
Purdue University Purdue University

Purdue e-Pubs Purdue e-Pubs

Department of Computer Science Technical
Reports Department of Computer Science

1990

Optimal Superprimitivity Testing for Strings Optimal Superprimitivity Testing for Strings

Alberto Apostolico

Martin Farach

Costas S. Iliopoulos

Report Number:
90-1049

Apostolico, Alberto; Farach, Martin; and Iliopoulos, Costas S., "Optimal Superprimitivity Testing for Strings"
(1990). Department of Computer Science Technical Reports. Paper 50.
https://docs.lib.purdue.edu/cstech/50

This document has been made available through Purdue e-Pubs, a service of the Purdue University Libraries.
Please contact epubs@purdue.edu for additional information.

https://docs.lib.purdue.edu/
https://docs.lib.purdue.edu/cstech
https://docs.lib.purdue.edu/cstech
https://docs.lib.purdue.edu/comp_sci

OPTIMAL SUPERPRIMITIVITY JESTING
-------------------_FOR_STRlNGS _

Albeno Apostolico
Martin Farach

Costas S. lliopoulos

CSD-TR-l049
November 1990

Optimal Superprimitivity Testing for
Strings *

Alberto Apostolicot Martin Faracht

Costas S. Iliopoulos§

November 28, 1990

Fibonacci Report 90.6
August 1990 ~ Revised November 1990

Abstract

A string w covers another string z if every position of z is within
some occurrence of w in z. Clearly, every string is covered by itself.

---------A-strlng-that-is-covered-only-by-itself-is-superprimitive~.-We-sho"w..--------­
that the property of being superprimitive is testable on a string of n
symbols in O(n) time and space.

Key Words: Combinatorial Algorithms on Words, Superprimi­
tive Strings, Period of a String, Quasiperiod of a String.

·This research was supported, through the Leonardo Fibonacci Institute, by the Istituto
Ttentino di Cultura, Trento Italy.

tDepartment of Computer Science, Purdue University, West Lafayette, IN 47907,
USA and Dipartimento di Matematica Pura e Applicata, University of L' Aquila, Haly,
axa@cs.purdue.edu. Additional support for this author was provided in part by the Na­
tional Research Council of Italy, by NSF Grant CCR-89-00305, by NIH Library of Medicine
Grant RD1 LM05118, by AFOSR Grant 90-0107, and by NATO Grant CRG 900293.

~ University of Maryland, Department of Computer Science, College Park, MD 20742,
USA, mp(@cs.umd.edu

§University of London, Royal Holloway College, Department of Computer Science,
Egham, England, csi@cs.rhbnc.ac.uk Additional support for this author was provided in
part by NATO Grant CRG 900293, by UK SERC GRfF 00898, and by a Royal Society
Grant.

1 Introduction

Regularities in strings model many phenomena and thus forID the subject of
extensive mathematical studies (see e.g. [3]). Some regularities, e.g., square
substrings, are avoidable in the sense that we can build indefinitely long
strings that are immune from that regularitYi others are unavoidable. Per­
haps the most conspicuous regularities in strings are those that manifest
themselves in the form of repeated subpattems. Recall that a word x is
primitive if setting x = sk implies k = 1. A primitive string w is a period of
another string z if z = WCw

l for some integer c > a and Wi a possibly empty
prefix of w. A string z is periodic if z has a period w such that Iwl .$ Izl/2. It
is a well known fact of combinatorics on words that a string can be periodic
in only one period [4]. We refer to the shortest pedod of a string as the
period of that string.

In this paper, we concentrate on another form of reguladty in strings, called
quasiperiodicity, which was recently introduced and studied in [1]. The fol­
lowing defini tions clarify this notion.

Definition: A string w covers another string z if for every i E {I, ... , Izl}
there exists a j E {I, ... , Iwl} such that there is an occurrence of w starting

~-------at-position-i---j-+-1-in-str-ing---z;,.-------------------------

Informally, a string w covers another string z if every position of z occurs
within some occurrence of w in z. Clearly, every string is covered by itself.

Definition: If z is covered by w =F z, then z is quasiperiodic, and the ordered
sequence of all occurrences of w in z is called the w~coveTof z.

For example, the string z = abaabababaaba is quasiperiodic since it can be
obtained by the concatenation and superposition of 5 instances of w = aba.
A periodic string is always quasiperiodic, but the converse is not true.

Definition: A string z is superprimitive if it is not quasiperiodic.

Clearly, a superprimitive string is also primitive. However, the converse is
not true. For example, aba is superprimitive and also primitive, but abaabaab
is primitive but not superprimitive, since the string abaab covers it. Clearly,
for any string z there is always some superprhnitive string q that covers z.
String q is a quasiperiodfor z. It turns out ([lj, d. also theorems 1-2 below)

I

that every string has a unique quasiperiod. It is easy to check that if a string
contains some quasiperiodic substring then it must also contain a square,
i.e., a substring in the form ww. As is well known [3], squares are avoidable
regularities in strings, whence so are also quasiperiodicities are such. Finding
the period of a string (hence, in particular, checking whether that string is
periodic or has a square prefix) takes linear time by known methods (see,
e.g., [5]. On the otehr hand, there are optimal 8(nlogn) algorithms for
detecting all squares in a string x of n symbols (see, e.g., [2]). In [1], it is
shown that all maximal quasiperiodic substrings of a string x of n symbols
can be identified in time O(nlog2 n). A natural question concerns then the
complexity of finding the quasiperiod of a string.

In this paper, we give an optimal, linear-time algorithm for testing whether a
string is superprimitive. If x is not superprimitive, oUI algorithm returns the
quasiperiod q of x. We denote q by Q(x). Thus, a string x is superprimitive
if IQ(x)1 = Ixl· Note that the original string x can be produced by repeated
duplication and concatenation (with possible overlap) of Q(x).

2 Some Combinatorial Properties

Recall that a string u is a border of string x if u is simultaneously a prefix and
a suffix of x. A border u of x is nontrivial if u =F x. The longest nontrivial
border of x is denoted by B(x). By convention, we refer to B(x) as the border
of x and to any border as a border of x.

Theorem 1 ffy is a border of x and Iyl ~ IQ(x)l, then Q(x) covers y.

Proof: Since Iyl ~ IQ(x)1 and Q(x) is a border of x tben Q(x) is also a
border of y. We distinguish two cases:

1. lyl:S 2IQ(x)l: Then, every symbol of y is covered by at least one of the
two occurrences of Q(x) that start at positions 1 and lyl-IQ(x)1 + 1
of y, respectively.

2

2. Iyl > 2IQ(x)l: Then, there exists some string u such that y =
Q(x)uQ(x). However, since Q(x) covers X, we know that every symbol
in u is covered by an occurrence of Q(x). Therefore, Q(x) covers y.D

Theorem 2 Ify is a border ofx and lyl2': IQ(x)1 then Q(y) = Q(x).

Proof: By Theorem 1, Q(y) covers Q(x), since Q(x) is a border of y. How­
ever, Q(x) is superprimitive, hence Q(y) :::::; Q(x).O

Lemma 1 Q(B(x)) = Q(x).

Proof: Since RCx) is the border of X, then it has maximum length among
all nontrivial borders and in particular it is no shorter than Q(x). The claim
then follows from Theorem 2.0

Let P(x) be defined for string x as follows. If x is primitive, then P(z) = x.
If x is periodic, then let x = uku', where u is the period of x and u' =f:. u is a
prefix of u. Then, P(x) = uu'.

______"L"'e"m"m'-"'a'-'2'2-P(~) has the lo11owing,~p",r",o",p"ert=ie"sCc: _

1. P(x) covers x.

2. Q(P(x)) = Q(x).

3. Ifx is periodic, IP(x)1 < ~Ixl.

4. If x is periodic, IP(x)1 = Ixl - IB(x)1 + REM(lxl, Ixl - IB(x)l), where
REM is the remainder function of integer division.

Proof: If x is not periodic, then 1 and 2 follow trivially. Assume that x is
periodic and let x = uku', where u is the period of x.

1. The string P(x) = uu' clearly covers u2u' because u' is a prefix of u
and therefore an occurrence of uu' can overlap with another to produce
u2u'. The claim follows by induction.

3

2. P(x) covers x (by Part 1), and thus is a border of x. Also, IP(x)1 2:
IQ(x)l. Then, by Theorem 2, Q(P(x)) = Q(x).

3. The following chain of inequalities yield the claim:

lu'l < lui
31ul + lu'l < 41ul:S 2klul, k 2: 2

31ul + 31u'l < 2klul + 21u'l
3luu'l < 2lu'u'l

IP(x)1 = luu'l < ~Iu'u'l = ~Ixl

4. We show first that lui = Ixl - IB(x)l. ,From the fact that lu'-lu'l
is a border x, we get IB(x)1 2: lu'-lu'l = Ixl -lui. Therefore, lui 2:
Ixl-IB(x)l·

Let d = Ixl-IB(x)l, and let DIV(p/q) denote the integer division of p
by q. Then, for 1::; i ::; d, and for c = DIV(lxl,d), Xi = Xi+d = Xi+2d =

... = XHea. Therefore, if we let v = Xl' .. Xd and v' = Xl ... XREM(lzl,d) ,

we have x = vCv'. But then d = Ivl ~ lui, since 'U is the shortest
string with this property, and therefore lui :S Ixl- IB(x)l· Since lui
must be both neither larger nor smaller than Ixl - jB(x)I, we have

____ -----IuI-=-lxl=IB(x)I·-----------------­

By substitution, we would like to show that IP(x)1 = lui +
REM(lxl, luI). But x = u'u', so we get:

P(x)
IP(x)1
IP(x)1 ­
IP(x)1
IP(x)1

3 The Algorithm

uu'
lui + lu'l
lui + REM(klul + lu'l, luI)
lui +REM(lu'u'l, luI)
lui + REM(lxl, lul)O

The algorithm to find the quasiperiod of a string x consists of a succession of
stages in each of which smaller and smaller prefixes of x are considered. Upon
completion of the first stage, either x is determined to be superprimitive or

4

---~~

a border of x having the same candidate quasiperiod as x is identified. This
border is guaranteed to have length at most ~Ixl. We then recurse on this
border. The amount of work done at each stage is linear in the length of the
border being considered and such a length is reduced by a constant fraction
at each stage. Therefore, the total work is linear in Ixi.
The algorithm contains a preprocessing phase which computes a table called
F L where F L(i) is the length of the border of the i th prefix XIX2 ••• Xi of x.

This table is a well known tool of fast string searching strategies (see, e.g.,
[5]), in which context it is called sometimes failure function. Building F L
requires time linear in Ix[. In our construction, FL is used to determine the
borders of various prefixes of x and to find the periods of these prefixes. Note
that we only need to construct one global copy of FL. The recursive body
of our procedure handles a border Xl •.. X m of the input string Xl ... Xn as
follows.

FIND-CANDIDATE(xl ... x m)
Let b <- F L(m)
Ifb=O

then Return Xl ..• X m

If-b> ~n

then Let b <- m - b+REM(m,m - b)
Let 8 <- FIND-CANDIDATE(xl ... x,)

If TEST-CANDIDATE(X, ••. xm,s)
then Return s
else Return Xl ... X m

End FIND-CANDIDATE

TEST-CANDIDATE(xl xm,s)
Compute the list M = {ml' ,mt} of positions of the occurrences of s in Xl ... Xb.

For each adjacent pair of matches, mi and mi+l, do the following:
If m;+1 - m; > lsi

Return FALSE
Return TRUE

5

End TEST-CANDIDATE

A call FIND-CANDIDATE(xl ... xnJ actuates the algorithm on input string
Xl ... xn. The correctness of the algorithm is centered around theorems 1 and
2. Lemma 2 is used in the procedure FIND-CANDIDATE only to reduce the
work. Let a P-border of x be any of the borders of x considered by the
procedure. The basic invariant condition at each step of the recursion is
that, immediately prior to the execution of TEST-CANDIDATE, the string
s being considered is known to be the quasiperiod of IXI ... xIII. By Theorem
2, if s covers Xl'" x" then s must cover Xl ••• X m (as well as all other P­
borders of Xl' .. X n of length larger than m). Otherwise, the next shortest
candidate quasiperiod for Xl'" x n is P-border Xl'" xm itself.

Consider now the time complexity of the procedure. As is well known (see
e.g. [5)), the table FL can be computed in linear time. This table is computed
only once so that the preprocessing takes time linear in Ixl. At each stage of
the recursion, all operations of FIND-CANDIDATE except for the execution
of the TEST-CANDIDATE take constant time. However, the list M can be
computed by any linear-time string searching algorithm, e.g. that in [5], after
which TEST-CANDIDATE also takes time linear in the border of x being

---- ----considered-:--S-ince-the-Iengths-of-the-borders-considered-at-successive-stages~~­

are in a fixed fraction progression, the total work involved in all executions
of TEST-CANDIDATE also adds up to time linear in IxI- Note that the
algorithm also generates the cover of x by its quasiperiod.

Theorem 3 The quasiperiod wand the corresponding w-cover of a string x
ofn symbols can be computed in O(n) time and space.

References

1. Apostolico, A. and A. Ehrenfeucht (1990), "Efficient Detection of
Quasiperiodicities in Strings", Fibonacci Report 90.5, submitted for
publication.

2. Apostolico, A. and F.P. Preparata (1983), "Optimal Off-line Detection
of Repetitions in a String", Theoretical Computer Science 22, 297-315.

6

3. Lothaire, M (1983), Combinatorics on Words, Addison-Wesley, Read­
ing, Mass.

4. Lyndon, R.C. and M.P. Shutzenberger (1962), "The Equation aM =
bNc: in a Free Group", Michigan Mathematical Journal 9, 289-298.

5. Knuth, D.E., J.H. Morris and V.R. Pratt (1977), llFast Pattern Match­
ing in Strings lJ

, SIAM Journal on Computing 6, 2, 323-350.

7

	Optimal Superprimitivity Testing for Strings
	Report Number:
	

	tmp.1307986960.pdf.5JdBO

