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INTRODUCTION.

This is the third of a sequence of papers on parallel algorithms

for adaptive quadrature. The primary aim is to study the rate of

convergence achieved by such algorithms. The speed-up achieved by

parallelism has been a secondary topic but will be the primary topic

of further studies.

Our goal is to prove that a specific algorithm (computer program)

achieves a certain rate of convergence. The proof is developed in a

top-down approach with three levels. The first [3J is a convergence

theorem valid for all algorithms represented by a general metalgorithm.

This theorem is very much like the traditional mathematical theorems of

numerical analysis. The second level [4] involved a much more specific

metalgorithm with 32 detailed attributes assumed. It is shown that

any algorithm represented by this metalgorithm achieves the rate of

convergence established by the first level theorem. A significant change

in the nature of the second level theorem is from mathematical convergence

to algorithmic convergence. Thus it is shown that any algorithm from this

metalgorithm will terminate with a quadrature estimate accurate to

within a prescr~bed input requirement. The amount of computation

(measured in integrand evaluations) required is given by the conver-

gence result. The present third level presents a specific computer pro-

gram (for a hypothetical computer described later) and shows that it

has all the 32 attributes assumed by the second level metalgorithm.

We then conclude that the convergence result applies to this specific

program.

It is important to note that the convergence result established

is exceptionally strong and illustrates the surprising power of adaptive

This work was supported in part by Grant GP 32940X from the National
Science Foundation.



•
2

quadrature. Results of this type were first established in [2] and say,

roughly, that adaptive algorithms integrate functions with a finite number

of singularities as efficiently as comparable traditional numerical methods

integrate smooth functions. See Sections 5 and 6 for a precise technical

~tatement.

Note that the convergence theorem established requires as a part of

its proof a proof that the program is correct. The approach to proving

program correctness used here is the one traditional to mathematics. We

first identify the obvious and not-so-obvious arguments involved. We

then state that the obvious arguments are, in fact, obvious and present

detailed explanations for the not-so-obvious ones. Since we must establish

32 attributes of a longish program a complete proof would be too long and

too boring to present. Thus we assume the reader becomes familiar enough

with the program so that he can recognize those facts about it which are

obvious. Further comments about the proof are made at the end of the paper.

The program is written in a pseudo-Fortran and is believed to be

unambiguously defined. The non-standard Fortran constructions used are

described in the program comments.

The hypothetical computer for executing this program has a number of

general purpose processora capable of executing an arbitrary Fortran

program. We make the following specific assumptions about this computer:

1. The arithmetic is exact.

2. The size of memory ia unlimited.

3. All processors operate at the same speed; in one unit o~

time (called a statement) they can execute one Fortran statement of

arbitrary type. Substatements of a statement are each counted separately.
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Thus

IF(X.EQ.4.2) THEN Y:X,GO TO 5

ELSE X = COS(DX+Y**.42)/(7.1*X+3.2*ALOG(DX+.l» + X,

DE = AMAXl(DX,Y**.42)

requires three statements of time to execute: one for the test and two

for whichever clause is executed.

A crucial element of any parallel program is the control of access

to critical information which in this case is the interval collection and

the area and bound estimates. The access mechanism used in this program

depends essentially on the timing of certain segments of code. While the

above assumption about the execution time is obViously unrealistic, it

serves the purpose here. In any real parallel computer one would make

adjustments in the mechanism based on the actual execution times for the

relevant code segments.

The next section presents the program PAFAQ (Parallel Algorithm For

Adaptive Quadrature) and the meta1gorithm from [4]. The objective is to

show that PAFAQ is represented by this meta1gorithm. Section 3 contains

a set of obvious or easy results. Section 4 presents the analysis of the

parallel execution features of the program and Section 5 presents the

numerical analysis of bounds and area estimation. The final section has

the main results and some discussion of their implications .

•
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2. THE METALGORITHM AND THE PROGRAM PAFAQ.

For the sake of completeness we reproduce the metalgorithm of [4J.

That is then followed by the program PAFAQ.

PROCESSOR PROGRAMS REMARKS

CPUI Sets the number of CPUs and initiates them.

CPU2 MAIN Reads problem definition and controls algorithm.

Initializes variables of the algorithm.

Inserts the completed intervals into the
interval collection.

Obtains an interval for the processor from
the interval collection.

Obtains access to the unallocated memory
and locates places to insert completed
intervals into the collection.

ContrQIs the interval processing~ estimation of
areas and bounds and access to the interval
collection.

bounds and associatedComputer areas,
quantities.

/IlAIN 1

QGET

AREAS

QPur

INSERT

CPUR(IP)

IP = 1 to NepU

Figure 1. A schematic
quadrature.
[4] .

diagram of the parallel metalgorithm for adaptive
The components are described in more detail in
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We now list the 32 specific attributes assumed for the programs

represented by this metslgorithm.

A. Attributes of MAIN - CPUl.

1. Assigns the value of ·NCPU.

2. Enables the other CPUs.

3. Initializes all control variables to be false and all numerical

variables to be zero.

B. Attributes of MAIN - CPU2.

1. Obtains the variables that define the problem.

2. Initially invokes BEGINQ.

3. MOnitors BOUNDA and terminates the algorithm (with output)_ when

BOUNDA < EPS, when there is a memory overflow or when there are

no more active intervals.

C. Attributes of BEGINQ.

1. Places the interval [A,B] into the interval collection, computes

all associated values and initializes the collection properly.

2. Initializes variables for control of access to the interval

collection.

3. Its final statement enables the other CPUs to proceed by designa­

ting the interval [A,B] as "free".

D. Attributes of MAIN - CPUR(IP). Once this CPU is activated it

executes the following sequence of actions:

Invoke QGET

Invoke AREAS

Invoke QPUT

Invoke INSERT

Return to the top of this list
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E. Attributes of AREAS.

1. Computes changes in AREA and BOUNDA. The resulting values of

AREA and BOUNDA satisfy certain requirements (e.g. Assumptions 1

of [2]) provided F(x) satisfies certain requirements (e.g.

Assumptions 2 of [2]).

2. Uses a proportional error distribution for BDUNDA and implements

the restriction that the interval length be less than CHARF

before BOUNDA is allowed to be less than EPS.

3. Determines how many, if any, intervals are to be discarded and

identifies them.

4. Computes the variety of information ahout the two intervals

that are obtained. This information, along with the other infor­

mation generated, is temporarily placed in the memory PROCESSORS

and associated with this CPU.

5. There are no unbounded computations in AREAS and its maximum ex­

ecution time is bounded by a constant. It is the only program of

CPUR(IP) that evaluates F(x) and it does this at most q times.-

F. Attributes of INSERT.

1. Once places have been assigned in QUEUE by QPUT, it places all

the relevant information about the new intervals into these

places in QUEUE.

2. Prevents an interval from being assigned to another CPU before

its inaertion into the collection is complete.

3. There are no unbounded computations in INSERT and the maximum

execution time is bounded by a constant.
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G. Attributes of-QGET.

1. This program gains sale access to an interval in the collection

that is free to be assigned to a CPU. If the interval to be

assigned is not free, then QGET waits in an idle loop.

2. Once access is gained to an interval, it is assigned to CPUR(IP)

and so identified, and not assigned again. A new interval is

designated as next to be assigned.

3. At most NCPU-l CPUs gain access to the interval collection between

the time a particular one tries for and the time it achieves

access to the interval collection.

4. There is no conflict between QGET and QPUT.

5. Does not affect information about the interval itself, only about

the interval's status in the algorithm.

6. No interlock occurs when more than one CPU is executing QGET and,

in such a case, one of them gains access to the interval collec­

tion within a fixed time.

H. Attributes of QPUT.

1. This program gains sole access to the unallocated or available

memory in QUEUE. It waits in an idle loop until this access is

achieved.

2. Obtains places in the available memory of QUEUE for the new

intervals to be returned and assigns these places to the interval

collection. It updates the information about the available

memory in QUEUE.
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3. At most NCPU-l CPUs gain access to the available memory between

the time a particular one first tries and the time it achieves

access to the available memory.

4. While it has access to the available memory it updates the values

of AREA and BOUNDA. Thus access to the available memory is re­

quired and made even if both new intervals are discarded.

5. If the interval collection is empty when this CPU is obtaining

places for the return of intervals to the collection, then QPUT

designates one of the returned intervals as the next one to he

assigned.

6. There is no conflict between QGET and QPUT.

7. Does not affect information about the interval itself, ~nly about

the intervals' status in the algorithm.

8. No interlock occurs when more than one CPU is executing QPUT and,

in such a case, one of them gains access to the available memory

within a fixed time.
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:L .1f')
t,) ~

H~"

J. :.~

1+1
:l_ I~.

1,1:::
1'! "

~.~-.~I

j ~,t

1.'':0.·'
JL.

J",).1

:1.'. ~:

:l:. ,
:1. ':0:
J L ._.

] .c'.::

, '._d

:l./~,

- ,"J_, ,

:1.." :
J_ ,:'.;

J. -"~,

J. "",

:1.:,­
11,: I

J "-'-, ~.

nO,
J-,·'I
:t.,,)

J "

.' .•,.1

1_':,-'
1,:,1.1

J.(~t

:l..-'-••~:
:1f':"

]»1
i:':.'-,
1_(.,-:

:]':1,'

.1"11

!' 'i
I" '

,­
J' -"I
'J '--,~_.

:I '-J,--.
:t.).-­
19:::
:1<:-'9

rllflW
r:"FIFf,C'
I-"J'lFTiQ
PAFFll,'
PAFnc
I-';IF(;:)

r'fiF:nco
F'flFIX'
PAFf:(:
PFIFf:::.'
f"m::-II~'

[-'FIFnl,'
PI::Wl'i(!

Pfll"nc!
PFlFI'In
PFoF!,;!)
F'FIFA('
PflFfi'J
f-'lil"I-::-~.

l"fiFn~:'

rYin::.'
f-'nlo-li'.'
:"nj'-nc,
P:-II'I';''-'

r'f!I' I~·.'

r'ioIFi-1I~

f",~ll="i::;C'

PI-IFni!
f-'rlF';C·
1"8:-"1-"10
1:'flf'I,C'
F',f::-n,;:
I ',-"IFRe;

PAi-;-,:::
f-':;;~I\~

l'11Fl'-;,_-,

i 'I,,--i::'~'

I'·,:enl.'
1':'11-:11,
i',lllll'

1'111 III:

['illl,I'
1'1111"

1·'[ II Iii'

r'I'IF :'11'

r'fIFf'lC'
PrtFftJ;:;
f-YJFFII;!

r'I'":FRC:
FAFliC'
FnFU'
FA!-'!'il.__

F'fiFriC'
F'flFfIC:
F·FlFI1G.I
F','1FfIC'

-... -r--p.Fnc
f-'HF,:,)
F'I-n;,~'

1"li:-'I1C'
F'fIFliC'
F'A'~11C~

T0 TERrlitlATEFOR RLGORITHrl
GO TO 200

L0CAL •....ARIA8LES IN THE PR(l("E':::S0k::;

NEEDED GL08ALL'" Ar10t-JG SU8r'RI3GRfll'IS Oi- U'Uf<OP)
,DX(L!MCPU)_· Xr1ID(LHlCPU), FrHD<LHICPU;.,
C0TANR(LIHCPU), COTANL(LIr-1CPU), INFI.(t ll'!CPU)

IS THE OPERATING S....::.TEI'! SIt1ULAr JUtl

('FREE -
H'I~

1,lfl] T 1rIG

t'~l':-;T:) -
TrF:EI-:
rr'-r -
miLl/Ii] -

IH-XTr -

fRIGllL FLEFT - FeXRIGHT), F(XLE-FJ)
If;:IGIiL ILEI-T ~ WL'EX OF RIGHT.. LEfT W,J(:iHt:G!~S

5~JITCH F€lR FREE ACCF:~-;S TG LYFIDER '-'HEm) Of PUl:UE
INDEX tlF CPU CURRENTL't' ACCE:;-:::ING I F:m'{'R
SIHTCH HlDICfiTES THFIT CPU [.J] 1:-) F'J~IORlTY IS
l·iAITING FfJ~ FICCESS }IJ TilE LF--1~DER-

r"mD; OF CPU ~IITH Pf,IOR1TY 10 11(:(:ro::::;. i.UrDER
5lHTCH F0~ FREE ACCr.::.s TO Lf(, Ta '" rAIL OF' QUEUE
HIDE;< 0F CPU CURRENIL'r' FiCCE:;-o.mG I.n~.rCl

5tH CH I ~~D I CATES THAT CPU f.I I1 H Pf< UJR 1TV IS
~IA I TJ NG FOF: ACCESS , (1 THr: Tn! L OF TH:.:: QUFUE.
INDF.~~ OF CPU m TH PR I0R n'r' TO AceE::::S TA I L

PF:OCSI;:S I ACHFINGE (L I r'1CPU), BCHAI·IGE (L IIKPU), Af~E:T1R(L I r.!cpu),
ARERL (L I t1CPU), 813UrWR(L I I'ICru) , E:(1UNl"L (L rl'1Cf'U),
IASSII3t'I(LIr-1CPU), IRETURN(L IJ1CPU), KGT·'E: mrliLII-ICF'U)

RCHf1nCiE - CHAIIGE HI AREA C01'IPUH,D B'" un EPvnl. PROCESS(l[;:
E:CI-IAtIGE - CHANGE IN BOUt·1DA COt'1f'UTED
AREAl(. ARERL FIEST VRLUES FOR RI(;Hf, LEFT HfIL.VES
E:OUtIDP',80UNDL - 8iJU/lD VALUES FOR fdGHL LD- r Ilfrl_VE";'.
IASSIGr'1 INDEX OF rrnEF:I.IAL RS::;IGt-JE() T0 CPU
IRETUPN N0. 0F INTEF:VALS RETURNED 8'r' CPU
I'X'I';ErRN Ir'~()EX 0F NE(·j PLACE IN OUEUE FIJI< IN:::.EI;:rrOtI OF

AN HHER.'v'Al_ F:ETUF:NED 8'r' m~ rNTER·v'AI. PF:f3U::;SOP

CPU1m,l, CPU20!-l, CPUR0N, F UH SH, lNQUEUE
QFF-'EE, ~·IAITWG, TFREE, TrilLING

IDLE LOOP I~A ITHlG
. N0T. F WISH )

DATA LEFT, (HI:ER, F-'IGHT ,; <1HLEFT ,6HCENTc:R ,~;H::;:[CiHT "

IT 1::'. AS5sur'lED THIH ALL NUl'lERIC VARIA81.ES fiRE rNITIAI_L'r' ?F.:.R0 ANC'
ALL L0GICAL VARIABLES ARE INITIALLY FALSE.

t·lCPU = 5

TURN (IN THE nl0 SPECIAL CPU~S

CP,U10N == (:PLI20N = , TRUE.

TURN BI'F ALL CPU~5

DO :':Ol.:! I~ '" :L IlCPIJ
(PlIRmlfl~) .:. FI~I.-::E.

Cl-'llHWlJF
fT'I'tuN CI 'II:;'~ it I -. f I'll ":-l,
::.1 (IF·'
ENCo

PF:0GRArl CPU.?

LOGICAL
i

PP'0GF-'AI'! CPIJi
""j;.~,!, I,;-i;.-J'**·~* THIS

2(1) IF(

c
(

"

,

c-
c

COMr'10N /
1
0

"
"
'.

0:
'=:
"

C

0:-

s
4

c

c

c

c
(:

C

':'

C

"
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C CHECK FOR ~";8t'IOF~l'lAL TERi1INATWN
IF( NQ . GE. LUIQ) THEN FIrlI5H = . THLIE. F'PIIoJr fnf:-:r'II))~I':f'IL 51"01"'-

c--------~---- __. .. . ~. .. . _

.', -,7

.'.'

" •• 1

- ~,

2i:)

". I')

:!" ).

','."

;~C(:::

~:(1'1

-'-"

;,1: _'
~'(II.

~,(r..
';-::.1:::

,,:.~I:;.'

;:"1/
,,';:::
::,., 3

~-' ';J

-." ,-,

~'iJO

201

~". ,-~

2·;:"1
2·1'
;;::'1:'
::?-I_'
2'.1

~:·I

.'"
- -,. ~

:?' "-'

F'f1FAQ
PliFnC!
f-'I'jFAGo
P,'IFner
PriFf-K-'
Pi-IFf,CO
f-'liFr10
PAFAC
pnl':-A;':~

PfiFAt:)
P.'ii-·AC'
Pi~IFI1CI

F'RFfiO
p:'i:nt)
r:'ftFfll"'
F'flFflO
f"i'iF"I'1Ci
F'AFfiC
P.=tFIK'

- - "--f'riF!;(1
F'1:1I-',-jl~'

F"11Fill.:'
FfiFr'II:.'
PflFFII)
PAFI~(::

f-'J'iFfiC'
r'AFr-',C'
F'r1FIiCJ

F'j'IFAC

PAF'~'~'

PrlfAC·
P/iFHO
F'f1FAC'
PFiFi'lC'
PAFI;.~I

F'RI- HC"
PAFAe:'
PAFHI,'
PAFHI."
PAFFle
Pr'IFfil.'
PfIFI:J(-'

F'liFFil'
PRFAr,
F'f1f--"I('

PAFfll.)
PRFfi,_~

PfiFfj•.,'
[,,{iFflt,'

PFlFiiGI
PAFfl(J
pnFAQ
PFIFAO
PAFAGo
PflFAGr
PFrFAC!
PAFA[:'
PflfFIG!
F'AFfll)

PAFAC'
Pftrnl;
PFlFFlC,'
f"11FflU
[-'J'IFflC'

PAFHe!
F'fiFfil}
PIiFAO

(II(Ul(,E SIGN
I:FI'·,'E WFU:( fll)~l

A f 10 f 8 " lS J ARE:A

L.Et'IG rl-.

NO =: NO + 1

) G0T010
THE I NTEGF::AL I2IF ::- 00 FRGW
TI2I WITHIIl f BOUNDA

(!UAllTITIES FOR INITIAL INT!:RVfILS

IN I TIAL I ZAT I0NS

A + 1(o~[)X1

XRIGHT(n - D,~a
=:: FC~F:!GHT(K))

'--' F(XLEFT(I()
:= 5 fr,;,!,lo(FLEFT<K) + FRIGHT<K»
:0 AF:EA + REST q:)
=: r.(-~l/(FRIr:JHr(K)-FLEFT(I()

=: 1:+1
"" [(-1

1(+1

~lISC.

'.f:.)

CALL BEGUm

IF( .IKIT. FUHSH
PR INT "'FILUE OF
PRIIH .' ACe-URATE
Sf0P
EiiD

SUBR0UT HjE BEGING!

FIRST -:.1:-. r 0F
[,I] 100 K =: L lI(!

i<RIGHT(K':o
:\LEFT (10
FRIGHT(I- :­
FLEFT 0:1<)

[=JEST <I')
AF:'EA
(:IJllil' (f:"
I~·:IGHT~U

AREA'" O.
DISCRRD '" EPS/(S-A)

FHID THE INl TIIlL INTERVAL
D:x::l "" AMH/HCHf-iRF/5, , 8-A)
r~J) '" (E:--A)/DX
IF( D:~::::~IJ(l LT, B-A
[">:1 =:: (E:-A.l,--'rK'
LA::,TO =: NQ
LEACH:: =: 1

FI:~ ITEr'lS FI3R END INTERVALS NOT SET CORRECTLY fl[:(;1VE
ILEFT<l) LUIO
IRlCiHT(IK~)= LIIK!
I"~JOXT(I-':~,) '" LH1Q

ILEFT
WEXT

C(1mI~IUE

SECOND Sl::r OF OUAt~TITIE5 FOR INITIAL ItnERWILS
(:O.-L<1) =: COTR<t-K!) =:: O.
lr:FLECT'.":l) = INFLF.-.CTOIO) =: I)

DEl'!:::Ri1INE INTER\/ALS I'IHERE C(lTANGENT DIFFEREIK:I-:S
nIE:::E ARE r:E:ITF.R - 11,.1 r:P\/f;L5 OF TRIPLE:, T 1,1"III-::H ~lt"IY

51. IF' IF I'IE ONL',' H~IVE 1 OF:: 2 INT!::RVt"lLS
IF( NC' . EO.. 1 ) GO EI 201
C~:)TR{1) = COTt'I~-l(2)

J.O IF( 80UNDA _LE. EF'S) FINISH"'. TRUE.

+"~.i<**ol.*:j-.,+ ~'/-.' THIS PROGRAI'I INITIFlLI?'ES THE AlG0RITH/1

THE ORIGUlAl HHERVflL IS 8P0KEt·j UP IIH0 LE~lr;THS OF CHAPF-'
At.;) THUS THIS TEST IS NEVER NEUlED LATER. THE HnEF~""'AL5
I,j] TH IN::-LECTI0N POINTS ARE DE1F.RI'1INF.D.

,';L:C:iLL, [;ECLAF:E
(.

C *,t-***:Io,h''',o'j,* THiS IS THE ALG0RITHI1 C0NTR0LLr::R,.

C PROBL~~ DEFINlrI0N
F~F.AD H, 8, EPS, CHARF

100

,.

"

'-
~..

., ·,oCI:rLL., DECLARE
C

C

c
c

c
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c
'-

- 'f'C:'1LL, DECLARE

PF:OGRAI1 CPUR (I P)

l\'E::,TfIRT 1HE F',,'OCE:;';
(JO TO :to

Pj~FAQ 26?
PI~FAQ 268
PAFAr,~ 2':::9
PflFAQ ~:70

PAFAI::) ~:?1

PAFAf,! 272
PA::-AO 273
PFrFAQ 274
PAi-fiG: --,-,,,"

~.,' .'
PliFflG' ~:?f.

F'AFf'll:: --, ,-,... , ,
r.'AFIiG! 278
PAFF;r;"! 279
PAFAO 2=)0
F·liFAO 281
paFAC: 2:~:Z

PAFHQ 283
F·RFRC' 28>-1
Ptlr-fiG-! ,-,,-,0"

..."'-~

F'f1Fi1(! 28';:
f-'AFFiC' ~,,;..,...._.,
PAFRe' 0:':-::'

PAm!;! ~::::9

F'AFAO 2~'O

PAFliC~ 291
PAFAQ 2:):':
f-'(1f'I''IO 29;:
F'AFAC-! 294
PRFAC' 295
('tlr-I:IQ 2%
P:1Ff:II:~ 29?
F-fIFAO 2:'!':::
F'ftFAQ 2::'"3
PAFAl~ 3G:)
PFrFAQ :,(Il
P,lFI,II;! ::0:::
F'nr'ftO J:OJ:
~-'AFA(' =~O'-;

PfiFAD ]05
j-'AFRC' ::>06
F'Rme! ?Ul
PAFI~C' :~o:::

F'AFf-:(' :1;9
PAFt~C' :'1 (I

--r'8Fr;c' 311
F'AFR!) Jt2
f-'FI;:AG' 311
PAFFlO 3:t;1
f-'f;WI,(J ::~1.':;

r-AI:r-:~-' :c:tc:
F'iIFII(' :::'1-,-'

PflFllC' :,1 '::
PftFf'ILJ c: -, ~:;

PAFA:~' :::;;-'1)

PfIFFri:! ::~2':,

PAFA:':' -<>~:
PFIFF:G, 3,)"

PAFAO :~~..j

PRFAQ :,_::'::"-
r'AFt1(' :--?f,
rAFAl~ ---;-2''-

PAFFiO :::.:::
PAFfle, ~;;:..-,
PAFnl~ :.c,-r
P1~F)ll~: -I
PAr-I:r!) --.
F'AHI(:! -,-...

lNFLECHK) = CEtHER
AND THERE IS AN INFLECTION POINT DETECTED_
INFLECT(K-1) :: LEFT, WFLECT<!(+:l.) =0 RIGHT

ELSE
OF :: FRIGHTCK) - FLEFT(K)
IF ( INFLECT( K) . EQ, LEFT)

BOUNDCK) = TRIANGL(COTUK), C0TAN(K), 0, DXL OF)
IF( WFLECHK) . EQ_ RIGHT)

80UNDtK) = TRIAtlGUO, C13TAN(K), Cl:nR(I~), [.0:'-:1, [)F)
IF( WFLECHI() . EG!. 0 )

80Ut-m(K) TRIANGL(C0TUK), C0TAWK), C0TR(K)~DX:I, DF)

NO!~ Cl3t·1PUTE THE INITIAL ERROR BOUND
8(1UNDA :: O.
DI21 }OO K == LNr~

IF( HlFLECTCK) ,EG.!. CENTER) THEN
C0TREC :: 1. IC0TR(K) + 1, IC0TL(K)
BOUND(K) :: OX1*ABS( FLEFTCK) - FRIGHlOO + CIJTREC )

4
200 CmHINUE
201 CO'NT I NUE

? El5E

80UNDA = 80UtlDA + 8IJUND(K)
]:)0 C0NT INUE

1
2

C
3
4
5
f,
:::
9
R

r

c

C F I tlAL.LY FREE ALL I NTERVALS AND 11ARK THEM AS IN 'II IE (.IUEUE
[l0 <l00 K "" 1, NQ

I tK-!UFUE (K) "" . TRUE_
"GO CO~nltlUE

QF~:EE = TFF£E "" . TRUE_
F:ETUR~1

EtlD
c-·· -----'------------------ .. .. .. .__

C0TL(NC!)= C0TAN(t~Q-1.)

!F( IK! _LE, 2) G0 TI2I 201
[\21 ::::00 I< :: 2, f10-1

C0TLCK) == C0TAWK-1)
C0Tr::CK) '" CEtTAN(K+:D

THIS EQUALITY T1::ST ASSU/'lE5 EXACT ARITHMETIC
IF( A8S(CC1TL(f()-COTR(K» . EQ.

1 A85(C0TL(n-C0TAN(K» + ABS(WTAN(K)-CG:TR(K»)
2 THE/-j INFLECT(K) :: 0

C AND THERE IS ND INFLECTI0N POHH DETECTED_

IIlSERT THE INTER..... ALS INTO THE QUEUE
::nLL ItlSERT<IP}

HAVE ONE, C0t1PUTE AREAS firm 80UND5
CALL AREAS( IP)

ATTEr'lPT TO GET AI~ ItlTER..... AL FRot1 THE QUEUE
~O CALL QGET(IF'~

1- 'i-,~_j'**'_+"H_H"~ THIS IS THE INTERVAL PR0CfSS0R PR~1I3RA~1 TO E"'::rrHATE AF:En':;
IT 'IS AN ARRAY OF PReGI~AI'lS Cl.JITH It-lDE~~ IF') FOR THE t'IR,,'n','
(IF CPU.'5

c ATTEt'1PT T0 GET F'LACES IN THE QUEUE TO PUT ItHEF.'VAL5
CAll OPUT( IF')
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.':

.-" ~,

:-·)0

::'L_
}·I.-I

" . ,.,"

::_'51.

.'--'",

., -,

.-- "

:::;'::,0

::''';1
30::--'
::: r,:::­
:::r;,~,

".::'r:;7

:'0::8
J6::1
3;->0

- --''-'--, -.'

:~/ ::.
:::,74

:';' '-'

39'S
:':9';

:'9:3
::99
';00

3~::?

38:=:
:';89

290
391
:92
393

PAFA"~J

F',':;Fl'll':

PFlFflC'
F"AFfiD
P:=JFf:::_-~

F;"'lFf-"~<

PAFflC<
F'liFliO
PfiFAO
FAF:iQ
PI'lFliO
F'I'lFf:C'

f'nFnC'
1:'I'iF(iI'

j"jiFf'L"

pnFCO
PAFn:~

F'fll'IiQ
PAFJiCi
PAFflC"
F'I'lI"-'':I;~'

F'AFfI[i
PflFAC
F'RFi"10
F'AFfK'
FliFFoC
PAF1'1('
PftFAG
PAn-H)
FTIF"fll~.

PFIFI';O
pm"A(r
"·AFf1(~

INFLECT
FOLLDI,IS

i
IRETURW IP) - 1

WFL< If) =' 0

IJSE SPECIAL FliRl-1ULAS

CALL SPECIAL(CGTU IAI) .. COl-mIL( IU, cI3mru;:( IP), COTR( IAI),
WFLECTCIAJ),IP)

THIS FUNCTION FINDS TRIANGLE AREAS FROl1 C(~TAt'IGEtlTS

OF THE SIDES miD THE HORIZ0NTAL AND ',,.'ERTICAL f-'F:O,JECTIGNS
I)F THE BASE

(CRGTt'CENT + 1. )!(CRGT - CENT)
CCENT'~CLFT + 1_ )/(CENT - CLFT)
XBASE**2 + Y8FJSE**2
A8SC .5*8ASE2!CC0TRGT + COTLFT»)

THE APGUI'IENTS C0RRESPOtiO
CLL. == CiHL CI Ar)
CL =' COTAtlL< IP)
CR COTAtH;;e IF')

SUE:RI3UTINE AREAS( IP)

CHECK DISCARDING OF INTERVALS
IRETUF:WIP) =' ::=:

IFC 8101Ut-IDRCIP) . LT_ DISCARD*DX<IP) ) IRETURWIP.J
IFC 80U~I[>LCIP) . LT. DISCARD*DXCIP) ) IRETURI:<IP)

5

COTRGT ='
CiOlTLFT =
BASE2
TRIANGL='
RETUR~l

Ell[;

6 ELSE

SUI;::f:;OUTHlE 5F'ECIALCCLL., CL., Cf::, CF;R, tIFLECT, IP)

,:",;-.,f"-;-~ 1,:f··I_·I"~.'f: THIS PRI)CiRA~I C011PUTE5 AREA ESTIr1ATI:S F0R AN INTERVAL
I,JHERE At-j IIlFLECTIotl P(tItH I'I~W 8E PRFSENT
THERE i'lRE Ti-IREE CASES ACCORDING TO "rHE VALUE 01-'"

't ;"1' t -+::t''l_=I''I''I·* Tf-: IS' PR0GRAI1 C01'lPUTES AREA EST1~IATES
,.'CALL, DECL,IRE

JAJ ~ IASSIGN(lP)

E~~D PAFI"'lt;.' :Co;.
':'-_.._- ---.------ ---.----.--------- '-----.--------------- .... --- ..---- ._-- --_.- -.._- - - - _.. F'I;Ff.c~ ?'_-~5

C !'fl::-tl.I~ ~;.c_r_.
c

.:: F'RELHIHIARY QUANT [TIES
[';«11") =: .5:1:(>":RIGHT<IAD - XLEFT<IAI)
:>(I'1ID<IP) .'-':RIGHT<IAD - DX< IF')
Fi'1lD<IP) F(XtHD(IP»
COTANR( IP) [.lX( IP)/(FRIGHT( IAI )-FI'lID( IP»
(l)TI~NL(IP) [)X(IP)/<FtHDCIP) -FLEFT(IAI»

c
C- CHECI( INTERVAL SITUATIGN AtlD SELECT AREA F0RNULAS
,., I r~FLECT = I) I S THE N8Rt1AL CASE

IF( INFLECTOAD . E(l (I ) THEN

:1 BGUNDLC IP) TRIAtKiL(C0TL( IFrI)~ C0TANLC IP), cel l"HrW( lP) ..
2 DX( IP)~ FLEFT( IAI )-FI1ID< IF',»
3 80Ut'WF~( IP) = TRI Frt,lGL (C0TAt,IL CIf), C0TFtNR( I P), C0TR( I Fr I ),
-'I DX<IP), FJ'lID( IP)-FRIGHT<IAI»

c

- _.. ----------------_.._----------_._--- ----- .._._----_ ..._---

C COl'lPUTE CHANGES IN AREA AND 80UNDA
AF:EAROP) =' ,5*DXCIP)'.f'CF!'I!DCIP) + FRIGHT( fAJ)

AREALCIF') =' . 5'+DX(lP)'~CFf'1IDCIP) + FLEFT (lAD) PFiFf::~'
B.::HAr,j(iE CI P) =' 80UNDC I AI) - BOU~jDR( IP) - 80Ut,I[,L ( I P) FAFfiCI
ACHANGECIP) = REST (IAJ) - AREARCIP) - AREAL (If") P;iFf,i~'

F:ETURtl F'RFI"<C'

E.t-lc· PAFA'~:
C--- -----------..-------------.---------------..----- ..---- - .__.. , --"PAFI','~:

C F'flFRCI
FUNCTION TRIAllGLCCLFL CENT, CRGT, XBRSE, YBA5E) F'AFI:,'~'

r'FIfAl'
r'FiFH;"~

r-Arlil.~'

PliFl'H,)
PfiFAI~1

PfIFA:;,
F'AFA,,"
F'AFFi(:

;:'AFI-1Q
F'AFAO
F'nFfiO

-- ..----.... " --.- .. --- ---···"F'AFRC~

FTIFI1G!
PFrr-f10
f'AFliO
r'11FA(!
r-AFI~I)

PAFR(.:
PAFH('~

PAFfll~'

PAFI'iO
F'AFti('r

,-
c

c
C

C
:" "CALL.. DECLARE

,-
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IAJ IASSIGN(IP)
L'FL := F!1W(JP) -FLEFT<IAD
DFf;.' FF:IGHT~ lAD - FHIDOF')

C eRR '" C0TRCIAI)
C NFLECT INFLECT(IAI)

C THE COPRECT VALUES FOR INFLECT 0F THE nIB HALVES ARE SET
C- INFLOP) - FOR THE LEFT HALF
,". HlFLECHIAI) - FOR THE RIGHT HALF
:~ THE t10DIFICATI0t'l (JF INFLECT F0R NEIGliB0RING INTERVALS IS
C AN RPPRREt-H VIGLATI0N 0F ATTRIBUTE 4 (IF RPErI:::. HOHEVER,
1.- IT IS SHOI,m THAT THIS ACTION DOES NOT INVALIDATE THE
'-' ALG0RITHt'l. IT IS CUI'18ERS01'lE AND P13INTLESS TO SAVE THE

rn;::ORI'IATIOtl AND t'IODIF'T' Ir-IFLECT LATER.
'*U~LL DECLARE
(:

I: ARITHt'lETIC STATENENT FUtlCTI0NS

DETERIW~E IKtN0T0NICIW OF COTANGENT SEQUENCE ON THREE PI)Irns
CHAWlE30():= RBS(CLL-CRR)

l -( ABS(CLL-CL) + R8S(CL-CR) + A8S(CR-CRR) )
AREA OF G!UA[lR I LATERAL FOR CENTER INl ERVAL

I)UADRIUClFT.. eRGT, DX, DF) = DX*liBS( DF + L /CLFT + 1. /CRGT )

PAFAQ 401
PAFAQ 41):;:'
PAFHQ 4(j~:

PAFRG! 40,1
PAFFK: -'1("';

FAFflI;: 406
PAFI'K' 4(',"

PFlFm' 4:.,'-:

PAFflC' ·~C,· ,
PAFAIj, 'I.L:)
PAFAC' ·U'J
PAFAC' .j'J :.'

PAFAe, ';'j -:>

Pi'lFt',(t .j .l.!
PAI~I~(t 'Il~;

Pf,FI:11) 4li.;
PAFAO ·U;'
PrtFfi(l ,H:::
PAFAC! -119
PAFAQ -12(:
PAFAe: 421
PAFRO 422
PRFRO ·I?::'_
PfIFA(' 'l~'?'l

PftFAC' "I,.:::',
PI:IFAI~' 4.->-,
[:-r,Ffll) ·12;'
PRFP,G~ 42:'::
PftFRC' <129
PRFAQ '13:(1
PiiFiiC, 421
PAFRQ 41:~

Pf1FAQ '13~

rAFAC' <12--1
PAFAI~' --1","i
PfiFAC' ·EI;::
Pi'iFflC, 437
PAFA(' 4:~:::

I-'AFR(., 419
PAFfll:: "1'10
PF,FH(! 4,'1j
Pf'lFAl~! <j'll
PIIFt'L.' '1'1}
[YiFI1t! '1'1'1
F'nlfll) +1'-,
f-TrFllr, ·H~:

1'r-IFnl: <1·1 ;-'
i"fl1--i~(' .1-1:::
/'-fIFI'IC: 4·1~'

r'FIFf1C' <I:;,u
fYIFFiC, .J'5l
~"AFncL .j '.":

F'ni-T,C' " -" '-
PRFfiC' ·1 ';',.\
F'AFAC! ·1 ~ ,'.,
F'11F110 ,ILj~~

PFIFIK! ,'I':,;'
pnFriC' ''I'::i;':::
PAFrJC: ·1 '~i:::'

PI1FFiC! '!60
F'liFAO "16 ~

Pflf-'liO ,I ,,;~.~

r'AI:AG ·1;,:-
PliFfiO '1';·1
r'llF'1cJ ,1,,:,
I'I!FI'I; , ,: .."
/'111 III' ·ro.,

FOR INFLECT
130 T0 300
GO TO 200

CASES
)

)

THE INFLECTION ~IAY BE IN EITHER HALF
B0UNDL<IP) '" TRIAtmL(CLL,CL,O.,DX(IP),WLj
80UNDR<IP) := QUADRIL(CL,CRR, DX(IP),DFR)
INFUIP) := LEFT, INFLECT<IAl) := CEt-ITER

UPDATE INFLECT VALUES T0 THE F-' IeMr
INFLECT(IRIGHT(IAI» = RIGHT
INFLECT<IRIGHTORIGHTOAl)) '" (I

RETURN

SELECT ONE OF THREE
t~FLECT EG!. CErnER
NFLECT . Er:t RIGHT

I t'lFLECT := LEFT
CHAr,lGEJ:(!p) . EG!. 0,) THEN

THE WFLECTION POINT HAY 0tILY BE IN 'THF. LETT HfiLF
80Url[iL (I P) := TRIANGL (CLL, CL, CR, DX( I P), (JFL)
80Ut'IDR(!P) := TRIANGL(CL, CR, O. > D;>-;(!F'), DFR)
INFL<IP) == 0

IF(
IF(

IF(

THE INFLECn €'IN ~lA't' 8E IN EITHER HAl.F
80UNDL(IP) := QUFlDRIL(CRR,CL,DX(IP),DFl.)
80UNDR( IF') := TRIANGL(O. ,CR, CRR, DX(IP), [iF!':)
INFL<IP) '" CEtHER, lNFLECT<IAJ) := RIGHT

UPDATE INFLECT VALUES T0 THE LEFT
IHFLECT.-:ILEFT<IAl» := LEFT
INFLECT<ILEFHIl.EFT(lRl)) := (I

RETURN

ELSE

INFLECl '" RIGHT
(;8NTr~IUE

IF( CHANGE1.(JF') . EQ. O. ) THEN

THE ItlFLECTI0N POINT t'IAY ONLY E:E IN THE RIGln flHII
80U~l[lL(IP) := TRIANGL(O., CL, CR, DX(IP), DFL)
81)UNDR<IP) := TRIAllGL(CL, CR, CRR, DX<IF'), (WR)
lNFL<IP) := RIGHT, INFLECT<IR1) := (I

2

,

6
?

4 ELSE

ItIFLECT := CENTEF:
CONTINUE

IF( At::S(CL-CRr:;) . LT. RE:S(CL-CR' I· AE:S(Cf,'"CRR) ) HIUI
C01RNGEt-ITS APE fl0T NI)/WTOI-l[ 011 lfir ro'/J,lrl Ilnl F
i"1fj[, J I I~-; THe ur,loJ Cl'Jnl-[.:

c
c

c

c

c
r::

200

C
1
2
0

C
4

,--
<-'
0
7

C
8
:3'

C

301]

"
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.J~-ol

"':).~:

'I::::::
.j;::",

Li~'"?

'5n:)
-'::;1,)

5C:::

oj86

48;-'

·1 ?o:':
'I?;:'
4;'8
479
,~~~o

48'1

01:3-",_
-1::;4

<1£.8
4i~'-'l

47"0
4;-'J.

'-li'"
:, "1.1

'"' 'J'::,
-l:':v
_1 ~ ,:'

SCI.C,

-':.1';'
'::;(,:':

5('::­
~ ;(1

SLt
_5, .;

515

51?
~;J :::

522
523
'::;:-~01

5 '- ,
,,:; ---:-'

PAFAO
PAFfl1)
PAFRJ,;:!
PfiFFiC'
PftFRO
F'flFAI_::
F'AFAI)
f'AFAO
1'''I'lFAi;1
Pf1FAC'
F'AFAO
PAFAQ
PAFfIG"<
PFIFAQ
F'AFf,C
F'AFfiJ,;:'

--_. ----. ----F'fiFAC:

PflFFlQ
F'AFAC'
F'AFt'l(,
J'AFIK'
PI-1Fi'1C!
1-'flFAI:'
PAFFle,

PAFR':!
F'AFAQ
F'AFAC'
PftFRG­
PI'iFAl:1
PAFAO
F'AFAe,
F'AFHl~

F'AFf-~C

PAFA(:
F'AFP.C'
PI'1FtiC:­
F'iiFfiC
PtiFAC
PAFliI~'

PAFRI~'

PRFAC'
F'1'lFAC
PAFfil;
PAFF.[;

PiiF:'1l?!
PAFFiC'
PAFr-;C
PAFP.C
F'AFAQ
PAFFle!
F'AFA(1
PAFJiei

PAr-fiC;
r~AFr,C!

PAFt'lC'
PAFI'Il'
PIlFliO
PAnlQ
p(IFlir,

r:'AFfrC'
F'AFflC'
PAFAe!
f·AFflC!
PAFA[J
F'I'lrl'10
F'fiFI-':i;!
PAFi'lQ

=: IL IF LEFT Ot-lE IS ['ISCARDEI).
) THEN IR == Il.- IL = LUll)

INF8pr'1ATION nne THE COi.LECnOtlL:::f- r I~nEf::',IAL

= :<I'lID( IP:,
= Fr'iID( IP)
= ::I.EFHIPtI)
= FLEFHIAD
.- E:OUtlDLUF')
== AF'f.AL(IP)

COTANL(IP)

THIS F'R0GF:A~1 INSEF:'TS THE INTERVAL Itn0 ASSIGNED F'Lt~i(:F.S

OF THE INTERVAL COLLECTION. IF 2 ItHEF:VALS ARE KEPI' THEIl
LEFT GOES INTO IASSIGN(IP) ~ JAI = IL
RIGHT GOES <tIm KORETRWIP) = ,IR

80UtlDL<IP) = TRIANGL(CLL, CL, 0., DX<IP), DFU
8.0UNDF:<IP) = QUADRIUCL, CRR, DX(lP), DFR)
If-lFl.<IF') = LEFT, INFLE T<IA}) = CENTER

UPDATE I r~FLECT T0 THE LEFT
INFLECT(ILEFT(IAI)) ~ 0

= IASSIGtIUP)
= KQRETRt-h IP)

THE U:'f-'T HALF IS THE NEI~ CErnER
80UNDL( IP) ~ (~UADRIL(CLL,CR, DX(IP), DFL)
E:OUNDF:(IP) ~ TRIANGL(I). ,CR, CRR., DX( IP), [,'FR)
HWl(IF') = CEtiTER, INFLECHIA}) ~ RIGHT

UPDATE ItlFLECT TI2I THE RIGHT
Ir~Fl.ECl(Ii~IGHT(JA!) ~ I)

ELSE

CHECk R!::OL:T I)ISCAF'DING RIGHT HllERVAL
E:I)U~~DRnp... LT. DISCAR[HD;«IP) ) THEN

DISCi-I?,> THE RIGHT HHER','I'lL, SKIP ITS HlSERTIGI,j
ILEFHII-UCiHTnAD) = LIrK!, IF: =: LII'IC!

GO TO 200

INSERT RIGl-iT !NTERVAL HH0 JAr
BOU;,[![.( IP> . LT_ DISCARD*D;-";( IP)

CHECI< fl80ur DISCAPOING LEFT INTERVAL
8~:1UIWL(IP,) LT. DISCARD:f<D~(JP) ) THEN

r'ISCRR[' THE LEFT INTERVAL, SI(JP ITS INSERj"J0~~

I~IGHT{ILEFT(rAI») =: LIMO

G(I TO "~oo

'3L:E:~:OUT It':E INSERT( IP)

-,

"
1

IL ;:c JAI
I~

4

'?

It~SEPT ii'U,HT HHER'v'AL n:FOF:I'II~TI0N INTO' HE C0LLECT18N
":RIGHT'. IF:) ::F:ICiI--iT( IA!)
FRIGHHIF.') = Ff':IGH1(IAI)
::l...EFT {~F:~ ,',;1-1 Irl(I Fo)
FlEFT (IF~;' - FI'IIC'(JP)
Euur":D (i F;,) = !:::C:lJtIDF' (I P)
REST " I~:;' fif.:EAR\IP;'
C';TAN (~F':' CI)TRNR(IP)
ILEf'"T \ IF:.J IL
!:-:'GHl(I;;::, IF:IGHHIAI)
C'=1":::: (IF;., COTR(IAI;.
C0:l... (IF', COTANL(IP)
I'JF ... ECT( IR~'" Il:FLECf( lAl)
: ~ l'."!UEUE ( r p:-, == . TF~UE

HJSERT
;,,(R:GHTl il)

FPiGHT\!i_)
:'~I..EFT (IU
Fl.EFT (ll)

E::}IJ:j[) '1L;'

l'lE'::T nu
'::(\--;-A~~ ~ I L)

1
-.
"

c
'-

200 1F(

RETURll
END

['-_.. -------- ------- -- --------------_._--_._----------- -_.- --_ ..._- .
c

':
,oi-:Cf'1l L, DECL(IRE

"

-c,
" -

C
1
:2

C
-
,-

IF,:
C-
"

,-
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SUBF~(IUTI r'IE !~GET (I F')

, ,--" ---~----------------------------------------- - - --- .------ --_.- -------.--

'"**'*'!·-I"H~',..* THIS PROGRAM GAINS ACCESS TO THE HEAD 0F THE QUEUE IN
':: 0RD~R TC1 08TAIN AN It-HER'./AL.
-'+'CHLL, CE;CLAF'E

F'liFAQ <-·'~00.. '->'~
F'fiFFiQ !:,:~r;

F'FIFAO ·5~;·

F'jCfFAG 00 ".,.'.;,.,.
["";"1::-;:,:-, 539
FliF(,';' ·s·to
PAFf11) 5'1:1..
FAFAGI 542
r-·AFli.~!

c ;::
FFIFI1G' ~:·l·l

--Pici::':-i'll~' 5-15
PAFm~ 54'::
F'HFI~Q 54?
F'fiFfIC 548
PAf"FlfJ 549
PAFAO 550
F'AFhe:: :':".~
F'AFI1O 5"'~'.'..
P:iFPil' 5~5:::

F'fIFI':(j ~?:;4

PAFf:[~ ;;;:'55
PAFf,G' 556
PfiFAO 557
PAFF1C' 558
!"'AFflQ ~,~j9

PAFAO 560
PAFAG! ~;';:j.

PAi-AQ 56~-:

PAFF::} 56:'
F'ftFAG 564
PAFAO 0'0..J'=' ....
F'I"lFf~O '56'::
PAi-l~.O 5(:;"

PAFRO 5£.:3

PAFAC! 569
PRFA::-! 570
F'i"!FhL;' 57i
F'AFi'!Q 5/2
PfIFAI;; C'-r~

.... i _'

F'AFfIO 574
PAFRG' 575
F'AFAC: 576
PAme "-'-:>-:>-" ,
PAFRG 5'""",.:..
PRFAG' 579
PAFFtC< 5:::0
PRFAG' 5::':1
PAFAQ C'~-.

.•..:'.c.

PAFAO 5::::2
PAFAO .:,:::~

PAFRQ <....,<0
.-":'-'

PAFJiQ ~'E:6

PAFAI} ,,-,.-.~.....:.,
PAFAO <......-.

~'v·:·

PAFAQ 58::-<
PAFAQ !:.:c11)
PAFAO ~::;'.1.

PAFAO ,:,,~:;. .;:
PAFRO 5:r:
Pi1FAG ~; ::!ol
PRFr-lI;" ~','.~'~,

PFlFfiC! ';",.,
PAFfle: "-.. :,

PAFA(".' ';-.,J:,:

i"fiFIK: c • .<
PAFACl ,-~:XI

PAFF!O (1)-:,.

ILEFT<IAI)
IR
C~JTArIR(IP)

COTL<IAJ)
J'-IFL( IP)
. TRUE.

CHEU.: THAT PRE\,I10US FICCES'3 DID r~0T EXl-lf'lUST C0LLECTI0N
~F C:3LLECTWN IS Er·1Pn', l,iAIT IN IDLE LiJClP

35 IF( LEi'lDER . m. LHIGI G8 T8 35

l,iRIL SEE IF ).JAITING WAS TESTED ~lHILE 8EItlG CHliNGED
COt-ITIr,lUE

IF 513, THEN EXIT A,m RETURtl TO Cor·IPETITIGN
NE::<T ST!'LT. IS A i-LIt·IE IF-THEN-ELSF

IF( QFREE) THEN WAITING == . FALSE. , GO TO 10
IDLE L00F· Al'lA I T I NCi TURN

20 IF( ~·~:"IITlt-lG ) G0 T13 30

------- PRIl)RlTY l~RlTHlG L0ep BEGINS -------­
THIS IS THE NEXT CPU IN 0RDER

HAlTING == . TRUE.

ILEFT (IU
IRIGHT(lL)
C0TF; (Il)
ClHL (IL)
!:4FLECT(IL)=
I:'·~1L:ElIF.( IL;''-=

CHECI~ ;1) :-".E:E IF THIS IJAS THE LAST CPU T8 SET IDa
'~F tlOT, ~'f-"JURN Te COt',PETITION FOR C!UEUE ACCESS
[e'l' . r'lE. IP;' GO TI2I 20

2

n IS NOH THIS CPU/S TUR~~ Hi GAIN ACCESS T0 THE QUEUE
7 G0 TO 50

------ - I~R!eRIT'T' ~1:iITHlG U30P E!"lDS --------

HA'v'E E'HEf..:ED GATE TO THE QUEUE, NOIJ CLOSE GATE BEHIND US.
<~,) ("'fREE == . FH!,,:=.E.

I~)G' == IP
['ELA'T' LONG E~lOUGH ::.0 ALL CPUS THAT FALL THRU THE F180VE
.' !r/ ARi:: 8EH1EEjj THE Pr::~E""'IC1US AND THE FOLL0lHNG STIHS.

.-_ •. ~ .• -----.- S':I:;~T CPITICAL PAPT --------------.. ---.-
CHf:(I~ I :-IAT LEnDER [S ACTUALL'T' iW~ULfl8LE, WtlT IF NOT

_'_. !F': . !'i'~'T. :'lC'UEUE'__ L fCI1['l'P) ) Gt1 TO 50
l·iH',..-E :::.t''-:E FICCE::'::' TU TH:: (!UElJE LEI1DfR

r::;::'::.:;:(,f'I,~IP) = LEA['EY

Ir6ERTI(1N C0r·1PLETED
301) RETUr~N

elSo

c
C CHECK 1'0 SEE IF THE QUEUE IS N0T EI'lPT'r' AND THE LEADER IS FREE

10 IF( LEADER. EQ. LI!1Q ) 80 T0 10

"C ENTER COMPEl I T I mi FOR ACCESS TO THE QUEUE LEADER
IF( . rwr. QFREE) THEr-j

C CHECK T£I SEE IF THIS ISo THE NEXT CPU IN 0RDER
IF NOT, RETURN T8 C011PETITION F0R QUEUE ACCESS

1 20 IFC IP . t'IE. 1,IEXTQ) GO TO :10

,-

c
,-

,­

"

r'1ARi< LEFIDEF: AS I-<I2IT IN THE QUEUE
I ~'~':'UE:£ ", LE8DEF~ ", == . FALSE.
I :::m)EF: == It~E~(T(LEADER)

,- [JELA'T' J_ STATD-1ENT rr:, ALLO~·t TIME FBR CPU I~ITH IF' == NEXTQ 10 BE
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617

6D
~~24

62;::;

~-....

6-:-:?
t;_·'
,;;~:';:.

..;
r .. ' C,

6,1:::
6(,9

602
60:,
GO'!
605
606
60;:'
608
6':9
"51I"J
61:1

';-~...l =
(....l •.~.

.- "~
<:.'"

61".2
:;:.1.7.
f.:t 4
615
S:16

t:5·-'
"':t,1j
";c"
6",:2
600:'
oSt:'!

~'.r:.r~.

'.;~~ ;.'
'.::( ,~:

, ,:..;:,

Pi"!::-t".
PhF!"!".'
":"[;1:-1"-(·

:"'.FI"!CL
r·~II:-F'r"'

[--'1",1:-1',1.

H'lr-Ic:,.,
PRFf;I~!

PL:IFI~'C'

PF:FI~:I:;

Pi~Fl"'~:.

P'it-F:C,
PAF~C:

PA;:-F:C
h~Ff.C

F'iiFF',I:·
r'Aj:AO
Pi'l['"t'!I­

f'I"!Ff:WL
r·:-IFj'.['

F'fiFliU
~:'nF:-"i.'-'

PAFt"!!)
'~'.:-;::-AC

r':~Ff10

F·flFAI;·
i"I';['"f'!::'
;'·nl:-n:.-'
r.;11 ·I:~!

: 1-:r-·I1C:
i"I: ni."
• C11' j'; ,_:,

1,''-'1:',-, .,.,.. , ,

I-P-FAI:'
FP.FP'l;
F'AjO"l"!l;~

;:'AF;:,('
r'f-jl::=:,(1

;C'fiFf;:

;"i:FfI.,·
[ 'nrcfY'
!-I,FH'.;'

INSIDE IT~JAITING

. FALSE.
TRUE,

Nfl CPU IS
~'IAITWG =:

PFF~EE

:A:::srm,.( IP)
1_ [t"ll!

G:iTE IF
) THE~I

ELSE

SEE If:" THIS ~lAS THE LA5T CPU T0 SET !DT
F:ETURtl Te:: Ci}MPETITI0N F0R TAIL ACCESS

IF· ) ,:Kl T0 20

DElA't' 1 5TATEI'1ENT

,NE>:r{1~(I)

j,JRlT, SEE IF TAIUNG i'iAS TESTED HHIlE BEING CHAtlGED
CmlTIr'IUE

IF S0, THEN E:-;n AND RETURN TO C0i'WETITl0N
NEXT STI'1T. IS A I-lINE IF-THEN-ElSE

IF( TFREE;' THEN TAIlHlG '" . FALSE. GO TO 10
IDLE LOOP AI'IAIlING TURN

sO IF( TAIL n~G ) G0 TO 20

3PE~'1

WAITIrlG

------- PRIORITY FilLING L00P BEGINS - _

TH I 5 I S Tr'~ NEXT CPU I N 0F~r'ER
TAILItlG '" . TRUE.

~.U8f;":OUTlr:E (lPUT( IP)

HA'·...E FIt/ISHED ~IITH QUEUE ACCESS
RETUFm
END

1

C0~HIN'JE

[''''I;:CI( TI3
It" :·I[1T,

!F( WT . liE.

2

'~( :"'·~~~!_';:·flr,IP) . En, :::' ) iHrr~

f··!,-:T' UP HIr'" Er PUT 1. NEI~ ItnU·'·...FIL m tflD PU"!CF. AN[~ 1;;':lE)I[,

F( IF:ETU.';:WIP) . EO. 1 ::- THEN
PICI:. UP If~I:'<o: TO F"UT NEI~ INTERVAL IN OLD PLACE
! I·I<:"::T (r~;~!) LA::.S I GN< I P)

4

IT E, r'i0~J THIS CPU'S TUI':N T13 GAIt-1 ACCESS TO TilE TAIL
~ GO TO 50

------- PRIORIW TAILING lOOP Et'iDS .. _

HjCRENE~H THE II~DEX F0R THE NEXT CPU IN 0RDER
~1i::<TC! =: r'1(~[,(tlE.X:Ti;:l, ~'iCPU) + 1

.. --------- .. - END f:RITICAl. PART ---- _

'i'8*f'f'';:o''*'1'i::I' THIS PR0GPAi'I GAINS ACCESS TO THE TAIL (IF THE OIJEUE I~-I

0":DER TO OE:TAIN PLACES T13 PUT THE N::l-.l INTERvnL-:;.

ENTER COl1PET IT I0N FOR ACCESS TO THE TA I L
10 IF( . NOT. TFREE) THEt I

CHEO:: TO SEE IF THIS 15 THE NEXT CPU IN 0R[;ER
IF n3T, RETURN TO COMPETITION FuR TAIL RCCESS

1 20 IF( I? ,NE. NEXTT ) GO T0 10

HAVE EtHERED GRTE T0 THE TAIL, N(lH CLBSE IT E:EHm[~ US,
40 TFREE '" . FFILSE.

10T '" IP

Hii\/f: SOLE "leCESS H' THE Tn I l 0r: THE QUEUE
----.. ~-_ ... ----. ~-- STAf;'T (j·:·l riC-ill F'1~j;.:T

.;'~ IF'~ ;-~:ETURWIF'::- .1::('. (I"; THEN
NO li:TEF:VA;_ 5 F:ETUR~~ED

b PUT INTO l,jfrITING STATUS AT 30 ABOVE
CtJNTlriUE PAFAO

F'AFAbl

PAFFlQ
PAFAO
PAFAG'
PAFFlQ
PAFAQ·
PAFAI;,
PAFAQ
F"AFfiQ
PAFFlQ
PAFI,G~

PRFRG'
PAFAI)

::------------------.---------~------------------------- .._--.---- .,. -- - ---- - '---FAFFIe.

PAFfle'
F'ftFRQ

!-'ll:::f:O
[·'f,FfIC'
F-C1F,iCo
PfiFRI~'

PAFF;(I

PAPA:;'

·....,CS!...L,CtECL8RE

"

::.

'-
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C IJPDi'HE THE AREA At-JD 8'JUND ESTII1ATES
RREA AR~A - 8C~8~CE(IP)

E:OUIIC·A :: E:Q:J,'Wfl - 8CHANGE( IF")

I1KRENENT THE It~DEX FOR THE tlEXT CPU IN ORDER
~J::::-<iT '" l'j0[-,(t-lE.>::TT,I-;CPI)) + 1

f. ----------------- END CRITICAL PART _
RETURN
END

READY TO RELINQUISH ACCESS T0 THE TAIL

l'UEUE LEADER I F THE QUEUE ~IAS EI1PT'!'
. CT. O. R~lD. LERDER. EG!. LIr'IQ )

LEADER'= IAS5ICit./(IP)

P8:::-nc;' 66S'
PAFAQ .";','u
PAFAQ !S, ;
PFiFAQ ;;;-;";z
PAFAQ 6:':.
PAFFlQ 614
r~AFAQ '70

0, "_'

F'AFRQ 61'S
PRFAO 67,~

P;,FflG: f. 7 ::':'

PAFAQ 67:)
F'fifAO !;.;::.~)

PAFfiQ 681
PAmG' 6:32
r'AFAQ 68]
PAFAQ 1584
F'AFfiG! 6:3::.

PAFAr" 6:::6
PflFAQ 68:"
F'AFF:I~' "'·8:::
F'1~:::FiG 68$
["AFAf;'- 690
F';:;FAP ~~:::Jl

;:"P.FAQ 692
F'FiFr:,G: b:'>}

H-lTERVAL
'" . FALSE.
== LASTO

WAITING H6IDENO CPU IS
= "FALSE.
= . TRUE.

TAIL IF
T;~ILING

TFREE

OUELIE APEA B"r' 1 FOR TH=: eTHER NEI.j
L~5TG! == Li1STQ + L IL'k7.lUEUE(LASTQ)
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3.. SOME ATTRIBUTES THAT ARE OBVIOUS OR EASILY ESTABLISHED

Many of the attributes claimed for the program PAFAQ may be verified

by inspection. We list these in the first theorem and indicate the appro­

priate parts of the program to inspect.

THEOREM 3.1. The program PAFAQ has the following attributes:

Program Attributes

MAIN-CPUl

MAIN-CPU2

MAIN-CPUR

AREAS

NEIGH

INSERT

QGET

QPUT

1,2,3

1,2,3

4,5

5,6

2,3

5

4,7

Proof. The main programs for CPU! and CPU2 are so short that we merely

inspect them to see that they have the attributes claimed. The attribute

for the main program of CPUR is in fact a specification of this program and

we see that CPUR has the four subprogram invocations as required.

An inspection of AREAS shows that it only assigns values to variables

indexed by IP and that it (and its two subprograms TRIANGL and SPECIAL)

are straight line programs. F(x) is evaluated exactly once by AREAS and

this is the only subprogram that evaluates F(x) (i.e. q = 1 in Attribute 5

of AREAS) except for the algorithm initialization in BEGINQ.

Attribute 5 of QGET and Attribute 7 of QPUT are the same and one

inspects the list of variables assigned values to see that QGET and QPUT

do not affect any information about an interval other than its status in

the algorithm.
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•
Finally, QPUT is seen to have Attribute 4 by virtue of two state-

ments near the end of the critical section of QPUT. This concludes the

proof.

In the remainder of this section we establish that the program has

a variety of attributes which are considered easy but not obvious.

LEMMA 3.1. The program PAFAQ has Attributes 1, 2 and 3 of BEGINQ.

Proof. BEGINQ initializes the interval collection by dividing [A,B]

into equal segments of length CHARF/5. Three passes are made through

this initial collection. The first (DO 100 loop) computes basic quantities

for each interval (e.g. end points, cotangents ). 'I1le second pass (DO

200 loop) then detects intervals which are the center of triplets which

contain an inflection point. Since the intervals arc short, there is no

overlap in these triplets. The third pass (DO 300 loop) then computes

the initial error bound for each interval in the collection and the

total for [A,B]. A direct verification shows that the miscellaneous

quantities associated with the interval collection are initialized properly.

This establishes that BEGINQ has Attribute 1.

That PAFAQ has Attribute 2 and 3 may be verified by inspection.

LEMMA 3.2. The program PArAQ has Attribute 1 of INSERT.

Proof. The action of INSERT required for this attribute is made

primarily by the two long sequences of simple assignment statements. The

only delicate operation is to switch the right interval to the left inter-

val's location in case the left interval is discarded. This is accomplished

by the switch in index IR = IL made just before the assignment statements

for the right interval.

LEMMA 3.3. The program PAFAQ has Attribute 4 of QGET and Attribute

6 of QPUT.
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Proof. These two attributes aTe the sam~ and an illsp~ction DE QGE'J'
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variables LEADER, INEXT and INQUEUE. The situation where QPUT asslgns a

value to LEADER is analyzed in more detail in Section 4. but even 60 it

•is readily apparent that no conflict can occur. That is, QPUT can modify

LEADER only if its current value 1s LIMQ (which indicates the queue is

empty) and QGET cannot reach the critical section when the value of

LEADER is LIMQ.

The only modification of INEXT by QPUT that could affect QGET is that

of LEADER. However, QPUT modifies INEXT only for intervals assigned to

CPUs or ones newly created by subdivision. None of these can be the queue

leader 50 no conflict occurs here. A similar argument shows that INQUEUE

cannot lead to a conflict and this concludes the proof.

LEMMA 3.4. The program PAFAQ has Attribute 2 of QGET.

Proof. We see that the variable INQUEUE is used by QGET to mark an

interval assigned to a CPU as unavailable for further assignment. INQUEUE

is initialized to be true by BEGINQ. A perusal of the program shows that

INQUEUE is only reassigned by INSERT as the last operation on an interval

after it is placed in the interval collection. It is clear that a new value

of LEADER is assigned and this concludes the proof.

LEMMA 3.5. The program PAFAQ has Attribute 2 of QPUT.

Proof. The critical section of QPUT contains three IF statements,

one for each possibility of returning intervals. One possibility is that

no intervals are returned and no action is required in this case. Note

that this program does not do any garbage collection in memory. so the

program loses the use of memory space of an interval when both halves are

discarded.
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If one interval is returned, then it is placed ~n the memory used by

its predecessor and this interval is made the end of the queue.

Ir rw" 1'lr .. ,v .. 11:l <III:: IPllllru>.J, IhPJ, (WilT l:I.;ltll'!lldf::l I flu lII<:ollllJfy IIlllIl'/II.·d

to the collection (LASTQ marks the extent of this memory) J updates the links

•INEXT for the queue and moves the end of the queue to the newly created

queue position (i.e. NQ = LASTQ). This concludes the proof.

4. CONFLICTS AND DELAYS DUE TO PARALLEL EXECUTION.

This section deals with the fundamental question of integrity of

the interval collection during the multiple, unsynchronized access by

various. interval processors. The main responsibility for maintaining this

integrity is taken by the subprograms QPUT and QGET and. in particular,

the algorithm at the beginning of each of them. We begin with some tech-

nical lemmas about the mechanism to control this access.

LEMMA 4.1. Consider the K-th interval which has priority for access

to the head or tail of the queue, i.e. K = NEXTQ or K - NEXTT and further

which has entered the priority waiting loop of QPUT or QGET. The shortest

time lapse for this interval's processor to change NEXTQ or NEXTT from

the previous change is 10 statements. The longest time lapse for this

interval's processor to enter the critical section is 2 statements after

NEXTQ (or NEXTT) is changed.

Proof. We list in tabular form the statements executed by CPU(INSIDE).

the CPU currently in the critical section. and by CPU(IP). the CPU pro-

cessing the K-th interval. An examination of the program shows that the

shortest time lapse occurs in the following case (we use the statements

frum QGET here).
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Table 4.1. Statements executed for the shortest time lapse to enter

the critical sections of QGET and to change NEXTQ.

Time CPU-INSIDE CPU-IP

o

1

2

3,

4

5

6

7

B

9

10

11

12

IF (WAITING)

WAITING = .FALSE.

NEXTQ ~

IF (WAITING)

GO TO 30

IF (WAITING)

IF (LEADER. EQ .•.

GO TO 50

IF ( •NOT. INQUEUE...

INQUEUE (LEADER) ~ . FALSE.

IASSIGN(IF) ~ LEADER

LEADER ~ INEXT(LEAOER)

CONTINUE

IF (WAITING)

WAITING = or QFREE =

NEXTQ ~

An examination of QPUT shows that the critical section has at least 6

statements to execute (compared to 5 for QGET) but does not have one of

the statements in the waiting section. This establishes the first

conc:lusion.

A similar table for the time required for the interval with priority

to reach the critical section is given below. This table shows the longest

possible delay in QGET (QPUT has one less statement for CPU(IP) to execute).
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Table 4.2. The longest delay in exiting the priority waiting loop.

T~e CPU INSIDE CPU-IP

0 IF (WAITING) IF (WAITING)

I WAITING = .FALSE. 000030

2 NEXTQ = IF (WAITING)

3 IF(LEADER.EQ .•..

4 GO TO 50

5 IF(.NOT.INQUEUE

This concludes the proof.

LEMMA 4.2. Consider an interval which does not have priority for

access to the head or tail of the queue. The shortest time lapse for

this interval's processor to change NEXTQ (or NEXT!) from the previous

change 16 11 statements. The longest time lapse for this interval's

processor to enter the critical section is 6 statements after NEXTQ or

NEXT! is changed.

Proof. We consider two cases for the CPU processing this interval.

In case 1 the CPU (denoted by IF) is continually finding QFREE to be

false. In case 2 the CPU has found QFREE to be true along with the

processor INSIDE~ but it did not gain access to the critical section. An

inspection shows that in the second case the CPU cannot change NEXTQ or

NEXTT faster than in the first case. Likewise, the second case cannot

generate a longer time lapse because by the time QFREE is set true, this

processor has already exited to the' group of CPUs testing QFREE. Thus

we need only consider the first case here and the table below shows the

situation where the fastest change occurs for QGET.
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Table 4.3. Statements executed to achieve the fastest change in

NEXTQ.

Time CPU INSIDE

0 IF (WAITING)

1 QFREE • .TRUE .

2 NEXTQ

3

4

5

6

7

8

9

10

11

12

13

CPU-IP

IF (LEAOER •••

IF(.NOT.QFREE) .•.

QFREE == • FAU:iE.

IDQ • IF

CONTINUE

IF(IDQ •••

IF ( •NOT. INQUEUE

INQUEUE(LEAOER) •

IASSIGN (IP) •

LEADER ==

IF (WAITING)

QFREE ••TRUE.

NEXTQ •

Again the critical section for QPUT executes at least one more statement

but the waiting portion has one less statement. This establishes the

first conclusion.

The situation for the longest time lapse possible for CPU-IP to

enter the critical section 1s shown in the next table for QGET.

Table 4.4. Statements executed for the longest time lapse to enter

the critical section of QGET.

Time

a

1

2

CPU-INSIDE

IF (WAITING)

QFREE = .TRUE.

NEXTQ •

CPU-IP

IF(IP .NE. NEXTQ)

GO TO 10

IF (LEAOER
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Table 4.4 (Continued)

Time

3

4

5

6

7

8

CPU-INSIDE CPU-IP

IF(.NOT.QFREE)

QFREE = .FALSE.

IDQ = IF

CONTINUE

IF(IDQ.NE.IF)

IF(.NOT.INQUEUE
,

There is one less statement to execute in QPUT and this concludes the

proof.

These timing lemmas enable us to establish a key property of the

algorithm to control access to the queue.

LEMMA 4.3. There is at most one CPU waiting in QGET (or in QPUT)

for access and which 1s executing the priority waiting loop. There is

at most one CPU executing the critical section of QGET (or of QPUT).

Proof. We first consider the possibility that two CPUs are idle

and designated as having priority, i.e. they will enter the critical

section as soon as WAITING or TAILING is set false. During a period

while NEXTQ or NEXTT is fixed, it is clear that only one CPU can achieve

this status. Thus the only possibility to have two CPUs in this status

is for one to achieve it, then have NEXTQ or NEXTT change and another

achieve it before the first has entered the critical section. The first

possible uncertainty revolves about WAITING and TAILING which are critical

values but which have not been protected by an elaborate mechanism. Such

a mechanism is not required because at most two CPUs can simultaneously

(or nearly simultaneously) process WAITING and TAILING. This is seen
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from the table below where we display the statements executed by the

CPU-INSIDE and the CPU with IP = NEXTQ (we consider QGET here for

concreteness) .

Table 4.5. Statements executed while entering the priority waiting

loop.

TIme

o

1

2

3

4

5

6

CPU-l.N.!l.l.lJ}-; '1'111l€ GI'll-1 J'

CONTINUE , IF(IF.NE.NEXTQ)

IF (WAITING) t+1 HAITING = .TRUE.

WAITING = .FALSE. or t+2 CONTINUE
QFREE = •TRUE.

NEXTQ = t+3 IF (QFREE)

,+4 IF (WAITING) or
WAITING = • FALSE..

'+5 IF (LEADER •••

t+6 GO TO 50

When t = 0 in this match-up between statements we see that WAITING 1s

tested by INSIDE at the same time its value is changed by IP. This fact

is detected by the test of QFREE and CPU-IP exits the priority

waiting loop. A similar exit occurs when t = 1, 2 or 3. If t > 4 then

IP is not the priority CPU as the test at time t occurs after NEXTQ is

changed.

If t < 0, we see that WAITING is set false after having been set true

and CPU-IP gains access to the priority waiting loop. Then WAITING

is set false and CPU-IP exits the priority waiting and enters the

critical section within four statements. The CPU whose index is NEXTQ

as set in statement 3 can start to enter the priority WHiting loop so

both are nol in the loop simultaneouflly.
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The other possible uncertainty may occur if NEXTQ is changed, a

CPU enters the priority waiting loop, then NEXTQ is changed again and

another admitted before the first can leave the priority waiting loop

alld enter tllEi ,~r1ttclll sec.tion, It 1s scen from Lemma ~.I t1ull <.I change

of NEXTQ requires that at least 10 etatesments be executed whJJc the

exit from the ·priority waiting loop requires at most two statements.

This establishes the first conclusion of the lemma.

An examination of QGET and QPUT shows that the critical section can

only be entered from the priority waiting loop or from the "gate" governed

by QFREE or TFREE. The two programs are essentially identical in operation

and. for concreteness, we only consider QGET here. Entry into the critical

section is allowed by the CPU exiting it when it sets QFREE true or WAITING

false. If WAITING is set false only one CPU can start execution of the

critical section because only one CPU is executing the priority waiting loop.

If QFREE is set true then there is no CPU in the priority waiting

loop and if one enters just before QFREE is set true then, as shown above,

it exits the priority waiting loop. This CPU may attempt to enter the

critical section in this case only via the normal route. An arbitrary

number of CPUs may start to enter and each of them sets QFREE false so that

a group of CPUs is executing the code almost simultaneously. Each sets

IDQ equal to the CPU's index and then delays one statement. Since all the

CPUs of the group are within one statement of one another in executing the

program, there is an instance when all are executing the CONTINUE state­

ment and the value of IDQ is that of the last CPU to set it. This last

CPU is the only one where the test IDQ.NE.IP is false. This CPU enters the

critical section and all others exit to statement 20 where the test for

identifying the priority CPU is made. All those that fail this test

rejoin the CPU's competing for access to the queue. One CPU might enter
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the priority waiting loop at statement 20, but it is easily seen that it

would stay there until the CPU with access to the critical section exits

from the critical section. This concludes the proof.

COROLLARY. The program PArAQ has Attribute 1 of QGET and QPUT.

Proof. The corollary follows directly from Lemma 4.3 for QPUT.

In the case of QGET there is the additional condition that the LEADER of

the queue exist and be available for assignment. If this condition is

not satisfied it 1s seen that a CPU executing the priority waiting loop

continues to wait in an idle loop until the LEADER is available. All CPUs

attempting to gain initial access to the critical section execute an idle

loop as long as the LEADER is unavailable and, once it becomes available,

they behave as described in Lemma 4.3.

THEOREM 4.1. The program PAFAQ has Attribute 3 of QGET and QPUT.

Proof. Let the CPU which attempts to gain access have index IPX.

We consider only the case of QGET as the one for QPUT is essentially

identical. It is readily seen that each CPU that exits the critical

section increments NEXTQ by 1 modulo NCPU+l. Thus it is clear that when­

ever NPCU CPUs have executed the critical section, the variable NEXTQ will

have taken on all values from 1 to NCPU. It remains to show that whenever

NEXTQ=IPX then the CPU IPX does enter the priority waiting loop and thence

enters the critical section.

It follows from Lemmas 4.1 and 4.2 that the shortest time lapse

between changes of NEXTQ is 10 statements. When the variable NEXTQ is set to

IPX. then CPU IPX will be attempting to gain access without being in the

priority waiting loop. It might achieve access when QFREE is set true and

this would occur in 6 statements. In this case CPU IPX would achieve

access within the specified time without entering the priority waiting loop.
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enter the priority waiting loop. If this time lapse is less than the

smallest possible time lapse between changes in NEXTQ, then we have estab­

lished the theorem. The situation giving the longest time lapse is shown

in Table 4.6.

Table 4.6. Statements executed which give the longest time lapse

for entry into the priority waiting loop.

CPU-IPXTime CPU-INSIDE

0 IF (WAITING)

1 QFREE • . TRUE.

2 NEXTQ •

3

4

5

6

7

8

9

10

11

12

IF (LEADER

IF(.NOT.QFREE)

QFREE ::: .FALSE.

IDQ • IP

CONTINUE

IF(IDQ.NE. IP)

GO TO 25

IF(IP.NE.NEXTQ)

WAITING::: .TRUE.

CONTINUE

IF (QFREE)

IF(WAITING)

The longest time lapse for IPX to enter the priority waiting loop is thus

10 statements, but it is seen from Lemma 4.2 that NEXTQ cannot be changed

before time 13 (a time lapse of 11 statements). We also see from

Table 4.3 that WAITING cannot be tested before time 11 and thus WAITING

is set false by the CPU which does gain access to the critical section.

This concludes the proof.



32

THEOREM 4.2. The program PAFAQ has Attribute 6 of QGET and

Attribute a of QPUT. .

Proof. These two attributes have almost been established during

the preceding proofs. Thus from the proof of Theorem 4.1 we know that

the delay between the exit of one CPU from QGET (on QPDT) and the entry

of another to the critical section is quite short. Further we have seen

that no CPU is blocked from access to the critical sections of QGET and

QPDT. The only delay of uncertain magnitude is in QGET which may be

caused when the queue is empty (LEADER = LIMQ) or the LEADER has not yet

been inserted into the interval collection (INQUEUE(LEADER) is false).

We claim that the total time to execute the subprogram MAIN for

CPU-IP is bounded by the sum of the following times:

1. HAIN - 6 statements

2. QGET

3. AREAS

- NCPU times QGET execution time without delays

- 17 statements plus 1 execution of SPECIAL

4. QPUT - NCPU times QPUT execution time without delays

S. INSERT - 41 statements

Suppose now that the interval collection is empty. Then all intervals

must be assigned to processors (otherwise the algorithm is terminated)

and thus for some CPU we have execution occurring in or after the critical

section of QGET. This CPU then proceeds to execute AREAS and

starts to execute QPUT. Either it or another CPU then gains access to the

available memory. However, the CPU that gains access might not return any

intervals to the collection and thus not designate a new LEADER. Even so,

the other CPUs which are processing intervals gain access to the available

memory and may return an interval. If none of them do (all intervals

are discarded) then the algorithm termination criterion is met. Otherwise

,
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one of them does obtain space for an interval and proceeds to execute

INSERT. There are only NeFTI processors so unless the computation termi-

nates successfully, we have that within a fixed time the test of

LEADER = LIMQ is made and a new LEADER is assigned. As soon as INSERT

terminates the queue leader is unblocked, INQUEUE(LEADER) is true and

execution proceeds. This concludes the proof.

We may summarize the results of this section by saying that there

are no indefinite delays in the execution of PAFAQ. Every delay made

in order to avoid conflicts from parallel execution is bounded in

length by some constant times NepU.

5. THE AREA A}ID BOUND ESTIMATES.

This section deals with the basic numerical analysis procedures of

the algorithm, namely Attributes 1, 2 and 3 of AREAS. These attributes

essentially state that if the integrand f(x) is in the domain of applic-

ability as defined by A~sumption 1 below then the area estimates and bounds

on the area estimates satisfy the conditions of Assumption 2 of [4] which

is one of the hypotheses of the convergence proof.

ASSUMPTION 1. (Integrand) {(x) has singularities.

S ~ {si I i = 1, 2J "'J R; R <~}

Let
R

w(x)· IT (x - 51)
1-1

(i) ~ts implies that f"(x) is continuous in a neighborhood of xo.

(ii) there are constants K and a > 0 so that

(iii) f(x) has a finite number of inflection points.

(iv) f(x) has no cusps,

(v) the minimum separation between singularities and/or inflection

points is CHARF.

,
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The limitation implied by the fourth part of this assumption is for the

sake of simplicity. One could, as indicated in [2}. expand the sub­

program AREAS to accommodate cusps.

The first step is to locate the inflection points.

LEMMA 5.1. Let f(x) satisfy Assumption 1. Every subinterval which

might contain an inflection point has INFLECT not zero and every interval

with INFLECT zero has no inflection point.

Proof. First consider BEGINQ where the interval [A,BJ, is partitioned

in subintervals of length CHARF/S and the broken line interpolant to f(x)

is found. Specifically, the cotangent COTAN(K) of the K-th line segment

is computed and then the monotonicity of the sequence COT.~(K) is checked.

It is easily seen geometrically that any set of three intervals where

monontonicity is absent contains an inflection point. The assumption

that the partition is in intervals of CHARF/5 insures that only one

inflection point is contained in any such set of intervals and that such

sets do not overlap. After the iteration 200 is terminated all the

center intervals of such setseare marked with INFLECT = CENTER and

INFLECT = LEFT or RIGHT on the appropriate sides of these center intervals.

Thus we have established the lemma to be correct for the initial situation.

An examination of PAFAQ shows that INFLECT is thereafter changed

only in the subprogram SPECIAL of AREAS. There is a technical violation

of Attribute 4 of AREAS in this subprogram because the value .of INFLECT

might be changed for neighboring intervals during the execution of SPECIAL.

This violation does not invalidate the effectiveness and correctness

proof for two reasons. First. if an interval has started being processed

with one value of INFLECT and then a change of CENTER to LEFT or RIGHT
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or of LEFT/RIGHT to 0 is made at some point, no error results. Specifi-

cally, such a change could only affect SPECIAL itself and one sees that

there is only one test of INFLECT (per possible case) and a change in its

value has no effect after the test. That is, the result from SPECIAL

is the same as if no 'change had been made. Second, the possible changes
,

in INFLECT can only decrease the value of the error bound and there de-

creased values are correct if the change is made. Thus, if SPECIAL changes

a neighboring interval's value of INFLECT, the worst that can happen is

that PAFAQ computes a larger than necessary bound on the quadrature error.

Incidently. as noted in the comments of PAFAQ, it is possible. but

surprisingly cumbersome. to avoid this technical violation of Attribute 4

by saving the changes to be made in INFLECT and then modifying INFLECT

later.

The proof is then completed by examining the partition of subinter-

vals which occurs in AREAS, or more exactly in its subprogram SPECIAL.

There are three cases corresponding to INFLECT ~ LEFT, CENTER or RIGHT •

•There is complete symmetry between the LEFT and RIGHT cases and we only

consider the LEFT case here. These three cases are processed separately

by SPECIAL and in each case an examination shows that there are two

possible outcomes of the subdivision which are indicated in the

following table:
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INFLECTcLEFT, #1

02

INFLECT~CENTER, #1

02

New Value of
Left

Subinterval

o

LEFT

CENTER

LEFT

36

INFLECT for
Right

Subinterval

LEFT

GENTER

RIGHT

CENTER

Action Required
for Nei hbors

None

Change INFLECT to RIGHT
for right neighbor

Change INFLECT to 0 for
second right neighbor

Change INFLECT to 0 for
right neighbor

Change INFLECT to 0 for
left neighbor

The subprogram SPECIAL sets the value of INFLECT for the two halves of

the interval being processed and also makes the modifications of the

appropriate neighboring values of INFLECT. The values saved in SPECIAL for

INFLECT are then assigned in INSERT as the subintervals are returned to

the interval collection. This concludes the proof.

LEMMA 5.2. Let {(x) satisfy Assumption 1. The program PAFAQ has
•

Attributes 2 and 3 of AREAS.

Proof. An inspection of AREAS shows that the proportional error

distribution is used, that is BOUNDR and BODNDL are always compared to

DISCARD * DX = EPS * DX((B-A). This is equivalent to having ERROR of

Assumption 2 equal to BOUND(I) divided by DX. Those intervals with

BOUND less than DISCARD * DX are identified and counted in AREAS.

The condition of Attribute 2 that intervals be shorter than CHARF

is implemented in BEGINQ by the initial partitioning of the interval

[A.B]. This concludes the proof.

The key point of this section is that PAFAQ computes true bounds

on the errors in the trapezoidal rule. Figures 5.1 and 5.2 illustrate

the different situations and the geometric constructions used to bound
•
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the quadrature errors. These figures also indicate the correspondence

with names in the program.

THEOREM 5.1.
,

Let f(x) satisfy Assumption 1. The values of BOUNDR

and BOUNDL computed by AREAS are true bounds on the error in the trape-

zolda! rule.

Proof. There are two distinct situations. First is where the

interval is known not to contain an inflection point. Then the quadrature

error is bounded by the area of the triangle as shown in Figure 5.1. The

program computes this area using the function TRlANGL and assigns this

value to the bounds when INFLECT is zero.

When the interval might contain an inflection point then the quad-

rature error is still bounded by the area of a triangle when INFLECT is

LEFT or RIGHT (see Figure 5.2). If INFLECT is CENTER then the quadrature

error is bounded by the area of a quadrilateral (actually a trapezoid).

These calculations are carried out in SPECIAL using the functions TRIANGL

and QUADRIL. •

•

COROLLARY. Let f(x) satisfy Assumption 1. The values for AEST(K)

BOUND(K), BOUNDA and AREA are correctly computed by PAFAQ.

Proof. The previous arguments establish this result for BOUNDA

and BOUND(K) and the computations of AEST(K) and AREA may be verified

as correct by inspecting BEGINQ (where initialization takes place),

AREAS (where AREAR and AREAL are computed), INSERT (where AREAR and

AREAL values are assigned to AEST(K» and QPUT (where the value of AREA

is updated).

LEMMA 5.3. Let f(x) satisfy Assumption 1. Assume the I-th interval

and its two neighbors have neither an inflection point nor a singularity

of f(x) and it is not one of the two end intervals. Then with x-XLEFT(I)

d = XRIGHT(I) - XLEFT(l)
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Figure 5.1 The geometric construction used to calculate the bounds on the quadrature errors
in subdivision of a normal interval. The notation used in PAFAQ is also defined
and the function TRIANGL computes the areas of the two interior triangles.



INFLECTION POINT: and •

Figure 5.2 The geometric construction used to calculate the bounds on
in the subdivision of intervals near an inflection point.
computes the area of the quadrilateral that occurs.

the
The

quadrature errors
function QUADRIL
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we have, for d sufficiently small. that

BOUND(I) ::. 2If"(xJ Id 3

Recall that BOUND(r) is just the area of the bounding
Proof.

trfilnglQ (see Figure 5.1) So·we need to estimate the area

of this triangle. Its area Is given by bh/2 where

b
2

< d
2

+ (FRIGHT(IJ _ FLEFT(I))2

h =b/(cot a + cot s)

a,S = angles of the triangle at left and right vertices

The geometry is invariant under rotation, so we may assume that

FRIGHT(r) - FLEFT(I) = O. Let ~L (and ~R) be mean values in interval I

and its left (and its right) neighbor interval so that

tan" < /f'«LJI • «I

tan 8' If'«RJI • «R

<LJlf"(nLJI

<I) If" (nRJ I

<dlf"Cn)1
L L

<dlf"(n)[R R

where DL (and DR) are mean values between ~L (and ~R) and the point ~I

* *where £' ex) = o. Set d min(dRJ~) and note that d < 2d since at

least one of the neighbors of I has length d or smaller. Further let

d be small enough so that flr(x) does not change by a factor more than

2 in the interval [x-d,x+2dJ. Then we have

h < b/(I/dL!f"(nLJIJ + I!(dRlf"(nRJIJJ

* * *< dd /d /(dLlf"(nLJIJ + d /(~!f"(nRJIJJ

For concreteness assume that d* = d
R

and then we have. with 0 < e < I

b::. 2d
2
/(8/f"(nLJ + I/f"(nRJJ ~ 2d21f"CnLJI

~ 4d2If"(xJI

The area in this case is then bounded by 2d3 /f lr (X)I which establishes

the lemma .

•
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LEMMA 5.4. Let lex) satisfy Assumption 1. Assume the I-th interval.

and its two neighbors have a singularity of lex) but not an inflection

oint and the I-th interval is not one of the end intervals. Then with

the notation of Lemma 5.3 we have, for d sufficiently small, that

BOUND(r) 2 K(x)d2

where K(x) is independent of d but dependent upon x.

Proof. Since no inflection point is involved, the function f(x) is

convex or concave in the I-th interval and hence BOUND (I) is again the

area of the bounding triangle. It is clear that f(x) cannot

be infinite except at an inflection point or at the end points. Thus the

worst discontinuity that can occur in such an interval is a jump dis-

continuity of fl(x). For d sUfficiently small we see that at most one

such singularity exists in the I-th interval or its Cwo neighbors.

Let e be the jump in fl(x) in these intervals and for d sufficiently

small we have that the total variations in f'(x) in these intervals is

bounded by 28. As in the proof of Lemma 5.3 we may assume that

FRIGHT(I) - FLEFT(I) ~ a and with the formluas used there we find that

b = d

h = d/(cot a + cot B)

cot U, cot B > cot 28

so that the area of the triangle

which establishes the conclusion.

is bounded by
. 2

cot 28). d
4cotZ8

LEMMA 5.5. Let f(x) satisfy Assumption 1. Assume that INFLECT(I) , 0

or that the I-th interval is one of the two end intervals. Then, with the

notation of Lemma 5.3 we have, for d sufficiently small, that

BOUND (I) 2 K(x)da+1

where K is independent of d.

•
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Note that this lemma gives an unduly pessimistic value for BOUND(r)

if the intervals in question do not contain singularities of f(x), One

can establish bounds comparable to those of Lemma 5.3 for the end or

inflection point intervals if f(x) is not singular. However, the trigonometry

is tedious and the final conclusions are unchanged 80 this situation Is not

~onsidered here.

Proof: First consider the two end intervals. Assume that

d = XRIGHT(I) - XLEFT(I) is small enough so that fll(x) does not change sign

in this end interval. There are two cases: first when f'(x) and f"(x)

have the same sign near the end point (the end point may be a singularity

in this case). It is easily seen that in this case the triangle are~ is

bounded by d times the difference in the f(x) values at the two end points

of the interval. Assumption 1 implies that this difference is at most

Kd
Q

and consequently we have BOUND (I) 2 KdQ in this case. In the second

case where fl(x) and f"(x) have opposite signs there is no possibility

of a singularity. The triangle area is seen to be bounded by d times

d tan a where tan a is the slope of the secant line for the next to the

end interval. Thus tan a = fl(S) for some mean value point s and for d

sufficiently small tan a is bounded independently of d. Consequently

a-Iin this case we have BOUND (I) ~ Kd for some constant K.

Now consider one of the three intervals near an inflection point with

INFLECT(I) # O. We may assume that d is small enough that fl(x) is of

constant sign in these three intervals (including the possibility that

If I (x) [= ~ at the inflection point). In each of these three intervals it

is seen that the triangle area or quadrilateral area used in computing

BOUND(I) has its area bounded by d times the difference in the f(x) values
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at the two end points of the intervals. Assumption 1 implies that this

(I a+ 1dIfference 11) at most Kd and consequently we have BOUND(r) < Kd and

1111/1 I:ClllcJlldl:~1 till" pnmf.

We now recall Assumption 2 from [4J concerning error estimates and

state it in the particular situation of this paper. The use of compari-

sons of BOUNDeI) with DlSCARD * DX rather than merely DISCARD makes

these two relations equivalent to ERROR(x.k) 2. klf'I(XJld 2• ERROR(x.k) < kdQ

as given in [4].

ASSUMPTION 2. Consider the I-th interval of length d. There are

constants K and a (the same as in Assumption 1) so that when d < CHARF5

we have

(1) If the I-th interval contains no singularities then

BOUND(I) 2 Klf"(x) Id 3

(ii) If the I-th interval contains a singularity then

BOUND (I) < KdQ + l

The objective is, of course, to show that if f(x) satisfies Assumption 1 then

the computed values of BOUND satisfy Assumption 2. The preceding lemmas

achieve this is essence but there are three technicalities. First, the

analysis and program treat some intervals as containing singularities

even when they do not contain singularities. Second, the analysis restricts

the length d in ways other than the separation of singularities and inflec-

tion points. Third, a larger constant may be required than given in Assump-

tion 1. Thus we introduce the following

TERMINOLOGY; We say that the I-th interval contains a singularity if

it i is an end interval (ii) has INFLECT(I) ~ 0 or (iii contains an

actual sin ularit of f x We take CHARF5 to be the smallest value re-

guired in the above proofs, namely one fifth of the minimum of
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(1) se aration between sin ular aints and/or inflection oints

(- CHARF)

(il) distance of inflection or singular points to the end of the

interval (unless the end point is itself a singularity).

The value of K in Assumption 1 is increased, if necessary. to be larger than

2 (for Lemma 5.3), tan 26/4 for each jump discontinuity of tan a in f'(x)

(for Lemma 5.4 and tan e = 2f ' (x) for x = A and x - B (for Lemma 5.5 •

Note that this terminology still leaves us with a finite number of inter­

vals containing a singularity and K is still finite because the number of

jump discontinuities in flCx) is finite and CHARF5 is still positive.

We now state a crucial result concerning the effectiveness of this

program.

THEOREM 5.3. With the terminology introduced above we have that if

f(x) satisfies Assumption 1 then the computed values of BOUND(I) satisfy

Assumption 2.

Proof. Theorem 5.1 and its corollal~ establish that PAFAQ computes the

areas of the triangles and quadrilaterals correctly and correctly obtains

values for local and global error estimates. Lemmas 5.3, 5.4 and 5.5 estab­

lish that these error estimates satisfy Assumption 2 provided that f(x)

satisfies Assumption 1.

We summarize the results of this section by

COROLLARY. The program PAFAQ has Attributes 1, 2 and 3 of AREAS.

6. THE CORRECTNESS AND CONVERGENCE RESULT FOR PAFAQ.

We first summarize one of the consequences of the previous section's

analysis by saying that the program is correct in the sense that it has

the attributes to be represented by the parallel metalgorithm of [4]. This

fact is stated explicitly in the following:
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THEOREM 6.1. The program PAFAQ is represented by the parallel metal

gorithm of [4].

Proof. In order to establish this we must show that the program has

the structure specified by the metalgorithm and that the elements of this

structure have the required attributes. A comparison of the description

in [4) with the program shows that the same structure is present and, in

fact, the same names are used. Some subprograms of [4] have been imple­

mented by using additional subprograms (TRIANGL and SPECIAL), but this

does not alter the situation.

To see that the attributes are present as specified one has to check

that all 32 of them have been established in the preceding three sections.

This is in fact the case. Since PAFAQ is specific, certain variables in the

metalgorithm description have constant values here. In particular we have

q ~ 1 (in Attribute 5 of AREAS) and p = 2 in Assumption 1 about the

integrand f(x). Assumption 1 is made mDre specific in two other ways,

namely that f(x) has no cusps, and has a finite number of inflectiDn

points. Thus the attributes in AREAs are valid with respect t~ this

more restrictive Assumption 1. This concludes the proDf.

With this result we may now apply the main result (Theorem 5) of

[4J to establish

THEOREM 6.2. Assume that f(x) satisfies Assumption 1 and the

computer operation is as described in Section 1. Then the program PAFAQ

terminates with an estimate AREA requiring ~ evaluations Df f(x) so that

IIf - AREAl < EPS

with
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or, equivalently,

If N > NCPU2 then the

IIf - AREAl 5.. O'(N})
total computation time T~f satisfies. for constants

~l J fa and C1 as defined in [4],

T f < K N*(4Cp + 2C]*NCPU)
N-l Nepu

This theorem is very satisfactory in several ways. First, it specifies

the result of the actual operation of the program, namely the program will

terminate and print out a result for which these estimates are valid. This

is a substantial improvement over the more usual result of mathematical can-

vergence which merely states that a program will eventually compute a number

for which these estimates are valid. Second it shows that the adaptive

nature of the program enlarges the domain of efficiency of this program to

include virtually all functions of interest in applications. Third, it

shows explicitly the speed up achieved by parallelism in the computation.

The constant Cl equals t 1 + t 2 where t
l

is the maximum time in the critical-

parts of QPUT and QGET (17 statements). The time t
2

is the time for one

attempt at access to the queue. Under certain circumstances this latter

time can be as much as 41 statements (the maximum execution time of

INSERT). The time for an attempt otherwise is seen from Lemma 4.2 to be

6 statements-. Thus the maximum value of C
l

the order of 60 statements

but the average value 1S likely to be 20-25 statements. lnese statements

represent the portion of the computation which is not speeded up by

the parallelism of the algorithm. The constant Co is seen to be

SUbstantially larger> about 100. For large values of NePD this implies

a speed up of a factor of about 9.
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The result if disappointing in that it shows that there is a definite

limitation on the speed-up obtained from parallelism and that one must

provide CHARF 8S input data to the program. The speed-up obtained here

is not the best and deserves further analysis. On the other hand, it is

not likely that the dependence on NepU can be made better than

(log NCPU)!NCPU. The input CHARF is essential to obtaining valid results

from this (or any other) quadrature program. Without a knowledge of CHARF

(or some equivalent information) there is no way to bound the error in

the number returned by a quadrature program.

Finally there are ~o other troublesome questions: Is the program

actually correct? and: How much computational efficiency has been sacrificed

to obtain a completely reliable program? It is now realized that the

answer to the first question is (for any program): "We do not know". Even

so~ there is a variety of program errors which the approach of this paper

is not likely to detect. There are " c l erical ll errors and trivial omissions

or oversights. Thus the program TRlANGL may be called TRIANGLE at some

point and provisions.might not be made for an input of EPS = -.001

(they are not in this case) or CHARF = 1000.*(B-A) (they are in this

case). This variety of errors is much more likely to be detected by

testing than by proving and testing presents a problem for a program

written in a non-standard language for a hypothetical computer.

Some testing can be made in this case by using three approaches.

b 1 t d i t Fortran without much effort andFirst, the program can e t~ans a e n 0

i 1 f h " This does not test any of theexecuted in the usual sequent a as 10n.

parallelism of the algorithm, but it does check the initialization, the

management of the data structure and the numerical analysis subprograms.

Second, the parallelism can be simulated for the Fortran version. The
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simulation is straight-forward but tedious. One labels each Fortran

statement and sets up an instruction counter for each CPU. One can then

cycle through the CPUs executing one Fortran statement in each. The

beginning of each subprogram is a large computed GOTa and a RETURN

follows each statement executed in the algorithm. Special steps are

required for subprogram calls and logical statements, but these are

obvious. This approach was carried out on an earlier, more complex algo-

rithm which allowed the number of CPUs to vary dynamically. Finally, one

can translate the algorithm into a language which includes parallel simu­

lation. Such language systems are primarily designed for modeling operating

systems, but they may be quite suitable to test this program. One such

language system is ASPOL available on CDC 6000 computers. Neither of

these simulations gives truly asynchronous parallel operation as assumed

in this paper. This approach has been carried out and a substantial

number of tests made. The speed-up actually observed 2cr several cases

is shown in Figure 6.1. The speed-up is quite acceptable for this small

number of CPUs.

We conclude that the combination of detailed proof and substantial

testing via simUlation leads to a very high level of confidence in the

correctness of the program.

The answer to the question about efficiency is not so satisfactory.

Everyone, of course, realizes that high reliabilit~must cost something

in efficiency for routine integrands. Experiments show that the algorithm

normally detects oscillations and obtains correct answers even if CHARF

is omitted or is much too large. For example with [A,B] = [0,1] the func­

tion f(x) might have a peak with two inflection points at x a .49 and

x = .51. Thi~ forces the program tu UHe subintervaly of length .004
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everywhere even though they are unlikely to be required to be that short

for most of the interval. The adaptive nature of the algorithm normally

detects the peak and arrives at a much more logical choice of subintervals.

However, there is then no way to avoid the exceptional case where fine

oscillations are missed and incorrect results produced. CADRE [1J is

an example of an adaptive quadrature program which is almost certain to

detect fine oscillations but integrands can be constructed where it

fails.

It is clear that one can gain efficiency by allowing the information

provided about f(x) to be more detailed. This complicates the program

development and use but, 1f well done, probably would result in a more

satisfactory algorithm.
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