Design of Tunable Architectured Metamaterials for Biomedical Applications

Jaejong Park
Alok Sutradhar
The Ohio State University, sutradhar.1@osu.edu

Follow this and additional works at: https://docs.lib.purdue.edu/iutam

Part of the Engineering Commons

Recommended Citation

This document has been made available through Purdue e-Pubs, a service of the Purdue University Libraries. Please contact epubs@purdue.edu for additional information.
Design of Tunable Architectured Metamaterials for Biomedical Applications

Jaejong Park\(^1\), and Alok Sutradhar\(^1\)

\(^1\)Department of Mechanical and Aerospace Engineering, The Ohio State University, 201 W. 19\(^{th}\) Avenue, Columbus, OH 43210, park.975@osu.edu, sutradhar.1@osu.edu

KEYWORDS:
Topology optimization, Implant, Metamaterial

The design of medical implants involves multiscale consideration. The structure in macro level needs to satisfy the space, functional, aesthetic and load-transfer requirements. Additional considerations of stress-shielding and localized stress-concentrations to improve the effectiveness and functionality can be increased using architectured metamaterials. For example, the mechanical properties of the bone implants and their adjacent bone need to be similar to reduce these effects. Topology optimization is a numerical tool that is suitable for obtaining optimized geometries under several constraints. Earlier efforts used inverse homogenization technique to attain the microstructures of scaffold geometries. These equivalent material model would be valid when there is a significant dimensional difference between the large and the small scales. With recent advances, 3D printing of multiscale multi-material structures is realizable. We present an approach to design tunable architectured metamaterials for implants which may alleviate localized stress-concentration and stress-shielding. We develop a topology optimization framework to design the architecture materials in different scales which varies smoothly within the design domain. The preliminary study shows easy control in connectivity and provides more topological variability. The metamaterial implant models designed using the methodology in this work are 3D printed, and their performance is studied using mechanical testing.

Acknowledgments

This research was partially funded by the National Science Foundation No. 1521801. The opinions, findings, and conclusion stated herein are those of the authors and do not necessarily reflect those of sponsors.