma 3.7 the result follows when U

is taken to be U...
1)
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Definition 5.4. Let ~ denote the class of all strictly linear

languages. Let ~ and .51 represent language classes. Define

(~~) = {L I L:: T(L'), where L'EY is strictly linear

over (~fl' 2:r ) for some such pair and T

is a substitution defined by, T(a)EJ¥"

for all a E Xi,

bEl: .j,
r

and T(b)E~ for all

Theorem 5.5. Let ~ be the class of all regular sets .

1. Let .\f(0) • y(~, ~)o and define .1\"(0) • !/('if(0) ~)
1+1 i'

for i > O. Then LE~(O) if and only if there exists

j > a such that LE~iO).

2. For k > 0 define = y(~ (k - 1), .!If, (k - 1)) and

.1\" (k) = Y(.1\"(k) ~ (k - 1)),
1+1 i • !l i > O. Then LE~ (k) if and

only if there exists j ~O such that

3. Define .0/1. (i, j) = {G E Iji?! deg (', ~ I. (G)) :0 i and

deg(~. P.(G» < j, where a is the start symbol of G}.
1 -

where !# is the class of all reduced non-expansive grammars.

Then if and only if L = LeG) for 80me GE!j{(i, j),

j, i > 0



39

Proof. The proof will consist of first showing that (1) and (2) are

equivalent to (3) and then demonstrating (3). Suppose (3) holds. Let

LE.lrji). then L == L(G) for some G = (V, T t P, CX)E~(i. j). This

implies deg(a. At(G» < i and thuB GE!9't(i). It follows by defini-

tion of 1:(/9., (1) that L(GJE~(iJ" Thus '.f(iJ C ~ (i)
j - ~

for every

j > O. Now let LEt.t;, (1) . Then there exists GE.::f't (1) such that

Since GE~(i)~!§, then 6
t

(G) and Pi(G) are

irreflexive and thus by lemma 4.2C, degen, Pi(G» < Ivl implying

Therefore

such thatLE~(iJ

By (3) it follows that

if and only if there exists j

(i)
L(GJE'.f1vl _l

"

LE'.f(i J
j

The proof

will be complete if (3) can be established.

({=J: Let G = (V, T, P, aJE~(i,0) and let k = ~deg(GJ

deg(a, At(G» 2 i. We show that L(G)E.lrci i
). If 0 ~ k < i,

then GE!?{(i - 1) and L(G)E.MR:(i - 1). Let L' == {al. Clearly L'

is strictly linear over ({a}, ~). If we choose the substitution, "

such that T(a) = L(G), then clearly ,(L') = ,(a) = L(G)EirJi).

Therefore suppose k = i. Since G is reduced, then L(G) c L(G(a»

and by lemma 5.3D, L(G(a» = o(L(G(a, Ui,O») = a(L(G(a, U~»), where



G(a, U~) is linear over (TUU~. TUU~) biased left and a is the

substitution defined by, a(a) "" {a} for all aET and a(y) "" L(G(y»

for all YEU~. Let G(a, U~)i be the strict image of G(n, Ui) con-

structed as in definition 3.3. G(a, Ui)i is strictly linear over (1:.\'.., !r)

biased left, where 2;.Q. ~ TUUi and !r C TUU! By proposition 3.4,

L(G(a, U~» = h(L(G(a, Ui)t»' where h is the unmarking homomorphism on

TUUi- Define the substitution T = ah. Clearly T(L(G(a, Ui)£» ;

(h(L(G(., U~)t)) • a(L(G(., D~))) • L(G). From lemma 5.3(A, C) it

follows that if and only if i > O. For all aET and aET,

T(a) • T(a) = {a}. For all yEU'
i

T(Y) • T(Y) = L(G(y)).

By definition of -Ui' if yEUt, then deg(y, .6.R,(G»'::' i - 1. This

implies .Meg(G(y» ~ j - 1 and therefore G(y)E!9't(i - 1) implying

L(G(Y»E~(i - 1). By definition of 1di(k) it follows that

~(O) ~ ~(k) f.r all k> 0 By the corollary to theorem 4.8 it

follows that the singleton sets T(a) = T(a) = {a}, which are regular,

belong to ~(i - 1) as well. Thus if i > 0, then T(L(G(., D') )) =
i t

If i :::I 0, then U' "" ill
i

and T is a regular substitution

implying that

L (G)E.if(i)o for all i:: O.

= L(G)E.Ir(O)o Thus implies
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implies L(G)E5jf(i)
j

We show that

GE~(i, j + 1) implies By applying substitutions to

singleton sets it clearly follows that 'jf(i) C 5jf(i) for all j ~ 0 •
j - j+1

Thus if G: (V, T. PJ a) and degen, ~R.(G» < i or 1f degen, Pi(G»

< j + 1, then GE~(i, j) and by our previous remark together with the

induction hypothesis it follows that L(G)E5jf(i)
j+1 Assume therefore that

tdeg(G) '" i and deg(a, Pi(G» = j + 1. By lemma 5.3D and an argument

similar to that given above it follows that L(G) = T(L(G(a, Ui,j+l)t»'

where T ~ crh 8a before and G(a, UiJj+1)t is strictly linear over

(2: t • 2: r ) biased left such that Xt ~ TUUi,j+l and 1:
r
~ TUU!

Suppose i'" O. Then Ui "" ~ and Ui,j+l'" {6EV I deg(S, po(G» ~ j}.

Consider iCC) for cE2:t " If cET, then T(e) '" {c} is regular and

clearly belongs to If c "" yE UO,j+l' then T (y) '"

For all a E ~ '" T
r

L(G(y)). By definition of UO,j+l it follows that G(Y)E~.Q.(6. j)

and thus L(G(Y))EXf~O) by the induction hypothesis.

T (a) = {a} is regular. Thus by definition of it follows that

- 1) ~ aft(O) ;;)£f; the last inclusion folloW's from

L(G) = T(L(G(a, (0)
°O,j+1}1»E)fj+1 .

5jf(i} :J 5jf(i} :J "'/(i
j - 0 --1

If i > 0, then it follows that

•
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For yE Ui,j+l . it follows that

and by the induction hypothesis T(Y) • L(G(Y))E)fjO). For yEU'
i

it

follows that G(Y)Ej1't(i - 1) and hence T(Y)· L(G(Y))E~t(i _ 1).

Therefore T(a)E~ii) for all a E 1:£ and T(a)E~(i - 1) for all ae!.
r

By definition of

L(G)E)f(i)
J+1

it follows that

(=:» : We conclude the proof with a demonstration that implies

L .= L(G) for some GE!!{ (1, j). This will be shown by induction on j for

each i > O.

Let LE~~i), then there exists a strictly linear language, L' , over

(It' .E r ) such that L = (L 1
). where T(a)E~ (1 - 1) for all .

a E I ~ I U I if i > ° and T(a) E~. a EIt r

assume without loss of generality that ~t and

sets.

if i.= O. We may

" are the smallest such"'r

Let G
1

c: (V'. 1: J pI, a) be a reduced grammar generating L' .

be a grammar generating T (a). We may assume that the sets v •a

aE~. and Vi are pairwise disjoint.
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Consider the case when i "" O. Since T(a)E~ for all aEl;.

then by lemma 3.5, ,(L') 1s linear and is therefore generated by some

reduced linear grammar. G... (V. T, P, a). By theorem 4.8 GE~ (0)

*
If a. B'EV and B.=:tJ>uB'v, then uvET*. It follows from the

G

definition of Po (G) that deg(B, po(G» : 0 for all BE V. Thus

GE!j!', (0,0).

Suppose i> 0 and let G = (V, T, P, a), where

v = V' U ( U V ),
aEl; a

T=UT and
aEX a

p = (B + new) I (B + w)E p' )U( UP) •
BEl'; a

where 11 is the hpmomorphism defined on XUV 1 by n(B) = B for all

.BEV ' and n(a) = Y
a

for all aEZ. Since every aE1,; appears in some

production of p' , since G' and G
a are reduced for each aEl.: , then

G is also reduced. Furthermore it 1s clear that L(G) = «L I ). We now

show that GE~~(1, 0).

Let ,BEV. If aEV for some aEX Ja
*

then 8-====11'uS ' v J

G
for

some a'EV, implies S'EVanda

< deg(y • A (G » < i - 1. The last inequalities follow from the fact- a t a -

that G E!j!', (1 - 1)a , and lemma 4.2. Since the productions of Pare
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linear in elements of Vi and since 6 E V - Vi cannot introduce elements

•
of Vi into a derivation, it follows that 6~u6va'w. BEV' and

G

.B'EV, implies BI E V for Bome aE1: •a Thus if

where .BE V'. then S'EV.
a From this we conclude that deg(S. 6

t
(G»

< i. Since every sentential form of G contains at most one occurance

of BEV', then it folloW's from the definition of Pi(G), that

deg(S. Pi(G)) • 0 for all SEV. Thus GE~t(i. 0)

Continuing with the general case, suppose that LE!if(i) implies
j L = LeG)

for some G in We show that implies L = L(G) for

Bome GE~ (1, j + 1).

Let L'" ,(L'), where L' = L(G') 1s strictly linear over (2;£.. 1:
r

)

bE 1: ,
r if i ... 0 and

T(b)E~(i - 1) if i > O. Let G' and G
a aE~, be those described

earlier except that by the induction hypothesis we will assume

Consider the case i = a . Choose ~£. to be an abstract set of

symbols in one-to-one correspondence with ~i such that ~tn ( U T
b

) = ••

bE~r
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for all bEl:
r

By lemma 3.5, a (L') ~ L . is strictly linear over1 1

be

V' V1UC U V.l.
a E2:..

TcTUCUT).
r aE2:£ a

P = IS + new) I CS + w)

a reduced strictly linear grammar generating Llo Define G a (V, T, P, a),

where

P1lUC U P.l.
aE2:..

where n is the homomorphism defined on .I UTrUV
l

by nee) .. c

for all CETrUVl and n(a) - Y
a

' where y is the start symbol ofa

Ga defined earlier. Since each aei;. appears in some production of

PI and since G1 and Ga are reduced for each aEXR,' then clearly

G is reduced. Furthermore, it is easy to see that L(G) c T(L~). What

remains to be shown is that GE~ (0, j + 1).

For all BEV - VI' BEVs for some aE2:t and therefore from the

fact that GaEY'.t(O, j),
•

lemma 4.2 and the fact that 6-=-=+ w implies
G•

B~ w, it follows that deg(S, AR,(G» = deg(B, 8
t

(G
a
» ~ 0 and

Ga
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implies vET *r • thUB implies vET '*r

•
then 6 ==tl>uB 'v

G

and hence

In addition, the string uE(TU(V - V
1
»*. Thus

if BEV1 and (8, B')EPO(G), then BIEV
a

for some aEX£" From

this we can conclude deg(S, PO(G» ~ j + 1 for all BE VI' It

follows, therefore, that GE!9R,(O, j + 1).

For i > a the argument is similar. In this case we construct

G "" (V, T, P, a) directly from G'

v = V' U ( U V )
aEX a

p = (~ + n (w) I (~+ w) E P' ) U ( U Pa) •

aEl:

where n (a) "" y for all aE2:
a and nCB) - a for all S' E Vi . It

for all a E ~.2. • ~he latter holding as a result of the induction hypothesis.

Again it is easily seen that T(L') "" L(G) and that G is reduced by

virtue of the properties ascribed to G •a and By arguments

presented in the case i = 0, it follows that deg(s, ~R.(G» < i for all

SEV-V'. For S E V ,
a a E 1:.1'.' it is easily shown that deg(s, Pi(G» < j.

For 6 EV
b

, bE~ ,
r Thus if
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*
S-=::S>US1v B2w, where 81 , 62 E V, then 8

1
, B

2
E Vb' This implies that

G

for all BE U Vb
bEl:r

that deg(S'. ~t(G» < i-I. Therefore it followB that ,deg(S, PiCG» = 0,

for all BE U Vb .
bEl:

r

Consider S, a'E VI.
,

If B~uB'V,

G
then vE (TU( U Vb»' and

bEl:
r

uE(TU( U Va)*· It follows that (s. Y)EI::.9,.(G) implies
a El:t

YE U Vb and thus deg(B. ll.9. (G» ~ i.
bEl:

r
Since at most one occurrence

of BE Vi can appear in any sentential form of G, then it follows that

for BEV', (8, Y)EPi(G) implies y it. Vi • By previous argument it

follows that deg(y, Pi (G)? ~ j. Thus deg(S, Pi (G» ~ j + 1 for all

SEV' and hence also true for all BEV. We conclude that GE~(i, j + 1)

and thus completing the proof.

Theorem 5.6. Let !it be the class of regular sets. Then,

1. Let 9ci°) ~ .5t!'(51i, ~). For j > ° let

9(0) ~ .5t!'(51i,9
j
(0». Then LE<I[(O) if and only if therej+1 •

exists j > 0 such that Le9jO).

2. For each k > 0 let 9(k)~ .5t!'(!f- (k - I), M (k - 1» .° r r
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Then

k'/(k) if and only if there exists a j > 0 such thatLE"'r

3. Define

Then

~ (i, j) - (G E ~ I dea(a, ~r(G» < i and dea(', Pi (G» :'.. j l.r

LE9?) if and only if L = L (G) for some GE~r(i, j) •

Proof. The analog to lemma 5.3 holds, where Zij is defined by replacing

by ~
r and p 1 "k" is then defined to be rdeg(G) .

Part (e) of lemma 5.3 must be altered to read "GCB, U
ij

) 1s linear over

(TUlli, TUUij ) bissed right
ll

, The proof then follows as given after

replacing by Vii)
r • by Ai' and interchanging

"TUU II
. ij and "TUUIII

. i whenever they appear related by context. e.g.,

proof of (e) condition (2) and all references to the pair

II (TUUij , TUUi)ll. The proof of this theorem then follows that of

theorem 5.5 with similar modifications.
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6. AFL Properties of the Left and Right Dominant Languages.

Our major results are presented in this section. The first of these

is theorem 6.1 which states that ~(k) is a full AFL for each k> a

Theorem 6.3 establishes that the hierarchy, ~(O) ~ ~t(l) ...• is

nontrivial by'showing that each inclusion is proper.

Theorem 6.4 is especially important in that it describes the rela-

tionship between the class ~(k) and its counterpart, ~(k). It

Ris shown that LE~(k) if and only 1£ L (UR" is the reversal operator)

belongs to ~ (k). Important corollaries to this theorem establish thatr

is a full AFL for each k ~ 0, and that the right dominant 1an-

guages form a nontrivial hierarchy just 8S do the left dominant languages.

Theorem 6.5 demonstrates that the two hierarchies are incomparable

in a very strong sense, i.e.,

to !:€' (k)
r for each k > 0

~(O) contains languages that do not belong

and similarly, .~(O) -1#£.(k) ., lfl for each

k > 0 .

Theorem 6.6, an immediate consequence of theorem 6.1 and corollary I

Theorem 6.1. hft(k) is a full AFL for each k > O.

Proof. The general approach will be to show that if e represents an

AFL operation and L = L(G) for some GEf'.I'.. (k). then there exists

G'E!9'. (k) such that L(G') 0, e (L). This is to say that AFL operations

do not increase the "complexity" of the granunar required to describe their



50
. I

effect. "complexity" being measured by the index k as determined by the

relation. t:.~.

(i) iii (k) is closed Wlder arbitrary homomorphism. Let L = L(G).

: '.

where G = (V, T. p. a)E~,(k). Let h: T*'~~* be an arbitrary homomor-

phism. Let h"; (T U V)* -+ (XU V)* be an extension of h such that

h'(a) = heal for aEoT and h'(a) = a for aEV. Finally J let

G~ ::: (V, 2:, P" J a) be a graIImlar constructed from G by replacing (B-+w) E P

by (a~h'(w)) to form P'. It should be clear that hell = L(G") and

furthermore that (81 , 82) E hi (G) if and only if cal J 8
2

) E 6.2, (G '1. Thus

'deg(G') = 'deg(G) and it follows that h(L)E~(k).

(ii) ~(k) is closed Wlder U. , *

It 1s clear that L(G
l
)-

are strictly linear over ({sI' a
Z

}' ~)

theorem 5.5, there exists jl and j2

Let j = Max {jl' j2}' then L E.]f(k)
2 j This follows
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i+l - .... i

51

for all i, k > O. By definition of

and theorem 5.5, it follows that

and all belong to

(iii) If R is an arbitrary regular set and LEM"t(k) J then

R n LE~(kJ.

Let L = L(G), where G = (V, T, P, aJEY,CkJ. Let ReT"" be

regular and let A = (Q, T, 6, qo' F) be a minimal-state, deterministic,

finite state acceptor for R, where Q denotes the set of states, 6

denotes the transition function, q E Q denotes the initial state ando .

F C Q denotes the set"of final states (assume F # t). Now for each

It clearly follows that

Since ~(k) is closed under union, then the result

will· follow once it can be shown that R
f

n LE.MtCk).

We now describe the construction of a grammar G
f

such that for each

Gf will be the grammar

(V f • T, Pf , (qo' a, i)) obtained by reducing the grammar

(Q x V XQ. T. Pi. (qo' a. f)). where Pi consists of all productions of the
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fann:

(1) (ql ~ B~ q2) -+ u, if (6+u) E PJ uEf* and

yiEV J 1 < i .::.n. and the states ql = s02' 5il • si2' 1 < 1. < 0,

q = 5 satisfy the conditions that,2 n+l,1

is (5. ) 2' u. ")) = 5.;) for 1 < i < n+l and for1- • 1-· ..L

1 < i < n there exists x. ET*
1

such that lies. )' x.) = s. 2"
1, 1. 1,

If tl E Pf is a production generated from pEP. then we call p the

Ilparent" of ~. In a similar fashion we call B the parent of (QI,B,Q2)

~:Pf -+ p* be a homomorphism such that ~(P) is the parent of P for each

By induction on the lengths of derivations the following generalizations

of (1) and (2) may be obtained:
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G

( 5 Y 5)U for somenl" n' n2 n'

and there

for l<i<n and

From (1*) it follows that

•

•
(q .a,f) ==t' xE T* if and only if

o G
f

a ~x and
G

o(q ,x) = f.
o

Thus we have Now suppose

By defi-

By (2*) above we have either

nition of 61).

and

it follows that either
•
z~ uzvz .... w

G
f

or

u"13V"'~"'-W" or and In

either case it follows that C13,S")Ell..t(G).

is a c.hain in At (G) J where B
j

is the parent of Zj' 1 < j < i+l.

<deg(G).

(iv) ~(k) is closed under regular substitution.

The proof will be by indu8tion on k. To show ~(O) 1s closed

under regular substitution we show that ~~O) 1s closed under regular ,,



substitution and then show that

54

.>f(0)
j closed under regular substitution

(0)
implies ~+1 is as well. Then by theorem 5.5 it follows that ~(O)

is closed under regular substitution. Let LE5!f(O)
o and let a be a

regular substitution defined on 2:, •where L C .I Since

scci°)"" !zf(.9I,~" then L .. T(L'), where L' is strictly linear over

(T i , Tr ) and T is a regular substitution. Let 0' be the substitution

on T c TtUTr defined by, a'(a) '" o(.(a» for all aET. Since the

regular sets are closed under regular substitution, then it follows that

a' is regular. Thus a' (L') • C1(L)E..sf(~,!JI) '" !C~O).

Assume that )f(0)
j is closed under regular substitution and let

.L '" T(L'), where L' is strictly linear over (T
t

, T
r

)

and T is a substitution such that for .al1 a E T R. and T(b)

is regular for all bET.
r Let a be an arbitrary regular substitution.

Define ol(a) = o(T(a» Since

and ~O) is closed under regular substitution by induction, then

cr' (a)E)f(O)
j for all aE TR.' . Furthermore. al(a) is regular for all

aE l'
r

Clearly Thus ~(O)

is closed under regular substitution.
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Assume that~(j) is closed under regular substitution for all

. j < 1. We show that~(i + 1) is also closed under regular substitution.

By essentially the same arguments 8S given for~(O) it can be shown that

lf~i+l) = ~(~(i), ~(i» is closed under regular substitution by virtue

of closure for ~(i) from the induction hypothesis. By a similar induc-

tive argument to that given previously, it follows easily that <jf(Hl)
j

closed under regular substitution implies ir(i+l) is closed under regular
j+l

substitution. Thus it follows that ~(1 + 1) is closed under regular

substitution.

(v) ~ (k) 1s closed unde-r inverse homomorphism for each k ~ O.

From the definition of ~ (k) it clearly follows that~ (0) ~1.ti (k)

for k > O. ThUB ~(k) contains all regular seta by the corollary to

theorem 4.8. Since ~(k) is closed under union, intersection with regular

sets, regular substitution and arbitrary homomorphisms, then by theorem

2.7 ~ik) is closed under inverse homomorphism and thus forms a full

AFL.
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Lemma 6.2. Let G: (V J T, p. a) be a reduced context-free grammar.

There exists a reduced grammar at: (V', T, pi, a) such that,

(i) L(G') = L(G),

(iii) pIn (V' x VI) ;; 41

(ti) a does not appear in the right-part of any production of

p' n«V' - (.}) x (d) =. and

p' ,

(n ..). e:) E P if and only if E E L(G)

(iv) deg(S, li£(G ' »"::' deg(S. ll..2,(G» for all gEV'';;;;; v.

Proof. The grammar G' is obtained by first applying the construction

given in theorem 4.11 of Hopcroft and Ullman [11] (pages 62-63) and then

applying the construction given in theorem 4.4 of Hopcroft and Ullman

[11] (page 50). It can be easily verified by examining these construc-

tions that if G 1s reduced, then G' will be also. Furthermore, it

...
follows that VI k V and that 8===11' wE(V'UT)* implies

G'

Thus, if (6. g')EfJ.g.(G'). then certainly (a. a')Ellt(G).

deg(a. llR,(G'») ..::. deg(a, llR,(G)) for all aEV'.

Hence

Theorem 6.3. The language ~E~ (k) - Je. (k-l) for all k ~ 1, where

L
k

is defined a. follows:

n n
n .:: l}l. LO = (aO b O (cOdO• O)

L' • n n
n'::' l}2. For k > 0 define

k ('\ bk ('itdk'\) and let

Tk be the substitution defined by
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3. (] '" a'
i j

if and only if a g cr' and i '" j,

where cr, a'E,{a. b, c, d, e}.

Proof. We first establish that ~EAti(k) for each k> O.

clearly linear and hence by the corollary to 4.8, LOe~(O)

is

Assume that

L1E~(1) for each i, 0 < i < k.

Clearly Lk+1 1s strictly linear over ({ak+1 , bk+1 }, {ck+1 ' dk+l' ~+1})'

Since ~E~(k) '" ~«k+l) ~ 1) by hypothesis, then by theoremS.5 it

Next it must be established that for all k ~ 1. L
k

1 L(G) for any

GE~(k-l). _This will be done by showing that if G is any reduced

grammar generating Lk , then G has at least one nonterminal 8. such

that deg(S, ~l(G» > k.

generating L
k

, k > O.

To this end let G by any reduced grammar

By lemma 6.2 G has an equivalent grammar

G' "" (VI, T, pi J a) which contains no erasing rules (e: ¢L
k

) and no

productions of the form S -+ y, where yEV'.

deg(S, ~~(G')) ~ deg(S, ~~(G)) for all sev'.

Furthermore,

Thus if we can establish
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that deg(B, 1:Jg.(G'» > k for some 8EV', then it will certainly hold

that deg(8. 6
t

(G» ~ k for some ~ EV.

To be able to conveniently represent elements of Lk , k ~ 0, we

shall define ~ (n) ~ ~ as follows:

i> nL

for k > 1, let

~(n)

such that i > nand 1 2. j .::. 1 }.

Let M be the least upper bound on the length of the right-parts of

productions of G1
• Consider all possible left~ost derivations, ~,

having the following properties:

n
(1) a ====to wE T*

1m

(11) If ~l (possibly null), and are any substri~gs

of n such that n • and

7f
l

7f
2

1T
3

a a: uBlv ==+ux~yv~w, where 61 , 82 E V', then
1m 1m 1m

For such derivations it follows that Ilwll v
~M, where v ~ Iv'l .
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Thus 1f wE L(G') and IJwll > :t?, then any left-moat derivation, 71",

of w must be of the form, rr = 71"171"271"3 (71"1 possibly null), where

71"1 il 2 71"3

ct :==tou6v ====IIi' uxByv -=+ w.
1m 1m 1m

If, 1n addition, a is the first such

nonterminal which derives itself in a left-most derivation, then it also

We now consider a left-most derivation

follows that Iluxayvll v
< M

, . of any string

wE~(n), where
v

n > 2 0 M • Furthermore, assume B EV'
1 is the first

71"1 71"2 113
nonterminal for which a .u1S1v1 ...... ulxlBlYlvl~w.

1m. 1m 1m
What will be

shown is that deg(Sl' At (e'» > k. To demonstrate this we show that

the string Y
i

E (V'UT)* - I* and must contain .B I E Vi
1 such that

deg(ai, ~~ (G'» > k-l. We proceed by showing first that Y1¢T*.

Case 1. If then since G' contains no erasing

rules and no rules of the form (3 --to y, where Y EV', then xl E T

and the assumption that wE~ (n) it follows

that for some r > -1. By iterating the derivation it

would be possible to produce an unbalance between the number of
a '.k

appearing in a terminal string and the number of c 's produced byk

This is in contradiction to the form of strings in L
k

" Thus Y
l

oj. E.
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Y1 cannot contain bko By iterating TI
2

it would be possible

to introduce more than one b
k

into a terminal string if Y1 contained

a bk, it follows that b
k

cannot occur in Yl"

Case 2 implies Y D
1 for some i > 0 or 1s a subword of

cz e.cze cze. wherer>n>M" andk 1 k k 2 k '" k r K' 1 < i < r.

The former case is not possible by an argument similar to that given

for case 1. Therefore consider the second possibility. Only four sub-

cases need by considered based on the form of strings of L
k

and the

constraint that I ly11 I < n. Before discussing the possible subcsses

we note the following properties of strings in ~

(i) Ilwll.
j

• [Iwll e
j

for o < j < k.

(11) Ilwll a
j

• Ilwll bj-l
for 1 .=:. j < k.

In addition. since then it follows that

for some i, 0 < i < n.

is not-a suhword of i
This follows becauseSubcase 1. Y1 ck"k-l'

iteration of "2 would result in violation of Ilwll e
• Ilwll "k

k

or Ilwll •
ak_!

Ilwll .c
k

_
1
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is not a suhword of for 1 ..:: j < k.

If k = 1 this case does not apply. For k > 1, iteration of ~2

would produce one of the following invalid contexts in a terminal string:

or If

i
Y1 c a j • i > 0, for any jJ then relations (1) and (ii) would be violated

by iterating uZ"

Subcase 3. is not a subword of cannot contain

bO' else iteration of n2 would destroy relation (ii). In all other

cases, relatlon '(1) would be violated by iterating TI
2

.

Subcase 4. is not a Bubword of for

1 .::. j < k. In this case, iteration of TI
2

would produce the following

invalid contexts in terminal strings: Bj_1C
j

, aj_1e
q

(0..:: q ..:: j),

or If does not contain then all

other cases would result in violation of relation (1) by iterating TI
2

,

This completes the demonstration that y1¥T•.

where ui E T*, vi E (V'U T)* and 132E VI. By definition of 6
1

it
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By appealing to relations (1) and (ii) and the context properties of

terminals appearing in strings of Lkt

•
it can he shown that

and for some r > 1. Here

Zlj E ~-l (n) • 1 2. j < r.

Employing the above argument repeatedly we may establish the follow-

ing relations for each j, 1 ~ j < k.
(1)

It should be noted that w
2

is to be identified with n
2

defined earlier.

1. where and

2.
•

Yj ~ ujBj+lvj "G
1

.(ck_j+lzjlek_j+l)

where UljETlIe, vjE{V'UT)* and ZjiE~_j(n),

3. such that uju
j
+

1
ET* and

From 1. and 3. it follows that

,
IlujUj+lXj+1~j+1Yj+1Vj+1Vj II..:: 2 • M" and thus from 2. it follows

that is of the form This condition allows

the argument to be applied repeatedly far each j. Relations 1., 2. and
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deg(B1" 6~(G'» > k and we conclude G' and therefore G cannot belong

to .9i't (k-1) .

Theorem 6.4.

k > O.

if and only if Reverse (L)E!8: (k)
r

for all

Proof. If LE~(k), then there exists G'" (V, T, P, a)E~t(k) such

that L' L(G). Let G' '" (V, T, pi, al, where pi {a ~ Reverse (w)

(S ~ w) E P l.
IT

It is easily shown that B--+x E (VUT)* if and only if
G

IT

a==::::::t> Reverse (x).
G'

From this it follows that LeG') ~ Reverse (L)

and furthermore that for all BE V ,

(1) deg(B, 6t (G» '" deg(B, ~r(GI»,

(ii) deg(S, Pi(G)) m deg(S, Ai(G')) for all i > O.

The converse follows in a similar fashion.

Corollary. ~ (k) is a full AFt for each k > ar

Proof. The result follows from theorem 6.4, the following relations

and the fact that the regular sets are closed under reversal.
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R
Reverse (h (Reverse (L») J

a Reverse (hea»).

h an arbitrary homomorphism

2. L* '" Reverse «(Reverse (L)J*.

3. L1 U L2 '" Reverse (Reverse (L
1

) U Reverse (L
2
».

4. Lr'1R;: Reverse (Reverse (L)nReverse (R». where R is a

regular set.

5.

6.

R
T(L) c Reverse (T (Reverse (L»), where T is a regular sub-

stitution (TRCa) '" Reverse (T(a»).

-1
Closure under h follows from 3., 4. and 5. and theorem 2.7.

Corollary 3.27. Reverse (Lk)E~(k) - ~r(k-l) for all k > O.

Theorem 6.5.

(i) Lk+lE~(O) - ~(k) for.ll k> O.

(ii) Reverse (Lk+l)E~(O) - ~(k) for.ll k:: O.

Lk is defined as in theorem 6.3.

Proof. It can easily be verified that the grammar,

for all k > O. We define G
k

inductively as follows:

•
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For k > 0, defi~e

Part (11) is proved by defining Gk to be obtained from G
k

be reversing

the right-parts of all productions. It then follows that Gk+
1
E~(O)n~(k+l)

and L(Gk+l) = Reverse (LeGk+l» for each k > O.

It is worthy of note that Gk+lE~ (0, k + 1) and that

Gk+iE ~R. (0, k + 1), where and !§ (i, j)
r are defined in

theorems 5.5 and 5.6, respectively.

Theorem 6.6. For each i ~ 0 and each j.::. a iffR, (1~r(j) is a

full AFL properly included in"i(i + l)()~(j) and ~,(i)r<arr(j + 1)

Proof. That ~ (i)nAf: (j) is a full AFL follows easily from the fact, r

that ~ (1) and ~ (j) are full AFL for each i and j::.. O. Since

Li+lE~(D) ~ ~(j) and since Li+lE~(i + l)-"i(i) for each.

i ~ 0, then Li+lE~(i + l)()~(j) - ~(i)ri~(j). In a similar fashion

Reverse (Lj+1)E~(i)()~(j+ 1) - ~(i)()"i(j).
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A particularly interesting class of lsnguage~ is the class

bf~(O)()~(O). L is a member of this class if and only.1f there exists

grammars G and G' such that L - LeG) • L(G') and GE~(O) and

G'E~r(O); that 1s, L is generated by 80me left dominant grammar of

degree 0 and also by some right dominant grammar of degree O. There is

a striking analogy that can be drawn between the regular sets _which are

generated by some left as well as right linear grammar and the sets in

~(O)()~(O) which are generated by some left as well as right dominant

grammar of degree -0. Because of this analogy we choose to call

~(O)n~(O) the class of "regularly dominant" languages. The

analogy can be extended to the entire class of derivation bounded lan-

gusges in that these languages are precisely ·those which are generated

by some left as well as right dominant grammar of finite degree.

A final comment. The class of regularly dominant languages form a

full AFL and contain the nonterminal bounded languages by the corollary

I
We conjecture that this is the smallest such full AFL.

Another interesting problem would be to characterize the subclass of

~(O)LJ~(O) which generates those and only those languages of

~ (o)nJi:l: (0).
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