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INTRODUCTION.,

This is the third of a sequence of papers on parallel algorithma
for adaptive quadrature. The primary aim is to stu&y the rate of
convergence achieved by such algorithms. The speed-up achieved by
parallelism has been a secondary topiec but will be the primary topic
of fqrther studies.

Our goal is to prove that a specific algorithm (computer program)
achieves a certain rate of convergence. The proof is developed in a
top-down approach with three levels. The first [3] 1s a convergence
theorem valid for all algorithms represented by a general metalgorithm.
This thecrem is very much 1like the traditional mathematical theorems of
numerical analysis. The second level [4] involved a much more specific
getalgorithm with 32 detailed attributes assumed. It is shown that

any algorithm represented by this metalgorithm achieves the rate of

convergence established by the first level theorem. A significant change
in the nature of the second level theorem is from mathematical convergence

to algorithmic convergence. Thus it is shown that any algorithm from this

metalgorithm will terminate with a quadrature estimate accurate to

within a prescribed input requirement. The amount of computation

(measured in integrand evaluations) réquired is given by the conver-
gence result. The present third level presents a specific computer pro-
gram (for a hypothetical computer described later) and shows that it
has all the 32 attributes assumed by the second level metalgorithm.
We then conclude that the convergence result applies to this specific
program.

It is important to note that the convergence result established

is exceptionally strong and illustrates the surprising power of adaptive

This work was supported in part by Grant GP 32940X from the Natlonal
Science Foundation.



quadrature. Results of cthis type were first established in [2] and say,
roughly, that adaptive algorithms integrate functions with a finite number
of singularities as efficiently as comparable traditional numerical methods
integrate smooth functions. See Sections 5 an@ 6 for a precise technical
gtatement.

Note that the convergence theorem established requires as a part of
its proof a proof that the program is correct; The approach to proving
Program correctness used here 1s the one traditional to mathematics. We
firgt identify the obvious and not-so-obvious arguments involved. We
then state that the obvious arguments are, in fact, obvious and present
detailed explanations for the not~so-obvious ones. Since we must establish
32 attributes of a longish program a complete proof would be too long and
too boring to present. Thus we assume the reader becomes familiar enough
with the program so that he can recognize those facts about it which are
obvious. Further comments about the proof are made at the end of the paper.

The program is written in a pseudo-Fartran and is believed to be
unambiguously defined. The non-standard Fortran constructions used are
described in the program comments.

The hypothetical computer for executing this program has a number of
general purpose processors capable of executing an arbitrary Fortran
program. We make the following specific assumptions about this computer:

1. The arithmetic is exact.

2. The size of memory is unlimited.

3. All processors operate at the same speed; in one unit of*
time (called a statement) they can execute one Fortran statement of

arbitrary type. Substatements of a statement are each counted separately.



Thus

IF(X.EQ.4.2) THEN Y=X,G0 TO 5

1]

ELSE X COS(DX&Y**.&Z)/(7.1*K+3.2*ALOG(DK+.1)) + X,

DX = AMAX1 (DX,Y#*.42)
requires three statements of time to execute: one for the test and two
for whichever clause i3 executed.

A crucilal element of any parallel Program is the control of access
to critical information which in this case is the interval collection and
the area and bound estimates. The access mechanism used in this program
depends essentially on the timing of certain segments of code. While the
above assumption about the execution time is obviously unrealistic, it
serves the purpose here. 1In any real parallel computer one would make
adjustments in the mechanism based on the actual execution times for the
relevant code segments.

The next section presents the program PAFAQ (Parallel Algorithm For
Adaptive Quadrature) and the metalgorithm from [4]. The objective is to
show that PAFAQ is represented by this metalgorithm. Section 3 contains
a set of obvious or easy results. Section & presents the analysis of the
parallel execution features of the program and Section 5 presents the
numerical analysis of bounds and area estimation. The final section has

the main results and some discussion of their implications.
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2. THE METALGORITHM AND THE PROGRAM PAFAQ.

For the sake of completeness we reproduce the metalgorithm of [4].

That 1s then followed by the program PAFAQ.

PROCESSOR PROGRAMS REMARKS
————— MAIN Sets the number of CPUs and initiates them.
————— MAIN Reads problem definition and controls algorithm,

[- BEGINQ l Initializes variables of the algorithm.

————— MAIN Controls the interval processing, estimation of
areas and bounds and access to the interval
collection.

IP = 1 to NCPU —~ QGET Obtains an interval for the processor from
the interval collection.
—1 AREAS Computer areas, bounds and associated
quantities. .
— QPUT Obtains access to the unallocated memory

and locates places to insert completed
intervals into the collection.

“~ INSERT Inserts the completed intervals into the
— interval collection.

Figure 1, A schematic diagram of the parallel metalgorithm for adaptive
quadrature. The components are described in more detail in

[4].



We now list the 32 specific attributes assumed for the programs
represented by this metalgorithm.

A, Attributes of MAIN - CPUL.

1. Assgigns the value of -NCPU.

2. Enables the other CPUs.

3. Initializes all control variables to be false and all numerical
variables to be zero,

B. Attributes of MAIN - CPUZ.

1. Obtainé the variables that define the problem.

2, Initlally invokes BEGINQ.

3. Monitors BOUNDA and terminates the algorithm (with output) when
BOUNDA < EPS, when there i1s a memory overflow or when there are
ne more active intervals.

C. Attributes of BEGINQ.

1. Places the interval [A,B] into the interval collection, computeé
all associated values and initilalizes the collection properly.
2. Initializes variables for control of access to the interval
collection.
3. Its final statement enables the other CPUs to proceed by designa-
ting the interval [A,B] as "free".

D. Attributes of MAIN - CPUR(IP). Once this CPU is activated it

executes the following sequence of actions:
Invoke QGET
Invoke AREAS
Invoke QPUT
Invoke INSERT

Return to the top of this list



Attributes of AREAS.

1.

Computes changes in AREA and BOUNDA. The resulting values of
AREA and BOUNDA satisfy certain requirements (e.g. Assumptions 1
of [2]) proviaed F(x) satisfies certain requirements (e.g.
Assumptions 2 of [2]).

Uses a proportional error distribution for BOUNDA and implements

the restriction that the interval length be less than CHARF

_before BOUNDA i1s allowed to be less than EPS.

Determines how many, 1if any, intervals are to be discarded and
identifies them.

Computes the variety of information about the two intervals

that are obtained. This information, along with the other infor-~
mation generated, is temporarily placed in the memory PROCESSORS
and associlated with this CPU.

There are no unbounded computations in AREAS and its maximum. ex-
ecution time is bounded by a constant. It is the only program of

CPUR(IP) that evaluates F(x) and it does this at most q times.

Attributes of INSERT.

1.

3.

Once places have been assigned in QUEUE by QPUT, it places all
the relevant information about the new intervals into these
places in QUEUE.

Prevents an interval from being assigned to another CPU before
its insertion into the collection i8 complete.

There are no unbounded computations in INSERT and the maximum

execution time is bounded by a constant.



Attributes of QGET.

1.

This program gains sole access teo an interval in.the collection
that 1s free to be assigned to a CPU. If the interval to be
assigned is not free, then QGET waits in an idle loop.

Once access is gained to an interval, it is asslgned to CPUR(IP)
and so identified, and not assigned again. A new interval is
designated as next to be assigned.

At most NCPU-1 CPUs gain access to the interval collection between
the time a particular one tries for and the time it achieves
access to the interval collection.

There 1s no conflict between QGET and QPUT.

Does not affect information about the interwval itself, only about
the interval's status in the algorithm.

No interlock occurs when more than one CPU is executing QGET and,
in such a case, one of them gains access to the interval collec-

tion within a fixed time.

Attributes of QPUT.

1.

This pfogram gains sole access to the unallocated or available
memoxry in QUEUE. It waits in an idle loop until this access is
achieved.

Obtains places in the available memory of QUEUE for the new
intervals to be returned and assigns these places to the interval
collection. It updates the information about the available

memory in QUEUE.



At most NCPU-1 CPUs gain access to the available memory between
the time a particular one first tries and the time it achieves
access to the available memory,

While it has access to the available memory it updates the values
of AREA and BOUNDA. Thus access to the avallable memory is re-
quired and made even if both new intervals are discarded.

If the interval collection is empty when this CPU is obtaining
Places for the return of intervals to the collection, then QPUT
designates one of the returned intervals as the next one to be
assigned.

There is no confllct between QGET and QPUT.

Does not affect information about the interval itself, Shly about
the intervals' status in the algorithm,

No interlock occurs when more than one CPU is executing QPUT and,
in such a case, one of them gains access to the available memory

within a fixed time.
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EAURDA = 0. FRFER =25

D 200 K = 1.H3 FAFA 2B

IF< IMFLECTCKY |, ER. CEMTER ) THEM ’ FAFRE z57

1 CBTREC = 1. JCHTRCKD) + 1, ACATLKD FAFAE o

2 BAUNDCK) = DX1+ABSC FLEFT(KY - FRIGHT<K) + CERTREC ) FAFG aoa

C FARF AR 200

= ELSE FAFAD 2591

4 DF = FRIGHT(K) -~ FLEFTCKD FAFAG 208

5 IF{ INFLECT(K) .ER, LEFT 3 FRFAG 23

£ EGUNDAD) = TRIBNGLCCETLCK), COTANCK), 0, DXL, DFY FHRFAR 294

T IFC INFLECTCK) . EQ. RIGHT ) PRFAE 295

b= BOUND (KDY = TRIANGLLO, CBTANCK), CATREID, D OF D A 205

a ¢ IMFLECTCKY (ER 0O ) FAFAR i

H BUHDCKS = TRIANGLCCBTLCKY, CATANCKY, CHTRCK Y, D 2 DF > FRFRG 295

= FHFAG 2o

ERAUNDA = BBUHDA + EGUMDCK) FAFA ]

00 CENTINUE FHFAR =L

C AR Y

b FAFAD 203

i FINALLY FREE ALL IMTERYALS AMND MRRK THEM AS IMN 1IE OUEUE FEFRIE 204

e 400 K = 1, H@ FIFRo 2065

IHGALUEUECKY = | TRUE PAFRC Rl

GO0 CANTINUE FRFAS 207

HUFREE = TFREE = . TRLE. PRFAC 203

FETURER FAFRL LE

ERD ' FAFAD Fhin

B - I LI ERPIE PRI o S T il

[y - FHFRO Lz
FRAGRAM CPURCIP) FEIF HE
o FAEFAG
T bkaserddades THIS IS THE INTERVAL FROGCESSAR PREGRAM T@a ESTINRTE AFEES FRITER
o IT IS AN ARRPAY OF PEEGREMS (WITH IHDEY IF> FOR THE ARETY rAFR:
t uF CFUT S PAFI
-+CALL. DECLBRE I A
= PHFAT
bl RTTEMFT T3 GET AN INTERVAL FRGM THE RLUELE FHFAD
=) CALL SGETCIF ) FEF A
[ FPHFAZ
(I HAVYE BNE, CAMPLUTE AREAS AMD BRELMDS FEFFR
CRLEL AREASCIF: FHFA
- FRFRD
i ATTEMFT T8 GET FLACES IN THE QUELUE TO PUT INTERVALS FAFAC
CALL QPUTCIFRD . PAFAL
iz FAF R
z THEERT THE INTERVALS INTE THE GUELE FRFI
CULL [NSERTCIR FRFAIT

- PAFTC =7

z REZTART 1HE FRAOCESS PR A

GO TE 40 I"RFFIG T



[} ]

L B |

(o]

B I B o'

SUERELTINE ARERSCIFY
# ik THIS PRAGRAM COMFUTES AREA ESTIMATES
*LALL, DECLARE
IAL = TASSIGHYIP)

FPRELIMIMARY QUANTITIES

IR = . S#CGRIGHTCIATIY - XLEFTCIRIY)
AMICCIPD = MRIGHTCIAIY - DHCIF)

FHIDCIPS = FURMIDCIFY >

CHTANRCIPY = DXCIPYAFRIGHTCIAI D -FMIDCIPY )
CATARLCIFY = DRCIP3ACFMIDCIPY ~FLEFTCIAL Y

CHECK INTERWAL SITUATIAHM AND SELLECT RREA FoRMULAS
INFLECT = 0 IS5 THE MORMAL CRSE
IFC INFLECTCIRIY (ER 0 ) THEN

1 BALMNDLCIF) = TRIANGLCCATLCIAT Y, CATRML CIR 3, CATHHRC LY,
2 DRCIF) . FLEFTCIRI ) —FHIDCIF )
= BEUMGRCIF) = TRIAWGLCCATANL CIP 2, CBTANR Y IPY, CATRC ALY,
4 DRCIFY, FUIDCIF~FRIGHTCIAT 3
> INFLCIPY = 0
2 ELSE
USE SPECIAL FRRMULAS
7 CHLL SPECIHL(CBTL(IHI);CBTHHL(IL);CBTHHF{IPJ,CGTR(IHIL
2 ) TNFLECZTCIRIY. IF2

CHECK DISCRARDING BF INTERVELS
IRETURNCIPY = 2
IFC BEUNDRCIFD . LT, DISCRARDHDXCIPY ) IRETURHC IR
IF{ BAUMDLCIRY (LT, DISCARD#DMCIFS 3 IRETURNCIFD

it
IRETURMCIP)Y - 14

CEMFUTE CHAMGES IW AREA RND BEUMDA
RRERRCIFY = | SEDRCIPY*®CFIIDCIFY + FRIGHTCIRI) )
AREALCIFY = | S#DRCIPXR(FMIDCIFY + FLEFT (IAI))
ECHRNGECIP) EBUNDCIATY —~ BRUMDRIIP) — BEUNGLCIFD
HCHENGECIF > AEST (IAI} - AREARCIPY - AREALCIE)
RETLRN
EME:

FUNCTIBH TRIANGLCELFT. CENT, CRGT, XERSE, YEASE

bk dAdseter THIS FUNCTION FINDS TRIAMGLE RREAS FRGM CETAMGENTS
BF THE SIDES AND THE HARIZGMTAL AND MERTICAL FRAJECTIANS
3F THE ERSE

#*CALL, DECLARE
COTRGT = (CROGTHCENT + 4. 3/CCRGT - CENT)
COTLFT = (CENTHCLFT + 4. )/CCENT — CLFT)
BAZEZ = XBASE++2 + YEASE++2
TRIANGL= AES( . S+BASEZ/(CATRGT + COTLFTY)
RETLRMN
EHL

SUBRGUTINE ZPECIFALYCLL, CL, CRy GRS HELEST, 1R

SEEE ke THIS FRBGRAM COMPUTES AREA ESTIMATES FuR AN INTERYAL
WHERE AH INFLECTION PSINT MAY BE FRESENT
THERE ARE THREE CASES ACCHRDING TS THE YALUE oF INFLECT
THE ARIGUMENTS CARRESPONG T8 GLOBRL YARIGELES AS FOLLOM=

CLL = CETLSIALY
L = CATANL(IP)
CR = CRTAMREIF:

AR
FrFLD
P AE L
FRFAD
FSFF
FArFar
PAFFG
FeF
FAFRT
FPREAD
FRFIE
FRFAL
FAFFEL
PRFGD
FAFRL
FIF
ISR
AR
G
FRFTD
FREAG
FAFFE
AR
FRFEAG
FEAFRLC
FHFAD
FHFT
FHFRLC
FAFH
FHAFGE
FRFHC
FAFRE
FHRFRIZ
FOFRA
AR
THEAC

FRFE

FRFRD -

PAFNC
FRFRD
FRFA
FAFR
FRFRD
F-F"'_'1 :I L‘u
"HF R
RF AL
PR
FHEFAL
FriFAf
FHFRS
FHEF A
FAFRE
FAFAG
FEFRD
FAFED
FRF AL
FRF MG
PRFAD
FAFR
FAFAL
FHF
FARFAL
FHFAC
FAFFi
PAF R
FAFAC
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CRR = CATRCIRIY
NFLECT = INFLECTCIAID
THE CARRECT WAILLUES FOR INFLECT &F THE TH& HALYES ARE SET
IMFLCIPY ~ FBRE THE LEFT HRLF .
INFLECT?IAIY - FOR THE RIGHT HALE
THE MEDIFICATIAN GF INFLECT FoR MEIGHESRING IMTERWALS IS
AN APFARENT YIBLATIGH BF ATTRIEUTE 4 8F AFERS.  HBMEVER,
IT 15 SHEMH THAT THIS ACTIBN DOES NOT INYALIDATE THE
ALGERITHM.  IT 15 CUMEERSGME SHD PEINTLESS T SAVE THE
INFERHATIGN ANG MOOIFY INFLECT LATER.

ARITHMETIC STATEMENT FUHCTIGNS
DETERMINE MANATBENICITY OF CATAMGENT SERUENCE BN THEEE PRIMTS
CHANGERC(R Y = AESCCLL~CRR

—C BES(CLL~CLY + RESCCL-CR) + RESCCR~-CRRY O

FREA OF QUADRILATERAL FOR CEMTER INTERVAL
DUADEICCCLFT, CRST, DX, DF » = DM#RESC DF + 1 ZCLFT + 1 ACRGT 3

I

IRSSIGHC TR
FAID{IFY -FLEFTCIAID
FRIGHT<IALY - FHMIDCIF)

SELECT GNE @F THREE CASES FBR INFLECT
WFLECT . ER CENTER 3 5@ Ta 300
NFLECT . EQ. RIGHT G TE 200

IMFLECT = LEFT

CHANGEZCIF) _EGL Q. > THEN

EL=E

THE INFLECTIGN POINT MAY @MLY EE IN THE LEFT HALF
EOLNDLCIF TRIANGLCCLL. CL, CR. DHEIPY, DFLY
EQLINDRLIF TRIANGLCCL, CR, 0. DS IPY, DFRD

INFL.C1P) 0

THE IMFLECTIGN MAY BE IN EITHER HALF
BALMDLCIFY = TRIAMGL{CLL. CL, 0. , DX IFY, BFLY
EGIMNDRCIPY = QUADRILCCL, CRR, DXCIPY, DERY
INFL{IFY = LEFT . INFLEGCT(IAI} = CENTER

UPCATE INFLECT YALUES Te& THE RIGHT
INFLECTC(IRIGHTCIALD Y = RIGHT
IMFLECTCIRIGHTCIRIGHTCIAIYYY = N

RETURH

INFILECT = RIGHT

IFY CHAMGERCIFY (EQ. 0. ) THEHW

LR (N

I

n

=4

D]

EL=E

THE INFLECTIGM PRINT MAY OHLY BEE IN THE FIGHT HHLF
EGUNDLCIPY = TRIANGL (., CL, CR, DECIF ), DFL S
EALNDRECIPY = TRIANGLCCL, CR, CRR: DHEIF Y. DFR Y
INFLCIF) = RIGHT . INFLECTCIRLY = O

THE INFLECTIGN FMAY BE IW EITHER HARLF
BAUNDLCIF) = QUADRILCCRR: Cl, DXCIP), DIFL Y
ERQUMDRCIPY = TRIAHGLCD. . CR, CRR, DXCIED, DERY
INFLCIP) = CEMTER . INFLECTCIAIY = RIGHT

UPCATE [HFLECT WALUES TH THE LEFT
THFLECTCILEFTCIRI}> = LEFT
INFLECTCILEFTCILEFTCIRT DY = 0

: RETURH

INFLECT = CENTER

300 EGNTINUE
IFC ABSCCL-CFRY LT, ARSCCL-DRY + RESCILR-CRRY 3 THEMN

CATBMGENTE AFE HAT MEHOTOMI @t THC Finlol 1§
ANG TT 15 THE HEM CEMTIR

PRFAC
FAFBR
FRFAR
FAFHR
PRFAL
FaFR:
FPAFA
PRFAR
FRFAD
FAFAT
FAFRAL
FRFAG
FAFRL
PAFAC
FARFFL
FHFI
FRFAG
SRR
FRFGC
PAFR
FRFA
FAFR
PRFALG
FAFRE
FPHFERD
PERIFFR
FAFAD
FPHRFAL
PRFAC

FAFRR -

FHFE5
FHFRG
FHFALC
FAFAL
FRF AR
FERIFRD
FRFAIG
FAFA2
FARFAI.
PRFM:
FRFRAL
PRFAG
PIIF s
PrlFEe
Frirmpy
Fri=nms
PiFr:
RRIETE
FAFRG
I"FiF A
PAF G
FRFTID
iR
FAFA
FeE R
FHFAD
PRFAG
FAFAD
FAFIIC
FRAFRD
FAFR
PHFAD
PR
FRFMC
TG
[INEi N
INTINNN
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1 BBUNDLLIP) = TRIANGLCCLL, CL, O. , DRCIPY, BIL) PRFAR
' Iy EBALMDRCIFY = AURDEILCCL, CRR, DXIPY, BERY FRFFAI
= INFLCIF? = LEFT, INFLE TCIRI) = CEMTER FAFRR
- UFDRTE INFLECT Té THE LEFT FRFR
4 INFLECTCILEFTCIALIYY = 0 PHFAL
C FHFAL:
5 EL=E FAFALG
I THE LEFT HALF IS THE MEW CENTER FAFAI
[ BGLMDLCIP)Y = RUADRIL CCLL. CR, DXCIPY, DFLY FAFA:
T EQURDECIPY = TRIANGL D, ; CR: CRE. D¢ IPY, LFRY FHFAD
= INFLCIF) = CENTER. INFLECTCIAIY = RIGHT FRFAL
L UPDATE INFLECT T8 THE RIGHT FPAFAG
El IMFLECTCIRIGHTCIRI?) = 0O FAFFIC
L PRFFAR
RETURM FRF[AE
EHNC: FAFTR
e e e T - ——= B T o el STy
C FAFAR
SUEBEBUTINE INSERTCIR) FRFAC
= FAFFAL;
o EGRERrERs THIS FROGPRAM INSERTS THE INTERVAL INTD ASSIGHED PLRCES ARG
= BF THE IMTERMAL COLLECTIGON. IF 2 INTERYALS ARE KEPT THEH FRAFAD
o LEFT GEES INTH IASSIGNCIR) = IS = IL PRFAR
C RIGAT CGAES [NTG KORETRMCIFRY = JF FAFRC
RCHL L DECLARE FHFR
L FAFAL
IL = IRI = [ASSIGHCIFY FRFALC
I = KURETRNYIF) FHFAE
o PRFAL
Tz CHECK ABBUT GISCAPDING RIGHT IMIESVAL FAFAL
fFOBOLNDRYIPSY LT, DISCARD#DKCIFY THEM FRFAD :
r DIZCHREG THE RIGHT THTERVAL, SKIF ITS INSERTIGN FRFHG =
1 ILEFTCIRIGHTC1ATIN) = LIM2 . IR = LINO FRFEC S
= GB T 200 PHFEC L1
E FRFA SnE
iy IMSERT RIGHT INTERYAL INT® TAI = IL IF LEFT OHE IS DISCARDED. PAFAT T
IFC BOUNLLCIP: LT, DISCARD#DREIFY ) THEM IR = IL. IL = LIt FaF S0y
L. FHFAL S
by INZERT WIGHT INMTERVAL THFGRIMET I INTS THE COLLECTISN FHFRS Sna
GRIGHT: IR = DRIGHTCIATY PARFAL: Syt
FEIGHTCIR: = FERIGHICIRI) FAFAL Sk
CEEFT CIRD = SHIDOIFD FRAFAL S
FLEFT CIRI = FIIDCIED FAFSC S
EQUND CiR) = SOUNDRCIFEY FRFAL: 55t
AEST IR = RFEARCIFY PHEAD S
CATAM CIF) = COTERNRCIP FARFAD A
ILEFT ClFy = IL FAFFE a1
IDIGHTCOIRY = IRIGHTCIRIDY FAFRL 51%
cote JIRY = CETRCIAIY FAFRE Bils
Cfl CIFY = COTPRMNLZIFD FHRFAL 517
PNELECTVIR = IHFLECTCIAIY FAFRG Sis
INWELES IR5= | TRUE FRFAG S1o
= PHFACG G20
r CHECK [RO0Y DISCARGING LEFT INTERVAL PAF R Sz1
203 IFe BaHDL IRy LT, DISCARD#DNCIPY > THEM PRFR
L DISCARD THE LEFT INTERYAL. SKIF ITS INSERTIGN FAFAD 577
: IRIGHTY ILEFTCIRT Y = LIMO FRAFRD |
b Gl T Z00 FAFRQ S
- . FRFEAG S
- THZERT LEZFT INTERVAL IHFERMATISH IHTR THE CRLLECTIRHN FAFAD n27
WRIGHTOIL) = =MIDCIFY FAFOIR SoE
FRIGHTCOILY = FHIDCIFD : FAFFAD i
SLEFT (ILY = MLEFTCIRIY . FAFRC LI
FLEFYT (IL> = ELEFTCIAI) FHFAD 501
eIl CILy = EQLMDLCIPD FEFEC ST
HE=T  JIL) = AREALCIFY Rz TR
COTAN CILY = COTRMLCIFD FAFRG HEq
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ILEFT ({IL> = ILEFTCIRID . FHFAR 525
IRIGHTCILY = IR FHFAE D36
CHTR CIL) = COTANRCIRD FRFAR Sy
CeTL <ILY = CATLYIRID FHFAR R
HIFLECTCIL Y= INFLCIF: FAFED 033
IH9GELECIL Y= | TRUE. . FAFHT sS40
< PFRFRC S
. INSERTIGN CAMPLETED FHFAG iz
200 RETURH FAFED e
END ! FRAFRO D
e e e PR 5415
- . FRFAG Bde
SUBREUTINE RGETCIF? PAFRG bl ¥
[ FAFAIG 545
D Ekknkdadnel: THIS PREGRARM GRINS ACCESS T THE HEAD @F THE GQUEUE IH FHRFHL 542
z GROER TE 9ETAIN AN INTERYAL. FHFAL Sa0
-+CHLL., GELLRFE FHFAE oot
[ FRFEC oE2
I CHECK, 7R SEE IF THE QUEUE IS M&8T EMFTY AND THE LEADER IS FREE ARG b
10 IF¢ LEADER . ER. LIMG > Ga Ta 10 FRAFFR st
[ FAFME nGa
[ ENTER CEMPETITIAN FOR ACCESS TA@ THE QUEUE LERDER FAF 853
IFC . NBT. OFREE > THENW FRFAR 557
C CHECK T9 SEE IF THIS IS THE NEXT CPU IM GEDER FAFRC oo
o IF M@T, RETURMW T& CEMFETITIBM FUR QUELE RCCESS FAFAR hha
. 1 20 IF¢ IP . ME. HMEXETR 2 59 Ta 40 FAFAC SE0
L FHFAL RN
L Sttt PRIGRITY WRBITING LEIF BEGIMNS —--~-——- FRFRE SEZ
" THI5 1% THE MEAT LCFPU IN GBRDEFR PAFRX SR>
2 HRITING = . TRLE. FAFAG S
[y FAF AL SES
o HMAIT. SEE IF WAITIMG WAS TESTED HKILE BEING CHAMGED FiEF e QG
= CONTIMLE FaFRe SET
e IF 5@, THEM EXIT AHD RETURN To COMRETITIGN FRFR bt
- HEWT 5TWT. IS5 R 1-LTHE IF-THEM-ELZF FEFAD SE3
4 IFC OFREE » THEN WAITING = . FRLSE. , G& Ta 10 FRFAZ o970
[y : IDLE t@aF AUMAITING TURN FREARR T
% 20 IFC MAITIHNG 2 38 Ta 0 FAFAR o282
C FriFAc Sz
< CRECY THRT PREYI@US RALCESS DID KT EXHAUST COLLECTIGON FAFND oy
C IF CALLECTION IS EMPTY, WRIT IN IDLE LooF FAFAL 573
=5 IFC LEADER . £ LIMG Ga Ty 35 FPAFAC 57
b . FAFAC T
N IT IS MO THIS CPUS TURM TH GAIM RCCESS Th THE ZUELLE FRFRG =T
7 GAa Ta a0 FRFAC a7
T mmeeee PRISEITY WAITING Laglk ENDE ——-——- FPRFRE S
? PRFRG
; HAVE EXTERKED SRTE T8 THZ RUELE. HNOW CLASE GARTE EERHIND US. PAFRS
a0 DEREE = | FHLSE. : PAFALC
JAIN] = IF PRFAR
- DELAY LENG EMaUGH 28 ALL CPUS THAT FALL THEL THE AEBBYE FAFAG b
- “IF” ARE BETWEEN THE PREYIEIS AMD THE FALLGNING STHTS. PAFAG i
CEnToaE . FRFAX o
- CHECK T3 =EE 1F THIS WAZ THE LAST CFY T8 SET IDR FAFAG ]
T TFOMOT, RETVURM T2 COMPETITION FER QUEUE ACCESS PAFRE b
IFC (D O ME, 1P 2 GE Ta 20 PAFFG Sl
o PAFAG £
s e = CORST CRITICAL FART == mmmm—m e e e e FAFAL
CHECK JHRT LERDER [5 ACTURLLY AYRILABLE, WAIT IF NET PAFAG e
GO IFC L NAT. THDUELUECL ERLES Y 2 13 To S0 FAFAL el |
" MOWE SUCE RCCESS T THE AUELUE LERDER "AFGEE, b B
THZSIONO IR, = LERDER FHFER T
FHRFAL ey
MERK LEFCER AS MAT I THE MIEUE FEFRE e
INDUELE'LEADER" = | FALEZE. FHFALR HIATL
I ZADEF = IMEMTC(LEADERY FHF AL ]
" DELLAY 4 STATEMENWT T ALLAK TIME Fak CPU WITH IP = HEXTQ Ta BE FRF R £
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C FUT INTE MAITING STATUS AT =0 ARBVE
CENT TriLE

AFEM GITE IF M@ CPU 15 WAITING INSIME IT

'FCWRITING > THEM MARITING = . FALSE,

1 ELSE GFREE = . TRUE,
s INCREMENT THE INDEX FGE THE MEXT CPU IN BRDER

HNEXTE = MELCHEXTE, NOFLD + 4 ’
Tonmomme—e e EMD ERITICAL PART ===
N HAYE FINTZAED WITH QUELE RCCESS

RETURMN

ZND

SUBRBUTINE AFUTCIP)

o EmkEkdtase THIS FROGFAN SHINS RCCESS T THE THIL BF THE QUENE 14
: BEOER Ti OETAIN FLACES T& PUT THE MCMW INTERWALS
~+CALL, DECLARE

ENTER CBIMPETITIGON FAR ACCESS T® THE TAILL
10 IFC  NOT. TFREE » THEN
L CHECH Ta SEE IF THIS IS THE MEXT CFU IH SROER
< IF NaT, RETURH Ta COMPETITISBM FOR TRIL ACCESS

[N
s
o}

L e e FRIBRITY TAILING LABF BEGINS ———— - —
v THIZ IZ TPE MEXT CFU IM BROER
2 THILING = . TRUE.

o WRIT. S£E IF TRILIMS WAS TESTED WHILE BETNG CHANGED
K CenTIMIE
s IF &, THEW EXIT FRWD RETUEN TO CAMFETITIEN
r MEXT STHMT. I5 A L-LIME IF-THEM-EL=E
4 IFL TFREE » THEN TAILING = . FALSE. ., G0 Td 10
IDLE LB@F AMRITING TURN
20 IFC TAILIHG GE TE =0

o

" IT IS MEW THIS CPLUYS TURN TG GAIN ACCESS Ta THE TAIL

3 G9 Ta 50
L e PeIBRITY TAILING LAGF ENDS  —————em
v HAVE ENTERED GRTE T9 THE TAIL, MNoW CLGSE IT EEHINDG LS,
42 TFREE = . FALSE

DT = IF
s DELAY 1 STATEMENT

CENT INUE
z CHECK T@ SEE IF THIS YAS THE LAST CPU T SET 10T

IF MeT, RETURM T& CAMPETITION FOR THRIL RACCESS
TFCIDT U NE. IF 2 a3 Ta 20

HAYE SHLE FIDCESS Ta THE TAIL @F THE QUELE
wmmmesossesss o STAST CRIVICAL PART - <mm - omem

JOIFU IRETURNYIFY CEFL O 3 THEN
NI TRTEFYAL S RETURNED

157 IFETUSNCIPY L EG 1 3 THEN
) STCE LR INFe TO PUT NEM INTERVAL IN OLD PLACE
THEDTONGD = [ASSIGNCIP)Y
M = IHZSIGNLIP)

= LK

TR

o
-1
el
e
i
BN
5
—

TROOIREIDFNOIRY CED. T ) IHCH
FUZE UR THEG T PUT L NEL INTEFYAL TN LD FLACE ARD FXTEND

IFC IR L HE. MEXNTT 2 G Ta 10 ’

FAFAC
FAFRG
PRFAG
FAFFQ
FRFAR
PAFAG
PAFAC
PAFAZ
FAFAG
FRFRE
FAFASG
PAFRE
FAFRE
FHRFALC
FAFAL
FRFAL
PHF A
FAFAR
“RFFAL:

A

FRFAR .

PRFRL
PRFAZ
P
PRER
FREF

SRFER

ST
HFRG
Feir P
FRFL
Al
P HEFD
PrAE
PRFEL
P
PAFRL
FHEFSE
FAFFEL
FAFRL

FAFRC .

PEAFRG
IS
PRI
B
FEFA
SEFRC
FaFan
(ReRis SN
FIERD
N
UNEINE
MR TR
IREHE IS
i
FEESD
FEFAL
FRFRE
FPRFAE
FRFRO
FHEED
SHERC
R .
[AFAD
PR

LR Y Y 1

ok

[

Loovib [y 1

it
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QUELE RPER BY 1 FOR THZ BTHER MEN IMTERVAL FAFDE
1 LABTE. = LHSTE + 1. ISNSUELECLASTG)Y = . FRLSE FRFAG
= KORETEHZIFY = INEWTCIASSIGHCIPY) = LASTE FHEAR
= THZETCHED = TASSIGMCIFR) FREAG
a4 HI = LASTEL INEATONEY = LIMR FRFAR
FAFAG
RERSE1GMN THE DUELE LEAGER IF THE GUELE MAS EMPTY FARFAR
IEC IRETURLZIRY (BT, O . FAMD. LERDER . EQ. LIMQ > FHFAL
pl LERDER'= TRZSIGHCIPY FRFRG
FaFae
UFDATE THE ARER AMC BEUND ESTIMRTES PRFAE
ARER = AFREA — HCREARCECIFD FRIFRR
EOLNEA = BOUNDA ~ BOHANGECIF) FAFSEQR
PAFGR
READY TO RELIMQUISH ACCESS TA THE TAIL MAFAR
FAFRG
APEN GATE Te TAIL IF MI CPU IS MRITING LNSIDE FAFAR
IFE TAILING 3 THEM TAILING = . FALSE FRFAG
1 ELZE TFREE = . TELE. FEFRR
s sial
TNCREMENT THE INDEX FOR THE HEXT CPU IN ARDER ) FAFRE
HENTT = MEOCHEXTT, RCPUY + 1 FRFARL"
————————————————— EMD CRITICAL PART ~————-——- FRFHD
FETURN ' FRFRR
END FHIFRE
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SOME ATTRIBUTES THAT ARE OBVIOUS OR FASILY ESTABLISHED

Many of the attributes claimed for the program PAFAQ may be verified
by inspection. We list these in the first theorem and indicate the appro-
priate parts of the program to inspect.

THEOREM 3.1 . The program PAFAQ has the following attributes:

Program Attributes
MAIN-CPU1 1,2,3
MAIN-CPU2 1,2,3
MAIN-CPUR
AREAS : 4,5
NEIGH 5,6
INSERT 2,3
QGET 5
QPUT 4,7

Proof. The main programs for CPUl and CPU2 are so short that we merely
inspect them to see that they have the attributes claimed. The attribute
for the main program of CPUR is in fact a specification of this program and
we see that CPUR has the four subprogram invocations as required.

An Inspection of AREAS shows that it only assigns values to variables
indexed by IP and that it (and its two subprograms TRIANGL and SPECTAL)
are stralght line programs. F(x) is evaluated exactly once by AREAS and
this is the only subprogram that evaluates F(x) (i.e. q = 1 in Attribute 5

of AREAS) except for the algorithm initialization in BEGINQ.

Attribute 5 of QGET and Attribute 7 of QPUT are the same and one
inspects the list of variables assigned values to see that QGET and QPUT
do not affect any information about am interval other thanm its status in

the algorithm.
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Finally, QPUT is seen to have Attribute 4 by virtue of two state-
ments near the end of the criéical sectiog of QPUT. This concludes the
proof.

In the remainder of this section we establish that the program has
a varilety of attributes which are considered easy but not obvious.

LEMMA 3.1. The program PAFAQ has Attributes 1, 2 and 3 of BEGING.

Proof. BEGINQ initializes the interval collection by dividing [A,B]
into equal segments of length CHARF/S. Three passes are made through
this initial collection. The first (DO 100 loop) computes basic quantities

for each interval (e.g. end points, cotangents ). The second pass (DO

200 loop) then detects intervals which are the center of triplets which
contain an inflection point. Since the intervals are short, there is no
overlap in these triplets. The third pass (DO 300 loop) then computes
the initial error bound for each interval in the collection and the
total for [A,B]. A direct verification shows that the miscellaneous
quantities associated with the interval collection are initialized properly.
This establishes that BEGINQ has Attribute 1.

That PAFAQ has Attribute 2 and 3 may be verified by inspection.

LEMMA 3.2. The program PAFAQ has Attribute 1 of INSERT.

Proof. The action of INSERT required for this attribute is made
primarily by the two long sequences of simple assignment statements. The
only delicate operation is to switch the right interval to the left inter-~
val's location in case the left interval is discarded, This is accomplished
by the switch in index IR = IL made just before the assignment statements
for the right interval.

LEMMA 3.3. The program PAFAQ has Attribute 4 of QGET and Attribute

6 of QPUT.
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Proof. ?hese two attributes are the same and an Inspuction of QGET
wral QUIT tydTeaten thant thalr dopalon ol neglon only totcersect 10 1 e
varlables LEADER, INEXT and INQUEUE. The situation where QPUT asgsligns a
value to LEADER is analyzed in more detail in Section 4, but even 60 it
is teadily apparent thaz no conflict can occur. That is, QPUT can modify
LEADER only if its current value is LIMQ (which indicates the queue is

empty).and QGET cannot reach the critical section when the value of

LEADER 1s LIMQ.

The only modification of INEXT by QPUT that could affect QGET is that
of LEADER. However, QPUT modifies INEXT only for intervals assigned to
CPUs or ones newly created by subdivision. None of these can be the queue
leader so no conflict occurs here. A similar argument shows that INQUEUE
cannot lead to a conflict and this concludés the proof.

LEMMA 3.4. The program PAFAQ has Attribute 2 of QGET.

Proof. We see that the variable INQUEUE is used by QGET to mark an
interval assigned to a CPU as unavailable for further assigmment. INQUEUE
is initlalized to be true by BEGINQ. A perusal of the program shows that
INQUEUE is only reassigned by INSERT as the last coperation on an interval
after it is placed in the interval collection. It is clear that a new value

of LEADER is assigned and this concludes the proof.

LEMMA 3.5. The program PAFAQ has Attribute 2 of QPUT.

Proof. The critical section of QPUT contains three IF statements,
one for each possibility of returning intervals. One possibility is tha;
ne intervals are returned and no action is required in this case. Note
that this program does not do any garbage collection in memory, so the
program loses the use of memory space of an interval when both halves are

discarded.
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If one interval is returned, then it is placed in the memory used by
lte predecessor and this interval 1s made the end of the queue.

IT two datervale are teltnned, then QM axtanda tha menory nllocatl
to the collection (LASTQ marks the extent of this memory), updates the links
INEXT f;r the queue and moves the end of th; queue to the newly created

queue position (i.e. NQ = LASTQ). -This concludes the proof.

CONFLICTS AND DELAYS DUE TO PARALLEL EXECUTION,

This section deals with the fundamental question of integrity of
the interval collection during the multiple, unsynchronized access by
various. interval processors. The main responsibility for maintaining this
integrity is taken by the subprograms QPUT and QGET and, in particylar,
the algorithm at the beginning of each of them. We begin with some tech—
nical lemmas about the mechanism to control this access.

LEMMA 4.1, Consider the K-th interval which has priority for access

to the head or tail of the queue, i.e. K = NEXTQ or K = NEXTT and further

which has entered the priority walting loop of QPUT or QGET. The shortest

time lapse for this interval's processor to change NEXTQ or NEXTT from

the previous change is 10 statements. The longest time lapse for this

interval's processor to enter the critical section is 2 statements after

NEXTQ (or NEXTT) is changed.

Proof. We list in tabular form the statements executed by CPU(INSIDE),
the CPU currently in the eritical section, and by CPU(IP), the CPU pro-
cessing the K-th interval. An examination of the program shows that the
shortest time lapse occurs in the following case (we use the statements

from QGET here).
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Table 4.1. Statements executed for the shortest time lapse to enter

the critical sectjons of QGET amd to change NEXTQ.

Time " CPU-INSIDE CPU-IP
0 IF (WAITING) IF (WAITING)
1 WAITING = .FALSE. GO TO 30
2 NEXTQ = IF (WAITING)
3, IF (LEADER.EQ. ..
4 GO TO 50
5 IF(.NOT. INQUEUE...
6 INQUEUE (LEADER) = .FALSE.
7 IASSIGN(IP) = LEADER
8 LEADER = INEXT(LEADER)
9 CONTINUE
10 IF (WAITING)
11 WAITING = or QFREE =
12 NEXTQ =

An examination of QPUT shows that the critical section has at least 6
statements to execute (compared to 5 for QGET) but does not have one of
the statements in the waiting section. This establishes the first
conclusioen.

A similar table for the time required for the interval with priority
to reach the critical section is given below. This table shows the longest

possible delay in QGET (QPUT has one less statement for CPU{IP) to execute).
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Table 4.2. The longest delay in exiting the priority waiting loop.

Time CPU-INSIDE CPU-TIP
0 IF (WAITING) IF (WAITING)
1 WAITING = .FALSE. GO TO 30
2 NEXTQ = IF (WAITING)
3 IF (LEADER.EQ. ...
4 GO TO 50
5 IF (.NOT. INQUEUE

This concludes the proof. .

LEMMA 4.2. Consider an interval which does not have priority for

accass to the head or tail of the queue. The shortest time lapse for

this interval's processor to change NEXTQ (or NEXTT) from the previous

change 1g 11 statements. The longest time lapse for this interval's

processor to enter the critical section is 6 statements after NEXTQ or

NEXTT is changed.

Proof. We consider two cases for the CPU processing this interval.
In case 1 the CPU (denoted by IP) is continually finding QFREE to be
false. In case 2 the CPU has found QFREE to be true along with the
processor INSIDE, but it did not gain access to the critical sectiom. An
inspection shows that in the second case the CPU cannot change NEXTQ or
NEXTT faster than in the first case. Likewise, the second case cannot
generate a longer time lapse because by the time QFREE is set true, this
processor has already exited to the'group of CPUs testing QFREE. Thus
we need only consider the first case here and the table below shows the

sitvation where the fastest change occurs for QGET.



26

Table 4.3. Statements executed to achieve the fastest change in

NEXTQ.
Time CPU-INSIDE CPU-TP
0 IF (WATTING)
1 QFREE = .TRUE. IF(LEADER. ..
2 NEXTQ = IF(.NOT.QFREE). . .
3 QFREL = .FALSE.
4 IDQ = IP
5 CONTINUE
6 IF(I1Q. ..
7 IF(.NOT.INQUEUE
8 INQUEUE (LEADER) =
9 TASSIGN(IP) =
10 LEADER =
11 ' IF (WAITING)
12 QFREE = .TRUE.
13 NEXTQ =

Again the critical section for QPUT executes at least one more statement
but the waiting portion has one less statement. This establishes the
first conclusion.

The situvation for the longest time lapse possible for CPU-IP to

enter the critical section is shown in the next table for QGET.

Table 4.4. Statements executed for the longest time lapse to enter

the critical section of QGET.

Time CPU-INSIDE CPU-TIP
0 IF (WAITING) IF(IP.NE.NEXTQ)
1 QFREE = .TRUE. GO TO 10
2 NEXTQ = IF (LEADER
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Table 4.4 (Continued)

Time CPU-INSIDE CPU-IP
3 IF(.NOT.QFREE)
4 QFREE = ,FALSE.
5 IDQ = 1P
6 CONTINUE
7 IF (IDQ.NE.IP)
8 IF (.NOT. INQUEUE

There is one less statement to execute in QPUT and this concludes the

proof,

These timing lemmas enable us to establish a key property of the
algorithm to control access to the queue.

LEMMA 4.3. There is at most one CPU waiting in QGET (or in QPUT)

for access and which is executing the priority waiting loop. There is

at most one CPU executing the critical section of QGET (or of QPUT) .

Proof. We first consider the possibility that two CPUs are idle
and designated as having priority, i.e. they will enter the eritical
section as soon as WAITING or TAILING is set false. During a period
while NEXTQ or NEXTT is fixed, it is clear that only ome CPU can achieve
this status. Thus the only possibility to have two CPUs in this status
is for one to achieve it, then have NEXTQ or NEXTT change and another
achieve it before the first has entered the critical section. The first
possible uncertainty revolves about WAITING and TAILING which are critical
values but which have not been protected by an elaborate mechanism. Such
a mechanism is not required because at most two CPUs can simultaneously

{or nearly simultaneously) process WAITING and TAILING. This is seen
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from the table below where we display the statements executed by the
CPU-INSIDE and the CPU with IP = NEXTQ (we consider QGET here for
concreteness).,

Table 4.5. Statements executed while entering the priority waiting

loop.
Time CPU=IN51 DK © Time cru-1p
0 CONTINUE t IF(1P.NE.NEXTQ)
1 IF(WAITING) t+1 WAITING = .TRUE.
2 WAITING = .FALSE. or t+2 CONTINUE
QFREE = .TRUE.
3 NEXTQ = t+3 IF (QFREE)
4 t+a IF{WAITING) or
WAITING = ,FALSE.
5 t+5 IF (LEADER...
6 t+6 GO TO 50

When t = 0 in this match-up between statements we see that WAITING is
tested by INSIDE at the same time its value is changed by IP. This fact
is detected by the test of QFREE and CPU-TP exits the priority
wvaiting loop. A similar exit occurs when t =1, 2 or 3. If t > 4 then
IP is not the priority CPU as the test at time t occurs after NEXTQ is
changed.

If t € 0, we see that WAITING is set false after having been set ;rue
and CPU-IP gains access to the priority waiting loop. Then WAITING
is set false and CPU-IP exits the priority wailting and enters the
critical section within four statements. The CPU whose index is NEXTQ
as set in statement 3 can start to enter the priority waltlng loop so

both are noL in the loop slmultaneously.
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The other possible‘uncertainty may occur 1f NEXTQ is changed, a
CPU enters the priority waiting loop, then NEXTQ is changed again and
another admitted before the first can leave the priority waiting loop
and enter the critical section. Tt 18 geen from Lemma 4.1 that a change
ol NEXTQ requires that at least 10 statesments be executed whille the
exit from the priority waiting loop requires at most two statements.
This establishes the first conclusion of the lemma.

An e;amination of QGET and QPUT shows that the critical section can

only be entered from the priority waiting loop or from the "gate" governed

by QFREE or TFREE. The two programs are essentially identical in operation
and, for concreteness, we only consider QGET here. Entry into the critical
section is allowed by the CPU exiting it when it sets QFREE true or WAITING
false. If WAITING is set false only one CPU can start execution of the
critical sectian because only one CPU is executing the priority waiting loop.
If QFREE is set true then thefe is no CPU in the priority waiting
loop and if one enters just before QFREE is set true then, as shown above,
it exits the priority waiting loop. This CPU may attempt to enter the
critical section in this case only via the normal route. An arbitrary
number of CPUs may start to enter and each of them sets QFREE false so that
a group of CPUs is executing the code almost simultaneously. Each sets
IﬁQ equal to the CPU's Index and then delays one statement. Since all the
CPUs of the group are within one statement of one another in executing the
program, there is an instance when all are executing the CONTINUE state-
ment and the value of IDQ is that of the last CPU to set it. This last
CPU is the only one where the test IDQ.NE.IP is false. This CPU enters the
critical section and all others exit to statement 20 where the test for
identifying the priority CPU is made. All those that fail this test

rejoin the CPU's competing for access to the queue. One CPU might enter
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the priority waiting loop at statement 20, but it is easily seen that it
would stay there until the CPU with access to the critical section exits
from the critical section. This concludes the proof.

COROLLARY. The program PAFAQ has Attribute 1 of QGET and QPUT.

Proof. The corollary follows directly from Lemma 4.3 for QPUT.
In the case of QGET there is the additiomal condition that the LEADER of
the queue exist and be available for assignment. 1If this condition is
not satisfied it 1s seen cthat a CPU executing the priority waiting loop
continues to wait in an idle loop until the LEADER is available. All CPUs
attempting to gain initdal access to the critical section execute an idle
loop as long as the LEADER is unavailable and, once it becomes available,
they behave as described in Lemma 4.3.

THEOREM 4.1. The program PAFAQ has Attribute 3 of QGET and QPUT.

Proof. Let the CPU which attempts to galn access have index IPX.

We consider only the case of QGET as the ome for QPUT is essentially
identical. It is readily seen that each CPU that exits the critical
section increments NEXTQ by 1 module NCPU+1, Th;s it is clear that when-
ever NPCU CPUs have executed the eritical section, the vériable NEXTQ will
kave taken on all values from 1 to NCPU. It remains to show that whenever
NEXTQ=IPX then the CPU IPX does enter the priority waiting loop and thence
enters the critical section.

It follows from Lemmas 4.1 and 4.2 that the shortest time lapse
between changes of NEXTQ 1s 10 statements. When the variable NEXTQ is set to
IPX, then CPU IPX will be attempting to gain access without being in the
priority walting loop. It might achieve access when QFREE is set true and
this would occur in 6 statements. In this case CPU IPX would achieve

acress within the specified time without entering the priority waiting loop.
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We now need to know the longest time lapace posslble for G PR Lo
enter the priority waiting loop. If this time lapse 1s less than the
smallest possible time lapse between changes in NEXTQ, then we have estab-
lished the theorem. The situarion giving the longest time lapse is shown

L

in Table 4.6,

Table 4.6. Statements executed which give the longest time lapse

for entry into the priority waiting loop.

Time CPU-INSIDE CPU-IPX
0 IF(WAITING)
1 QFREE = .TRUE. IF (LEADER
2 NEXTQ = IF(.NOT.QFREE)
3 QFREE = .FALSE,
4 IDQ = IP
5 CONTINUE
6 IF(IDQ.NE.IP)
7 GO TO 25
8 IF (IP.NE.NEXTQ)
9 WAITING = .TRUE.
10 CONTINUE
11 IF (QFREE)
12 IF (WAITING)

The longest time lapse for IPX to enter the priority waiting loop is thus
10 statements, but it is seen from Lemma 4.2 that NEXTQ cannot be changed
before time 13 (a time lapse of 11 statements). We also see from

Table 4.3 that WAITING cannot be tested before time 11 and thus WAITING
is set false by the CPU which does gain access to the critical section.

This concludes the proof.
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THEOREM 4.2. The program PAFAQ has Attribute 6 of QGET and

Attribute B of QPUT.

Proof. These two attributes have almost been established during
the preceding proofs. Thus from the proof of Theorem 4.1 we know that
the delay between the exit of one CPU from QGET (on QPUT) and the entry -
of another to the critical section is quite short. TFurther we have seen
that no CPU is blocked from access to the critical sections of QGET and

QPUT. The only delay of uncertain magnitude is in QGET which may be

caused when the queue 1s empty (LEADER = LIMQ) or the LEADER has not yet
been inserted inte the interval collection (INQUEUE(LEADER) is false).

We clalm that the total time to execute the subprogram MAIN for
CPU-IP is bounded by the sum of the following times:

1. MAIN 6 statements

2. QGET NCPU times QGET execution time without delays

3. AREAS - 17 statements plus 1 execution of SPECIAL

4. QPUT - NCPU times QPUT execution time without delays

5. INSERT 41 statements

Suppose now that the interval collection is empty. Then all intérvals
must be assigned to processors (otherwise the algorithm is terminated)

. and thus for some CPU we have execution occurring in or after the critical
section of QGET. This CPU then proceeds to execute AREAS and

starts to execute QPUT. Either it or another CPU then galns access to the
avallable memory. However, the CPU that gains access might not return any
intervals to the collection and thus not designate a new LEADER. Even so,
the other CPUs which are processing intervals gain access to the available
memoTy and may return an interval. If none of them do (all intervals

are discarded) then the algorithm termination criterion 1s met. Otherwise



33
one of them does obtain space for an interval and proceeds to execute .

INSERT. There are only NCPU processors so unless the computation termi-
nates successfully, we have that within a fixed time the test of

LEADER = LIMQ is made and a new LEADER is assigned. As soon as INSERT
terminates the queue leader is unblocked, INQUEUE(LEADER) is true and

execution proceeds. This concludes the proof.

We may summarize the results of this section by saying that there
are no indefinite delays in the execution of PAFAQ. Every delay made
in order to avoid conflicts from parallel execution is bounded in
length by some constant times NCPU.

THE AREA AND RBOUND ESTIMATES.

This section deals with the basic numerical analysis procedures of
the algorithm, namely Attributes 1, 2 and 3 of AREAS. These attributes
essentially state that if the integrand f(x) is in the domain of applic-
ability as defined by Agsumption 1 below then the area estimates and bounds
on the area estimates satisfy the conditions of Assumption 2 of [4] which
is one of the hypotheses of the convergence proof.

ASSUMPTION 1. (Integrand) f(x) has singularities.

S={si]i=1, 2, ..., R} R < =}

wix) =
1

=

(x - s;)
1 i

(1) Eeﬁs implies that f£"(x) is continuous in a neighborhood of X4

(11) there are constants K and @ > 0 so that

l£" )| < Kwixy |22

(ii1) £(x) has a finite number of inflection points.

(iv) f£(x) has no cusps.

(v) the minimum separation between singularities and/or inflection

points 1s CHARF.
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The limitatior implied by the fourth part of this assumption is for the
sake of simplicity. One could, as indicated in [2]}, expand the sub-

program AREAS to accommodate cusps,

The first step is to locate the inflection points.

LEMMA 5.1. Let f(x) satisfy Assumption 1. Every subinterval which

might contain an inflection point has INFLECT not zero and every interval

with INFLECT zero has no inflection point.

Proof. First consider BEGINQ where the interval [A,B]. is partitioned
in subintervals of length CHARF/5 and the broken Iline interpoclant to f(x)
is found. Specifically, the cotangent COTAN(K) of the K~th line segment
is computed and then the monotonicity of the sequence COTAN(K) is checked.
It 1s easily seen geometrically that any set of three intervals where
monontonicity 1s absent contains an inflection point. The assumption
that the partition is in intervals of CHARF/5 insures that only one
inflection point is contained in any such set of intervals and that such
sets do not overlap. After the iteration 200 is terminated all the
center intervals of such setsgare marked with INFLECT = CENTER and
INFLECT = LEFT or RIGHT on the appropriate sides of these center intervals.

Thus we have established the lemma to be correct for the initial situation.

An examination of PAFAQ shows that INFLECT is thereafter changed
only in the subprogram SPECIAL of AREAS. There is a technical violation
of Attribute 4 of AREAS in this subprogram because the value of INFLECT
might be changed fer neighboring intervals during the execution of SPECIAL,
This violation does not invalidate the effectiveness and correctness
proof for two reasons. First, if an interval has started being processed

with one value of INFLECT and then a change of CENTER to LEFT or RIGHT
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or of LEFT/RIGHT to 0 is made at some point, no error results. Specifi-_
cally, such a change could only affect SPECIAL itself and one sees that
there is only one test of INFLECT (per possible case) and a change in its
value has no effect after the test. That is, the result from SPECIAL

1s the same as if no change had been made. Second, the possible changes
in INFLECT can only decrease the value of the error bound and there de-
creased values are correct if the change is made. Thus, if SPECIAL changes
a neighboring interval's value of INFLECT, the worst that can happen is
that PAFAQ computes a larger than necessary bound on the quadrature error,
Incidently, as noted in the comments of PAFAQ, it is possible, but
surpriﬁingly cumbersome, to avoid this technical vieolation of Attribute 4
by saving the changes to be made in INFLECT and then modifying INFLECT

later.

The proof is then completed by examining the partition of subinter-
vals which occurs in AREAS, or more exactly in its subprogram SPECTAL.
There are three cases corresponding to INFLECT = LEFT, CENTER or RIGHT.
There is complete symmetry between the' LEFT and RIGHT cases and we only
consider the LEFT case here. These three cases are processed separately
by SPECIAL and in each case an examination shows that there are two
posgible outcomes of the subdivision which are Indicated in the

following table:
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New Value of INFLECT for

Left Right Action Required
Case Subinterval  Subinterval | for Neighbors
INFLECT=LEFT, {1 0 LEFT None
f##2 LEFT CENTER Change INFLECT to RIGHT

for right neighbor
Change INFLECT to 0 for
second right neighbor

INFLECT=CENTER, #1 CENTER RIGHT Change INFLECT to 0 for
- tight neighbor

2 - LEFT CENTER Change INFLECT to O for
left nelghbor

The subprogram SPECIAL sets the value of INFLECT for the two halves of

the interval belng processed and also makes the modifications of the
appropriate neighboring values of INFLECT. The values saved in SPECIAL for
INFLECT are then assigned in INSERT as the subintervals ar; returned to

the interval collection. This concludes the proof,

LEMMA 5.2, Let f(x) satisfy Assumption 1. The program PAFAQ has
L ]

Attributes 2 and 3 of AREAS.

Proof. An inspection of AREAS shows that the proportional error
distribution is used, that is BOUNDR and BOUNDL are always compared to
DISCARD * DX = EPS * DX/(B-A). This is equivalent to having ERROR of
Assumption 2 equal to BOUND(I) divided by DX. Those intervals with

BOUND less than DISCARD * DX are identified and counted in AREAS.

The condition of Attribute 2 that intervals be shorter than CHARF
is implemented in BEGING by the initiai partitioning of the interval
[A,B}. This concludes the proof.

The key point of this section 1s that PAFAQ computes true bounds
on the errors in the trapezoldal rule. Figures 5.1 and 5.2 illustrate

the different situations and the geometric constructions used to bound
[y

4
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the quadrature errors. These figures also indicate the correspondence
with names in the program.

THEOREM 5.1. Let f(x) satisfy Ahsumption 1. The values of BOUNDR

and BOUNDL computed by ARFAS are true bounds on the error in the trape-

zoildal rule.

Proof. There are two distinct situations. First is ﬁhere the
interval is known not to contain an inflection point. Then the quadrature
error 1s bounded by the area of the trianmgle as shown in Figure 5.1. The
program computes this'area using the function TRIANGL and assigns this
value to the bounds when INFLECT is zero.

When the interval might contain an inflection point then the quad-
rature error i1s still bounded by the area of a triangle when INFLECT is
LEFT or RIGHT (see Figure 5.2). 1If INFLECT is CENTER then the quadrature
error 1s bounded by the area of a quadrilateral (actually a trapezoid).
These calculations are carried out in SPECIAL using the functions TRIANGL

and QUADRIL.

COROLLARY. Let f(x) satisfy Assumption 1. The values for AEST(K)

BOUND(K), BOUNDA and AREA are correctly computed by PAFAQ.

Proof. The previous arguments establish this result for BOUNDA
and BOUND(K) and the computations of AEST(K) and AREA may be verified
as correct by inspecting BEGINQ {where initialization takes place),
AREAS (where AREAR and AREAL are computed), INSERT (where AREAR and
AREAL values are assigned to AEST(K)) and QPUT (where the value of AREA
is updated).

LEMMA 5.3. Let f(x) satisfy Assumption 1. Assume the I-th interval

and its two neighbors have neither an inflection point nor a singularity

of £(x) and it is not one of the two end intervals. Then with x=XLEFT(I)

d = XRIGHT(I) - XLEFT(I)
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Figure 5,1 The geometric construction used to calculate the bounds on the quadrature errors
in subdivision of a normal interval. The notation used in PAFAQ is alse defined
and the function TRIANGL computes the areas of the two interdior triangles.
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INFLECTION POINT: YiL < 17 and Yg > Yrr

YRR

oY Yi1. > Y1, and Yr <

Figure 5.2 The geometric construction used to calculate the bounds on the quadrature errors

in the subdivision of intervals near an inflection point. The function QUADRIL
computes the area of the quadrilateral that occurs.
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we have, for g sufficiently small, that

BOUND(I) < 2]£"(x)[q?
Proof. Recall that BOUND(I) is just the drea of the bounding
triangle (see Figure 5. 1) so-we need to estimate the area

Of this triangle. Itg area is given by bh/2 where

6% = d? & (reenT(T) - FLEFT(1))2
h = b/(cot a + cot B)
@,B = angles of the triangle at left and right vertices

The geometry is invariant under retation, so ye may assume that
FRIGHT (I) - FLEFT(I}) = 0. Let EL (and ER) be mean values in interval I

and its left (and its right) neighbor Interval so that

tan e = £1ED] = @) - g )] - d £ () |

(&g - Ep Iy = dpl €7 (np) |

tan R If'(ER)]

where nL (and nR) are mean values between EL (and ER) and the point EI
where f'(x) = 0. Set 4" = min(dR, dL) and note that 4" X 2d since at
least one of the neighbors of I has length d or smaller. Further let
d be small enough so that £f'"(x) does not change by a factor more than

2 in the interval {x~d,x+2d]. Then we have

h = b/(1/d [£"(n DD+ 1/ gIE () 1))

ad”™/q WICHEIS D +d /(def"(nR)I))

h

For concreteness assume that d* = dR and then we have, with 0 < § < 1
h < 2d%/(a/e" ) F /)Y < 2% 2l
< 4d?) e )|
The area in this case is then bounded by 2d3]f"(x)| which establishes

the lemma.
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LY

LEMMA 5.4. Let f(x) satisfy Assumption 1. Assume the I-th interval

and its two neighbors have a singularity of f(x) but not an inflection

Point and the I-th interval ig not one of the end intervals. Then with

the notation of Lemma 5.3 we have, for d sufficiently small, that

BOUND(I) < K(x)d>

where K(x) is independent of d but dependent upon x.

Proof. Since no inflection point is involved, the function f(x) is
convex or concave in the I-th interval and hence BOUND(I) ie again the
area of the bounding triangle. It is clear that f(x) cannot
be infinite except at an inflection point or at the end points. Thus the
worst discontinuity that can occur in such an interval is a Jump dis-
continuity of £'(x). For d sufficlently small we see that at most one

such singularity exists in the I-th interval or its two neighbors,

Let 8 be the jump in f'(x) in these intervals and for 4 sufficiently
small we have that the total variations in f'(x) in these intervals is
bounded by 20, As in the Proof of Lemma 5.3 we may assume that
FRIGHT(I) ~ FLEFT(I) = 0 and with the formluas used there we find that

b=4d

h = d/(cot o + cot B)

cot o, cot B > cot 26

50 that the area of the triangle is bounded by

d2

2
;Ebhi;ﬁd /(2 cot 28) -m

which establishes the conclusion.

LEMMA 5.5. Let f(x) satisfy Assumption 1. Assume that INFLECT(I) # 0

or that the I-th interval is one of the two end intervals. Then, with the

notation of Lemma 5.3 we have, for d sufficiently small, that

BOUND(I) < K(x)d®*!

where K is independent of 4.
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Note that this lemma glves an unduly Pessimistic value for BOUND{(I)
if the intervals in question do not centain singularities of f(x). One
can establish bounds comparable to those of Lemma 5.3 for the end or
inflection point intervals if f(x) is not singular. However, the trigonometry
is tedious and the final conclusions are unchanged so this situation is not
considered here,

Proof: First consider the two end Intervals. Assume that
d = XRIGHT(I) - XLEFT(I) is small enough so that £"(x) does not change sign
in this end interval. There are two cases: first when £'(x) and £"(x)
have the same sign near the end point {the end point may be g singularity
in this case). It is easily seen that in this case the triangle area is
bounded by d times the difference in the £(x) values at the two end points
of the interval. Assumption 1 implies that this difference i1s at most
an and consequently we have BOUND(T) < kd” in this case, In the second
case_where £'(x) and f"(x) have opposite signs there is no possibiliry
of a singularity. The triaﬁgle area is seen to be bounded by d times
d tan B wheTre tan 8 is the slope of the gecant line for the next to the
end interval. Thus tan B = f'(E) for some mean value point £ and for d
sufficiently small tan 8 is bounded independently of d. Consequently
in this case we have BOUND(I) < ka®! for some constant K,

Now consider one of the three intervals near an inflection point with
INFLECT(I) # 0. We may assume that d is small enough that f'(x) is of
constant sign in these three intervals (including the possibilit? that
[£'(x) [= « at the inflection point). In each of these three intervals it
is seen that the triangle area or quadrilateral area used in computing

BOUND(I) has its area bounded by d times the difference in the f(x) values
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at the two end points of the intervals. Assumption 1 implies that this
difference Is at most Kd© and consequently we have BOUND(I) 5_Kdu+1 and
thiln concluden Lhe proof .

We now recall Assumption 2 from [4) concerning error estimates and
state it in the particular situation of thig paper. The use of compari-
sons of BOUND(I) with DISCARD * DX rather than merely DISCARD makes
these £wo relations equivalent to ERROR (x, k) j_k,f"(x)ldz, ERROR (x,k) < kd®

as given in [4].

ASSUMPTION 2. Consider the I-th interval of length d. There are

constants K and ¢ (the same as in Assumption 1) so that when d < CHARF5

we have

(1) If the I-th interval contains no singularities then

BOUND(I) < K|f£"(x)|a3

(ii) If the I-th interval contains a singularity then

BOUND(T) < Ka®*1,

The objective is, of course, to ghow that if f(x) satisfies Assumption 1 then
the computed values of BOUND satisfy Assumption 2. The Preceding lemmas
achieve this is essence but there are three technicalities. First, the
analysis and program treat some intervals as containing singularities

even when they do not contain singularities. Secomnd, the analysis restricts
the length d in ways other than the separation of singularities and inflec-
tion points. Third, a larger constant may be required than given in Assump-

tion 1. Thus we introduce the following

TERMINOLOGY: We say that the I-th interval contains a singularity if

it (1) is an end interval, (ii) has INFLECT(T) # 0 or (iii) contains an

actual singularity of f(x). We take CHARF5 to be the smallest value re-

quired in the above proofs, namely one-fifth of the minimym of
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(1) separation between Singular points and/or inflection points

(= CHARF)

(i1) distance of inflection or singular points to the end of the

interval (unless the end point is itself a singularity).,

The value of K in Assumption 1 is increased, if necessary, to be larger than

2 (for Lemma 5.3), tan 26/4 for each jump discontinuity of fan 6 in £ (x)

(for Lemma 5.4) and tan 8 = 2f'(x) for x = A and x = B (for Lemma 5,5),

Note that this terminology still leaves us with a finite number of inter-
vals containing a singularity and K is still finite because the number of
jump discontinuities in f'(x) is finite and CHARFS5 1s still positive.

We now stafe a crucial result concerning the effectiveness of this
program,

THEOREM 5.3. With the terminology introduced above we have that if

f(x) satisfies Assumption 1 then the computed values of BOUND(I) satisfy

Assumption 2.

Proof. Theorem 5.1 and its corollary establish that PAFAQ computes the
areas of the triangles and quadrilaterals correctly and correctly obtains
values for local and global error estimates. Lemmas 5.3, 5.4 and 5.5 estab~
lish that these error estimates satisfy Assumption 2 provided thart f(x)
satisfies Assumption 1.

We summarize the results of this section by

COROLLARY. The program PAFAQ has Attributes l, 2 and 3 of AREAS.

THE CORRECTNESS AND CONVERGENCE RESULT FOR PAFAQ.

We first summarize one of the consequences of the previous section's
analysis by saying that the program 1s correct in the sense that it has
the attributes to be represented by the parallel metalgorithm of [4]. This

fact 1s stated explicitly in the following:
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THEOREM 6.1. The program PAFAQ is tepresented by the parallel metal-

gorithm of [4].

Proof. 1In order to establish this we must show that the program has
the structure specified by the metalgorithm and that the elements of this
Structure have the required attributes. A comparison of the description
in [4]) with the program shows that the same structure ig present and, in
fact, the same names are used. Some subprograms of [4] have been imple-
mented by using additional subprograms (TRIANGL and SPECIAL), but this
does not alter the situation.

To see that the attributes are present as specified one has to check
that all 32 of them have been established in the preceding three sections.
This is in fact the case. Since PAFAQ 1s specific, certaln variables in the
metalgorithm description have constant values here. In particular we have

2 = 1 (in Attribute 5 of AREAS) and P = 2 in Assumption 1 about the

integrand f(x). Assumption 1 is made moxre specific in two other ways,
namely that f£(x) has no cusps, and has a finite number of inflection
points. Thus the attributes in ARFAS are valid with respect t» thig
more restrictive Assumption 1. This concludes the proof.

With this result we may now apply the main result (Theorem 5) of
[4] to establish

THEQREM 6.2, Assume that f(x) satisfiles Assumption 1 and the

computer operation is as described in Section l. Then the program PAFAQ

terminates with an estimate AREA requiring N evaluations of f(x) so that

|1f ~ AREA| < EPS
with

N = ﬁ(EPS_;E)
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or, equivalently,

1
[1f - AREA] < ﬁ(ﬁ—z-)

If N » NCPU2 then the total computation time T, f satisfies, for constants
a

Ll’ EO and C1 as defined in [4],

N*(4Co + 2C7*NCPU)
MK NCPU

This theorem is very satisfactory in several ways. First, it specifies
the result of the actual operation of the program, namely the program will
terminate and print out a result for which these estimates are valid. This
is a substantial improvement over the more usual result of mathematical con—
vergence which merely states that a Program ﬁill eventually compute a number
for which these estimates are valid. Second it shows that the adaptive
nature of the program enlarges the domain of efficiency of this Program to
include virtually all functions of Interest in applications. Third, it
shows explicitly the speed up achieved by parallelism in the computation.

The constant C, equals t, + t2 where tl is the maximum time in the critical

1 1

parts of QPUT and QGET (17 statements). The time t2 is the time for one
attempt at access to the queue. Under certain circumstances this latter
time can be as much as 41 statements (the maximum execution time of
INSERT}. The time for an attempt otherwise is seen from Lemma 4.2 to be
6 statements. Thus the maximum value of C1 the order of 60 statements
but the average value is likely to be 20-25 statements. These statements
represent the portion of the computation which is not speeded up by

the parallelism of the algorithm. The constant Co'is seen to be

substantially larger, about 100, For large values of NCPU this implies

4 speed up of a factor of about 9.
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The result if disappointing in that it shows that there is a definite
limitation on the speed-up obtained from parallelism and that one must
provide CHARF as input data to the program. The speed-up obtained here
is not the best and deserves further analysis. On the other hand, it is
not likely that the dependence on NCPU can be made better than
(log NCPU)/NCPU. The input CHARF is essential to obtaining valid results
from this (or any other) quadrature program. Without a knowledge of CHARF
{or some equivalent information) there is no way to bound the error in
the number returned by a quadrature program.

Finally there are two other troublesome questions: 1Is the program
actually correct? and: How much computational efficiency has been gacrificed
to obtain a completely reliable program? It is now realized that the
answer to the first question is (for amy Program): '"We do not know". Even
so, there is a variety of Program errors which the approach of this paper
is not likely to detect. There are "clerical errors and trivial omissions

or oversights. Thus the program TRIANGL may be called TRIANGLE at some

point and provisions might not be made for an input of EPS = -.001
(they are not in this case) or CHARF = 1000.*(B-A) {they are in this
case). This variety of errors is much more likely to be detected by
testing than by proving and testing presents a problem for a Program
written in a non-standard language for a hypothetical computer.

Some testing can be made in this case by using three approaches.
Flrst, the program can be translated into Fortran without much effort and
executed in the usual sequential fashion. THis does not test any of the
parallelism of the algorithm, but it does check the initialization, the
management of the data structure and the pumerical analysis subprograms.

Second, the parallelism can be simulated for the Fortran version. The
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simulation is straight-forward but tedious. One labels each Fortran
statement and sets up an instruction counter for each CPU. One can then
cycle through the CPUs executing one Fortran statement in each, The
beginning of each subprogram is a large computed GOTO and a RETURN
follows each statement executed in the algorithm. Special steps are
required for subprogram calls and logical statements, but these are
obvious. This approach was carried out on an earlier, more complex algo-
rithm which allowed the number of CPUs to vary dynamically. Finally, one
can translate the algorithm into a language which includes parallel simu-
lation. Such language systems are primarily designed for modeling operating
systems, but they may be quite suitable to test this program. One such
language system is ASPOL available on CDC 6000 computers. Nelther of
these simulations gives truly asynchronous parallel operation as assumed
in this paper. This approach has been carried out and a substantial
number of tests made, The speed-ur actually observea fcr several cases
is shown in Figure 6.1. The speed-up is quite acceptable for this small
number of CPUs,

We conclude that the combination of detailed proof and substantial

testing via simulation leads to a very high level of confidence in the

correctness of the program,

The answer to the question about efficiency is not so satisfactory.
Everyone, of course, realizes that high reliability must cost something
in efficiency for routine integrands. Experiments show that the algorithm
normally detects oscillations and obtains correct answers even 1f CHARF
is omitted or is much too large. For example with [A,B] = [0,1] the func-
tion f(x) might have a peak with two inflection pointe at x = .49 and

x = .51. This forces the program to use subintervals of length .004
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everywhere even though they are unlikely to be required to be that short
for most of the interval. The adaptive nature of the algorithm normally
detects the peak and arrives at a much more logical choice of subintervals,
However, there is then no way to avoid the exceptional case where fine
osclllations are missed and incorrect results Produced. CADRE [1] is

an example of an adaptive gquadrature program which i3 almost certailn to
detect fine oscillations but Integrands can be constructed where it

fails.

It is clear that one can gain efficiency by allowing the information
provided about f(x) to be more detailed. This complicates the program
development and use but, 1f well done, probably would result in a more
satisfactory algorithm.
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IFigure 6.1. Measured speed-up obtained for PAFAQ by simulation.

1.0 1
3 -
1. Io (x-.8)" + 5 dx ¢ =103
1
2, fO In x dx ¢ = 10'3
t B -
1 -
3, fa /X dx e =103
.6 A
4
.2

NUMBER OF PROCESSORS



	Parallel Algorithms for Adaptive Quadrature III - Program Correctness
	Report Number:
	

	tmp.1307986960.pdf.944A2

