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Abstract.

An abstract family of grammars (AFG) may be deinfed as a class

of grammars for which the corresponding class of languages forms an
abstract family of languages (AFL) as defined by Ginsburg and Greibach.
The derivation bounded grammars of Ginsburg and Spanier is an example
of an AFG which is properly included 1n the class of all context-free
grammars (also AFG). The main result is that there exists two distinct
infinite hierarchies of AFG which exhaust the derivation bounded AFG
such that the AFL assoclated with the kth member of one of these AFG
hierarchies 1s properly included in the AFL associated with the ktlst
member of that same hierarchy. Each hierarchy is shown to be strongly
incomparable to the other; that is, the first member of each generates
some language not generated by a fixed but arbitrary member of the
other. We designate these hierarchies as the hierarchies of left and

right dominant gfammars (languages).




1. Introduction.

In [6] the notion of Abstract Family of Languages (AFL) was
introduced to describe language classes which were closed under certain
types of transformations. In most of the literature on AFL theory,
specifically [éa, b] and [9], AFLs are generally characte;ized by some
generating class of 1aﬁguages or family of acceptors. From a practical
point of view, the theory gives very little explicit information concern-
ing the nature of the underlying class of grammars tﬁat 1s associated
with a given AFL. The obvious exceptions to this statement are the
classes of right (left) linear grammars, the context-free, context-
sensitive and general phrase strucqure grammars. However, this sat of
examples is by no means exhaustive. It is our purpose here to describe
two distinct hierarchles of "abstract familles of grammars" (AFG)
which exhaust the class of all derivation bounded grammars studied by
Ginsburg and Spanier [7]. By "abstract family of grammars" we shall
mean any class of grammars for whiéh the corresponding class of lan-
guages forms an AFL. An AFG is a useful concept_only if there 1s some
decision procedure for identifying members of the family -- a property
which 1s not enjoyed by AFLs. One of our results is the specification
of such a decision procedure for the class of grammars we have undertaken
to study. |

The technique we employ involves defining certain relations on
the nonterminal alphabet of context-free grammars. By requiring that
these relationé be irreflexive we are able to isclate the class of all
derivation bounded grammars. As pointed out in [7], this class of
grammars defines an abstract famlly of languages properly included in

the context-free. By virtue of the irreflexive property of our



relations, which we have chosen to call the "generalized left and right
dominant relations', we are able to assoclate a pair of nonnegative
integers 2deg(G) and rdeg(G) with every reduced derivation bounded
grammar, G. These integers represent the "degree of left and right
dominance'", respectively, of G. TFor each integer k > 0 we define
j?i(k) (j?r(k)) to be the class of all derivation bounded grammars, G,
for which g£deg(G) < k (rdeg(G) < k). Our main results state that for
each k > 0, the classes Si(k) and .§i(k) generate full AFLs.
Fur;hermore, it 1is shown that the class of languages, ;ﬁ;(k)(ﬂé}(k))
associated with the grammar class .gi(k)(_gi(k)) is properly included
in the class of next higher degree, Although the scope of our investi-
gation has been limited to context-free grammars, we feel that perhaps
the techniques employed here may have extenslons which isolate classes
of AFG which include context-sensitive or general phrase structure
grammars.

The paper 1s divided into five other sections. In section 2 we
present the basic notation and terminology used throughout the remain-
ing sections. In addition, section 2 also presents results from other:
sources which are referred to in the sequel.

In section 3 we introduce the class of strictly linear languages
which are fundamental to our characterization of the classes iﬂ;(k)
(jé;(k)) presented in section 5.

Section 4 introduces the generalized left and right dominance
relations referred to above. These relationé are denoted 6; and ar,
respectively., It is in this section that we alsc define the notion of
"degree' of left and right dominance which allows us to describe the
grammar hierarchies, %(k) and _@’r(k), k > 0 . The three major
results of this section are theorems 4.4, 4.B and 4.9. Theorem 4.4

establishes the equivalence of the derivation bounded (nonexpansive)



grammars to the class of context-free grmmmnara for whi?h az(ar) in
irreflexive. Theorem 4.8 places another interesting class of grammars,
the nonterminal bounded grammars [2], within the hierarchy of left and
right dominant grammars. We conclude this section with theorem 4.9 which
gives an effective procedure for computing 2deg(G) (rdeg(G)) for an
arbitrary reduced context-free grammar, G. ‘

In section 5 we give a characterization of the lanéuage classes
ﬂé;(k) and ﬁﬂ;(k) in terms of substitutions applied to strictly
linear languages. The class of subatitutions we allow are restricted
to having thelr range sets lie in certain language classes which are
determined by the domain alphabet. To obtaln the characterizations in
a relatively straight forward manner it was necessary to introduce new

relations (p. and lk) which refine the classes _§i(k) and _gi(k)

k
into yet another hierarchy of subclasses. The characterization of
jéi(k)(iﬂ;(k)) is expressed in terms of the subclasses of languages
determined by the refinement of.gi(k)(,gz(k)) imposed by the relation

P ()

Section 6 contains most of the major results of this paper. It is
shown that ﬂﬂh(k)(ﬂi}(k)) forme a full AFL and that for each k > 0,
.wﬂ(k)q:%(k + 1) (_;%;(k)@ j{r(k + 1)). Theorem 6.5 is a somewhat
surprising result in that it is shown that & (0) - gi;(k) # 9 for

each k > 0 and similarly jt;(O) —jﬂi(k) # & for each k > 0.



II. Notation, Definitions and Background results,

For the most part, our notational conventions and bagic defini-
tions follow those commonly found in the literature concerning language
theory. Any background material not explicitly presented in this section

can be found in Ginsburg [5] or Hopcreft and Ullman [11].

Definition 2.1. A context-free grammar is a four—fuple, G=(V, T, P, a),

where V (nonterminals), T (terminals) and P (productions) are finite

non-empty sets. The start symbol, o« |, belongs to V. Elements of V

will usually be denoted by small Greek letters, while elements of T will

usually be denoted by small letters early in the English alphabet.

Definition 2.2. Let G = (V, T, P, @) be a context-free grammar and let

P : 8> w dencte an element of P, If w€T*, p 1is said to be a ter-

minating production. If WETHAVT* (VT*, T*V), p 1is said to be lipear

{left-linear, right-linear). If all productions of G are linear or

terminating, then G is said to be a linear grammar. The language

generated by G will be denoted by L(G).

Notation. Let (p : B+ w)€EP. If u, vE(VUT)*, then we write

P
1J=T?;v whenever u = ulBu2 and v = u W, . If m= PPy .- P with
v .
piG P, 1<1i<n, then we write u==%pv if and only 1if there exists
G
words zie (VUT)*, O X1 <n such that u = zZ,, V= z_ and
zi—l? Z:s 1 <1i<n. Wewrite u—__.—é_nyv if there exists =
m
such that u=—=hv.
G
* +
Furthermore, u=—=3v if u =v or u=—jv. The sequence 7 in the
G G
above context is called a derivation of v from u in G. The words ;




z 1 <4 <n, will be called u-sentential formg or, more simply,

i)

sentential forms 1f u d1s understood. In case Py in m 1is always

applied to the left-most (right-most) nonterminal of 2, Ve call 7

T )
a left-most {right-most) derivation and write u=—pv (u—pV).
1m Tm

If S 1is a set, then |S| denotes the number of elements in S.
If x€(VUT)*, then ||x|| denotes the length of x. "¢" denotes the
string of length zero. If s€(VUT), then | |} ls represents the

number of occurances of s in x.

We define HKHS = sgs Hx”s .

Definition 2.3. Let G = (V, T, P, «) be a context—-free grammar,

G 1is said to be reduced -if for every BEV, there exists T and 7,

T2

such that B —=pxET*. |
G

The class of nonterminal bounded grammars and their- corresponding
languages have received considerable attention in the literature; e.g.,
Banerji [2], Fleck [4], Ginsburg and Spanier [7], Gruska [12] and
F-ioriya [11] have studied a number of different and interesting proper-
ties of these grammars. Ginsburg and Spanier [7] were the first to study
the more general, but related class of derviation bounded grammars and
languages. This latter class .of languages seems to be a "natural®

subclass of context-free languages in the semse that they form a full

AFL, a result also established in [7].

The next definition describes the aforementioned grammars.



Definition 2.4. Let G = (V, T, P, @) be a context—free gramar.

1. G 1is said to be nonterminal bounded if and only if there

exists a fixed k > 0 such that for every derivation 7 in
T .

G, s===pwe(VUD* implies |[w]|, < k.
G

2. G 1is sald to be derivation bounded if and only if there exists

k > 0 such that for every x€L(G) there exists a derivation

&1 Ty

n of x which has the following property: o=—=—pw ==—px
G G

implies ||w|]v <k, for all MM, = T

3. G 1s said to be nonexpansive if and only if for every BREV,

+
B=—pw € (VUT)* implies Hw]lB < 1.

G
The. following theorem due to Ginsburg and Spanler [7] characterize

the derivation bounded prammars and the languages they generate.

Theorem 2.5. Let LC T*. The following statements are equivalent.
(1) L is generated by some derivation bounded grammar,
(2) L 1is generated by some nonexpansive grammar.
(3) L belongs to the smallest family of languages containing
all linear languages and closed under abitrary substitution

of sets In the family for letters.

One of our major results of this paper concerns the existence
of hierarchies of grammars which generate full ALFs of derivation bounded
languages. The concept of full AFL is presented in our next definition

due to Ginsburg and Greibach [§].



Definition 2.6, Given an infinite set of symbola, T, an abstract'famiiy

of languages (AFL) is a family S of =ubsets of T* such that,

(1} For each LEY’ there is a finite set TC T such that
L C T*,

(2) There exlsts some nonempty L€ .

(3) & is closed under the operations, finite union, concatena-.
tion, + , inverse-homomorphism, e-free homomerphism and
intersection with regular sets.

(4) L is said to be full if it is cleosed under arbitrary homo-

morphism.

The following theorem due to Greibasch and Hoperoft [9] will be useful
in section 6. The original statement of this theorem is a stronger
result than we shall need, we have therefore taken the liberty to present

a weaker version which 1s more suitable for results presented in the sequel.

Theorem 2.7. If & is a family of languages closed under union and
intersection with a2 regular set, regular substitution and homomorphism+,

then & is also closed under inverse homomorphism.

t: The theorem as originally stated in [9] required closure cnly under
a restricted type of regular substitution and required only that &£ be

closed under e—-free homomorphlism,



3. Strictly Linear Grammars and Languages.

In this section we introduce the strictly linear languages., This
class of languages 1s a proper subclass of the class of all linear lan-
guages. Their distinguilshing property is that every string =z in a
strictly linear language has the form =xy, where x and y are strings
over disjoint alphabets. Furthermore, the set of all x's (y's) 1is
a regular set. An example of such a language is {a"p" ]In > 0}. The
importance of the strictlf linear languages rests in the fact that they
provide the basis for a characterizatlon of the left and right dominant
languages of degree k introduced in section 4 and representing the main
object of study in this paper.

Proposition 3.4 is a simple but useful result which states that
every linear language is the homomorphic image of some strictly linear
language. Lemma 3.5 describes closure properties of the strictly linear
languages under regular substitution.

Another fundamental concept developed in this section is the notion
of "subgrammar". A subgrammar of a given context~free grammar is the
grammar obtained by reducing the original relative to one of its non-
terminals. Subgrammars become useful when one attempts to isolate and
describe local properties of a given grammar, The language generated by
4 subgrammar can be described, under appropriate conditions, in terms of
a substitution applied to a corresponding "restricted subgrammar'. 1In
a restricted subgrammar, a set of nonterminals are treated as terminal
symbols. Lemma 3.7 is the last result of this section and provides a
characterization of subgrammars in terms of a substitution applied to
restricted subgrammars., This lemma 18 a valuable tool in proving key

results of section 4.



Definition 3.1. Let G = (V, T, P, &) be a context-free grammaer. G 1is
salid to be linear over (Tz, Tr) biaged left if and only if

(1) G 1s a2 linear grammar,

(2) T = TELJTr’ and

(3) PCVx (TEVT%UTE)

G 1s said to be biased right 1f (3) is replaced by,

(3") PCVx (TEVT:UT:)

If in addition to (1), (2) and (3) or (3'), G satisfies (4), then

G 1s said to be strictly linear over (Tz, Tr) biased left (right), where

(4) TRrWTr =9 .

A language, L, is said to be (gtrictly) linear over (TE’ Tr) biased left

(right), if there 1s a so-named grammar, G, such that L = L{G) .

If G satisfies (1), (2) and either (3) or {(3'), then we simply say

that G is linear aver (T Tr); gimllarly, if G satisfies (1), (2),

R-’

(4) and either (3) or (3') we say G 1is strictly linear over (Ti’ Tr)'

In subsequent sections we will need special notation for represent-
ing a set of abstract symbols disjoint and in one-to-one correspondence
with a given set. In addition, a special homomorphism will often be
required to identify members of the abstract set with corresponding
members of the original. These notational conventions are given formal

status by the next definition.

Pefinition 3.2. Let S by any set, then § = {s|s€5}1 denotes a set of
abstract symbols disjoint from §. In addition, the homomorphism
h:(SUS)* -+ §* defined by h(s) = h(s) = s, for all s€S, will henceforth

be designated as the unmarking homomorphism on S .
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The following definition points out that the class of linear

grammars are in one-to-one correspondence with the strictly linear

grammars of left (right) biaa,

Definition 3,3. Let G = (V, T, P, a) be a linear grammar. The strict

image of G bilased left is the grammar G£ = (¥, 2, FE,_a), strictly

linear over (Eg,’ Er) biased left, where
(1) Eﬂ C T is the smallest alphabet such that
PCV x GHVTHUZH);
(i1) Er = Tr CT, where T.C T is the smallest alphabet such
that P C V x (TAVIXUTH);
(111) FE = {(B>u)EP | ueT*l U

{g > uB'v | (B+uB'v)EP, B'EV and

v = -ﬁ-l(v)02¥} . (h 1is the unmarking homomorphism on T)

The strict kmage of G biased right is the gramgr Er = (v, 2, Fr’ a),

gtrictly linear over (Eﬂ,’ Er) biased right, where
1) Ep, = Tz_C__E, where Tlg T is the smallest alphabet such that,
PCV x (TAVI*UTH) ;
(i1) Z.CT is the smallest alphabet such that P C V x (T*VE;UE;) ;
(114) Fr = {(B+> V)EP | vETK}
{8 +uB'v | (B> uB'v)EP, B'EV and u = E-l(u)nzg} .

Finally, L(ER.) (L(Er)) is called the strict image of L{G)} bilasged

left (right).
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The next proposition 1s a simple consequence of the definitions above and
therefore no preoof will be given. It emphasizes the fact that every linear

language 1s a homorphic copy of 1ts strict image.

—re

Proposition 3.4. Let G = (V, T, P, a) be a linear grammar. Then
L(G) = E(L(EE)) = E(L(Er)) , where h is the unmarking homomorphism on

T and ER.(Er) 1s the strict image of G biased left (right)

Lemma 3.5. Let G = (V, T, P, a) be striectly linear over {(T,, T.)

B’ 'r

For each aETsL let Ra(_;_EE be a regular set; similarly, for each

*
bETr let R.b (_;zr be a regular set.

Then T(L(G))} 1is linear over (Ef.' Zr) with the same blas as L(G),
where T 1is the substitution defined by 7T1(c) = Rc for all c€T.

If Erﬂzﬂ' = &, then T(L(G)) 41is strictly linear.

Proof. We construct a grammar G' = (V', Z, P', @) which is linear over
(ER.’ Er) and having the same bias as G such that T(L(G)) = L(G").

P' and V' are described as follows. For each a€T, let -Ga be a \

L
right-linear grammar generating Ra and gimilarly, let Gb be a left—
linear grammar generating Rb for each bETr . We shall assume that the

nonterminal sets of all such grammars are pair-wise disjoint and disjoint
from V. Let Pi> Pyr «vey Py be some ordering of the productions of

P. If c€T = TR.UTr , then we call {c, 1, j) an occurence of c

if and only if c¢ appears in the right-part of Py anci_ Py has the form,
py ¢ B > ucv, vhere |luc|] = 3 1if cCET, or Vev|| =3 if
cETr. Clearly if (ec, i, j) and {(c', 1', i') are two occurances of

c, c'€T, then (e, 1, j) # (", 1", I") . For each occurance {c, i, j)

cf c€T Ilet Gi‘J be a unique copy of Gc obtalned by renaming the
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i
then (v j) will be the corresponding nonterminal of Vij in
i3 13 i iy 11 =
Gc Let Gc (Vc . Ec, Pc » N ) , where Ec = ER, if cETi

1
and ¥ =%  1f c€T_ . Clearly L(ch) = L(G))

n

Rc for all 1

and

] and furthermore all nonterminal sets, Vij ,» are palr-wise disjoint

and disjoint from V .

The property we deaire for G' 1is the power of

"simulating" a

single production, p, of G by using only left or right linear produc-

tions which generate words in Rc for each occurrance of ¢ introduced

by production p. We describe the productions of G' that are con-

structed for each type of production p in G ,

(a)

(b)

if piG P 1s of the form (B +€) or ( B~ 8'), where
B'€V, then add Py to P' .

If piGP 13 a terminating production of the form

(B +~ clcz...ck), k > 1, then we conslder two cases,
) 1,1 .
Case k = 1. For this case add B - Yc to P' ,
1
where Yi’l is the start symbol of Gi’l R
1l
il '
In addition, add all productions of Pc to P'" .
1

Case k > 1. For this case we identify two subcases which

are assoclated with the bilas of G.

Left blas: Add B ~»> Yt’l to P' . TFor each J < k
1
add all productions of Pi'J to P' where the terminating
]
i+
productions, (4§ - w)EEPi’j, are replaced by & - wTi’J 1 .
c ¢
h| 3+
i,k '
Finally, add all preoductions of Pc ‘to P
k
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Right bias: Let the right-part of Py be written as

€kCy-1°"*¢y + Follow the same construction given for left-

1,j+1
cj+1

blan except that w and v should be reversed.

- ' 1
{c) If piEP is of the form B8 ~ clcz...ckB or B+ 8 1 Ck=1"""C1

k > 1, where B'€V, then follow the construction given in (b)
with the change that if (6§ + w) 1s a terminating production

of Pi’k s replace it by 6§ » wg' if Py ia right-linear
k

and by 6 » B'w 1if Py is left-linear.

. ]
(d) If (pi : B+ alaz...arB bs"'bl) P, where r, 8 > 1 and

B'EV, then let Bi be a unique abstract symbol not already

defined. Let pi t B+ 3132"'31-31'. and pi : Bi - B'I:.ﬂ...b1

be formed from P;- Add to P' the productions constructed

from pi and pi according to (c).above.
Fipally, let

V' = VU(B] | B! 1s defined by (d) above)U( U vi'dy .
i,,¢ ©

It is not difficult to show that (p:l : B> uB'v)EP, uveTH,

*

B'€V, if and only if B =—mepxB'y, where x€71(u) and vyET(v) .
Gl'

And similarly, (pi P B> w)EP, wETE(T?) 1f and only 1f

F. ]
B=—=px€Et(w) C EE(E;) s WwWhere BEV'MV . Therefore it follows
G’ ,
* *
that o==px€L(G) if and only if Caead YET{X) and that the bias of
G (e

G' agrees with the blas of G.
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Definition 3.6. Let G = (V, T, P, a¢) be a context—free grammar. The

subgrammar of G relative to BE€V , denoted G(B) , is the grammar

G(B) = (V(B), T, P(B), B) obtained by reducing (V, T, P, B} . For
every subset UC V and BEV - U define G(B, U) to be the subgrammar

of G relative to B restricted on U obtained by reducing

(v-u, TUU, P, B) .

It should be noted that 1f G 1is reduced and o« is the start symbol
of G, then G = G(a) = G(a, ®) . The notion of a subgrammar is useful
in identifying the nonterminals and productions involved in derivations
originating from a fixed nonterminal. A subgrammar restricted on a set,
U, of nonterminals is a means of describing all sentential forms derivable
in the original grammar from some fixed nonterminal where members of U
are treated as terminals; that is, members of U cannot be re-written once

they are introduced in a mentential form of some derivétion. The next

lemma explores a useful property of certain types of restricted subgrammars.

Lemma 3.7. Let G = (V, T, P, @) be a reduced context-free grammar and
let G(B) = (V(B), T, P(B), B) be the subgrammar of G relative to

BeV. If U i_s any subset of V - {B} such that for all y€U,

+
Y==Ppw implies we&(TUWU*, then L(G(R)) = o(L(G(B,U}))), where o
G

is a substitution defined by,

o(t) t for all t€T and

a(¥) L{G(y}) for all vy€U.
Furthermore, if G(B, U) = (V*, TUU, P*,B), then

va

V(B) - U and

a~]
[
1]

P(B) - ( U P).
YEU
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Proqf. If U=4¢, then G(g,U) = G(B), o uecomes the identity

homomorphism and the conclusions of the lemma follow trivially. Assume,

therefore, that U # &. Ve now establish an important property of G.

(A)

m
For every BE€V - U and derivation 7 such that B—pw e(TUV)*
G

. T
there exists a permutation 7 of 7w such that B——=—pw and such
G

that 77 = nini, where ™ £ € rewrites only elements of V - U and

-

2 if non-null, rewrites only elements of U. To establish (A) let

T
m be any derivation from BEV - U, If ¥ rewrites only elements
of V- U, then 7 =1" =7y {wé = £) and the result is immediate.

If = for some k > 1 where .

o i<k

= T11"12 0 "k1"k2

represents a sequence of productions which rewrite elements of V - U

and T

12’ 1 <i < k, represents a sequence of productions rewriting

elements of U. Furthermore, for k=1, and 1if

k2 = M2 * €
K>1, then for 1 <1 <k-1, LIP! # €. That 7 must begin with a

sequence T, follows from the fact that BE€V - U. We now show

that T., can be interchanged with . to obtain an equivalent

i+l,1
derivation and consequently reducing the value of "k" for the
resulting sequence.

If k = 1 initially, then m is already in the desired form and we

are finished. Assume that k > 1 and consider the sequence 11221
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and let Moy T PP,- P for some 1T = 1. Since o rewrites only
elements of U and since T12 cannot introduce elements of V - U
into the sentential form (an assumption of the lemma), then the non-
terminal rewritten by Py must have been introduced by TR We may
therefore permute Py and T2 obtaining nllplnlzpzps...pr. If
r = 1 we have succeeded in permuting and T otherwise we

12 21’

can apply the same argument to the sequence nilnlz'wél, where

T = "11P1 and T21 = PoPg.: P Thus it follows that the sequence
T11721712 is equivalent to the sequence 711712721 . By permuting
the left-most pair, LD and ﬂi+1,l, we have reduced the number of

such paired sequences. In this way the original sequence =  may be
modified to produce an equivalent derivation 7* of the desired form.

Returning now to the main proof we establish that V7 = V(8) - U and that

P- = P(B) - (IJP(Y)). Since G is reduced it follows that for every

rtEU
T
BEV there exists = such that B==p €T*. Thus B~EV(R) if and only
G

i m
if B” = B or there exists = such that B==puB’v, where uve(TUV}*.
' G

m m
As a consequence of this we have that B =———=p w implies B=—=3WV.
G(8,U) G(B)

Thus V- C V(B) - U and P C P(B) - (IUPkH))- Now suppose B“€V(R} - L.
yeU

kit
. - *
Then there exists © such that B.-G=)w18 W, for some Wi¥s e (TUv)*,
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-

m
By (A) Bm_p-wlﬁ‘wz, where 717 = ¢
G

] anaqg "i rewrites elements of

172

V-U and m, rewrites elements of U. As argued before, if g°€ V-U

-

"

then B8” must be introduced by w”. Thus B =—=pw B"w, for some
! Geg,uy 2

wiwé implying B8“€V’; we conclude V~ = V(B) « U. From this equality

and the assumption that G is reduced it also follows that P~ = P(BY - (UUP)).

YEU
™ s
If B=——=pw € L(G(B,U)), then B ey W, Now if w€E€T*, then
G(8,U) G(BR)

o(w} = weL(G(B)). If w:onlyi...‘ry , Wwhere yoyi...yne T* and

n'n

. '
YiEUrW(B), 1 <i<n, then o(w)} = Yo¥1¥q <+« Xy where X, €L(G(v)).

+ + +
But V) ==———=b X implies Y =——b x; and therefore w =——— o(w). ;
G(v;) G(8) G(8) .
It follows that o(L(G(B,U))}) C L(G(R]}).
m T TS
Now suppose B——=$ x€T*. Then by (A) B=—=pw=—=x, where 1TI
G(B) G G

rewrites elements of V - U and 1r2‘ rewrites elements of U. Since

we(TUU)*, then w€L(G(B,U)). Now if “;J =€, then X = weL(G(8,U))

MT* C o(L(G(B,U))). If w= YoYiYit Y Vn» vwhere yoyl...yne T* and

n‘n
LD *
YiGU, 1 <i<n, then Ww—=——p x€T* implies Y; =—b xiET*.
G(B) G(8)
+ +
But Yi?ﬂ), X, implies Yiu_G___(T_T‘ xi, thus x€o(w) C o(L(G(E,U))).
i

This establishes the reverse inclusion and hence the relation L(G(B)) = .

a(L(G(8,U))).
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4. Right and Left Dominant Grammars and Languages of Degree k.

Banerji [2] introduced a "dominance" relation on the nonterminal
set of a context-free grammar. The class of gfammars for which this
relation is irreflexive corresponds precisely to the class of nonter-
minal bounded grammars [2] which have been treated in a variety of
contexts by other authors; e.g., Fleck [3, 4], Ginsburg and Spanier [8]
and Moriya [12]. 1In this section we introduce the "generalized left

and right dominance relations', demoted A, and ar, respectively.

2
These relations are defined on the nonterminal set of a context-free
grammar and are based upon a type of self-embedding exhibited by non-
terminals. One of the principal results of this section is theorem 4.4
which essentially states that the class of derivaticon bounded grammars
[7] correspeonds precisely to the claas of context-free grammars for
which Az and ﬁr are irreflexive. In this fashion 62 and ﬂr

represent generalizations of Banerji's dominance relation by virtue

of characterizing a much larger class of grammars and languages.

For any .set, S, and any relation R on that set we define the
"degree" of an element, sS€8S, with respect to the relation, R,
denoted deg(s, R). By choosing R = Al or ﬂr and létting S repre-
sent the nonterminal set of some grammar we are able to classify all
derivation bounded grammars according to their "degree of generalized
left (right) deminance." For each k > 0 we denote the class of all
reduced context—free grammars of "left-degree"” Lk or less by gi(k).
The corresponding class of languages 1s denoted iﬂi(k). We call this

class of languages the "Left Dominant Languages '6f Degree k". In a

similar fashion we define _§i(k) and gﬂ;(k)
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Theoraﬁ 4.8, presented at the end of this section, gives a
quantitative measure of the complexity of the clase of nonterminal
bounded grammars relative to the class of all derivation bounded
graimars. In this result we show that € 1is nonterminal bounded if
and only i1f G belongs to ,?1(0)(192(0).

We end this section by presenting an algorithm for computing the
least k such that’ Gfigi(k), where G 18 an arbitrary reduced

context-free grammar. The algorithm also determines 1f such a k exists.

Definition 4.1. Let S be a non-empty set and let R be a relation on
5. For each s€S define

C(s) = {k| there exists a sequence 5,,5;, -:-» Sy of elements in

S such that s = s, and (s;_;» si)ER for 1.<i <k}.

0
The depree of s under R, denoted deg(s,R), is defined by,

deg(s,R)

w , if ¢(s) is infinite

Max C(s), if 0 <|e (s)|< = and

0, if C(s) = ¢.

Tt is obvious that if § 1s a finite set, them R is irreflexive
if and only if deg(s, R) < « for all sES. The next lemma describes
some general properties of deg(s, R) where R 1is defined on the
nonterminal set of a context-free grammar and gsatisflies certain conditions
with respect to derivations. This lemma will apply to the generalized
dominance relations Az and &r introduced In definition 4.3. Another

class of relations satisfying the conditions of this lemma is intro-

duced in section 5.
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Lemma 4.2, Let G = (V, T, P, a) be a reduced context—-free grammar

and let R be a relation on V satisfying,

(1}

(11)

Then,

(&)
(B)

)

(b}

(E)

(F)

+

B==pup'v and (B', B'"')ER implies (B, 8'')ER , where
G

uv € (VUT)* .

+
(B, B'YER implies PR==puB'v for gome uve(VUT)* .
G

R 1is transitive.
+

For B, B'€V, B=—==pup'v , uve(VUT)* , implies
G

deg(B, R) > deg(B', R) .
deg(B, R) < deg{a, R) for all Be€V; if R 1is irreflexive,
then deg(x, R) < |V| .
If R 1is irreflexive, then (B, B')ER implies
deg(8, R) > deg(B', R)
If R isg irreflexive, then deg(B, R) > 0 implies there
exlsts B'EV such that deg(B', R) = deg(B, R) —-.1 .
+

deg(B, R) > (deg(B', R) implies BR'=FpuBv for any
G

uve (VUT)* .
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Proof.

(A):

(B):

(C):

+
Let (31, BZ) s (62, BB)EI{. Property (ii) implies Bl=j?)u32v .

This together with property (i) implies (Bl, B3)€ER, thus R 1is

transitive.
+
Let B=—puB'v . If deg(R', R) = 0 , then (B) iz immediate.
G
Assume, therefore, that deg(B', R) # 0 . Then there exlsts a chain

(8", Bl)’ (B> Bz), vensy (Bk-l’ Bk) in R, where k> 1. By

property (i).it follows that (B, Bl)EER and thus (B, Bl)’ (Bl, Bz),

consy (Bk-l’ Bk) 413 a chain in R dnitlated by B. Since for each

such chain initlated by B' there ia a corresponding chain of equal

length initiated by B, then it follows that deg(8, R) > deg(B', R)
+

Since G 1is reduced, them o=—pupv for all B #a in V. Thus
G

by (B), deg(a, R) > deg(B, R) for all BEV . Let (Bl’ 82),

(By» Bgds +ovs (By g 8)ER, where k> |[v| . Then there exists

1<i<j < k such that Bi = Bj . By transitivity of R we obtain

(B;, BYER . Thus k > |v] 4if and only if R is irreflexive. It

follows that if R 1is irreflexive, then deg(a, R) € |V[ -1 .

i
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(D): Let (B, B') €R. Property (ii) and (B) imply deg(B, R) > deg(B', R).
If R 15 irreflexive, then by (C) deg(B','R) < IV]. If
deg(8', R) = 0, then (B, B')ER dimplies deg(8, R) > 1 and (D) holds
immediately. Suppose deg(Bf', R) =k > 0 and let (B', Bl), (Bi, Bz),

., (B 1? Bk)ER. Then since (B, B')ER we can form-the chain

k-

(&, B"), (B', Bl), enny (Bk—l’ Bki. This implies deg(f, R) > k + 1
> deg(B', R) = k.

(E): Supose R is irreflexive and suppose k = deg(f, R) > 0. TLet
(8, B,)s (By» By)s <vvs (B 15 B,) be a maximal chain in R initiated
by B. The existence of such a chaln Implies deg(ﬁl, R) » k - 1.
(D) implies deg(Bl, R) < deg(B, R). We therefore conclude that
deg(Bl, R) =k - 1.

(F): This is the contrapositive of (B).

The relations &, and &r are called the "generalized left and
right dominance relations", respectively. Our choice of the tags "left"
and "right" for these relations was made for a reason that 1s not at

all clear from the definition. In Workman [13] it is shown that for
reduced context—-free G, degfa, A£(G)) = 0 if and only if the set of

left-most derivations for G 1is regular (o denotes the start symbol of

G); sgimllarly deg(a, Ar(G)) = 0 1f and only if the set of right-most
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derivations of G 18 regular. The cholce of notation and terminology
here 1s bagsed on these characterizations in terms of the one-sided
derivation sets. It should be pointed out that in [13] the designators

"]eft" and "right" are reversed from their use here.

Definition 4.3. Let G = (V, T, P, ¢} be a context-free grammar.

Define the relations ai(G) and ﬁr(G) on V as follows:

(Bl, Bz) E&E(G) (alternatively, :‘.\T(G)) if and only if at least one
of the following conditions hold in G.

+

(1) Bl=)u61v32w for some uvwe (VUT)*
G

+

(alternatively, B8,—=—=pUuB., VB, W).
1 G 271
+

(2} there exists B“€ V such that Bl—-?—-ruﬂ‘v
G -

-+
for some uve (VUT)* and B'=.=bx8’y822
G

for some XxXyze (VUT)* (alternatively,

£ I
B’=' szyBIZJ . ll
G .
Example. We illustrate definition 4.3 by determining the relations

AE and ar for the following grammar, G. Let G = (V, T, P, a¢), where

v

{ul Blj Bz) 831 B4}’

—
I}

{a, b}
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P=1{1: m+ﬂla82

2: B,»B.B

1 7271
3 ByvBsB,
41 ByrB,By
5 32*33
6 Bs+a
7 B4+b
B: a+el

[
I}

2 {(G, BZJ, (al 83): (G, 84); (82: 84)]

=
1}

{(GJ Bl)l (as 82)3 {gs 83)1 (G, 84)1 (Bls Bz)s (Bll Bs]s (Bll 84)}'

- - ' - .
Note that aR and Ar are irreflexive and transitive.

Note also that G is nonexpansive.
Theorem 4.4 gives a characterization of the derivation bounded

(nonexpansive) grammars in terms of the relations 62 and ar .

Theorem 4.4, Let G= (V, T, P, ) be a reduced context-free grammar.
The following are equivalent.

(1) G 1is nonexpansive,

(2) ﬁz(G) is irreflexive,

(3) A_(G) is irreflexive.
Proof. We show equivalence of (1) and (2) by showing that G 1is not
nonexpansive if and only if ﬂg(G) is not irreflexive. The proof of

equivalence of (1) and (3) is similar and will not be given,



25 )

If G 1is not nonexpansive, then there exists BE€V such that
, :
8 =—puBvBw for some uvw € (VU T)*. By definition of ::‘.E(G) it follows
G

that (B,B) €A2(G) and hence AP.(G) is not irreflexive. Conversely,

+ +
suppose (B8,B) € AR.(G)' Then either B=opufvBw or R——=PpuB”v and
G G
+
B"—=xB“yBz, where uvwxyz c v m*. In the former case it is

G
immediate that G is not nonexpansive. In the latter case we may obtain
+

B"=== XB“yuB“vz which also implies G is not nonexpansive.
G

L]

Lemma 4.5. 8,(8.} satisfy properties (i) and (ii) of lemma 4.2.
Thus if AR (AI_) are irreflexive for some grammar, G, the conclusions

of lemma 3.9 hold for Aj',(G) (ar(GJ).

Proof. A proof will be given for ﬂg; the proof for Ar is similar

and will not be presented. Property (ii) of lemma 4.2 is tmmediate from

+

the definition of AE(G). To show property (i) suppose B —puB”v for
G

some uv € (VUT)* and suppose (B‘,B“')GQE(G). Then either

+ + + .
B=—=pxByB"“2 or B=—=pu’yv” and Y'=bx‘yy’8"z’. In the former
G G G

case (B,B"7) EAR(G) by (2) of definition 4.3. In the latter case we

+ +
obtain B=—=auu“yv“v, which together with Y=—$X"Yy“B°“z” also implies
. G G

(B,B”)EQE(GJ. Thus (i) of lemma 4.2 holds for ﬂR[G).
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If G isla reduced context-free grammar for which- ai(c) (and
hence Ar(G)) is irreflexive, then by virtue of lemma 4.2 we can
assign to G a unique pair of nonnegative integers deg{a, QR(G)) and
deg{a, ﬂr(G)), where @ i1s the start symbol of G. These integers,
called the "left degree" and "right degree" of G, respectively, induce
natural hlerarchies of grammar classes within the class of all deriva-
tion bounded grammars. The next definition formalizes these ildeas and
introduces the grammar classes, _§i(k), _Si(k), and thelr correspond-
ing language classes, ﬂﬁi(k) and jﬂ}(k). We shall refer to the class
Ei(k) (.ﬁyg(k)) as the class of "left dominant grammars (languages)

of degree k". We simllarly describe Si(k) (ﬂé;(k)).

Definition 4.6. Let G= (V, T, P, @)} be a reduced context-free grammar.

The left-degree of G (right-degree of G), denoted A&deg(G) (rdeg(G)),

is defined by,
deg(G) = deg(a,az) (rdeg(G) = deg(a,arj).
Furthermore define,
g, (k) = {G|G 1is a reduced context-free grammar such that

sdeg(G) < kJ,

_g’r(k) {G|G is a reduced context-free grammar such that
rdeg(G) < kl,

{L(G)|G€_<€£(kjl,

& ()

& (k) = {L(®)]|6 € £ ()},
Ei = {G| there exists k<= such that (EEja(k)],
gr = {G| there exists k<= such that GEZ ()],
&, = (L@ ] GELL,

2, = L(@©)] cegl,
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Theorem 4.7. Let & be the class of all reduced, nonexpansive

context-free grammars and let & be the corresponding class of languages.

Then,
(1) .gg = —?r = ‘?'
2) %, - &, =

Proof. This follows directly from the fact that deg(a, ﬁh(G)) < w©

(deg(a, Ar(G)) < ) if and only if aE(G) (&r(G)) is irreflexive and

theorem 4.4.

Theorem 4.7 simply states the fact that the left (right)
grammard of finite degree exhaust the class of all reduced derivation

bounded grammars. The following result places the nonterminal bounded

grammars of Banerji [2] within the hierarchies % and _@’r .

Theorem 4.8, If G 4is a reduced context-free grammar, then G 1is

nonterminal bounded if and only if GE%(O)Q?}(O).

Proof. The nonterminal bounded context-free grammarg were characterized
in Banerji [2] as those grammars for which the "dominance" relation, » ,
is irreflexive. This relation is defined on the nonterminal set of
G=(V, T, P, a) as follows:
+
Bl‘-> BZ if and only if Bl==G=pu82v » where uyve (VUT)* - Tx,

What we shall demonstrate is that > 18 irreflexive if and only if

deg(a, 4,(G)) = deg(e, A_(G)) = 0.

Suppose P 1s not irreflexive, then B> B for some BEV. This

+

implies that B=—Ppufv, where uveE (VUT)* - T* . Thus either
G
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u=xB'y or ;n x8'y for some B'E€V. In the former case, (B, 8')Ear(G).
In the latter case . (B, B')EEAE(G). It follows from lemma 3.9 that
deg(«a, Ar(G)) > deg(B, Ar(G)) > 1 or deg(a, ﬁaFG)) > deg(8, ﬁR(G)) > 1.

Now suppose deg(a, ﬁg(G)) #0 or deg (o, Ar(G)) # 0. In the former

case we have that (e, B)EﬁE(G) for some BEV. Therefore either

+ + +
o =—=puevBw, implying aodpa , or a=—=puB'v and B8 == xB'yRz,
G G G

implying B8'>B8'. Thus 3 1s not irreflexive. The argument is similar
if deg(a, 6r(G)) # 0. This completes the proof.

Corollary. jﬁi(O)FBZZ(O) contains the class of all nonterminal bounded

languages.

Theorem 4.9. Let G = (V, T, P, a) be a reduced context—free grammar.
There 1s an effectlve procedure for computing deg{a, AE(G)) and

deg (a, A]‘.’ (G)).

*
Proof. For each BEV define D(B) = {B'€V | B——puB'v for some
) G

quE(VLJT)*]. It is easily shown that there is an effective procedure
for determining D(R).
The algorithm described below computes deg{a, ﬂE(G)). The procedure
for computing deg(a, Ar(G)) is aralogous and will not be given. To
this end let Bl’ 62, tvay Bn be some enumeration of V énd let
{pl, Pyr vees pr} = P’ be the set of all productions of P for which
the right-part of Pj' 1 <j<r, contains at leaat two occurrences

of nonterminal symbols.
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Step 0. If P' = ¢, then G 48 a reduced linear grammar and by
theorem 4.8, Gegz(o). Thus deg(a, AR,(G)) =0, 1If P' ¥ 4, then

continue to step 1.

*
Step 1. For 1=1, 2, ..., n compute Q(Bi) = {R'EV | Bi=|.uBiuB'w,
G
* .
uww e (VUT) }. It is easily seen that
*
Bimp uBivB'w if and only if there exists GED(Bi) such that
c :

*
. I 1
(pJ : 8 > W YW,Y wS)EP » Where W VW, belong to (Ul:JT) and BiE D(y)

and B'E€D(y'")U{y}. Thus we obtain the following procedure for deter-

mining Q(Bi)

la. Set j = 1.

1b. Let (Pj S XaY41% o ijjxmj)EP', where

€V, 1l<g<m .
5 2 a:x

- *
XX, ... Xx_ €T and ¥
o

071 4 |

lc. If S€D(R,), then continue, else go to le.
i

]

ld. For s=1, 2, ..., mj-l set

Q(Bi) = Q(Bi)UD(Yj,s+1)U{Yj,s+1} if and only if
there exists t < 8 such that BiED('yjt)

le. Increment 7. If j <r, then go to 1b, else go to la

with the next value of 1.

Step 2. Since A.Q,(G) is not irreflexive if and only 1f there exists

* :
BEV sguch that B —puBvhw, then AE (G) 1is not irreflexive if and
G .

only if BE&Q(B) for some BEV . If this is the case, then halt

with deg{u, .&E(G)) = o, otherwise continue.
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Step 3. For each 1, 1 <1 <n, determine R(Bi) =
{s'ev | (8, e 8,(6) }. By definition of 4,(G), R(8,) =

QBpUC U - et .
YED(B,)

Upon entry to this step 1t is known that 6£(G) "is 1irreflexive.

Therefore since QQ(G) is also transitive (lemma 4.2 A), then 1t

follows that for some BEV, R(B) = $. Thus R(B) ¢ 1if and only

1f deg(B, QR(G)) = 0,

Step 4. Set S, = {BEV | R(B) = ¢}, = {BEV | deg(B, 4,(6)) = 0}

5o

"Set k =0 and continue.

Step 5. If oES then halt with deg(a, AQ(G)) k. Otherwise set

k’
k= +1 and continue.

k-1 k-1
Step 6. Set S = ({BEV - |J S, | RBYC U S,}. Go to step 5.
* 30 =0 3
If for some k > O, Sk = &, then either
k-1 k-1 k-1
V=) 8, or for all BEV - {J S, it holds that R(B)N - |J S)# 6.

=0

If the latter case is true it follows from transitivity of ﬁR(G) .
that (B, B)GJAE(G) for some B in V - U S, . This is in contra-

diction to the fact that AR(G) is known to be irreflexive at this point

of the computation,

Suppose that «o€ Sk for some k and Sk+l # . Since G is

reduced it follows that D(a) = V and hence R(R) C R(a) for all 8€V.



But if BGSk+1

k-1

R(B) U sj
1=0

contradiction.
for which Sk+l

terminate with

step 5.

Finally, by a simple inducrive argument it can be shown that RES

if and only if

wvhile R{@) C |J S

31

and c::ESk ; then we have that

k-1

This implies R(R) ¢R(a) s A

j=0 3

This implies that a€S§ where k is the least integer

k’
= ¢. The loop defined by steps 5 and 6 must therefore

o agsigned to the last non-void set Sk sy computed in

k
deg (R, ﬂg(G)) = k. Thus the procedure eventually halts

having determlned deg(ax, ﬂE(G)) = fdeg(G) .
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5. A Characterization of the Right and Left Dominant Languages,

The major results of this section are theorems 5.5 and 5.6. They
present a characterization of the classes .ﬁg(k) and ¢¢;(k),
respectively, in terms of special types of substitution applied to the
class of strictly linear languages.

To establish the characterizations we Introduce, for each k >0,
a rela;ion Py defined on the nonterminal set of grammars for which 62
is irreflexive. Lemma 5.2 establishes that pk is irreflexivg and
satisfies lemma 4.2. Asg a consequence of the properties of P » we
are able to decompose Ei(k) into a hierarchy of grammar classes,
3i(k, 1), 3 >0 . Our characterization in theorem 5.5 is based on this
decomposition. In a similar manner, relations Ak, k>0, are defined
to obtain an analogous decomposition of the grammars in g%(k),
k>0.

Lemma 5.3 is a technical result which is used primarily to simplify

the proof of theorem 5.5. Definition 2.4 introduces the substitution

mechanism employed in the characterization theorems.

Definition 5,1, Let G = (v, T, P, u)e ¢ (see theorem 4.7). For

each i > 0 define

i} and

Vet = (8€V| deg(s,n))

vﬁi) {REV| deg(s,ar) i} .  For each i > 0 define the relations

pi(G) and Ai(G) on V as follows:
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(Bl,,Bz)Epi(G) if and only if,

i (i)

. - i \
BlTbuBZVB w, where 82, B EV.E and ‘
uwE (V U T)*;
similarly,

(Bl,Bz)EJ\i(G) if and only if,

+*

B, =—$uB°vB W, where g-,8.cV (1)
1 G 2 27 T

Lemma 35.2. Let G €%. Therefore each i 2 0 p4(G) and Ai(G) are
irreflexive and satisfy properties (i) and (ii) of lemma 4.2.
Proof. We will prove these properties for pi(G), i > 0; the proof for
Ai(G) is similar and will therefore be omitted.
Since G €, then 62 (G) is irreflexive by theorem 3.12. If
Di(G) is not irreflexive, then for some BE€V it must be the case that
(B,B)Epi(G). This implies that BEVR(I) and there exists B“€ Vgl)
+

such that B=———pufvg“w for some uvwe (VUT)*. But by definition of
G :

%(G) it follows that (B,B‘)GAE implying by lemma 4.2 that

deg(B',ﬂz) < deg(ﬂ,ag). This contradicts the fact that B,B‘E\féi)

which implies deg(B,ﬁi) = deg(B‘,Az) = i, Thus pi(G) must be irreflexive.
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By definition of pi(G) it follows at once that property (ii) of

+

lemma 4.2 1is satisfied. To show property (i) suppose that B===fpuB‘v
G

for some uve (VUT)* and suppose that (B",8°") Epi (G). Then

+ .
B===p xB”"“yyz, where B“,YEVF(_l) and xyz € (VUT)*. But then we have
G

+
that B ===puxf”“yyzv and it follows that (B,B")Epi(G). This concludes
G

the proof,

Lemma 5.3. Let G= (V, T, P, )€ ¥ and let zij = {BEVIdeg(B,aR(G)) = i
and deg(B,pi(G)) =j}. If k = tdeg(G) = deg(a,AE(G)), then :

(A) For each i, 0 <i <k, there exists n;, 0<nm < |v|,

k nj
such that V = iL=Jo (jgozij) where Zij # ¢ if and only if 0 < i <k

and Oijini and Zijﬁzrs-—-«b if i#r orj#s.

+

(B) For all BEZij, B=—=9puf”’v implies B~ € er, where either
: G
0<r<i and 0_<_s_§_nr or r=1i and 0 <s <j (uwve(vum*).
(C) For all Be Zij’ 0<ic<k, 0O <J <m., the grammar G(B’Uij)

is linear over (T UUij’T U Ui’) blaged left, where

ur =¢ if i =0,
i

Ui=9_(U qu) if i> 0, '
gq<1i jxn
—q
Uij=U£ if j =0 and
V.. = U U(UYZ., ) if j > 0.
ij i qyjlq
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(D) For all BEZij, 0<i<k and 0 < j <m., L(G(B)) = a(L(G(B,Uij))),

where o is the substitution defined by o(a) = a for d4ll a€T and

*

o(y} = L{G(y)) for all YEUiJ.. Furthermore, if B=—puB’v for all
G

B'Ezij and some uve (VU T)*, then G(B,Uij) = (Zij,T Uu,.

IJ’Pij’B),

where Pij = {(B+w)ep|sezij}.

Proof of (A). Since GE€Y, L\E(G) is irreflexive. Thus by lemma 4.2C

0 < deg(B, A;(G)) < degla, A (G)) =k < |V| for all BEV. It follows

that zij = ¢ for all i > k. Lemma 4.2E guarantees that V'Q('i) # ¢

for each i <.k (see definition 5.1). By lemma 5.2 pi(G) is irreflexive
for each 1 > 0 and by lemma 4.2C 0 < deg(B, pi(G)) < deg{a, pi(G)) < [V[
for all BEV. Thus for each 1, 0 <1 <k, n, = max {deg(8, pi(G))|

Bevéi)] exists and Z,, = & for all 3} > n,. What remains to be shown

19 i

is that zij #¢ for 0%<3< n;. Clearly 2z # . Suppose BEZ

:l.ni |

for some j > 0. From the proof of lemma 4.2E it follows that there exists
B'€ V such that (B, B')Epi(G) and deg(Bs', pi(G)) = 3j - 1. By definition

of pi(G) 1t follows that B'EVE:L) and thus # 9. It follows that

2i4-1
Zij#qb for O_Ejf_ni.
Finally, since deg(., AQ(G)) and degf., pi(G)) are functions, it

follows that Zi‘_jﬁzm3 = ¢ whenever 1 #r or j# g .
+

Proof of (B). If B==puB'v for some uve (VUT)*, then by
G

lemma 4.2(B,F) it follows that deg(g’, ﬂg(G)) < deg(8, ,{\.E(G)) and

deg(B', £, (6)) < deg(s, p;(G)) for all 1 > 0. The result:follows

immediately from these relations and the definition of zij'
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Proof of (C). Suppose BEZiJ. for some i and j and let (Rrw)E P,

What must be shown is that,
L ]
(1) we (Uij U zij U T)* and
(2) if w = uB”v, where B“€ Zij' then

UE(UUT* and vE: UT*,

+

Since (B+*W)EP, then B=—w. Therefore if w = vwR”vy, Bg-€ vV, it
G

follows from (B) above that B Ezij ) Uij' Thus w E(Uij U Zij U T)*.

In the remainder of the proof we drop the '"(G}" when referring to
Az(G) and pi{G).

Now suppose (B+uB“v)EP, where B“€ Zij C Vgi). Either veT*
or v = xB”"y, where xy€(VUT)* and 8“EU1:i ] Zij' Assume the
latter case and suppose B*~€ Ugi). Since B’,B"Evl(i) and since

+

B=—puB"xB””"y, then by definition of Py it follows that (B,B’)Epi.
G

By lemma &.2D, j = deg(B‘,pi) < deg(B,piJ = j, a contradiction. Thus

.- o) . .a o R
] EUij VE = IJi and 0 < deg(B”~,a,) < deg(s,ag) = i. But this is
possible only if i > 0. Thus if i = 0 we must conclude that veT* =

(bUTY* = (Ué UT)*. In either case it follows that vE(Ui‘ UT)* for

all iiO.
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Consider u. Again, either u€T* or u = xB”““y, where xye (VUT)*
. +
and B°"€E Zij U Uij' If g€ VPEJ‘J, then B==pxB8"“yB“v and it follows
G

that (B,B“)Epi- which implies by lemma 4.2D that deg(é",pi) < deg(B,pi) = j.
This is possible only if j > 0. Thus if j > 0, and B"“€ vgi), then

B e Ziq for some q < j. If j=0, then g~ V((liJ and by (B) above

it follows that deg(B”,Ag) < i, But this is possible only if i > 0,
Therefore, if i > 0 and j = 0, then B"“€ U7.  Finally, if 1 =0 and

j =10, them B°" cannot gxist and we conclude u€EeT*, In all cases

ue (Uij U T)=.

Finally, note that if B -+ w is a terminating production of

G(R, U then w contains no elements of Z... Thus from (1)

137 i3
above, wE(TUUij)* and G{(R, Uij) is biased left over

{TUU TUU;_).

i3’

Proof of (D). Clearly Uij cv - zij' Furthermore, if Teuij and

+

Y=—puy’v for some y°€V and uv€(VUT)*, then by (B) above it
G

follows that y-e Uij' Thus by lemma 3.7 the result follows when U

is taken to be 1)...
1]
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Definition 5.4. Let % denote the class of all strictly linear

languages. Let o/ and P represent language classes. Define

(AP = (L | L=1("), where L'€Y 1is strictly linear
over (ER.' Er) for some such pair and T
is a substitution defined by, <t(a)e
for all a € 22 and 1(b)e @  for all

beEr 1.

Theorem 5.5. Let 4 be the class of all regular sets.

1.

Let _‘féo) = _\_’-{'(_Q, %) and define _?j(__?_i = _i/(ffjc_o), x@)

for 1 > 0. Then LEM‘Q(O) if and only if there exists

j > 0 such that Lei,”j(o).

For k > 0 define Sfék) =Lk - 1), & (k-1)) and

jf(k) = g(f(k),-‘z/(k - 1)), 1>0. Then LEX (k) 1if and
i+l i [} - %

only i1f there exists Jj > 0 such that LE_?;;k) .

Define & (1, 1) = {6 € ¥|deg(c, 8,(6)) <1 and

deg(a, pi(G)) < j, where o is the start- symbol of G},

where ¥ - is the class of all reduced non-expansive grammars.

Then Leg;i) if and only if L = L{G) for some GE%(:L, 1,

J, 1 >0 .
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Proof. The prc;of will consist of first showing that (1) and (2) are
equivalent to (3) and then demonstrating (3). Suppose (3) holds. -Let
Legj(i), then L = L(G) for some G = (V, T, P, a)E%(i, 3). This
implies deg(a, ER(G)) <1 and thus GE%(i). It follows by defini-
tion of Mﬁ.(i) that L(G)E_&fi(i). Thus _(fgi) - %(ij for every

j > 0. Now let LE%(i). Then there exists Géﬂ(i) such that

=
n

L(G). Since GE%(i) C¥, then 4,(G) and p, (G) are
irreflexive and thus by lemma 4.2C, deg(o, pi(G)) < |V] implying

GE%(i, [v] - 1). By (3) it follows that L(G)ez’(i)

| v | 1 Therefore

LEME(:I.) 1f and only if there exists J such that LEﬁs"';i) . The proof

will be complete if (3) can be established.

(&): Let G = (v, T, P, u)ey}’(i,{)) and let %k = fdeg(G) =
deg(a, AE,(G)) < i, We show that L(G)Eféi). If 0<k<{,

then GE%(i - 1) and L(G)E (i - 1). Let L' = {a}. Clearly L'
is strictly linear over ({al, ¢). If we choose the substitution, T,
such that <t(a) = L(G), then clearly T(L') = t(a) = L(G)E%’éi).
Therefore suppose k = i. Since G is reduced, then L(G) = L{(G(a))

and by lemma 5.3D, L(G(a)) = o(L(G(a, Ui 0))) = o(L(G(a, Ui))), where
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G(a, U;_) i3 linear over {TUU], TUUi) biased left and o 1is the

substitution defined by, o{(a) = {a} for all a€T and o(y) = L(G(y))

for all YEU;.' Let G(a, U;_)R, be the strict image of G(a, Ui) con-

structed as in definition 3.3. _C;'_(u, U:IL)R. is atrictly linear over (Ep,' b

blased left, where Egg TUU:'L and ErgTUTJI . By proposition 3.4,

L{G(x, U;_)) = h(L(G(z, U;_)E.))’ where h 1s the unmarking homemorphism on
TUU:'L. Define the substitutlon Tt = oh. Clearly t(L{G(a, U:'L)R)) =
(h(L(G(a, U ,)) = o(L(G(a, U}))) = L(G). From lemma 5.3(a, C) it

follows that U} # @ if and only if 4 > 0. For all a€T and a€eT,

t(a) = 7(@) = {a}. For all Y€EU] and YEU], t(y) = t(v) = LGH)).

By definition of U}, 1f *{EUJ_, then deg(y, AL(G)) <1~ 1. This

implies 2deg(G(y)) < - 1 and therefore G(y)E¥, (1 - 1) implying
t L

L(G(Y))E_Ml(i - 1). By definition of _g'{/g(k) it follows that
_&/2(0) c "VP.(R) for all k > 0 . By the corollary to theorem 4.8 it
follows that the singleton sets t(a) = 7{a) = {a}, which are regular,

belong to & (1 - 1) as well. Thus if 1 > 0, then (L (G(x, Up,) =

L(G)Eféi). If 1 =0, then U:'I. = ¢ and T d1s a regular substitution

implying that T1(L{G(a, Ui)l)) = L(G)E_%’éo) . Thus Gegg(i, 0) implies

L(G)G_‘é’éj‘), for all 1 > 0.
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Now assume that GE%(i, j) dimplies L(G)E.%’j(i) . We show that

GG%(:I., J + 1) dimplies L(G)E_Sé’j(ii . By applying substitutions to

singleton sets 1t clearly follows that ‘ifj(i) C gj(ﬂ for all 3 >0 .

Thus if G = (V, T, P, ) and deg(m, AI:‘,(G)) <1 or if deg(e, pi(G))
< 3+ 1, then GE_‘?;(i, 3) and by our previous remark together with the

induction hypothesis it follows that L(G)E.ﬁé’;_ﬂ . Assume therefore that

2deg(G) = 1 and deg(a, pi(G)) = 3+ 1. By lemma 5.3D and an argument

gimilar to that given above it follows that L(G) = T(L(-GT(G,' Ui j+1)£))’

where T = gh as before and E(a, U ), 1s strictly linear over
1,412
1
(Z,,Z) biased left such that ZE - TUU:L,j+1 and  Z_C UL

= L =
Suppose 1 = 0. Then Ui ¢ and Ui,j+1 {pev | deg(8, po(G)) <3k

Consider 1(c) for cGER. If c€T, then 1(c) = {c} 15 regular and

clearly belongs to %’éo) - g,§0). If c¢c= Y€U then T(y) =

0,j+1’

L{G(Y)). By definition of U it follows that G(v)€%, (0, 1)

0,]+1

and thus L{G(y) )Ei;”go) by the induction hypothesis. For all a € Er =T,

1(a) = {2} 1s regular. Thus by definition of ff;gi it follows that

L{G)

= ' (0)
t({L(G(a, UO,j+l)£))€‘i’pj+1 . If 1 >0, then it follows that

ff;i) Qgéi) ) ﬁﬁ(i -1 D ;x,/g(o) 2 #; the last inclusion follows from
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the corollary to theorem 4&.8. For vye& Ui 341 it follows that G(Y)Effg(i, i)
»

and by the induction hypothesis (y) = L(G(Y))ng’;o). For ye€ Uj'_ it

follows that G(Y)Gﬁ’z(i - 1) and hence z(y) = L(G(Y))e_;z/g(i - 1),

Therefore T(a)G‘fj(i) for all a EER. and T(a)E%(i - 1) for all aGEr.

By definition of 55’(1) 1t follows that T(L(E(Cl, U

141 1,547 =

L(G)ez’j(ﬂ -
(=>): We conclude the pProof with a demonstration that Lejg’ji) implies
L = L{G) for some GE%(i, i). This will be shown by induction on 1 for
each 1 > 0.

Let Leféi). then there exists a strictly linear language, L', over
(Eg’ zr) such that L = (L'), where T(a)e%(i - 1) for all .
2a€Z = Z,UZ 1f 1> 0 and 1(a)€E R, a€Z , if 1 =0. We may
assume without loss of generality that EE and Er are the smallest such

sets,

Let G' = (V', ¥, P', o) be a reduced grammar generating L'
For i > 0 and for all a€ZX 1let 6, = (v, T, P> Ya)e_gi(i - 1)
be a grammar generating t(a). We may assume that the sets Va’

a€X, and V' are pailrwise disjoint.
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Consider the case when 1 = 0. Since 1(a)€ # for all a€lX,
then by lemma 3.5, +t(L') 1s linear and is therefore generated by some
reduced linear grammar, G = (V, T, P, a). By theorem 4.8 GE%(O)
*

If B8, B'€EV and B=—Ppuf'v, then uvET*., It follows from the
G _

definition of pO(G) that deg(R, pO(G)) =0 for all Re V. Thus

ey, (0,0).

Suppose 1 > 0 and let G = (V, T, P, a), where

v=viU( v,
aEEa
T = UTa and
aey
P={g>nw | (B>weP Iy P,

acy

where n 1is the homomorphism defined on JIUV' by n{(B) = B for all
BEV' and n(a) = Y, for all a€X¥ . Since every a€y appears in some
production of P', since 6' and Ga are reduced for each a€l , then
G is also reduced. Furthermore it 1s clear that L{(G) = T (L"). We now

show that GE%(i, Q.

*
Let BREV. If BEVa for some a€¥ , then B=——puR'v, for
G

some B'€EV, implies s'eva and thus deg(g, AR.(G)) = deg(B, aR(Ga))
< deg(ya, ag(Ga)) <1 - 1. The last inequalities follow from the fact

that GaE%(i - 1) and lemma 4.2. Since the productions of P are
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linear in elements of V' and since BEV - V' cannot Introduce elementa
*
of V' into a derivation, it follows that B==pPugvB'w, REV' and
c :
B'€V, implies B'Eva for some a€¥ . Thus if (8, B')EAE(G),
where RE€ V', then B'Eva. From this we conclude that deg(Rg, ﬂg(G))
< 1. Since every sentential form of G contains at most one occurance
of BEV', then it follows from the definition of pi(G), that
deg(8, pi(G)) =0 . for all B€V. Thus GEgl(i, 0) .

Continuing with the general case, suppose that Lez’;i) implies L = L(G)
for some G in 9’2(1, 3. We show that Le(fj(i])_ implies L = L{(G) for
some GG%(.’L, j+1).

Let L = 1(L'), where L' = L(G') is atrietly linear over (22, T
and T(&)E%’ji) for aEEz. T(b)e® , bE Er; if 1 =0 and
T(b)E%(i -1) if 1 >0 . Let @' apd Ga » a€X¥, be those described

earlier except that by the induction hypothesis we will assume

GaE %(i, iy .

Consider the case 1 =20 . Choose —Eig to be an abstract set of

symbols in one-to-one correspondence with E.E, such that _Z—Rﬂ( U Tb) = 9.
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Let ol(a) «a€ Eﬂ. for all ae€ Eﬂ. and let Ul(b) = 1(b)

for all bGEr . By lemma 3.5, ol(L') = Ll "is atrictly linear over
(%, T, where T = U T, . Now let 6 = (V) EzuTr, Py, @) be

bEZ

r
a teduced strictly linear grammar generating Ll' Define G = (V, T, P, a),
where
V = le( U VEI)’
aEEz

T=TuU( U T1.),
T aezza

o~
]

B+nGw [ B>w) PIUCY P,
an,‘E

where N 1is the homomorphism defined on f UTrU Vl by nic) = ¢

for all ce€ Trl_)Vl and n{a) -_Ta’ where Y, is the sftart symbol of
Ga defined earlier. Since each :Ef!. appears in some production of
Pl and since Gl and Ga are reduced for each aezﬂ, then clearly
G 1is reduced. Furthermore, it is easy to see that L(G) = T{(L'). What
remains to be shown is that GG% (0, J + 1).

For all BEV - ¥ Be Va for some aEEE and therefore from the

1’
*

fact that Gae_%_(o, i), lemma 4.2 and the fact that Bo—Ppw implies
G
*
B—=$ w, it follows that deg(B, A!'(G)) = deg(R, Aﬂ,(Ga)) = 0 and

G
a
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*

deg(B, py(G)) = deg(s, py(6)) < 3. If 8, B'€V,, then B==pup'v
G
*
implies vETr*, thus Bg=——pufv implies vETr* and hence
G

deg(B, QE(G)) =0, In addition, the string ue (TU(V - Vl))*. Thus

if BEVl and (B, B')Epo'(G), then B'EVa for some agl From

2'.
this we can conclude deg(B, pO(G)) <j+1 for all BE Vl. It
follows, therefore, that GE%(O, j+ 1.

For 1 > 0 the argument is similar. In this case we construct

G=(V, T, P, a) directly from G' :

v=v'U(aLE)EVa) . p 'EQ_U Z. >
T=JrT ,
acy a
P={8>nG) | B>weEPIU(Y P
aex
where n(a) = Yo for all ae¥ and n(B) = 8 for all Be v' . It

should be rioted rhat Gaegg(i - 1) for 211 aezr and GaEffz(i, 1
for all a 621. The latter holding as a result of the induction hypothesis,

Again it i3 easily seen that T(L') = L(G) and that G 1is reduced by

e
»

virtue of the properties ascribed to Ga’ G', £ and zr . By arguments

'A
Presented in the case i = Q, {1t follows that deg(8, AE(G)) < i for all

BEV - V', For BEVa, aezﬂ', it 1s easily shown that deg(8, pi(G)) < j.

For BEVb, bEEr, deg (g, AP,(G)) = deg(B, ﬁE(Gb)) <1 - 1. Thus 1if
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*
E,_.—-?nsuﬁlvﬁzw, whs_:re Bl, BZE V, then Bl’ 82E Vb « This implies that

for all g€ {Jy V B can introduce only nonterminals, B', such

bEX,

that deg(g’, 4,(G)) < 1 - 1. Therefore it follows that ,deg(s, p;(6)) = 0,

‘b ]

for all Be U Vv

-
bEEr

*

Consider g, R'EV'. 1f B=>bup'v, then ve (TUC Y Vb))* and

G , bezr

wE(TUC U V))* . It follows that (B, Y)EA (G) implies
acy
2

ye U Vb and thus deg(R, AR.(G)) < 1q, Since at most one occurrence
b
r
of BEV' can appear in any sentential form of G, then it follows that
for BEV', (8, Y)Gpi(G) implies y & V' . By previous argument it
-follows that deg(y, p,(6)) < §. Thus deg(g, p,(6)) <1 +1 for all

BEV' and hence also true for all BEV. We conclude that Geﬁ(i, j+ 1)

and thus completing the proof.

Theorem 5.6. Let S be the class of regular sets. Then,

1. Let 9&0) = (%, #). For J >0 let
9(0) = (R 9(0)). Then LEXY (0) if and only if there
j+l =1 T

exists J > 0 such that LG@}D).

2. For each k > 0 let gék)= .Sf(_d{r(k - 1), J%r(k - :!-)) .
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For 320 let D5 = (k- 1), D) . Then

LE (k) 1if and only if there exists a } > 0 s8uch that
T

LEEgék).

3. Define ¥ (1, J) = {GE ¥ | deg(a, 8, (G))y 21 and deg(a, 0 (6)) < 1)

Then
L€PY) it and only 1f 1 = L(G) f €
3 y ) or some G _92(1, 1 .

Proof. The analog to lemma 5.3 holds, where 2 is defined by Treplacing

i3

A, by ﬂr and P, by Ai - "k" is then defined to be rdeg(G) .

1

Part (c) of lemma 5.3 must be altered to read "G(g, Uij) is linear over

(TUU!

10 TLJUij) ‘bilased right". The proof then follows as given after

by 2 A, by A_ and interchanging

(1) 1)
replacing Vh by Vr s L) r

Pi
"TL}Uij" and "ILJUi" whenever they appear related by context, e.g.,

proof of (c) condition (2) and all references to the pair

"(TLJUij, TL)Ui)" . The proof of this theorem then follows that of

theorem 5.5 with gimilar modifications.
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6. AFL Properties of the Left and Right Dominant Languages.

Our major results are presented in this section. The first of thege
is theorem 6.1 which states that _d/g(k_) is a full AFL for each k > 0 .
Theorem 6.3 establishes that the hierarchy, _&/2'(0) - _&/L(l) vee 5 1S
nontrivial by showi;ng that each inclusion 1s proper.

Theorem 6-.'4 ié especially important in that 1t describes the rela-
tionship between the class %(k) and its counterpart, -"%/r(k)' It
is shown that LEME (k) 41f and only if LR ("R" 1s the reversal operator)
belongs to _&/r(k). Important corollaries to this theorem eastablish that
ﬂﬂr(k) is a full AFL for each k > 0, and that the right dominant lan-
guages form a nontrivial hierarchy just as do the left dominant languages.

Theorem 6.5 demonstrates that the two hierarchies are incomparable .
in a very strong sense, i.e., _&/E(O) contains languages that do not belong
to _q%r(k) for each k > 0 and similarly, _dfr(ﬁ) —%(k) # ¢ for each
k>0.

Theorem 6.6, an immediate consequence of theorem 6.1 and corollary 1
to theorem 6.4, states that %(i)ﬁ_&’r(j) ig a full AFL for each 1 and
j>2o0.

1 -

Theorem 6.1, jﬂi(k) is a full AFL for each k > 0.

Proof. The general approach will be to show that if @ representg an

AFL operation and L = L{G) for some GEQL(k), then there exists
G’Eyg(k) such that L(G") = 6(L}. This is to say that AFL operations

do not increase the "complexity" of the grammar required to describe their
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effect, "comple;ity" being measured by the index k as determined by the
relation, 62.

(1) jﬂi(k) is closed under arbitrary homomorphism., Let L = L(G),
where G = (V, T, P, u)é%(k]. - Let h:T*—2Z* be an arbitrary homomor-
phism. Let h‘:('-[‘U V)* > (ZUV)}* be an extension of h such that
h”(a) = h(a) ‘for a€T and h”(B) =8B for BEV. Fipally, let
G" = (v, 2, P7, a) be a grammar constructed from G by replacing {B»w)€EP
by (B+h’(w)) to form_ P, It should be clear that h(L) = L{(G*) and
furthermore that (Bl, 82)6 AP.(G) if and only if (81, 62) eai(G‘). Thus
Ldeg(G”) = %deg(G) and it follows that h(L)E_;Vg(k).

(i1) & (k) is closed under U, -+, *.

Let Gl

({a},{al},{a+e,a+alu Le).

Let G2 = ({a},{al,az},{u—ralaz},u).

Let G

3 ({a },{al,az},{a—»al.a-i-az},a).-

*
It is clear that L(Gl) =a, , L(Gz) = a,a, and L(G3) ='{al}U{a2}

are strictly 1in_ear over ({al, 32}, $ . If Ll’ Lzeﬁl(k), then by

E_%’(k) and L.E

theorem 5.5, there exists _11 and '12 such that Ll p )
1

LZE_?,”'(k) . This follows

(k
sz) .+ Let J = Max {jl, j2}, then Ll’ f
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(k) (k)
from the fact that g:Hl 2 _’fi for all 1, k > 0. By definition of

(k) *
gj+1 and theorem 5.5, it follows that T(L(Gl)) = Ll , r(L(Gz)) = Lle

and T(L(GB)) = Llu L2 all belong to fj(_]:_i and hence to _‘Z/E(];) .
-(iii) If R is an arbitrary regular set and LE%(k), then
RN Le%[k).

Let L = L(G), where G = (V, T, P, a)E_fg’R(kJ. Let RC T* be
regular and let A= (Q, T, §, 9. F) be a minimal-state, deterministic,
finite state acceptor for R, where Q denotes the set of states, &
denotes the transition function, qu Q dengtes the initial state and
FC Q denotes the set of final states (a_ssume F # ¢), - Now for each
fEF let Rf = {xET*]'G('qO,xJ}= f . It clearly follows that
L NR = fLEJF(Rf M L). Since d’E(k) is closed under Lm'ion, then the result
will. follow once it can be shown that Rf N LE%(R).

We now describe the construction of a grammar Gf such that for each
FEF, L6 = RN L and G.€(X). Ge will be the grammar

(Vf, T, Pf, (qo, @, f)) obtained by reducing the grammar

Q@xVvxQq, T, PE., (qo, a, £)), where P% consists of all productions of the
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form:

(1) {4y, 8, 9,) +u, if (B+u)EP, u€T* and

§(ay, v) = q,, where q;, q,€Q;

{(2) (ql, B, qz) +u0(511, Y1 512)111 (snl’ Yy SnZJun’ if
(B-!-uO*,rlu1 Ynun)EP, where u(}'u1 unET*,
YiGV,_ 1 <1i<mn, and the states 9 = Sgpo i1 Sip° l1<i<n,
9, = 5n+1,1 satisfy the conditions that,
6(51—1,2’ ui-—‘l) = s for 1 <i < n+l and for

xl)

1 <1i<n there exists xiGT* such that <S(s:.L s

,1° i, 2

If pEPf is a production generated frm.n PEP, then we call p the
"parent™ of p. In a similar fashion we ca;l B the parent of (ql,B,qu
for all ql,qZEQ such that (ql,B,qz) EVf. For convenience we let
w:P; + P* be a homomorphism such that- V() is the parent of p for each

PEP,.

By induction on the lengths of derivations the following generalizations

of (1) and (2) may be obtained:

m
(1*) for all (ql .B,qZ)EVf it follows that (ql,B,qzj_—==prT*
G

o(m) £

if and only if B ———Ppx and G(ql,x) = Q-
G
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(2¥) for all (ql,ﬂ,qz)evf it follows that

ki

(ql,B,fl2)=Gpuo(sll,vl,slz)ul (snl,-rn,snz)un, for some n > 1,
f
. _ ¥ (m)
if and only if B—T—puoylul s YpU and G(ql,uo) = S17 there
exists x € T* such that 6(s.,,x.} = s. for 1 <i<n and
i . il1*7i i2 - =

finally, G(snz,un) = q,-
*

From (1*) it follows that (qo,a,f)m; Xx&T* if and only if
G
f
*

a=—px and G(qo,x) = f.  Thus we have L(Gf) = Rfﬁ L. Now suppose
G

(z,27)€ ﬁg(G

), vhere z = (q;,8,9,) and z” = (q{,87,q5). By defi-
L] m”
nition of 8, it follows that either 2z —=p uzvz'w or Z ==puz,v
G G
P f : f
m
and 2 ===p X2,¥y2 W, By (2*) above we have either
Gf
b (1) P W)
B =——=p u“Bv B w” or B # U‘Blv and Bl—."‘_‘_'______" x’Bly‘B‘w’. In
G G G

either case it follows that (B,B‘)Et\k(G). Thus if (z‘l,zz),(zz,z3)
(Zi’zi+1) is a chain in ﬂE(Gf), then (81,32),(82,83), (Bi’siﬂ)

is a chain in AR‘(G), where BJ. is the parent of zj, 1 <3 <i+l.

It follows from this that Edeg(Gf) = deg((qo,a,f),ﬁz-((;f)) ideg(a,f_\.i(G)) =

tdeg(G). Thus G.EG,(k) and LNREL (k).

(iv) _{Z/R(k) is closed under regular substitution.
The proof will be by industion on k. To show %(0) i1s closed

under regular substitution we show that 2’50) is clesed under regular
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substitution and then show that _'i,’_,fo) closed under regular substitution

(0)

implies ({3_‘_1 is as well. Then by theorem 5.5 it follows that &, (0)

is closed under regular substitution. Let LE_%(()O) and let @ be a
regular substitution defined on X, where L‘g E* . Since
fﬁ’éoL L (H, #), then L = T(L'), where L' 1is str‘ictly linear over
(Tﬂ' Tr) and T 18 a regular substitution. Let o' be the substitution
on T = T£U Tr defined by, o'(a) = -o‘(‘r(a)) for all ae€erT,. Since the
regular sets are closed under regular substitution, then it follows that
¢' 1is regular. Thus o' (L') = o(LYe AR, R) = géo).

Assume that _"ﬁ’éo) is closed under regular substitution and let

LE%}E} - L= r1("), where L' is strictly linear over (T.P..’ Tr)

and T 18 a subatitution such that T(a)ejf:go) for _éll aETE and T({b)

is regular for all be Tr' Let 0 be an arbitrary regular substitution.

Define o'(a) = 0(t(a)) for all a€T = T,UT . Since r(a)egj(o)

and .55"_](0) is cleosed under regular substitution by induction, then

o' (a)Egj(O) for all a€T - Furthermore, o¢'(a) ie regular for all

2
a€ T Clearly o¢'(L') = a(L)eg(%’(o) X) = %'(0) . Thus & (0)
r _ 3 ! J+1 _ £

13 closed under regular substitution.
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Assume thatjﬂi(j) is closed under regular substitution for all

4 < 1. Ve show thatjﬂg(i + 1) 48 also closed under regular substitution.
By essentially the same arguments as given for.ﬁg(O) it can be shown that
&féi+l) = jZTjﬂi(i), ﬂﬂi(i)) 1s closed under regular substitution by virtue

of closure for ﬂﬂi(i) from the induction hypothesis. By a similar induc-

tive argument to that given previously, it follows easily that §f§i+1)

&f(i+l)

closed under regular substitution implies 441

is closed under regular

substitution. Thus it follows that ﬂﬂi(i + 1) 1s closed under regular

substltution.

(v) jﬂg(kj is closed under inverse homomorphism for each k > 0.
From the definition of .ﬁ%(k) it clearly follows thatth(O)g;jﬂg(k)
for k > 0. Th;a iﬂz(k) contains all regular sets by the corollary to
theorem 4.8. Since ﬂﬂ;(k) is closed under union, intersection with regular
sets, regular substitution and arbitrary homomorphisms, then by theorem
2.7 &{k} 1e closed under inverse homomorphism and thus forms a full

AFL.
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Lemma 6.2. Let G = (V, T, P, ¢) be a reduced context-free grammar.
There exists a reduced grammar G' = (V', T, P', a) such that,
(1) L(G") = L(G),
(i1) o does not appear in the right-part of any production of P' s
(1ii) PNV x V') =90, PNV - {a) x {eD) = & and
(a + €)EP 1if and only if e€L(G) ,

(1v) deg(B, A, (6")) < deg(B, A, (G)) for all BEV' (V.

Proof. The grammar G' is obtained by first applying the construction
given in theorem 4.11 of Hopcroft and Ullman [11] (pages 62-63) and then
applying the construction given in theorem 4.4 of Hopcroft and Ullman

[11] (page S50). It can be easily verified by examining these construc-

tions that if G 1s reduced, then G' will be also. Furthermore, it

+ +
follows that V' V and that B=—p wE€(V'UT)* implies RB——pw.
‘ G' G

Thus, 1if (B, B')EAR'(G'), then certainly (B, B')EAR(G). Hence

deg(B, 4,(G")) < deg(8, 4,(6G)) for all BEV'.

Theorem 6.3, The language LkE Ml(k) - _l.'ﬂz(k-l) for all k > 1, where
Lk 1s defined as follows:
1. Lg-= {ag by (COdOEO)n | o> 1}

' v _ .0 ‘ n
2. For k > 0 define L {ak b, (ck_dkek) [ n> 1} and let

T, be the substitution defined by

k
@) =3, T =by, Tle) = e,

Tk(ek) = e and
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Tk(dk) = Lk-l’ then

= 1
Lk 'rk(Lk) .

3. t:fi=t:r:'I if and only if ¢ = ¢' and 1 = j,

where o, c'€ {a, b, ¢, d, el.

Proof. We firat establish that Lke_&/l(k) for each k > O, L0 is

clearly linear and hence by the corollary to 4.8, LDE.MQ (0) . Assume that
Lie'd/i.(i) for each i, 0 i<k, We show that Lk+le_g‘ﬂ£(k+l).

Clearly L is strietly linear over ({ ) R d

k1 341 Pla1 Cpr1? 1t Hnl)

Since L€ (k) = & ((k+1) ~ 1) by hypothesis, then by theorem 5.5 it
1 -
follows that Tk(Lk) Lk+1e%(k+—l)'
Next it must be established that for all k > 1, Ly # L(G) for any
Ge&’fﬂ'(k—l). This will be done by showing that if G is any reduced

grammar generating L then G has at least one nonterminal B, such

kl
that deg(B, AQ(G)) > k. To this end let G by any reduced grammar

generating Lk’ k > 0, By lemma 6.2 G has an equivalent grammar

G' = (V', T, P', @) which contains no erasing rules (e ¢Lk) and no
productions of the form B + y, where yYy€V', Furthermore,
deg(8, 4,(6")) < deg(B, 4,(6)) for all BEV'. Thus if we can establish
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that deg(8, ﬂﬂ,(G')) > k for some Bé‘.", then it will certainly hold

that deg(B, 4,(G)) > k for some BEV.

k>0, we

To be able to convenlently represent elements of Lk’ >

shall define X (n) c L, as follows:

|y=a;b(cde)i, i > nl,

Xo(n) = {y€L 0<%

0

for k » 1, let

i
K.k(n) = {YELk | y=a bk (ckzlek) (ckzzek) (ckziek)
such that 1 > n and sz xk_l(n), l1<j=<i)

Let M be the least upper bound on the length of the right-parts of

productions of G'. Consider all possible left-most derivations, ,

having the following properties:
1
(1) c=—=pweT*
1lm

(11) 1If T {possibly null), T, and m, are any subatrings

of w such that = = 7T T.% and

1273
M 2 3
a==;u81v =——p uxf,yVam==h w, where Bl, 826 V', then
Im Im im
Bl # BZ‘.

For such derivations it follows that ||w|| < M’, where v = lve| .
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Thus 1f wE€L(G') and ||w|| > M, then any left-most derivation, T,

of w must be of the form, w = T ToTy (171 possibly null), where

Ty Ty 3

o8 ——Ppufv =—Pp UXBYV == W. If, in addition, B is the first such
Im 1m 1m .

T

nonterminal which derives itself in a2 left-most derivation, then it also
v
follows that ||uxByv” <M .,
We now consider a left-most derivation w = LILPLES of any string

wEKk(n), where n > 2:M° . Furthermore, assume 81€V' 1 the first

™ m m
1 2 3
nonterminal for which « =-=—)u181v1 v—— ulxlﬁlylvl —p V. What will be
Im - 1m 1m

ghown 1s that deg(ﬂl, "32, (@')) > k. To demonstrate this we show that
the string ¥ € (V'UT)* - T* and must contain B]'_EV' such that
deg(ﬁl'_, A£ (6")) > k-1. Ve proceed by showing first that yléT*.

Case 1. Yy # e, If Y, = € then since G' contains no erasing

B

rules and no rules of the form B8 + vy, where YyEV', then xl€T .

v
From ||u114:l 1ylvl|] <M and the assumption that wE_}ILk(n) it follows

that X, = a; for some r > 1. By iterasting the derivation T, it

would be possible to produce an unbalance between the number of ak's

appearing in a terminal string and the number of S ﬁroduced by LEY

This is in contradiction to the form of strings in L. Thus ¥, $ €.
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Case 2. ¥, cannot contain b, . By lterating = it would be peossible

k 2

to introduce more than one bk into a terminal string if Yy contained
a bk’ it follows that bk Fannot occur in yl.

Case 2 implies yl = ai for some 1 > 0 or Y1 1s a subword of
ckzlekckzzek . ckzrek, where r > n > M’ and ziEEXk_l(n), l<i1i<r.
The former case 1s not possible by an argument similar to that given
for case 1. Therefore consider the second posslbility, Only four sub-

cases need by considered based on the form of strings of L, and the

k

constraint that ]|y1|] < n. Before discussing the possible subcages

we note the following properties of strings in Lk :

W |fwlt, = Ilell, = llwlf, for 0<3j <k,
aj Cj ej

lall,  for 123 <k

(11) w
el a

: i
In addition, since ||u1xl 1y1vl|| < m, tpen it follo?s that X, =8

for some 1, 0 < i < n,

Subcase 1. yl i=s not'a subword of ckai_l. This follows because
iteration of =, would result in violation of ||w|] = ||wi]
c °
k
or |]w]] = ||w]]. .
Ap-1 “k-1
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Subcage 2. is not a subword of a'b,c.a® for 1 < j < k.

71 17355%11

If k =1 this case does not apply. For k > 1, iteration of ,

would produce one of the following invalid contexts in a terminmal string:

a, .a a b,-a- c,, c.a b.a. c.b,, b,b, or c.c.. If
j-1730 Ti-1d i-17] i3’ Ty T3 173 ji
yl &= a;, i1>0, for any j, then relations (i) and (ii) would be violated

by iterating n2.

Subcase 3. Y1 1s not a subword of a‘:]Lb0 (COdOeO)j‘ 'yl cannot contain

bd, else iteration of m, would destroy relation {ii). 1In all other

cases, relation (i) would be violated by iterating 112.

i
a ...er:.a for

1%2 i33-1°

Subcase 4. ¥, is not a subword of (co o%0

1<3<k. In this case, iteration of =, would produce the following

2

invalid contexts in terminal strings: e (0 <qc=<1j),

F5-1%97 34-1%¢

aj-ldO’ aj-—-lcﬂ or cjej. If Yy does not contain a then all

31’
other cases would result in violation of relation (1) by iterating

This completes the demonstration that y1¢ T*, Thus
where ul!€T*, viE(V'UT)* and BéEV'. By definition of A, it

1

[ ] ]
follows that (Bl, BZ)GAR.(G } .
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By appealing to relations (i) and (1i) and the context properties of

terminals appearing in strings of Lk' it can be shown that Xy = a;

*
and yl?ckzuekckzlzek e CpZg 8 for some r > 1. Here

zljex.k__l(n), l<j=<r,

Employing the above argument repeatedly we may establish the follow-

(1)
ing relations for each J, 1 <j < k. It should be noted that T
is to be identified with L defined earlier.
qE
v
1. B X.B where < M d
IS %R Yy LILTRANES M
oo ] *
" k-3+1 * yj¢T ’
*
= n'lnt
2 Y5 =B j':"_‘—’(ck 1#1592%=g41) 0 Cpgn g Cpayor)

]

where u'jET*, v‘;E(V'UT)* and zjiex.k_j(n),

*
T 1] r 1
3. UJBJ_H_ j?jjuj+lsj+lvj+lvj such that ujuj+1ET* and

| uju | <u”

i+l j+l j+l jl

From 1. and 3. it follows that

1
L} o - v
l |ujuj+lxj+18j+lyj+1vj+lvj | ] <2 M and thus from 2. it follows

Y i .
that ujuj+lxj+1 is of the fomm ck-—j+lak-—j' This condition allows

the argument to be applied repeatedly for each j. Relations 1., 2. and
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[] .
3. imply that (Bj’ Bj+1)€ A.Q,(G ) for each J, 1< 3j < k. Thus
deg(Bl. ﬂR(G')) > k and we conclude G' and therefore G cannot belong

to &, (k-1).

Theorem 6.4. LG;‘MR(k) 1f and only if Reverse (L)E_wr(k) for all

k > 0.

Proof. If L‘E_{zﬁ(k), then t‘here exists G = (V, T, P, c:)e_%(k) such
that L = L(G). Let G' = (V, T, P', a), where P' = {8 + Reverse (w)

i
(B +w)EPL It 1s easlly shown ‘that B=e=px €(VUT)* i1if and only if
G

o
B —— Reverse (x). From this it follows that L({G') = Reverse (L)
Gl

and furthermore that for all REV .
(i) deg(B, 4,(G)) = deg(B, ﬂr(G')).

(11i) deg{(B, pi(G)) = deg(B, Ai(G'))- for all i > O.

The converse follows in a eimilar fashion.

Corollary. ﬁé(k) ig a full AFL for each k > 0 .
Proof. The result follows from theorem 6.4, the following relations

and the fact that the regular sets are closed under reversal.
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1. h(L) = Reverse (hR@everse L))), h an arbitrary homomorphism

(hR(a) = Reverge (h{a))).

2. L* = Reverse ([Reverse (L)]*,

3. Llu L, = Reverse (Reverse (Ll)UReverse (Lz)).

4. LNR = Reverse (Reverse (L) Reverse (R)), where R ig a

regular set.

5. T(L) = Reverse (TR(Reverse (L))), where t 4is a regular sub-

stitution (TR(a) = Reverse (t(a))).

6. Clogure under h_]' follows from 3., 4. and 5. and theorem 2.7.
Corgllary 3.27.. Reverse (Lk)e_&/r(k) - _wr(k-l) for all k > @,

Theorem 6.5,

(1) Lk+le_¢z/r(0) - %(k) for 811 k > O,
(i1} Reverse (Lk+l)e‘¢¢£.(0) - _&{.(k) for all k > 0.
Lk is defined as in theorem 6.3.
Proof. It can easlly be verified that the grammar,
i1 = Vigrr Zpap L ak)eg(mn%(mn and L(G,..) =L,
for all k > 0. We define Gk inductively as follows:.
Gy = (VO, EO’ PO" cr.o),

Vo = {ap}
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2‘0 = {5-0: bos Cos do" 9-0]'
PrJ = {uo + aoaocodoeo, %y > aObocodoeo }o.

For %k > 0, define

V, = Vk—lu {ak;}

b4
I

k= Zpg Via, bsocps e}

o
1

k= PVl » oo ca e, S~ a1t

Part (i1i) is proved by defining G' to be obtained from G

K X be reversing

the right-parts of all productions. It then follows that G£+1E%(O)ﬁ9}'(k+l)

1 - ’
and _L(Gk-i-l) Reverse (L(Gk+1)) for each k > 0.

It 15 worthy of note that Gk_'_leg'}(o, k + 1) and that

Gl'tﬂ'_E%(O. k + 1), where %(i’ 1) and _?;_(i, j) are defined in

theorems 5.5 and 5.6, respectively.

Theorem 6.6. For each 1 > 0 and each Jj=>0, _g/n(i)ﬂﬁ/r(j) is a

full AFL properly included indg (1 + DN () and & (DN, (3 + 1) .

Proof. That _&/R(i)ﬁft/r(j) is a full A.FL follows easily from the fact
that _&/E(i) and _éfr(j) are full AFL for each 1 and j > 0 . Since
L1+1E‘%(0) C _ﬁ/r(j) and since Li+le'%(i + l)_-.@z(i) for each.

i > 0, then Li_{_le_&{e(i + i)nﬁ{:(j) - %(i)f‘i.&é(j). In a similar fashion

Reverse (Lj_ﬂ)E%(i)ﬂ_%(j + 1) - %(i)n.%(j)-
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A particularly interesting class of-language& is the class
gﬂh(ﬂﬁﬁiﬂ;(ﬂ). L 1is a member of this class if and only if there exists
grammars G and G' such that L = L(G) = L(G') and GE.@E(O) and
G'E‘gi(O); that 18, L 1is generated by mome left dominant grammar of
degree 0 and also by some right dominant grammar of degree 0. There is
a striking analogy that can be drawn between the regular sets which are
generated by some ieft as well as right linear grammar and the sets in
ﬂﬂg(ﬂﬂﬁiﬂ;(O) which are generated by some left as well as right dominant
grammar of degree -0. Because of this analogy we choose to call .
iﬂE(O)rlﬁg(O) the class of "regularly dominant" languages. The
analogy can be extended to the entire class of derivation bounded lan-
guages in that these languages are precisely -those which are generated
by some left as well as right dominant grammar of finite-degree.

A final comment. The class of regularly dominant languages form a
full AFL and contain the nonterminal bounded languages by the corollary
to theorem 4.8. We conjecture that this‘is the smallest such full AFL.
Another interesting problem would be to characterize the subclass of
Sa(O)L)ga(O) which generates those and only those languages of

& (0)N 4 (0).
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