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Abstract

In this paper we describe an interactive symbolic-numeric interface framework (ed­
itor) to the ELLPACK partial differential equation (PDE) system for building PDE
solvers for a much broader range of applications. The domain of applicability of ELL­
PACK and its parallel version (j /ELLPACK) is restricted to second order linear elliptic
boundary value problems. This editor allows the specification of nonlinear initial and
boundary value PDE problems. The editor applies hybrid symbolic-numeric techniques
at the PDE problem levello automatically reduce them to a sequence of linear elliptic
POEs. The result of this preprocessing is recorded in the form of an ELLPACK pro­
gram. Several examples are presented to demonstrate the functionality and applicability
of this interface framework, and the efficiency of the underlying solution methods.

1 Introduction

ELLPACK is a high level software environment for specifying linear elliptic second order
boundary value problems and their solvers. The solvers are built out of an extensive library
of modules that correspond to the various phases of the numerical processes for these
types of PDE problems. A detailed description of the ELLPACK system for sequential
machines is given in [Rice 85]. The system is currently being extended to accommodate
PDE problems which may be nonlinear, second order in space and parabolic or hyperbolic
ill time. The extension also includes facilities to specify or select pairs of parallel algorithms

"This research was supported in part by AFOSR 88-0234, ARO granl DAAG29-83-K-0026, NSF grant
CCF-8619817 and ESPRIT project GENESIS.
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and architectures. We use an object.oriented knowledge framework (editor) interface which
allow the user to specify:

• linear/nonlinear PDE boundary/initial value problems in a natural form,

• the PDE domain geometry and boundary conditions in a graphical and textual form,

• parameters such as grid and the mapping of the underlying computation to the spec­
ified machine,

• linear elliptic PDE solvers using a menu for the many choices of individual compo­
nents,

• displays of performance data collected,

• visualization of the computed solution,

• displays showing the efficiency of a method with respect to a known data base of
performance data.

Figure 1 shows the structure of a framework and its corresponding editor. A general dis­
cussion of the object-oriented knowledge framework methodology is presented in [Forbe 89J.
Figure 2 shows part of the hierarchy of these frameworks for the / /ELLPACK application,
while their complete description is given in [Houstis 90b, Houstis 90aJ. The remaining ed­
itors of the interface are those invoked after execution to display solutions, performance
data, etc.

The output of this object-oriented software environment is a control program written in
the very high level / /ELLPACK language which in turn is translated into a Fortran control
program. Even though the / /ELLPACK control program is in a very high level language,
it is quite long in typical applications, of the order of several hundred lines. The resulting
Fortran control program is much longer still. See [Houstis 90cJ for a complete example of
/ /ELLPACK control program as well as a discussion of its syntax and use.

This paper is concerned with the development of the PDE specification framework which
uses symbolic/numeric processing to handle the PDE problem extensions to determine some
of the input functions and carry out any preprocessing required. The methodology used to
handle nonlinear and time-dependent terms is presented in Section 2. The functionality of
this framework and its implementation are discussed in Section 3. Finally in Section 4 we
present numerical results which indicate the efficiency of the high level PDE solvers created.
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Figure 1: Structure of an Object-oriented knowledge framework in the interface.

2 High Level Nonlinear and Time-dependent PDE Solvers

In this section we formulate a high level preprocessing methodology for solving nonlinear
initial/boundary value problems of the form

a: u! + f3 1£tt = F(t. x, y, z, U, U:r, Uy, U:, U:r:r, U yy , U::. U:ry, U:r:. Uy::) == Fu (2.1)

including, for example, in a simpler case,

a: Ut + f3 Utt Co +Ct U +C2U:r + CaUy + C4. U: + CSU:r:r +C6 U yy + C7U:: +
Cs U:ry + Cg 1£:1::: +CtO u y::

_ Lu

3
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Figure 2: Hierarchy of editors in the / /ELLPACK Preprocessing/Solution Interface.

Problems (2.1) and (2.2) are defined on (0, TJ x.n with .n c R3 and are subject to boundary
conditions

Gu == G(t1x,y,z,u,uz,uy,uz ) = 1jJ(t)

or, again in the simpler case,

Bu == do + d1 U + d2 Uz + d3 u y = 0

on the boundary of fl, and initial conditions at t = 0

u(O,x,y,z) = ljJ(x,y,z).

(2.3)

(2.4)

(2.5 )

The coefficients Cj and d; may depend on (x, y, z) and the problem remains in the class
of linear PDEs that / /ELLPACK currently assumes. The coefficients of Land B could be
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functions of the solution u, making a semi-linear problem not in the class that //ELLPACK
currently assumes. The parameters a and f3 are chosen to make the equation (2.1) elliptic
(<> = O,~ = 0), parabolic (<> = 1,~ = 0) and hyperholic (<> = O,~ = 1).

2.1 Nonlinear PDE solvers

The traditional way to handle nonlinear PDE problems numerically is to discretize them first
with an appropriate method and then solve the corresponding nonlinear algebraic equations.
A non-traditional alternative is to apply a nonlinear methodology directly on the continuous
PDE equations and boundary conditions. This approach reduces the original nonlinear PDE
problem to a sequence of linear PDEs which must be solved by iteration starting with some
initial guess. Under certain general assumptions we can show that the two approaches are
equivalent. Another advantage of the second approach is the ability to utilize existing linear
PDE solvers without any modification. Its disadvantage is that the user has to define and
implement the nonlinear process at the program control (PDE-operator) level and carry out
the symbolic processing required. Rice has tested this methodology in [Rice 83, Rice 85J by
constructing special ELLPACK templates which implement nonlinear and time dependent
hlgh level solvers by embedding ELLPACK code into Fortran. In order to separate the
user from the PDE problem specification and PDE preprocessing/solution phases, we have
developed a knowledge based editor whlch automatically generates these templates from
given specifications and carries out the needed symbolic processing. The / jELLPACK
system already has a natural interface to MAXIMA and //ELLPACK and now implements
two of the most often used nonlinear approaches, the Picard and Newton's iterations. Their
formulation at the PDE problem level has appeared in [Rice 83a, 83b]. For completeness,
we present it here.

2.1.1 Picard iteration for nonlinear problems

Tn order to apply Picard iteration, one rewrites the equations F(u) =0 and G(u) =0 into
the form L(u)u = feu), and B(u)u = g(u) and then uses the iteration

L(u,) "'+1 = f(u,),

8(U')U'+1 = g(Uk).

Note that L(u)u is the operator L(u) applied to the function u and not an ordinary
multiplication. The coefficients of L and the function f can be nonlinear functions of the
partial derivatives of u. The coefficients of the boundary operator B and function 9 can
depend on u. The attractiveness of this method is its simplicity. Its weakness is that
convergence can not be predicted a priori. Picard's nonlinear process can be described as
follows:
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;,'Ellpack-!laX11'la Interface

(Qult](Save Equation in Ellpack File](Shobl Fortan Window) (Configurat.ion]

IT] Uxx +~ Uxy +~ Uy!:l +~ Ux +~ U!:l +~ U = (X,Y)

Okay, now please ente~ each coefficient, ci, as !:lOU are asked
for it.

Uxx coefficient (i.e., c1)?
1;
UX!:j coeffIcient. (i.e., c2)?
0;
U~ coefficient Cl.e Ol c3)?
1;
Ux coefficient (i,e" c4)?
0;
U!:l coefficient (i,e" c5)?
0;
Ucoefficient (i.e., c6)?
0;
'Const.ant' coefFicient (i.e., c7)?
-u~ * (~ + !:l~) * %e~(-x*!:l)~

The pde !:lOU entered is non-llne.!lr.

1'D2)
([3) ~

Enter
CoeFFicients

~rs;;;)

~~

DONE

Generate
TRlE Function

tMtl
~

Figure 3: A semi-linear PDE problem specified in the PDE specification editor. This
display occurs in the j jELLPACK-MAXIMA part of this editor.

Guess u(O)
repeat

Solve L(Uk)Uk+l = f(Uk), and B(Uk)Uk+l =g(Uk)
Set Uk+l :;:: Uk

until converged.

Next we consider some examples to demonstrate the formulation of this method in the
j jELLPACK environment. Figure 3 shows the PDE specification editor for the problem

6
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IIlime = .<rue.
c1oe~.. i'e = Mue.
~plo'~d

DECLARATIONS.
p ..amelet (101=0.01)
paTameler (nilero=IO.O)

EQUATION.
UXX+U'l'l = U(X,Y)-"2-(X--2+Y·-2)"EXP(.X"Y)

BOUNDARY.
enl... hound..y here.

GRID.
en'" a Ctid he'e.

TRIPLE.
,el (u = 2ero)

FORTRAN. +bolh.
IILEVL = I
do 20 I = l,nile..

DlSCRETIZA.TION.
enler di.ero,iu,ion melhod bore.

INDEXING.
en'.. indulnc m ..hod b ....

SOLUTION.
enlO••olulion m ••hod here,

OUTPUT.
MAX (ERROR)

FORTRAN. +bolh.
1..1 for con.orCence:

if (R1NRM2 .11. 101) .heo
CO 10 30

endir
IlLEVL = 0

20 conlinue
pTiM ., 'r.il.d '0 con¥orC.!'
Co 10 ~O

~o eonlinue
prin. -, 'con¥o<c.d in " I, 'it".'ion,'

50 conlinue

END.

Figure 4: Template of a //ELLPACK program for Picard's method for (2.6), (2.7). Later
stage of the solution process may add greatly to this program.
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defined on the unit square subject to boundary conditions

(2.7)

where 9 is a function that makes u = eXY the true solution of the boundary value problem.
The Picard iteration template generated by this interface editor is shown in Figure 4. In
spite of the simplicity of Picard's method, it is not always very effective. The number of
required iterations for convergence can be very large.

2.1.2 The Newton's iteration for solving nonlinear problems

(Qultl(~e Equation in Ellpack File) (Show Fortan WindolllJ(Configuro!ltion]

Well, do ~ know the true solution? (wn)

"loIhat is the trul!t solution?
sin{%pi*x)*cos(%pi*~);

Okll~, now please enter ellCh coefficient. ci , as ~ou are asked
for it.

Uxx coefficient (i.e., c1)?
1;
Uxy coefficient (i.e•• c2)?
0;
~ coefficient (i.e•• c3)?
u'"'2;
Ux coefficient (i.e., c4)?
0;
~ coefficient (i.e., c5)?
0;
Ucoefficient (i.e., c6)?
0;
'Constant' coefficient (i.e., c7)?
-%e"'u;

Figure 5: The nonlinear problem (2.8) in the POE specification editor in preparation for
applying Newton's method.
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l1lim. _ Muo.
c1o~k.. i•• :a ."uo.
xplolJd

DECLARATIONS.
por..mele< (lol=O.O~)

p ....m.'er ("ilo,"=10)

EQUATION.
UXX+U(X,Y)-·2-UYY+(~-U(X,")·UYY(X,Y)_EXP(U(X,Y»))-U= U(X,Y) &:

-(~-U{X,Y)-UYY(X, 'I )-EXP( U(X, '1)))+EXP{U( X, "»- RS(X,")

BOUNDARY.
u = "u.(x,r) on X = 0
u '" "UO(I,r) 00 I '" I

U = <rUO(I,r) on y = 0
U = trUC(I,y) on y = I

GRID.
20 I poin..
20 y poin..

TRIPLE.
• 01 (u = .0(0)

FORTRAN. +bolb.
IILEVL = I
do 20 I = l,oi....

DISCRETIZATION.
5 POinl .... ,

INDEXING.
;os i.

SOLUTION.
jocobi .i (ilmn=200)

OUTPUT.
MAX (ERROR)

FORTRAN. +bo'b.
illevl = 0

20 conlino.

SUBPROGRAMS. +bolb.

(unclion "U. (I,y)
pi = .. I .. n (1.0)
TRUE", SIN{PI-X)-COS(PI-")
roluro

'"'
runclion RS (X, ")
pi = .., ... (1.0)
RS = EX P(SI N( P I"X )-CO S( PI'Y»+ PI"2'SIN(PI-X)-'J-CO S( PI-Y )••J

I +PI'-2'SIN(PI'X)"COS(PI-Y)
"'u.n.",

END.

Figure 6: Template of a j jELLPACK program for Newton's method applied to (2.8).
Internally, the system has created the linearized PDE problem which is solved repeatedly
in the Fortran DO-loop 20.
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A superior alternative to Picard iteration is the well known Newton's method. For its
formulation we consider the general PDE problem (2.1), (2.3) with Q = 0 = fJ. The idea of
the method is to approximate F(u) = 0 and G(u) = 0 with their linear counter parts

F(uo) +P(uo)(U! - uo) 0

G(uo) +G'(uo)(U! - uo) = 0

and then iteratively solve these linear problems. The linear counterparts are the Fnkhet
derivatives of the operators F and G with respect the the function u and its derivatives.
While the mathematical foundations of such differentiation is complex, its mechanics are
similar to ordinary differentiation. The corresponding symbolic/numeric process that im­
plements Newton's method can be described as follows:

Compute Fre'chet derivatives L(u),B(u) of F(u) and G(u)
repeat

Solve L(uo)u = -(F(uo) - L(uo}uo), and B(uo)u = -(G(uo) - B(uo)uo}
Set UQ := u

until converged.

To illustrate the application of this method consider the problem

(2.8)

defined on the unit square and subject to boundary conditions

onx=Oand
G(u)=u-g'=O

(2.9)

(2.10)

on the rest of the boundary. The functions I, g, and g' are selected such that u(x,y) =
sin(x)cos(y) is the true solution. Figure 5 displays this PDE problem in the PDE speci­
fication editor and Figure 6 shows the template generated for Newton's method from the
PDE specification framework.

2.2 Time semi-discretization solvers

In this section we consider a semi-discretization procedure for solving initial/boundary
value problems. The procedure can be viewed as opposite to method of lines, since the
time discretization is done first and the original problem is reduced to a sequence of linear
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or nonlinear time-independent PDEs on the varions time levels. In the case of a parabolic
POE (0 = I,P = 0) and Crank-Nicholson discretization, equation (2.1) is reduced to

(2.11)

Note that we have suppressed the space variables and derivatives of u in the above
equation. Assuming that the solution and its derivatives are known at the t - tlt level,
then the nonlinear PDE with respect to u(t) is solved over the domain n with boundary
conditions

G(u(t)) = '1>(').

To illustrate this approach, we consider the equation

u, = )¢(u)u.). + )¢(u)u,), _ f(u)u. _ g(u)uy +h
un un

defined on (O,TJx(unit square) subject to Dirichlet boundary conditions

(2.12)

(2.13)

on the boundary of n and initial conditions u = true.
The equation is parametrized with respect to v, ¢I, n, j, and g. The function h is

chosen so that a given function true(t,x,y) is the solution of the PDE problem. Appendix
A shows the template for solving (2.13) with v = 1, 4>(u) = e-u, n = 2, J = 9 = u2 and
true(t,x,y) = t + x +y.

3 A Symbolic / Numeric Interface for nonlinear / time­
dependent PDEs

We have developed an interface to the symbolic computing system MAXIMA1 [MACSYMA 77J
to implement some of the transformations noted above. We briefly describe the user in­
terface to the PDE specification editor, PDE manipulation methodologies and their spec­
ification, and the interface between j jELLPACK and MAXIMA. The PDE specification
editor is the software that deals with obtaining the PDE operator for the j jELLPACK
programming environment.

I MAXIMA is the AKCL version o( Macsyma.
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3.1 User Specification of the PDE Operator

The PDE specification editor consists of a window providing access to MAXIMA, an equa­
tion display/edit panel above it, and a button panel below it. There are several additional
buttons above the equation display panel which are used for configuration, quitting and
saving, see Figure 3. The control panel below the MAXIMA window consists of buttons
to enter the PDE operator, to generate the / /ELLPACK program and buttons to allow
the user to enter corrected information and obtain partial results. For example, the show
right hand side function button allows the user to view the correction term added to force
a certain solution. Also, Fortran code for the PDE coefficient functions may be viewed.

When the system prompts for input, the user is expected to provide information in legal
MAXIMA syntax via the MAXIMA access window. We are in the process of adding an
input wrapper for MAXIMA which will allow one to enter expressions in a more 'natural'
form and not deal with any syntax peculiarities of MAXIMA.

The PDE operator is specified by either entering the coefficients of the operator L or
by defining an implicit relationship between them. If the PDE is specified by entering
coefficients, one starts by pressing the enter coefficients button. The MAXIMA function
which implements this action prompts the user for each coefficient of the PDE operator
and saves them in internal variables for later use by other functions. It also sends these
expressions to the equation display/edit panel for display. The user may edit the display
panel directly as well.

Given the PDE operator, the system identifies the type of the operator (Le., time­
dependent, parabolic, hyperbolic, nonlinear) and sets appropriate global flags. We also
provide a convenient method to force a given function to be the true solution. For example,
if we wanted to check whether the linearization process is working correctly, we could request
that the PDE operator be perturbed to force a certain solution. Then, by visualizing
the computed solution using / /ELLPACK's solution visualization editor, we can verify
correctness of the solution process.

3.2 Linearization and Time Discretization Methodology

Once the operator has been specified, a / /ELLPACK program can be generated to solve
the linearized elliptic PDE. This is done by pressing the generate program button. If the
operator is found to be nonlinear, then it is linearized in the manner outlined in Section 2.1.2
using MAXIMA's symbolic differentiation capability. If the operator is time-dependent,
then the time derivatives are discretized using one of several methods (for example, Crank­
Nicholson discretization).

For nonlinear PDEs, several parameters control the solution process and the user is
asked to enter values for these during the / /ELLPACK program generation stage. We
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currently require the user to specify a tolerance (to be used to check whether a satisfactory
solution has been found), the maximum number of iterations to perform before aborting,
and finally which norm to use to check for convergence. We plan to integrate knowledge­
based assistance into this editor to automatically provide values for these parameters based
on experience and other empirical data, if the user so desires.

For time-dependent PDEs, we allow the user to select one of several time discretization
methods although it is always possible to define any discretization scheme using directly
MAXIMA's symbolic manipulation capabilities. As j jELLPACK's data structures only
provide convenient mechanisms for 2-stage time-discretizations, we currently limit the user
to them. We are examining convenient implementation methods for k-stage techniques also.
The other parameters that are involved with the time-discretization stage are the starting
time (to), the solution Uo at time to, the ending time (t"nd), and the time step. As with
nonlinear PDEs, we expect to integrate knowledge-based assistance to select the time step
needed to obtain some requested tolerance.

Once all the necessary parameters are specified, a j JELLPACK program is generated.
For nonlinear problems, this program iteratively improves an initial guess until some con­
vergence criteria has been met. For time-dependent problems, the program steps along the
time axis solving an elliptic problem at each step. H the operator is both time-dependent
and nonlinear, then the outer loop iterates over time while the inner loop iterates to solve
the linearized elliptic PDE at each time step. The generated program is a j jELLPACK
program which includes all necessary Fortran code. For example, Fortran functions are
generated to compute derivatives of the initial conditions.

3.3 / /ELLPACK - MAXIMA Interface

MAXIMA is a large, Lisp-based, interactive system that expects the user to type in expres­
sions to be evaluated and printed. MAXIMA can be programmed in a high level language
[MACSYMA 77] and in Lisp. In the j jELLPACK environment, MAXIMA runs as a sep­
arate process, possibly on a different host machine. The processes are connected via three
sockets [Leffler 86]; one to the standard input stream of MAXIMA, one to the standard
output and standard error streams, and the other to a special connection to pass mes­
sages between MAXIMA and j jELLPACK. The MAXIMA functions we have implemented
communicate with j jELLPACK using this third connection in a simple protocol. In the
current prototype implementation, the user enters expressions directly to MAXIMA. A
button panel allows the user to invoke the needed MAXIMA functions conveniently. For
example, to enter the coefficients of the PDE operator, the user presses the enter coef­
ficients button. MAXIMA has a simple Fortran code generation capabilities to generate
Fortran code for expressions. We have extended this into a rudimentary code generation
capability to generate the Fortran code we need (including loops, control structures and
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subprograms), using "'print" statements. Since this technique does not allow one to ma­
nipulate the generated code, we will be integrating an automatic code generation system,
GENCRAY [Weerawarana 89], to provide a much more ftexible code generation capability.

4 Numerical Examples

In this section we present the solutions of the PDE equations (2.6), (2.8), and (2.13) with
Dirichlet boundary conditions. Tables 1 and 2 indicate the convergence of the Picard and
Newton's iteration methods for equations (2.6) and (2.8), respectively. In Table 3 we present
the space discretization error at several time levels after 2,4, and 6 Newton iterations. In
all examples we used five-point star to discretize the linearized PDE equations in space
and Jacobi-SI iteration to solve the resulting linear equations.

iterations lI,rro'lI~

1 6.983E-02
2 5.133E-03
3 2.285E-04
4 1.506E-04
5 1.301E-04
10 1.320E-04

Table 1: The convergence of Picard's method for PDE equation (2.6) defined on the unit
square with Dirichlet boundary conditions and true solution u(x, y) = eXY •
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iterations lIerrorllco
1 7.341E-01
2 5.255E-01
3 1.011E-01
4 1.462E-02
5 7.782E-04
6 7.079E-04
10 7.073E-04

Table 2: The convergence of Newton's method for PDE equation (2.8) defined on the unit
square with Dirichlet boundary conditions and true solution u(x,y) = sin(1l'x) cos(7I"y).

time Ilerrorlloo after k Newton iterations
level k _ 1 k-2 k _ 3 k _ 5

t.t 3.576E-07 5.960E-07 4.768E-07 4.172E07
2t.t 4.172E-07 5.960E-07 5.960E-07 4.768E-07
3t.t 5.960E-07 5.960E-07 5.960E-07 5.960E-07
5t.t 5.960E-07 7.152E-07 7.152E-07 5.960E-07
10t.t 9.536E-07 1.192E-06 1.192E-06 1.430E-06
5Mt 1.192E-05 1.096E-05 1.001E-05 1.049E-05

Table 3: The Crank-Nicholsonj5-point star numerical solution of PDE equation (2.13)
defined on the unit square with Dirichlet boundary conditions and true solution u(x, y) =

t + x + y. The computation uses .6.x = .6.y = 1
1
0 1 and b.t = 0.1.
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A / /ELLPACK program template for solving (2.13)

OPTIONS.
I1time = .true.
clockvise = .true.
xplot3d

DECLARATIONS.

real tol
integer niters
common Isaveu! unkn(Silngrx,$ilngry)

GLOBAL.
real t. deltat , alpha. tstart, tstop
integer nstep. nsteps
common Itimedepl t.deltat, nstep, alpha

EQUATION.
ALPHA*EXP(-U(X,Y»!U(X,Y) ••2*UXX+ALPHA*EXP(-U(X,Y»/U(X,Y)**2*UYY+ t

ALPHA*(-2*EXP(-U(X.Y))*UX(X.Y)!U(X.Y)**2-U(X,Y)**2)*UX+ALPHA*(- •
2*EXP(-U(X.Y))*UY(X.Y)!U(X.Y)**2-U(X.Y)**2)*UY+(ALPHA*(-2*(EXP( •
-U(X.Y))*UYY(X.Y)-EXP(-U(X.Y))*UY(X.Y)**2)!U(X.Y)**3+(EXP(-U(X••
Y))*UY(X,Y)**2-EXP(-U(X.Y))*UYY(X.Y))!U(X.Y)**2-2*U(X,Y)*UY(X,Y •
)-2*(EXP(-U(X.Y))*UXX(X,Y)-EXP(-U(X.Y))*UX(X.Y)**2)!U(X.Y)**3+( •
EXP(-U(X,Y))*UX(X,Y)**2-EXP(-U(X.Y))*UXX(X.Y))!U(X,Y)**2-2*U(X••
Y)*UX(X.Y))-l!OELTAT)*U = EXP(-U(X.Y))*«-ALPHA*U(X.Y)-2*ALPHA) •
*UYY(X,Y)+(ALPHA*U(X.Y)+ALPHA)*UY(X,Y)**2-2*ALPHA*U(X,Y)**4*EXP t
(U(X.Y»*UY(X,Y)+(-ALPHA*U(X,Y)-2*ALPHA)*UXX(X.Y)+(ALPHA*U(X.Y) •
+ALPHA) *UX (X ,Y)**2-2*ALPHA*U(X,Y)**4*EXP(U(X.Y»*UX(X ,Y)+PDERS( t
X,Y)*U(X,Y)**2*EXP(U(X,Y»+ALPHA*FORCE(X.Y)*U(X.Y)**2*EXP(U(X,Y t
)))!U(X,Y)**2

BOUNOARY.
u=true(x,y) on x=O
u=true(x,y) on x=l
u=true(x,y) on y=O
u=true(x,y) on y=l

GRID.
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10 x points
10 y points

TRIPLE.
set (u = tOso!)

FORTRAN.
call save (rltabl, ilngrx*ilngry)

llcstc = .false.
alpha = 0.5
tstart = 0.0
tstop = 5.0
deltat = 0.1
nsteps = int «tstop-tstart)/deltat + 0.5)
deltat = (tstop - tstart)/nsteps

do 100 nstep = 1, nsteps
t = tstart + nstep*deltat

TRIPLE.
set u by blending

FORTRAN.
niters = 10
tol = 0.005
do 300 i = 1, niters
print "', 'time=' ,t,' • iteration=', i

DISCRETIZATION.
5 point star

INDEXING.
as is

SOLUTION.
band ge

OUTPUT.
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max (error)

FORTRAN.
Hlevl = a

* test for convergence
if (R1NRHI .It. toll then

go to 301
endif

300 continue
print *, 'failed to converge! J

go to 302
301 continue

print *, 'converged in i,' iterations. J

302 continue

FORTRAN.
call q35pvl
call save (rltabl. ilngrx*ilngry)

100 continue

SUBPROGRAMS. +both.

subroutine save (arr, len)
real arr(l)
common Isaveul unkn($ilngrx*$ilngry)
do 101 i = 1, len

unkn(i) = arr(i)
101 continue

return
end

function PDERS(x.y)
real t. deltat. alpha, tstart, tstop
external ul
integer nstep, nsteps
common Itimedepl t.deltat, nstep, alpha
t = t - deltat
if (nstep .eq. 1) then
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PDERS = (ALPHA-l.0)'(-UO(X,Y.S).UO(X.Y,6)"2-UO(X,Y,4)'UO(X.Y.6)
"2+(UO(X.Y.3)'EXP(-UO(X.Y,6))-UO(X,Y,S)"2'EXP(-UO(X.Y,6»)/
UO(X.Y.6)"2+(UO(X,Y,l).EXP(-UO(X,Y,6))-UO(X,Y,4)"2.EXP(-UO(
X.Y,6»)/UO(X.Y,6)"2-FORCE(X,Y))-UO(X,Y,6)/DELTAT

1
2
3

else
PDERS = (ALPHA-l.0)'«EXP(-Ul(X,Y,6))'Ul(X.Y.3)-EXP(-Ul(X,Y.6))'

1 Ul(X.Y.S)"2)/Ul(X.Y.6)"2-Ul(X,Y,6)"2.Ul(X,Y,S)+(EXP(-Ul(X,
2 Y.6»'Ul(X.Y,1)-EXP(-Ul(X.Y.6»)'Ul(X,Y,4)"2)/Ul(X,Y,6)"2-Ul
3 (X,Y,6)"2'Ul(X,Y,4)-FORCE(X.Y»)-Ul(X.Y.6)/DELTAT

andif
t = t + deltat
return
end

function UO(x.y.idariv)
real t. deltat. alpha, tstart. tstop
integer nstep. nsteps
common !timedepl t,deltat. nstep. alpha
if (ideriv .sq. 1) then

UO = 0
else if (ideriv .sq. 2) then

UO = 0
else if (ideriv .sq. 3) then

ua = a
else if (ideriv .sq. 4) then

UO = 1
else if Cideriv .sq. 5) then

UO = 1
else if (ideriv .sq. 6) then

uo = y+x
andit
return
end

function rOSOL (x,y)
TOSOL = UO(X,Y,6)
return
end
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END.

function ul(x.y,ideriv)
common Isaveu/unkn($ilngrx*$ilngry)
ul = rlqd2i(x. y. unkn. ideriv)
return
and

function FORCE(x.y)
real tal
integer niters
real t. deltat , alpha, tstart, tstop
integer nstep. nsteps
common Itimedepl t,deltat, nstep. alpha
FORCE = -EXP(-Y-X-T)*(2+Y**4*EXP(Y+X+T)+8*X*Y**3*EXP(Y+X+T)+8*T*Y*

1 *3*EXP(Y+X+T)+12*X**2*Y**2*EXP(Y+X+T)+24*T*X*Y**2*EXP(Y+X+T)+12
2 *T**2*Y**2*EXP(Y+X+T)+Y**2*EXP(Y+X+T)+8*X**3*Y*EXP(Y+X+T)+24*T*
3 X**2*Y*EXP(Y+X+T)+24*T**2*X*Y*EXP(Y+X+T)+2*X*Y*EXP(Y+X+T)+8*T**
4 3*Y*EXP(Y+X+T)+2*T*Y*EXP(Y+X+T)+2+X**4*EXP(Y+X+T)+8*T*X**3*EXP(
5 Y+X+T)+12*T**2*X**2*EXP(Y+X+T)+X**2*EXP(Y+X+T)+8*T**3*X*EXP(Y+X
6 +T)+2*T*X*EXP(Y+X+T)+2*T.*4*EXP(Y+X+T)+T**2*EXP(Y+X+T)+2) I (Y+X+
7 T)**2
return
and

function true (x,y)
real tal
integer niters
real t, deltat, alpha, tstart. tstop
integer nstep, nsteps
common Itimedepl t.deltat. nstep, alpha
TRUE = Y+X+T
return
and
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