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We 1nvest1gate ‘the relations be'wcen the tree representatlon
of a prefix code C, its patterns, Lhe minimal automaton ¢
*

which recognizes ¢ and the homomorphlc images of the under—
lying algebra of 2. These relations provide us with an
appealing formulation which allows us to state (and eventually

solve) some problems concernlng the structure of preflx codes

and therefore the structure of trees,




Introduction.

In this paper we study the structure of prefix codes and the
structure of their tree representation. Besides the introduction
of the notion of pattern and theé derived formulation, Part I will
be an exposition of known results (cf classical works of
Schutzenberger, Nivat, Perrot). 7In Part II we stﬁdy an important
family: the overlapping coaes, and provide a new demonstration
of a basic theorem due to Perrin and Perrot. 1In Part III we bfing
part;ai gnsweré to the probléms raised in Part I and derive some

applications.

The reader has to be aware that the intuitive use of the geometrical
representation of how the pattern is distributed in the tree pro-
vides a frame for many demonstrations which are otherwise heavily
technical. We assume known the basic results on regular languages

and finite automata.

Notations.

X will denote a flnlte set of cardinality strictly superior to one,
the alphabet. All the examples, for sake of simplicity, will be
given uéing a binary alphabet. The reader will be easily convinced
that the assumptiqn of finiteness for X may be removed for many

results,




*
X will denote the free monoid over X, and "e" the null word.

+ ) * +
X will denote the free semigroup over X: X = X + g,

* ) .
If L is a language of X . the right congruence = 1nduceq

. *
by L is defined as follows on the words of X e

N _
u=v (L) iff vh € X uh ¢.L o« vh ¢ L.

R T . F
A prefix exhaustive code is a subset C of X . such that no word
of C is a strict prefix of another word of ¢ and every word of
* .
X is a prefix of a word of C or admits a word of C as a pre-

fix, in equivalent teims:
* * * *
YheX chnec P = hec.
. * % *
vh ¢ X hx_nc + 0

These properties will be used constantly and we will not refer
systematically to them. Furthermore, as it is done usually we

will use the word "codd' instead of "prefix exhaustive code".

ct = x" - cx’t will denote the set of the prefixes of the words

of cC,

Part I: Generalities,

Codes are characterized by a tree representation such that the



same number of vertices are issued from each non terminal node.

The following examples should be clear ehough SO we do not need

to give an unnecessarily heavy formulation:

The / vertices represent the letter x and ™\ the letter y.

rapresents the

finite code: {x, YXX, ¥yXy, yyl

represents the

* -
regular code: (xx, XY, YY x}-

represents the non-reqular code:

- p=n
(yn( T} xpy) + ynxn+l\_

p=1

L--]
C=x+ 75
n=1



Some properties of ¢ may be better seen on the tree repre-
sentation that on the complex formula. In_particular, one can
see that there exist words h in ¢! such that: hc -.cl .
Such a code will be calleé a8 "matriochka" code, because‘in some

sense it is contained in itself,

\

\

In the remaining part we w111 use the same notation for the tree

and the code, when no confusion will be possible.

Patterns:

In fact the tree represents ¢! and not only C and so if a code

is "composed” of other codes it is easily seen on the tree:

Example:




We see that A may be built using B or C:

We will express this situation Dy saying that the trees B and

C are "patterns” of the tree A.

There are various ways to formalize this notion, we will give a

“constructive" one which will be appropriate to further demon-

strations.

Let A and B be two codes and define:

{e} . By, = (B,-A)B

Definition: B is a pattern of A if and only if for every

integer i Bi < at

This is a different way to define the notions of supercoding

(Schutzenberger r121) and comp051t10n (vaat C417). The follow-
d{ l‘,,_-rf\ *‘; ok B .

ing theorem shows the ut111ty of thls deflnltlon.

* *
Theorem I.1: A B iff B is a pattern of - A,




Proof: Let us suppose that B is not a pattern of A, thcre-
fore we have a first integer i such that 8.+ AL So we
have b ¢« B, and b & al (therefore b $ e and i » 0) and

B. - Ai. We know then that b = da, with d ¢ B. d&aAa

i-1 i-1°
and a ¢ B, therefore 4 ¢ al, Because b & A' ang a is
exhaustive we have ¢ €A and ¢ 1is a strict prefix of b.

As b =da and d ¢ [A'-A} th.s implies that d is a strict
prefix of c. So there exists u + e such that ¢ = du and
clearly u is a strict prefix of a ¢ B. As B is prefix

3 . 3 - * 3 * *
this implies u & B  and since de€B wehave c & B . As

* *
€ £ A we therefore have A ¢ B .

* *
Conversely let us Suppose that A ¢ B it is equivalent to
) . ) *
say that there exists a € A such that a &€ B. If a is a

1
of B as a prefix, then a may be written as a = bh where

prefix of a word of B, then B, =B ¢ Al. If a admits a word

b ¢« B* and h ¥+ e is a strict prefix of ¢ ¢ B. Not any prefix
of b belongs to A since a ¢ A and A is prefix, therefore

there exists an integer n such that b ¢ Bn' theﬁ bc ? Bn#l
and does not beloné-to Al since a € A 1is one of its strict

prefixes.



Tree_representation .and automata.

N
Let £ = «S, X> be an ‘universal algebra where S is a set
‘
whose elements a:e célled states and where X is a set of
unary operations called the alphabet. The action of the
elements of X on § is naturally extended to the elements

*
of X'. All the algebras consiaered here will be assumed

. +* .
strongly connected, that is Vs, t € § 9f ¢ x such that

sf = t.

Let ¥ = <s,s'0,x> denote the algebra & in which an element

) - * *
S ©f S has been distinguished, then the set C = {f e X !
s f = so} is generated by a code (prefix exhaustive) ¢, as it

is clearly verified, We will say that %, is an automaton

- » *
which recognizes ¢ .

Conversely, let us suppose that ¢ is a code, there exists at

* .
least one strongly connected algebra AC ) = <5, X> and a
T .
dlstlngulshed element S in S§ such that <S'Sb'x> recognizes

C -

Indeed;we take 'S as beang .the set of.classes of the right con-
gruence induced by C ..on the words of x___.and_so as being the
class of the empty word The words of x* operate- naturally on
tﬁe ‘set - S, <S,so,x> is-then'a minimal automaton recognizing

c’. (r1j,rioq). |



. -
The following properties of #C ) = «5,X> and of PRI &
are classical.

L}

Properfv I12; 1In every class s -there exists at least one

element of Ci;

Proof: Let £ be an word in a class s. As C isg exhaustive

*
we may write f = ¢ch where ¢ . - and -h ¢ Cl, it is clear

. .
that f = h(C ) and then h 1s 1ii.. the class s.

* *
Property I3: If f and g belong to xt - oex then f = g(Cc )

. A * 1 -k 1
1f and only if fh € X |fh ¢ cr = Ih € X |gh ¢ ct.

Proof: If f gic*) and fh ¢ C, then gh ¢ c*. We have

sogh = s .. If p is a prefix:of gh

s f = S,9 = s , sofh °

SoP = s, implies p=e or p = gh otherwise C would not
be a prefix. 1Therefore gh € C. Conversely let F = fn € x*'
fh ¢ c} and G = Ih € x*]gh € C} and suppose F = G.. The set
af words u such tha£ fu ;_C* Lis-clearly equal to FC* and

Ty

. i -
the dual for g. Therefore f = g{c}.

) : * R
Property I4: For any congruence on A(C ') different from the
identity, S, 1s not alone in its class. |

Proof: 1If there was such a congruence and S, alone in its

class then we would have two distinct states s and £t congruent



* - } . .
which would imply vFf ¢ X sf'="s'0 o tf = s, in contradiction

N ) *
with the definition of {C ).

These properties allow us to agrive AKC*) directly from the

tree representatiﬁn of . C:. the root and-ail Eerminal_nqdes

will be labelled with S, -@nd only these nodes will be labelled
with 5, .We attach the same ! _.bel to nodes (different from the
rogt and the terminal nodes) whi.a admit the same subtree (Property
13) and this label does not appear elsewhere. The set of labels

_ . .
represents S in #(C )} (Property 12).

Examgleﬁ

. . e . _,_-l'JI [ . ' *
c= {xx, XYX, XYY, YX, YYX: YYYXK, YYYXYX. YYYXYY, YYYYY X}

T e P

From there we hay draw the trangition graph:

I



Patterns and Automata.

Let Aﬂc*) = <5,X>» and 'ﬁg = e 5O,x> be a minimal autématon
which recognize-s C*. If '9‘9= <T, 4> 1is i'an homomorphic image

of Ac*), then 9}0 = <T,to,x>, where to, is the class of S

in the congruenc-e relation induced by the homomorphism, recognizes
D’r where D 1is a code and it is easy to verify that C* = D*.

In other terms thé homomox;phic images of ,.e(c*) "extract"
patterns of €. It has been shown by Perrin and Perrot .[91 that
wﬁen C 1is finite there is a bljectlon between the homomorphic

images of _#(c” ) and the patterns of c (this is restated in

our terminology).

Definition: We will say that D is -an admissible pattern of ¢

if and only if there exists an homomorphic image @ = «§,X> of
x _
.Ai’(C )  such that 9 = <5,t,.X> recognizes D . (to has been

deflned above)

Several problems arise from this terminology:



characterize the admissible and the non

admisasible patterns of a code C.

Is it possible. to derive the non admissible -

patterns from the admissible ones? ...

These problems aré'relevant fri_i.the following point of view:
the properties of a code C are c.0sely related to its patterns,
,I(C*) is a useful-algraic tool to study the properties of ¢
56 we have to see how much information on the patterns we may
get through _éTC*) and if we can retrieve Ehe unavailable in-
formation by some other means.

Before we bring partial answers to these problems, we will

give a quite simple example:

Cade

Tree

- * :
#(C ) has only tr1v1a1 homomorphlc 1mages, but C admits in-

finitely many patterns: D- ypx + y .
: P=



Now it is clear [7 1 that a pattern D is admissible for cC-

if and only if D Bl ct is saturated modulo tlie right congruence

induced by C*. in terms of tree a pattern D of C 1is not
admissible if and only if there exist a ho&e ny correséonding
to a word of D' n c', a node n, corresﬁonding to a word which
does not'belong to- D*, bbth nodes different from the root and
the two subtrees below these nodes are equal. (Furthermore these

two subtrees admit D as a pattarn). Using the previous exémpler

C=yx D=x+yx +yy
> />\

The nodes n1 and n,

admit C as a subtree.

*
L
L]

Part II. Overlapping patterns.

. Perrin [67] has studied the fdilowiﬁg problem in the reqular case

{restated in our terminology):

Charaéterizatidp of the codes D such that there exists another

code C and D is a non admissible pattern of C. Let us call



non universally admissible such a code. 'He showed that D ig

non universally admlsslble lf and only if D is synchronizing

in some B* (ld eot q d e D such that B d c D*) using rather
sophisticated properties of the minimal right ideals of the
syntactic monoid of n'.’“we“&iii study here the general case and
find a characterization in terms of tree which will allow us to
find a weaker characterizatioﬁ'in terms of code. We intruduce now
a new family of codes derived frdm the study made at the end of

Part I1:

Definition: We will say that D is overlopping if and only if

-one can find € such that

i} D is a pattern of C

. - . * -
ii} There exists f ¢ x+ N Cl. £f&ED and the subtree

below f admits b as a pattern.

Another notion is that of strongly non suffix.

Definitiong_ D is said strongly non suffix if and only if

*
7. f € D such that vdeD ga°’ eD and £ g g eD

WE have xntroduced three f&mllles of codes, one deflned in terms

of algebra. the non unlversally admlsslble code, one deflned in
terms of tree: the overlapplng codea and one defined in terms of

codesa: the strongly non suffix codes. The following theorem tells

us how they are related



Theorem II.1. The following properties are equivalent

i} D 1is non“uﬂi;eraally admissible
ii) b is strongly non suffix
]

iii) b is overlapping

Proof.
i) - ii), There exists a code ¢ which admits D as a pattern

, * *
and g f D, g dl € D such that f dl(C*). Let d be any

word in D*. fds= did (C*) as € is exhaustive gh such that
fdh e D* thereforg dldh € C* c D* and as D is prefix, h G_D*.
2 ¥ eh’ | |
ii) 4 iii} g £ & D* such that vyd ¢ D* and £ 4 4' ¢ D*. It is
seen easily that we may_consider £ ¢ D‘, define E = D* n fD* R
F=Eg-©gph and C =-[D—fx*] UF. If C was-not a prefix set
there would exist two words fa and fb and a word h # e such
that fah=1+fb¢cc (the two other cases are trivial), but_then
ah =b and as a and b belong to D*, h belongs to D* and
therefore fb € €. We have to show that ¢ is exhaustive. Let
us consider h ¢ x*,_if h. is a prefix of.a word of I{D—fx*1 U £l
or admits a word of {D—fx*l .aa-a'prefix. thé problem is solfed.
So° we may Suppose h = fh', - As D is exhéustive JFh"  such that
h'h" = d € D' and then ha" =-fh'h" = fd. As D is strongly

. L. * , K3 - )
- non suffix d°' ¢ D such that f£d44° € D and so the word.



Applications.

Let D be a code with a pattern ¢ such that c is partitioned
into ¢ = C, * ¢; and [Bi-—D]C1 C D with B, = {el and B, =
[Bi_l—D]C. Such a code will be called a pseudp periodic code
with pseudo period C. One can see easily, from the demonstration
of the previous theorem that D is a basis of C;Cl
C is not necessarily the principal pattern of C;Cl. We recall
that a code A is said synchronizing [12] iff there exists a

* * * .
word a ¢ A such that X a c A . It is clear that A 1is syn—

we may state:

Proposition III.6, A pPseudo-periodic code is synchronizing if

and only if its pseudo-period is synchronizing.

Now if we take a finite tree ¢ = Co + Cl ‘of cardinality n, if

Cl has a cardinality equal to n - 1 all the pseudo-periodic
trees we will build will be finite periodic trees or equal to
C:CI. But if ¢, has a cardinality strictly inferior to n -1
then we may build a basis of C;CI' regular code, whi&h will not
be regular, as shown on the example at the end of the paper. So

we may atate:

Propgsition 1I1.7. . A regular code may have non fegular patterns.

even though .



In the next theorem, which gives a characterization of the bases,

* x
A = cocl will be a systematic prefix code and C = C, + C; will
be its principal pattern. If D admits C as a pattern, we
will define B = {e}, B; = {B; ;1 - DIC, we recall that D being

a pattern of C we have B, C ¢! for every 1i.

Theorem III.5. ILet D be a ccde distinct from A, then: D 1is a

basis of A if and only if C 1is a pattern of D such that

Proof: Let D be a bisis of A, PropositiOn I11.2 tells us that

C 1s a pattern of D, the definition of B, and the fact that C

is a pattern of D imply for every i {B;,-D} ¢ p!. Furthermore

if [Ei—D} N C*Clc* # @ one would find a ¢ A and b e‘fBi-DT

such that b ¢ ax* and as a ¢ D+, b € D+x* which is impossible.
Therefore ({B,~D} < c; and [B;-D}C, « A'c Db’ and as (B;-Dic; c D',

we have (B;-D}C; < D.

Conversely let us define D, = g {B;-D}C;. As (B _-DJC; = C; # 2,

. i * i
Dy # @. Furthemmore it is clear that {B;=D} c C, otherwise D
’ *
would not be prefix. Now D = Dy wiuld imply D = b, c coc1 = A
*
and then D = A, therefore D, =D - D, # 2. D, = C, since- D

is prefix and D, ig disjoint from Dl' Therefore we have a parti-

tion of D, D=D_+ D a D'D c’c. = na *
* 7T Yo y 2" as-olcocl_'ﬁ"‘)“‘b(:%




_ . _
Example: Let C = x + yx + yy, A = (yx) (x+yy) the bases of A

. k=n
+
are perodic trees with period C: D = 7‘ [(yx) (x+yy)] + (yx)n 1

N D

However the structure of the bases of systematic prefix codes may
be more intricate, in particular the proposition below shows that

they may be themselves systematic prefix codes:

%
Proposition IIli.4., If A = C0

1 3nd if ¢ may be partitioned

into C_=1cC, + C

o 2

C
*
-then D = C2

3 (Cl+C ) is a basis of A.

Proof: Accordlng to Proposition III 1 A represents the set of
words of C whose last word in the decomposition into words of
C belongs to Cyo p* represents the set of words whose such last
word belong to [Cl + C31. it is then clear that 2" < D and
that D is a basis of A (but C is not neceésarily the princi-

pal pattern of D even if it is the Principal pattern of A).



Qur aim here is to scudy the lattice of patterns D comprised
between the principal pattern ¢ of A and A itself, or in
other terms, to characterize the structure of the codes D such
that ¢  cbd cA'. In [2 1 it was shown that among such codes
D, the only admissible cases were D =C or D= A. SO JlTA*)
bears information only for C, tr - following study will show us
how we can derive the structure or o from the structure of C,

the first step being:

& * *
Theorem II1I.3. P is a basis of A if and only if A <D < C

Prgof: If D 1is a basis of A, then A = D;D1 < D = (D0+Dl)*
and so A* c D*. now D* c C* from Proposition III.2. <Conversely.,
if A* cC D* é C*, we have A* + {D*-A+] = D* and [D*-A+] is
included in [C*-A+] which is a submonoid from Proposition III.1,
therefore the product of two elements of [D*—Af] i1s in D* and
in [C*-A+]. [D*—A+] is then a submonoid. To show that it is
generated by a prefix set, let us suppose & and dJh ¢ [D*-A+1:
as D 1is prefix we know that h is in D*, if h was in At
then dh would be in at which is a left ideal in C*, there-
fore( 3 i = x i rve;

-i}—qbs-exhauﬂtive.) We may then apply Proposition III.1 to end the
proof. \ |

B“ﬂ‘{- G MJHQ M)I.)a{(nd-n_)vbuwd o Q.

“ﬁﬂﬁ‘aﬂl c Wolt oud o bl




Part TIII. Bases of systematic prefix codes.

I1f we consider &n infinite regular tree and its labelling we

see that if we follow aﬁ infinite branch on the tree, necessarily,
as the labelling is finite, we will meet #wo nodes identically
labelled. Therefore these two nodes admit the same subtree which
may be expressed as D;D1 whers: D .D;, form a partition of a

*

= + _ 1 = =
cade D DO Dl' called a basics >f a Donl.

codes, called systematic prefix codes has been introduced by

This type of

Neumann ([5] and plays an important role in Information Theory.
Perrin pointed 6ut that they were related to‘the problem discussed
in Part I (€], [71 and derived properties of codes which do not
pelong to this family. In [2] we studied their structure and

derived the two following results that will be used later on:

Proposition III.1. A is a systematic prefix code if and only if

A is a code such that there exists a code D, pattern of A and
* + ‘ . . e
D - A 1s a free submonoid. Then there exists a partition of

i - k. * +
= + = -
D D0 D1 such that DOD1 A and ,D1Do. generates D A'.

Proposition III.2. Among the bases of a systematic prefix code A

there exists one, . called the principal pattern of A which is a

patterﬁ of all the bases of A.



Lemma II.3: If a code D is overlapping in a code C, then

C 1is infinite.

" * .
Proof: If D overlaps in C then 4f €D , f ¢ c! and the

subtree below f admits D as a pattern; therefore fD cC ct.

Let £=dh with deD; and heD'. If hDcD' (the
matriochka case, as we have seen'in an example in the introduction)
then D is infinite and so is C. TIf hD # D' then gk such
that dhk € D;,, since D is exhaustive and dhk € C other-
wise we would be in the preceding case. Therefore Dit2 ~

{Di+l - C}D is not empty. Now if fkD c fp! we are in the
matriochka case, if fkD ¢ D‘I then gk' such that fkk' ¢ ct,
fkk' & D*, fkk' ¢ fD and so fkk' has a subtree-which admits

D as a pattern, and so we may reiterate. Therefore C'-is in-

finite because D is infinite or ¢! admits words of unbounded

length.

A direct consequence of this lemma is that if € is finite all

its patterns do not overlap in C and therefore are all admissible.
We know how to assign a pattern of C +to any homomorﬁhic image of
,lTC*), if C 1is finite the application is injective since any
homdmorphic image leads to a minimal automaton, and is surijective

gince every pattern is admissible.



* - -
But we see that 2 is not isomorphic to (D ) which is

This is due to the fact that no word of U D;x has the same
i=0

| ]
subtree in C as a word of U Diy, and x and y have the
i=0 .

subtree in C. Therefore the corresponding labels will form

two distinct classes in the congruence. So if the homomorphic
* * ' .

image of .#(C ), 9 is not isomorphic to #(D") there exist two

* »
words f and y in p! - p which have the same subtree in D
- -}

and such that no word of U Dif' has the same subtree in C as

= i=0
a word of §] Diy. We see in particular that D; may be empty
i=0 '

and that C€ is infinite.

Therefore if C 1is finite any homomorphic image 2= «T,X> of

R .
A(C ) will be such that 90 = <T,t,,X> is a minimal automaton

*
which recognizes D .

Now, . the basic theorem of Perrin and Perrot [91, stating that
if C 1is finite there is a bijection between the patterns of ¢

* .
and the homomorphic images of _#C ) will be a consequence of

the following lemma and the preceding remark.



Tree representation as an intuitive tool.

Iet D be a pattern of C, then by definition, we know that

= - }
Di {Di=1 C}D c C?,

If D is an admissible pattern of C we obtain the homomorphic

*
image of &% of A#(C)} as shown in the examples:

We break C according to D, and we pile up:

0,3

We have then a congruence (0,3) (2) (1) on (0,1,2,3) from
which we build 2




*
Proof: If ¢ and c¢ beleng to € , their product belongs

1 2
to C* since for every d ¢ D* ad’ ¢ D* such that czdd' € D*,
but then gd" ¢ D* such that clczdd'd" € D*. We have to show
that C* is generated by C, prefix, exhaustive. Let c and
ch belong to c”, does h belong to ™2 yd ¢ D*gd' € p”
such that chdd' ¢ D*. As D is exhaustive we may find f such
that hdd'f ¢ D* ‘and so qd" ¢ n* such that chdd'fd" ¢ D*.
As chdd' ¢ D and D is prefix, we have fd" ¢ p* and so
hdd' £fa" ¢ D*. Therefore, for each d in D* we have found b =
dr £fa" ¢ D* such that hdb ¢ D*. S0 h ¢ C* and C 1is prefix.

A ¥
Since D <« C , € is exhaustive and then C is a pattern of D.

* * &
If c¢C - and. f ¢ X are such that ¢ = £ (D ) then for every
. * * * *
d in D ed = fd(D ). As 3d' € D such that e¢dd' € D we
* - *
have cdd' = fdd' = e(D ), therefore fdd' ¢ D and f ¢ C .

* *
C is then saturated moduleo D .



hh"d ¢ E = D* n fD*. Let us write hh"d' = fdl"'dn with

d, € D(i=1,n). One of the fd, belongs to F = E~- ED', so

h is either a prefix of a word of F or admits a word of F
as a prefix. Therefore C is exhaustive. As F c E c D* we
have C* c D* s0 D is a pattern of C and it is clear that
D is a pattern of the subtree below f since all the words of

. *
this subtree belong to D . Tao-efore D 1is overlapping.

iii . i} If D 1is overlapping, there exists a code C and a
word f € Cl, £ E_D+ such that D is a pattern of C and a
pattern of the subiree below f£f. As f is_not the empty word

and as we suppose that the cardinality of the alphabet is strictly
superior to one we may find at least one word ¢ ¢ C which does
not admit £ as ﬁ prefix. Let us branch a subtree identical to
B at the end of C. This construction gives us a tree A for

which D 1is not. an admissible pattern.

The following proposition generalizes a result of Perrin (61

from the regular case to the genefal case:

Proposition II.2. Iet D be an overlapping code, then

* * * * *
¢ ={fex'|vaed gd' €D such that £dd' ¢ D } is generated

by an admissible pattern C of D.



We will now state a last theorem whose demonstration will appear
elsewhere [3] and which is a generalization of a result of Perrin

[8]. This theorem shows that the notions of systematic prefix

code and principal pattern play an important role in the structure

of regular codes. In the statement of the theorem A and B will be
two regular codes, U and V will be two codes, U1 and U2

(Vl and vz) will be two disijci.t subsets of U(V), Ui and Ué

will be two disjoint subsets of a crde U'.

* *
Tneorem ITI.B. .4(A') and _4(B } are isomorphic if and only if

the three following conditions are satisfied

i) 49U = U1 + U2 and 4%V = Vl + v,
such that
+ * + *u

* *

ii) U2U1(V2V1) is not a systematic prefix code,
or if it is a systematic prefix code then
U(v) is its principal pattern.

* *
2 + U1V2V1 = U2 + UlVZV1 then

< Uy and the dual proposition for B.

iii) If A =1U

U,



Example of basis:

' *
C=x+yx +yy A = (x+tyy) yx

principal pattern of A.

Various bases of A:

\




/AA////
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