3D Printing of Biologically-inspired Materials

Kunal Masania
ETH Zürich, kunal.masania@mat.ethz.ch

André Stuart
ETH Zurich, andre.studart@mat.ethz.ch

Follow this and additional works at: https://docs.lib.purdue.edu/iutam

Part of the Engineering Commons

Recommended Citation

This document has been made available through Purdue e-Pubs, a service of the Purdue University Libraries. Please contact epubs@purdue.edu for additional information.
3D Printing of biologically-inspired materials

André R. Studart, Kunal Masania
Complex Materials, Department of Materials, ETH Zurich, 8093 Zurich, Switzerland

Biological materials exhibit heterogeneous architectures that are tuned to fulfill the functional demands and mechanical loading conditions of their specific environment. Examples range from the cellulose-based organic structure of plants to collagen-based skeletal parts like bone, teeth and cartilage. Because they are often utilized to combine opposing properties such as strength and low-density or stiffness and wear resistance, the heterogeneous architecture of natural materials can potentially address several of the technical limitations of artificial implants or composites in general. However, current man-made manufacturing technologies do not allow for the level of composition and fiber orientation control found in natural heterogeneous systems. In this talk, I will show that 3D printing and additive manufacturing routes offer an exciting pathway for the fabrication of biologically-inspired materials with unprecedented heterogeneous architectures and functional properties.