
Purdue University
Purdue e-Pubs

College of Technology Masters Theses College of Technology Theses and Projects

7-11-2011

Comparison of Clustered RDF Data Stores
Venkata Patchigolla
Purdue University, patchigolla.rama@gmail.com

Follow this and additional works at: http://docs.lib.purdue.edu/techmasters
Part of the Databases and Information Systems Commons

This document has been made available through Purdue e-Pubs, a service of the Purdue University Libraries. Please contact epubs@purdue.edu for
additional information.

Patchigolla, Venkata, "Comparison of Clustered RDF Data Stores" (2011). College of Technology Masters Theses. Paper 43.
http://docs.lib.purdue.edu/techmasters/43

http://docs.lib.purdue.edu?utm_source=docs.lib.purdue.edu%2Ftechmasters%2F43&utm_medium=PDF&utm_campaign=PDFCoverPages
http://docs.lib.purdue.edu/techmasters?utm_source=docs.lib.purdue.edu%2Ftechmasters%2F43&utm_medium=PDF&utm_campaign=PDFCoverPages
http://docs.lib.purdue.edu/techetds?utm_source=docs.lib.purdue.edu%2Ftechmasters%2F43&utm_medium=PDF&utm_campaign=PDFCoverPages
http://docs.lib.purdue.edu/techmasters?utm_source=docs.lib.purdue.edu%2Ftechmasters%2F43&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/145?utm_source=docs.lib.purdue.edu%2Ftechmasters%2F43&utm_medium=PDF&utm_campaign=PDFCoverPages


COMPARISON OF CLUSTERED RDF DATA STORES 

 

 

A Thesis 

Submitted to the Faculty 

of 

Purdue University 

by 

Venkata N. Ramarekha Patchigolla 

 

In Partial Fulfillment of the 

Requirements for the Degree  

of 

Master of Science 

 

 

August 2011 

Purdue University 

West Lafayette, Indiana



 ii 

To my parents, sister and friends for their love, guidance and support.
 
  



 iii 

ACKNOWLEDGMENTS 
 
 

I feel fortunate to be a part of the Computer and Information Technology 

department at Purdue University. I am thankful to my chair, advisor and guide 

Prof. John Springer for his full support and guidance during the research. Prof. 

Springer was a constant source of motivation throughout. I am grateful for his 

valuable comments and advise during the course of project. 

I am also thankful to my committee members Prof. Raymond Hansen and 

Prof. Kari Clase for their insightful comments and feedbacks which helped me 

refine my work. 

I am grateful to Cummins College of Engineering, Pune for providing me 

the opportunity to study Master’s in Computer and Information Technology 

department at Purdue University. I offer my gratitude to Prof. Gail Farnsley, for 

helping me and guiding me throughout my Master’s degree. 

I am thankful to my parents and sister for their everlasting encouragement 

and support. 

  



 iv 

TABLE OF CONTENTS 
 
 

 Page 

LIST OF TABLES ............................................................................................... viii 

LIST OF FIGURES ............................................................................................... ix 

ABSTRACT ……………………………………………………………………………..x 

CHAPTER 1. INTRODUCTION ............................................................................ 1 

1.1. Scope .......................................................................................................... 1 

1.2. Significance ................................................................................................ 2 

1.3. Research Question ..................................................................................... 2 

1.4. Assumptions ............................................................................................... 3 

1.5. Delimitations ............................................................................................... 3 

1.6. Limitations ................................................................................................... 4 

1.7. Definition ..................................................................................................... 4 

1.8. Summary .................................................................................................... 5 

CHAPTER 2. LITERATURE REVIEW .................................................................. 6 

2.1. Background ................................................................................................. 6 

2.1.1. Semantic Web .................................................................................... 6 

2.1.2. RDF .................................................................................................... 7 

2.1.3. SPARQL ............................................................................................. 7



 v 

Page 

2.2. RDF data store............................................................................................ 7 

2.3. Evaluation of RDF data stores .................................................................... 9 

2.3.1. LUBM ................................................................................................. 9 

2.3.2. Other Approaches ............................................................................ 10 

2.4. Summary .................................................................................................. 11 

CHAPTER 3. METHODOLOGY ......................................................................... 12 

3.1. Framework for Evaluation ............................................................................ 12 

3.1.1. System Setup ........................................................................................... 13 

3.2. Ontology Used – Proteomics Data .............................................................. 14 

3.3. Variables...................................................................................................... 15 

3.3.1. Test Queries ............................................................................................. 16 

3.4. Target Systems ........................................................................................... 18 

3.5. Summary ..................................................................................................... 19 

CHAPTER 4. EVALUATION AND DATA ANALYSIS ......................................... 20 

4.1. Evaluation ................................................................................................. 20 

4.1.1. Single Machine ................................................................................. 21 

4.1.2. Cluster Machine ................................................................................ 23 

         4.1.2.1 4store ..................................................................................... 23 

 



 vi 

Page 

         4.1.2.2 BigOWLIM ............................................................................. 25 

4.2. Graphical Representation ......................................................................... 28 

4.3. Performance ............................................................................................. 28 

4.4. Scalability .................................................................................................. 29 

4.5. Comparison .............................................................................................. 29 

4.5.1. Single Machine ................................................................................. 29 

4.5.2. Cluster Stores ................................................................................... 34 

          4.5.2.1 4store .................................................................................... 34 

          4.5.2.2 BigOWLIM ............................................................................ 35 

4.6. Analysis .................................................................................................... 35 

4.7. Summary .................................................................................................. 37 

CHAPTER 5.CONCLUSION,DISCUSSION & FUTURE RECOMMENDATION.38 

5.1. Conclusion ................................................................................................ 38 

5.2. Discussions ............................................................................................... 39 

5.3. Future Recommendations ......................................................................... 40 

5.4. Summary .................................................................................................. 41 

LIST OF REFERENCES .................................................................................... 42 

 



 vii 

Page 

APPENDICES 

Appendix A....................................................................................................... 45 

Appendix B....................................................................................................... 46 

Appendix C....................................................................................................... 48 

Appendix D....................................................................................................... 50 

Appendix E....................................................................................................... 51 



 viii 

LIST OF TABLES 

Table Page 

Table 4.1.Query response time for Query 1…………..………………………….…21 

Table 4.2 Query response time for Query 2………..…………………………….…21 

Table 4.3 Query response time for Query 3………..…………………………….…22 

Table 4.4 Query response time for Query 4………..…………………………….…22 

Table 4.5 Query response time for Query 1 for clustered 4store………………...23 

Table 4.6 Query response time for Query 2 for clustered 4store………………...24 

Table 4.7 Query response time for Query 3 for clustered 4store………………...24 

Table 4.8 Query response time for Query 4 for clustered 4store………………...25 

Table 4.9 Query response time for Query 1 for clustered BigOWLIM...…………26  

Table 4.10 Query response time for Query 2 for clustered BigOWLIM...………..26 

Table 4.11 Query response time for Query 3 for clustered BigOWLIM...……..…27 

Table 4.12 Query response time for Query 4 for clustered BigOWLIM...………..27 

Table 4.13 Ranking of single machine data stores……………………....………..36 

  



 ix 

LIST OF FIGURES 

Figure Page 

Figure 3.1. Framework for performance comparison…………………………..….13 

Figure 3.2. Snapshot of proteomics ontology………………………………….…...14 

Figure 3.3. Hierarchy of the owl files used ……………….……………………..….15 

Figure 4.1. Scatter plot for data set1 and query1……………….……………...….28 

Figure 4.2. Query Response for query 1……………….……………………..…….30 

Figure 4.3. Query Response for query 2……………….……………………..…….31 

Figure 4.4. Query Response for query 3……………….……………………..…….32 

Figure 4.5. Query Response for query 4……………….……………………..…….33 

Figure 4.6. Query Response for 4store cluster……………….…………………….34 

Figure 4.7. Query Response for BigOWLIM cluster……………….………………35 



 x 

ABSTRACT 

Patchigolla, Venkata Naga Ramarekha. M.S., Purdue University, August 2011. 
Comparison of clustered RDF data stores. Major Professor: John Springer. 

 

Storing data in RDF format helps in simpler data interchange among different 

researchers compared to present approaches. There has been tremendous 

increase in the applications that use RDF data. The nature of RDF data is such 

that it tends to increase explosively. This makes it necessary to consider the time 

for retrieval and scalability of data while selecting a suitable RDF data store for 

developing applications. The research concentrates on comparing BigOWLIM. 

Bigdata, 4store and Virtuoso RDF stores on basis of their scalability and 

performance of storing and retrieving cancer proteomics and mass spectrometry 

data using SPARQL queries. In this research the author compares RDF data 

stores on a single machine as baseline and extends 4store and BigOWLIM data 

stores on a cluster for comparison. The author uncovers that Virtuoso has the 

best performance on data consisting of less than 250,000 triples whereas 4store 

has better scalability and performance for the larger data.



1 

 

CHAPTER 1. INTRODUCTION 

This chapter introduces the study with the scope, significance, research 

question and the definition of key terms. The assumptions, limitations and 

delimitations of the work are also stated thereafter. 

1.1. Scope 

The Semantic Web (Berners-Lee et al., 2001) includes various 

technologies that allow machines to understand and infer the information present 

in the World Wide Web. These technologies help machines to communicate with 

each other, regardless of the format in which data is stored. Resource 

Description Framework (RDF) and Web Ontology Language (OWL) are some of 

the technologies included in the Semantic Web as recommended by World Wide 

Web Consortium (W3C). RDF consists of triples of the form subject-predicate-

object. OWL is a layer on top of RDF, which is used to process RDF data.  OWL 

is designed to be interpreted by computers.  OWL has inference power which 

empowers machines for logical analysis. OWL is a stronger language and it has 

larger vocabulary, for describing properties and classes, than RDF. OWL adds 

semantics to the schema. SPARQL Protocol and RDF Query Language 

(SPARQL) is the query language used for querying RDF data. Few relational 

databases support RDF data. RDF is a structured language that computer 

applications can use for understanding semantics of data. There has been an 

increase in the use of applications that use RDF data. Many custom built RDF 

stores have been developed and are available for use. The scope of the thesis is 

to compare a few of these custom built RDF data stores for storing and retrieving 

data using SPARQL. 



2 

 

1.2. Significance 

RDF is a method of expressing knowledge. RDF is a structured language 

used to store data along with its semantics. Computer applications can use this 

RDF to understand semantics of this data. RDF is very useful for integrating data 

from different sources. RDF can be used for simpler data interchange and reuse 

by other researchers. These factors have increased the importance of using and 

storing data in RDF format. RDF data was initially stored in relational databases. 

However, there has been increase in the availability of RDF data, and this has 

led to development of different custom based solutions for storing RDF data. The 

nature of RDF data is that it tends to increase explosively. Therefore, it is 

necessary to consider the scalability of data while selecting a suitable RDF data 

store for developing applications. Different RDF stores available today use 

different mechanisms to enable the scalability of data. While using RDF data for 

an application, it is necessary to select a suitable RDF data store. These RDF 

stores need to be compared on various factors such as performance, scalability, 

etc. that will help in making the right selection of RDF stores depending on the 

nature of RDF data that an application has. Thus, it becomes very important to 

compare and evaluate the various RDF stores that are available. 

1.3. Research Question 

To compare and understand various RDF stores for their scalability and 

retrieval using SPARQL queries on cancer proteomics data. 

  



3 

 

1.4. Assumptions 

The assumptions of this research study include: 

1. The RDF data generated from Clinical Proteomic Technology Assessment 

for Cancer (CPTAC) data set is assumed to be a true representation of the 

data in an RDF store. 

2. The proposed system is assumed to be a standalone system (i.e., there 

do not exist multiple users querying the data store simultaneously). 

3. All the network delays are assumed to be constant for all the clustered 

stores. 

4. Network transfer time is negligible. 

5. The setup of clusters, CPU and network is not favorable to any of the 

clustered stores in comparison. 

6. The queries used for data manipulation are a subset that covers in general 

all the queries that could be executed on the data. 

7. The incremental load process did not impact the query response times. 

1.5. Delimitations 

The delimitations of this research study include: 

1. Only two clustered RDF stores and 4 single machine RDF stores are 

considered for comparison among various RDF stores available. 

2. The clusters built consist of only 4, 6 and 9 nodes. 

3. The data used has maximum input of 1,000,000 triples only. 

4. Data was loaded in incremental fashion into the repository for comparison. 

  



4 

 

1.6. Limitations 

The limitations of this research study include: 

1. The author considers data generated for the cancer proteomics research 

as the input data for the RDF stores (i.e., the data used may not be 

generalized RDF data). 

2. The author tests the RDF data store for their performance and correctness 

of data retrieval. There are other characteristics of the system which are 

not being considered for comparison. 

3. The author uses SPARQL queries for querying RDF data as the standard 

for the World Wide Web. There is no attempt look for any other RDF data 

querying language. 

1.7. Definition 

Metadata – It is data about data. It describes the data. 

Resource Description Framework (RDF) – Triples having the form (subject, 

object, predicate) and primarily used for storing data on the World Wide 

Web (Groppe, Groppe, Ebers, & Linnemann, 2009) 

Semantic Web – It is about giving meaning to the information available on the 

web such that computers and machine can understand and use the data 

meaningfully. 

 SPARQL Protocol and RDF Query Language (SPARQL) – It is the query 

language that is primarily used for querying the RDF data. (Neumann & 

Weikum, 2008) 

Schema – It is a way to define the structure, content and semantics of data. 



5 

 

Sesame – It is a standard framework for storing, inferencing and querying RDF 

data and RDF schema information. (Kampman, Harmelen, & Broekstra, 

2002) 

Web Ontology Language (OWL) – It describes the relationships between the 

three RDF components. (Laborda & Conrad, 2005) 

1.8. Summary 

This chapter described the motivation behind the research work. It 

presented the scope and research question. It also provided assumptions, 

delimitations and limitations in the study. It also gave a definition of the key terms 

used in the proposal. 

  



6 

 

CHAPTER 2. LITERATURE REVIEW 

The World Wide Web is the biggest repository of information available 

today. The web content available today is designed for the humans to read and 

understand. Searching and sorting through the enormous amount of data on the 

web to get the relevant information is becoming seemingly difficult. Hence, the 

need arises to organize the data on web such that it is machine understandable.  

2.1 Background 

This section explains the Semantic Web and various technologies that are 

being utilized in the Semantic Web. 

2.1.1. Semantic Web 

The Semantic Web is a group of technologies used to give meaning to the 

information available on the web so that computers and machine can understand 

and use the data meaningfully. Using the Semantic Web structured and 

meaningful web pages will be generated which are used by software agents to 

understand and create inference. Consider a scenario where you want to 

schedule an appointment with your dentist. You activate your Semantic Web 

agent to schedule an appointment. The agent will synchronize your daily 

calendar and dentist’s timing. Then agent would infer and suggest a date and 

time for a suitable appointment. Then with one click the agent will go ahead and 

schedule an appointment for you with the dentist. Thus, the Semantic Web is “A 

new form of Web content that is meaningful to computers and will unleash a 



7 

 

revolution of new possibilities”. (Tim, James, & Ora, 2001). The Semantic Web is 

becoming very popular. It is being used in various applications in the fields of 

searching the web, biological research and electronic commerce to name a few. 

2.1.2. RDF 

Resource Description Framework (RDF) is the tool that provides a way of 

storing the representation of the metadata. Metadata is a description of the data. 

RDF is a data format for representing information on the web. The data in RDF is 

stored in form of triples and directed graphs and is expressed as a triple: 

<subject, predicate, and object>. RDF triples have Uniform Resource Identifiers 

(URIs). URIs are identifiers that give the location of the description of data. RDF 

offers a great deal of flexibility when the schema is not known. RDF data is 

stored in RDF repositories that can be queried by using languages such as 

SPARQL. (Selcuk, Huan, & Reshma, 2001).  

2.1.3. SPARQL 

Researchers such as Prud’hommeaux, and Seaborne (2008) state that 

“SPARQL query language for RDF (SPARQL) is the language used to query 

RDF data.” SPARQL queries are used to query RDF data stores to obtain 

results. This makes it easy for machines and humans to connect to the store and 

get the relevant data. 

2.2.  RDF Data Store 

Performance and scalability are very important issues to be addressed 

while storing RDF data. Finding solutions for efficient storage & retrieval of RDF 

data is very important. Researchers Abadi, Marcus, Madden, and Hollenbach 



8 

 

(2007) investigated the issue of providing scalable RDF data store. Initially RDF 

was stored in Relational DBMS. They provided two approaches  

a) Vertically partition the database and  

b) Column-Oriented database to improve the scalability of the system.  

The vertically partitioned store will contain various two column tables 

based on their properties. Each property table has a subject and an object. The 

column- oriented store will store tuples in columns instead of rows. These two 

approaches were evaluated. It was found that both of them improve the 

performance and scalability of system. While vertical partitioning was better than 

column based approach it could be used only for subset of RDF data and thus 

cannot generalize it. 

Another solution was proposed by Weiss, Karras, and Bernstein (2008), 

which treats RDF data as triples and stores them in a relational DBMS. Instead of 

treating triples differently, they indexed the data by creating a Hexastore that 

indexed the data in 6 different ways. They evaluated this and found that 

performance is improved as compared to vertical partitioning. But the storage 

memory required for this store increased rapidly as compared to vertical 

partitioning.  

One of the ways used to address scalability of RDF data is the use of 

clustered RDF data stores. Weave and Williams (2009) built a clustered store for 

storing RDF data without any preprocessing. They used Beowulf clusters and an 

IBM Blue Gene/L supercomputer to generate a system for answering basic graph 

pattern queries over large RDF data sets on clusters. Since then, various 

clustered stores have become available. A cluster’s parallelism is utilized to load 

and query the data in much faster way as compared to sequential approaches. 

Thus, performance and scalability of the RDF data store is improved. 



9 

 

Harris, Lamb and Shadbolt (2009) described 4store which is a clustered 

RDF store. This was built as a backend for application called garlik. A RID 

integer is calculated for the subject of any given triple. A triple is then put in a 

segment which is calculated as a function on Resource ID (RID) of a given triple.  

In this store RDF data is stored in quad format with each RDF triple having a 

model associated with it. 4store is queried using SPARQL queries. 

Clustered TDB is another approach to store RDF triples in a clustered 

form. This forms a clustered backend for Jena. It has a query coordinator and 

data nodes. Query coordinator decides the node to which data is to be sent. It 

distributes each triple three times based on its three indexes of subject, property, 

and object. Thus, clustered TDB does partitioning of data.  It is one more 

approach proposed to store large volumes of RDF data (Alisdair, Andy, & Nick, 

2008).  Other approaches for clustered stores include YARS2 (Andreas, J¨urgen, 

Aidan, & Stefan, 2007). It is an end to end semantic search engine that stores 

RDF data as graphs and uses distributed indexing and parallel query methods on 

the data stored in the cluster. 

2.3. Evaluation of RDF data stores 

Various researchers have tried to develop benchmarks and other ways to 

evaluate RDF data stores. 

2.3.1. LUBM 

It is a benchmark developed for evaluating large scale knowledge based 

systems. This was developed to evaluate RDF storage mechanisms. LUBM uses 

synthetic data for evaluation. This data consisted of an ontology developed for 

university data. They designed test queries taking into account input size, 

selectivity, complexity, hierarchy information and assumed logical inference. 



10 

 

From the queries they formulated they evaluated load time, query response time, 

completeness, and repository size required to store the data which was 

synthetically generated. (Yuanbo, Zhengxiang, & Jeff, 2005) LUBM is an 

important benchmark for evaluating Semantic Web data stores. The queries 

mentioned have been used for different evaluations. 

2.3.2. Other Approaches 

Ma, Yang, Qiu, Xie and Pan (2006) noted that LUBM was developed for 

specific types of ontologies. It did not consider OWL lite and OWL DL when 

benchmark was being developed. They tried to derive a complete ontology 

benchmark. In their system data generated could be of type OWL lite or OWL 

DL. They evaluated their systems based on this data. They further discussed 

native storage and DBMS based approaches and came to conclusion that native 

storage improved the performance as compared to DBMS approaches. 

Similar results were found when Liu and Hu (2005) performed evaluation 

of seven large scale data storage systems with respect to data loading time and 

query response time. They used LUBM queries for comparisons of data stores. 

They used memory based RDF stores, persistent RDBMS stores that could store 

RDF data, and three native RDF systems. They concluded that the performance 

of native RDF systems is better. 

Alisdair O (2009) performed an investigation in improving the performance 

of RDF data stores. He described various benchmarks used for performance 

evaluation. He designed a new RDF based test cases which offer a wider variety 

of tests and clarity as compared to LUBM. Also user has designed use case 

based test benchmarks. 



11 

 

2.4. Summary 

This chapter provided the motivation for RDF and Semantic Web 

technologies to be developed and their existence. This chapter gave information 

on various attempts on evaluating these RDF stores and various benchmarks 

thus evolved.  Though various benchmarks have been developed and used for 

comparing these systems and many evaluations have been made, most of these 

consisted of synthetically generated data. Also it is to be noted there has been no 

comparison of clustered RDF stores. With the increase of RDF applications being 

made there needs to be more evaluations done with the real data.  



12 

 

CHAPTER 3. METHODOLOGY 

This chapter describes the framework that has been used to evaluate the 

performance of RDF data stores for proteomics data. It includes the overview of 

the ontology and description of the RDF data stores used. The author has 

evaluated the performance of 4 data stores on a standalone machine and 2 data 

stores on clusters of 4, 6 and 9 nodes. 

3.1. Framework for Evaluation 

The evaluation framework consists of an evaluation of the performance 

and scalability of 4 RDF data stores on a standalone machine and extending 2 

RDF data stores to clusters with 4, 6 and 9 nodes respectively. It is a quantitative 

research consisting of data of different sizes loaded in the data stores and 

queried using SPARQL queries to measure the data stores’ scalability and 

performance.



13 

 

3.1.1. System Setup 

The framework for evaluation is shown in figure 3.1. :

 

Figure 3.1. Framework for performance comparison 

The hardware specifications of each machine used are: 

 1000 Mhz Dual core AMD Opteron(tm) Processor 180  

 2 GB RAM 

 1 MB Cache 

 145 GB Hard disk 

The software specifications used are: 

 Operating System: Linux Fedora Core 12 x86_64 

 Java JDK 1.6.0_18 with Tomcat 6 

 Sesame 2.3.2 

 BigOWLIM 3.5 

 Bigdata 

 4store 1.1.3 

 Virtuoso-Opensource 6.1.1 



14 

 

3.2. Ontology used – Proteomics data 

The ontology used for comparison consists of cancer proteomics data. 

The data was generated from a mass spectrometry tool used for the evaluation 

of proteins in a biological system. This data is in mzXML format. The ontology 

was then extracted from the mzXML file using XSL (Extensible Stylesheet 

Language). OWL files generated were then loaded into the data stores for 

evaluation. 

The ontology used describes the results from mass spectrometry 

instruments. It also includes metadata such as the type of instrument used, data 

processing techniques, and the software used along with the information about 

each scan and peaks observed in the scan. The ontology also consists of points 

“mz” and “intensity” for the graphs generated during each scan. 

 

Figure 3.2. Snapshot of proteomics ontology 

This ontology defines all the tags in the mzXML file along with the 

properties of each tag. It has 19 classes and 44 properties. 



15 

 

 

Figure 3.3. Hierarchy of the owl files used. 

3.3. Variables 

The independent variables that were manipulated during this study were: 

the size of the data set (that is, the number of triples) and the number of nodes in 

a cluster. The number of triples was varied as follows to test the performance of 

the systems: 

 10,000 

 50,000 

 100,000 

 250,000 

 500,000 

 750,000  

 1,000,000 triples  



16 

 

The number of nodes in a cluster was varied to use 4, 6 and 9 nodes.  

Additionally 4 types of queries were used to get the results. The dependent 

variable was the mean time taken for the query execution in milliseconds with 

removal of outliers.  

3.3.1. Test Queries 

The queries were formulated to be run against the data loaded. Using 

LUBM queries as a basis, four types of test queries were generated. LUBM is a 

widely used benchmark for comparing semantic web databases. These queries 

mainly take into account Input size, Selectivity and Complexity. The queries have 

been briefly described as follows: 

Query 1:  

This query is similar to LUBM Query 1. It has large input and high selectivity: 

PREFIX owl:<http://www.owl-ontologies.com/mzxml.owl#>  

PREFIX rdf:<http://www.w3.org/1999/02/22-rdf-syntax-ns#>  

PREFIX xml:<http://www.w3.org/2001/XMLSchema#>  

select ?x where {?s rdf:type owl:scan. ?s owl:_basePeakMz 

"444.97509766"^^xsd:string. ?s owl:_num ?x} 

This query returns the scan numbers of all the scans having peakscount 

basePeakMz 444.97509766. 

 

Query2: 

This query is similar to LUBM Query 4. It is a complex query that queries 

subclasses. 



17 

 

PREFIX owl:<http://www.owl-ontologies.com/mzxml.owl#>  

PREFIX rdf:<http://www.w3.org/1999/02/22-rdf-syntax-ns#>  

select ?w ?x ?y ?z where {?s rdf:type owl:scan. ?s owl:_num ?x. ?s 

owl:_peaksCount ?w. ?s owl:_retentionTime ?y. ?s owl:_polarity ?z} 

This query returns the properties- num, retention time and polarity and 

peakCount of scans. 

Query 3: 

This query is similar to the LUBM Query 2. This query has an hierarchical   

relationship. In the data set peakslot has a child relationship with scan and 

mzslot has a child relationship with peak slot. In addition, the mzslots elements 

have m/z values contained within m/z-int pairs. 

PREFIX rdf:<http://www.w3.org/1999/02/22-rdf-syntax-ns#>  

PREFIX xml:<http://www.w3.org/2001/XMLSchema#>  

select DISTINCT?x ?y ?z ?w where {?x rdf:type owl:scan. ?y rdf:type owl:peaks. 

?z rdf:type owl:mz. ?x owl:peaksslot ?y. ?y owl:mzslot ?z. ?x owl:_num ?w. 

FILTER(?w < 53).} 

This query returns scan id, peak id and mz ids of scan numbers less than 53. In 

this query the evaluation of results is also important since three relations must be 

satisfied along with a condition. 

 

Query 4: 

This query uses SPARQL features: FILTER and DISTINCT 

PREFIX owl:<http://www.owl-ontologies.com/mzxml.owl#>  



18 

 

PREFIX rdf:<http://www.w3.org/1999/02/22-rdf-syntax-ns#>  

PREFIX xml:<http://www.w3.org/2001/XMLSchema#>  

select DISTINCT?x ?y where {?x rdf:type owl:scan. ?x owl:_num ?y  FILTER (?y 

< 150)} order by ?y  

 This query returns scan id and number of the scans less than 150. Here the 

performance of a store will depend not only on number of results but time taken 

to evaluate and output the results in increasing order. 

3.4. Target Systems 

Following 4 systems were used for evaluation: 

1. 4store: 4store (Garlik) is a scalable and stable RDF database. In 4store 

RDF triples are stored in Quad format. (Harris, Lamb, & Shadbolt, 2009) 

2. BigOWLIM: BigOWLIM (BigOWLIM Corporation) is a high performance 

semantic repository available as storage and inference layer on top of the 

Sesame framework (Aduna). 

3. Bigdata: Bigdata (Systap) is a high performance database designed for 

large scale semantic data. The stand-alone system has the Sesame 

framework as the SPARQL endpoint. There is presently no SPARQL 

endpoint developed for the clustered version of Bigdata. 

4. Virtuoso: Virtuoso (Erling, & Mikhailov, 2007) is a multi model data server 

with a RDF triple store.  RDF triple store on a stand-alone machine is 

open source whereas the clustered version is a commercial edition. 

Initially the author had decided to compare performance of all the 4 

systems on stand alone and cluster architecture. Due to the above mentioned 

difficulties experienced for Bigdata and Virtuoso systems, only BigOWLIM and 

4store were used for comparison on cluster architecture.  



19 

 

3.5. Summary 

This chapter focused on framework and methodology used for comparison 

of RDF stores. Data used as the input to system was discussed along with the 

types of queries that were executed for evaluation. 

  



20 

 

CHAPTER 4. EVALUATION AND DATA ANALYSIS 

This chapter presents the data analysis performed on the results. It 

presents the comparison of performances of target system with respect to 

different sizes and queries. 

4.1. Evaluation 

Each test query was executed 100 times and the mean performance time 

was noted. This gives better estimate and neutralizes anomalies that might occur 

during a run. The averages of the results were then calculated. All the tests on 

different target data stores were performed on the same machine to reduce the 

error due to a change in environment. Bash script was used to run the queries 

100 times.  

  



21 

 

4.1.1. Single Machine 

On a single machine each query was executed and its results were noted 

as follows: 

Table 4.1.  

Query response time for Query 1 

No. of Triples 
No. of 
Scans 

No. of 
Results Bigdata BigOWLIM 4store Virtuoso 

10,000 6 2 52.66 44.48 39.54 3.57 

50,000 13 2 48.63 41.2 39.36 3.72 

100,000 21 2 46.96 45.38 39.18 3.54 

250,000 45 2 45.34 43.79 39.09 3.65 

500,000 72 2 46.21 46.81 39.22 3.87 

750,000 123 2 46.45 47.26 39.19 3.8 

1,000,000 264 2 41.59 43.23 38.67 4.17 

Table 4.2. 

Query response time for Query 2 

No. of Triples No. of 
Scans 

No. of 
Results 

Bigdata BigOWLIM 4store Virtuoso 

10,000 6 6 57.8 46.41 49.09 7.1 

50,000 13 13 59.03 44.36 48.47 13.78 

100,000 21 21 58.94 49.18 49.11 9.2 

250,000 45 45 74.83 63.44 50.96 21.54 

500,000 72 72 94.55 82.23 51.59 14.93 

750,000 123 123 114.11 100.47 54.82 22.36 

1,000,000 264 264 153.69 144.81 71.64 35.85 



22 

 

Table 4.3.  

Query response time for Query 3 

No. of 
Triples 

No. of mzslots No. of 
Results 

Bigdata BigOWLIM 4store Virtuoso 

10,000 1588 386 171.46 158.33 71.24 94.61 

50,000 9799 3868 675.28 615.35 107.19 652.78 

100,000 22439 10287 1248.84 1183.32 174.71 1527.11 

250,000 50091 20060 1914.19 2024.19 322.62 3345.71 

500,000 98770 68322 6032.02 4867.61 710.82 10805.47 

750,000 144278 113830 10584.32 7698.55 1068.82 17176.79 

1,000,000 188817 150025 14426.2 13971.92 1279.67 22060.76 

 

Table 4.4 

 Query response time for Query 4 

No. of Triples No. of 
Scans 

No. of 
Results 

Bigdata BigOWLIM 4store Virtuoso 

10,000 6 6 47.331 44.32 58.35 3.59 

50,000 13 13 47.78 44.01 57.73 4.7 

100,000 21 21 49.97 46.29 58.6 3.83 

250,000 45 45 52.84 56.24 60.25 9.66 

500,000 72 72 63.54 63.87 64 7.68 

750,000 123 99 70.12 71.61 64.72 16.73 

1,000,000 264 132 83.46 84.2 65.73 12.3 



23 

 

4.1.2. Cluster Machine 

 Clusters of 4, 6 and 9 nodes (including master nodes) were used for 

evaluation. Each query was executed for different data sets on the cluster model 

and its performance was noted down. 

4.1.2.1. 4store 

 In order to edit the number of nodes in 4store cluster the author edited 

/etc/4store to give the host names of the machines to be used. All the machines 

in the cluster had same configuration and 4store was installed on each of them. 

The master node was Achilles with an IP address 10.112.42.10. Data sets and 

queries used for evaluation were same.  

Table 4.5  

Query response time for Query 1 for clustered 4store 

No. of 
Triples 

No. of 
Scans 

No. of 
Results 

Single 
Machine 

4Nodes 6Nodes 9Nodes 

10,000 6 2 39.54 45.94 46.34 48.12 

50,000 13 2 39.36 45.91 48 48.13 

100,000 21 2 39.18 45.5 47.55 48.86 

250,000 45 2 39.09 45.45 47.20 48.73 

500,000 72 2 39.22 46.02 45.99 48.14 

750,000 123 2 39.19 46.01 48.47 48.48 

1,000,000 264 2 38.67 46.21 47.78 48.39 

 

 

 

 



24 

 

Table 4.6. 

Query response time for Query 2 for clustered 4store 

No. of 
Triples 

No. of 
Scans 

No. of 
Results 

Single 
Machine 

4Nodes 6Nodes 9Nodes 

10,000 6 6 49.09 55.96 55.85 58.52 

50,000 13 13 48.47 59.19 60.06 60.33 

100,000 21 21 49.11 58.38 59.61 62.83 

250,000 45 45 50.96 61.55 62.89 64.56 

500,000 72 72 51.59 64.97 65.89 67.31 

750,000 123 123 54.82 68.14 69.89 70.60 

1,000,000 264 264 71.64 93.5 94.18 94.67 

 

Table 4.7. 

Query response time for Query 3 for clustered 4store 

No. of 
Triples 

No. of mzslots No. of 
Results 

Single 
Machine 

4Nodes 6Nodes 9Nodes 

10,000 1588 386 71.24 114.83 117.50 119.55 

50,000 9799 3868 107.19 197.6 189.75 192.60 

100,000 22439 10287 174.71 276.02 259.98 262.43 

250,000 50091 20060 322.62 440.34 429.94 417.46 

500,000 98770 68322 710.82 925 847.63 831.96 

750,000 144278 113830 1068.82 1365.64 1269.24 1230.15 

1,000,000 188817 150025 1279.67 1688.44 1537.28 1494.30 

 
 

 

 



25 

 

Table 4.8. 

Query response time for Query 4 for clustered 4store 

No. of 
Triples 

No. of 
Scans 

No. of 
Results 

Single 
Machine 

4Nodes 6Nodes 9Nodes 

10,000 6 6 58.35 64.97 66.48 66.15 

50,000 13 13 57.73 65.57 67.70 68 

100,000 21 21 58.6 65.91 66.56 68.69 

250,000 45 45 60.25 69.03 69.98 69.99 

500,000 72 72 64 71.52 72.47 74.82 

750,000 123 99 64.72 74.44 75.37 75.70 

1,000,000 264 132 65.73 75.47 76.04 76.48 

4.1.2.2. BigOWLIM 

In order to edit the number of nodes in BigOWLIM cluster the author 

copied the cluster template file to sesame repository directory on the master. The 

data store built for single machine and that for cluster configuration is different in 

the master. All the other machines in the cluster had same configuration. 

BigOWLIM and Sesame were installed along with a stand-alone repositories 

were created. Master node was Achilles with IP address 10.112.42.10. The 

author used Jconsole (JMX interface) to connect the master node with the worker 

nodes. Data sets and queries used for evaluation were same. All the commands 

were executed from the master. The master was configured writable to allow 

loads to be executed. 

 BigOWLIM parses the RDF data in heap memory and then processing is 

performed to store the data onto worker nodes. The maximum heap space for 

java on master given was 1GB. Thus, with small heap space BigOWLIM was 



26 

 

able to load and query data on a 4 nodes cluster but the loading data failed for 

100,000 triples and more in 6 nodes and failed for 9 nodes cluster. Hence the 

queries on only 4 nodes cluster were executed. The results are as follow: 

Table 4.9. 
Query response time for Query 1 for clustered BigOWLIM 

No. of Triples No. of 
Scans 

No. of 
Results 

Single 
Machine 

4Nodes 6Nodes 

10,000 6 2 44.48 72.46 49.87 

50,000 13 2 41.2 59.36 54.88 

100,000 21 2 45.38 55.25 50.18 

250,000 45 2 43.79 54.72  

500,000 72 2 46.81 51.3  

750,000 123 2 47.26 51.65  

1,000,000 264 2 43.23 56.02  

 
Table 4.10. 

Query response time for Query 2 for clustered BigOWLIM 

No. of Triples No. of Scans No. of 
Results 

Single 
Machine 

4Nodes 6Nodes 

10,000 6 6 46.41 68.01 59.05 

50,000 13 13 44.36 59.96 56.71 

100,000 21 21 49.18 64.99 60.87 

250,000 45 45 63.44 75.67  

500,000 72 72 82.23 90.45  

750,000 123 123 100.47 107.62  

1,000,000 264 264 144.81 152.67  

 



27 

 

 
 
Table 4.11. 

Query response time for Query 3 for clustered BigOWLIM 

No. of Triples No. of mzslots No. of 
Results 

Single 
Machine 

4Nodes 6Nodes 

10,000 1588 386 158.33 201.76 176.7 

50,000 9799 3868 615.35 802.8 798.13 

100,000 22439 10287 1183.32 1446.32 1455.34 

250,000 50091 20060 2024.19 2015.73  

500,000 98770 68322 4867.61 5148.81  

750,000 144278 113830 7698.55 8583.63  

1,000,000 188817 150025 13971.92 16291.39  

 

Table 4.12. 

Query response time for Query 4 for clustered BigOWLIM 

No. of Triples No. of Scans No. of 
Results 

Single 
Machine 

4Nodes 6Nodes 

10,000 6 6 44.32 62.27 55.69 

50,000 13 13 44.01 58.3 56.01 

100,000 21 21 46.29 58.18 57.24 

250,000 45 45 56.24 66.91  

500,000 72 72 63.87 73.62  

750,000 123 99 71.61 89.53  

1,000,000 264 132 84.2 97.79  



28 

 

4.2. Graphical Representation 

 

Figure 4.1: Scatter plot for data set1 and query1 

A scatter plot was drawn to check the consistency of the data. The above 

figure shows the query response time query 1 with 10,000 triples. The data has 

similar variations for other data sets and query combinations. Hence, only one 

scatter plot has been included. The author observed that data was randomly 

distributed. It was observed that time taken by Virtuoso to process the query was 

much less than other systems. 

4.3. Performance 

The study was focused on evaluating the performance of 4 target systems 

for proteomics type data in order to get efficient retrieval when queried. This 

study interpreted performance as consistently fast retrieval of data when various 

types of queries were executed on the system. Performance was measured 

based on data query executed, number of triples/size of data. 

0

20

40

60

80

100

120

0 20 40 60 80 100 120

Ti
m
e
(m

s)

Size

Query1

bigOWLIM

4store

Bigdata

Virtuoso



29 

 

4.4. Scalability 

The study focused on scalability of the target systems for proteomics data. 

This study interpreted scalability as ability to handle increase in data in a graceful 

manner. Also the study interpreted scalability for clustered system as ability to 

execute queries in a faster manner when the number of nodes of a cluster was 

increased. 

4.5. Comparison 

Results obtained from running the queries were recorded and the means 

of each query execution were calculated. The data was graphically represented 

to ease the process of comparison of the target systems with respect to 

performance and scalability. 

4.5.1. Single Machines 

The red line shows the response time of BigOWLIM, the green line is for 

response time of 4store, the purple is for Bigdata and blue is for Virtuoso. The 

horizontal axis gives the data set and the vertical axis gives the time taken for 

execution in milliseconds. 

 



30 

 

  

Figure 4.2: Query Response for query 1 

Query 1 is a simple query with large input and high selectivity. The 

resulting data set for this query is very small. In this query scans containing 

certain property were selected. From the graph it can be deduced that this query 

has high selectivity and also there is a direct correlation between the number of 

triples and the number of scans. It is observed that performance of Virtuoso is 

much better than any other system for such kinds of queries. Also if we take a 

closer look at individual systems for scalability, we can see that the trend is 

almost the same as the number of triples in the data set increase. Since the 

number of results is constant and small we do not observe any significant change 

in retrieval times although number of triples and scans increase significantly. 

0

10

20

30

40

50

60
Ti
m
e
(m

s)

Size

Query1

bigOWLIM

4store

Bigdata

Virtuoso



31 

 

 Figure 4.3: Query Response for query 2 

Query 2 queries subclasses of class scan. As the data set size increases 

the number of scan objects also increase. Hence the resulting data set for this 

query increases with the number of scans. It is observed that here also 

performance of Virtuoso is better than the other systems. But as the number of 

triples in data set increase, the time taken by Virtuoso for execution increases 

rapidly as compared to the other systems. For the last data set it is observed that 

there is decrease in the gap between Virtuoso and 4store curves. Also it can be 

observed that BigOWLIM and Bigdata have steeper curves as compared to 

Virtuoso and 4store.  

0
20
40
60
80

100
120
140
160
180

Ti
m
e
(m

s)

Size

Query2

bigOWLIM

4store

Bigdata

Virtuoso



32 

 

  

Figure 4.4: Query Response for query 3 

Query 3 is a correlation query. This query has a hierarchical relationship where 

peakslot has a child relationship with scan and mzslot has a child relationship 

with peakslot. Here there is more emphasis on evaluation of query. Also it can be 

observed that there is a large increase in time taken by Virtuoso when the 

number of results increases. For this particular query it is observed that 4store 

gives a better query performance. It can also be seen that Virtuoso has a very 

poor scalability, whereas 4store has the best scalability for this kind of queries. 

BigOWLIM and Bigdata perform similarly, which is better than Virtuoso as the 

number of results increases. 

  

0

5000

10000

15000

20000

25000
Ti
m
e
(m

s)

Size

Query3

bigOWLIM

4store

Bigdata

Virtuoso



33 

 

 

  

Figure 4.5: Query Response for query 4 

Query 4 is a simple query which tries to check the functionalities of 

SPARQL: Distinct, Filter and Order By. The output of this query has few results. 

This query is similar to query 1. As already observed for such kinds of queries, 

Virtuoso performs better than any of the other system. Also it can be observed 

that although the time taken by Bigdata and BigOWLIM for the initial data set is 

less than 4store, 4store performs better as the size of the data set increases. 

Moreover, BigOWLIM performs better than Bigdata for smaller output and data 

sets. 

0

10

20

30

40

50

60

70

80

90

Ti
m
e
(m

s)

Size

Query4

bigOWLIM

4store

Bigdata

Virtuoso



34 

 

4.5.2. Cluster Stores 

4.5.2.1. 4store 

4store is one the RDF data store used in the scalability comparison. The 

following graphs represent the time taken for the execution of each query on the 

single machine and the clusters of 4, 6 and 9 nodes, respectively. 

  

Figure 4.6: Query Response for 4store cluster 

It is clear from the graphs that there is no performance improvement on 

the execution of the query when queried on clusters of varying sizes. One of the 

reasons for this trend can be due to the fact that the largest number of data set 

used consists of only 1Million triples.  

0

200

400

600

800

1000

1200

1400

1600

1800

Ti
m
e
(m

s)

Size

Query3

4store

4storeNode4

4storeNode6

4storeNode9

0

10

20

30

40

50

60

70

80

90

Ti
m
e
(m

s)

Size

Query4

4store

4storeNode4

4storeNode6

4storeNode9

0

10

20

30

40

50

60

Ti
m
e
(m

s)

Size

Query1

4store

4storeNode3

4storeNode5

4storeNode9

0
10
20
30
40
50
60
70
80
90

100

Ti
m
e
(m

s)

Size

Query2

4store

4storeNode3

4storeNode5

4storeNode8



35 

 

4.5.2.2. BigOWLIM 

BigOWLIM is another data store used for evaluating scalability. Due to the 

limitation of cluster writes the author could evaluate BigOWLIM only on a single 

machine, a 4 node cluster and 6 node clusters only till 100,000 triples. 

 

Figure 4.7: Query Response for BigOWLIM cluster 

BigOWLIM cluster reaffirms the nature of query performance as seen with 

the 4store cluster. There is an increase in the time taken to execute queries on a 

4 node cluster compared to a single machine. 

4.6. Analysis  

Based on the results it is observed that query retrieval time for Virtuoso is 

much smaller as compared to BigOWLIM – Sesame, Bigdata –Sesame and 

4store. However it should be noted that in Query 3 Virtuoso performs poorly.  

0

10

20

30

40

50

60

70

80

Ti
m
e
(m

s)

Size

Query1

bigOWLIM

bigOWLIMNode4

bigOWLIMNode6

0
20
40
60
80

100
120
140
160
180

Ti
m
e
(m

s)

Size

Query2

bigOWLIM

bigOWLIMNode4

bigOWLIMNode6

0

2000

4000

6000

8000

10000

12000

14000

16000

18000

Ti
m
e
(m

s)

Size

Query3

bigOWLIM

bigOWLIMNode4

bigOWLIMNode6
0

20

40

60

80

100

120

Ti
m
e
(m

s)

Size

Query4

bigOWLIM

bigOWLIMNode4

bigOWLIMNode6



36 

 

Query 3 is an important query as it is the query most likely to be encountered in 

the context of Proteomics data. The results further show that the 4store is the 

more consistent with different types of queries and output as compared to others.  

To better understand the performance of data stores the author has 

ranked each data store for each query based on the data points. The data point 

with the shortest retrieval time among the four is considered to have the least 

weight. Based on these weightings, this is the ranking of data stores performance 

in single machine for each query. 

Table 4.13. 

Ranking of single machine data stores 

Query 1 Query 2 Query 3 Query 4 

1. Virtuoso (7) 1. Virtuoso (7) 1. 4store (7) 1. Virtuoso (7) 

2. 4store (14) 2. 4store (17) 2. BigOWLIM(16) 2. Bigdata (19) 

3. BigOWLIM 
(24) 

3. BigOWLIM 
(18) 

3. Bigdata (22) 3. BigOWLIM 
(20) 

4. Bigdata (25) 4. Bigdata (28) 4. Virtuoso (25) 4. 4store (24) 

 

Based on the weightings and rankings it can be said Virtuoso performs 

better than rest of the data stores. 

A significant observation was made while loading the data. As the size of 

the data increases Virtuoso has trouble loading more than 100,000 triples at one 

time. As a result the input data must be split into files containing no more than 

100,000 triples and loaded into the same data store individually. 

For clustered data stores 4store gives better performance than 

BigOWLIM. Results of performance evaluation of queries on clustered RDF 

stores such as 4store and BigOWLIM have indicated increases in the time taken 

to execute the query. The limitation of the comparison is that the size of the data 

was limited to 1Million triples.   



37 

 

One of the problems the author came across while loading data in 

BigOWLIM was that the heap size requirement for data to be loaded on a single 

machine is much less than that of the 4 nodes. Thus files of size 1million triples 

can be loaded onto single machine BigOWLIM whereas they generated “Java™ 

heap space error” for the cluster. 

Also creating and using clustered RDF stores for 4store was simpler than 

doing so for a BigOWLIM cluster. 

4.7. Summary 

This chapter provided the graphical representation and the analysis of the 

data gathered in this research. 

 



38 

 

CHAPTER 5. CONCLUSION, DISCUSSION AND FUTURE 
RECOMMENDATIONS 

This chapter summarizes the conclusions made at the end of the study. It 

provides the discussion of the results obtained and the future recommendations 

for the research. 

5.1. Conclusion 

The author successfully set up and evaluated 4 different RDF stores on a 

single machine and 2 different clustered RDF stores for their performance and 

scalability. The study focused on coming up with a suitable RDF data store for 

storage and efficient retrieval of cancer proteomics data in the RDF format. 

Proteomics data present with the author was in an mzXML format. The 

author successfully converted the mzXML data into OWL format using an 

extensible stylesheet. This data was then loaded into 4 data stores – Virtuoso, 

Bigdata, BigOWLIM and 4store for further evaluation. 

The author then generated SPARQL queries based on the data and 

LUBM query specifications. These queries were executed on the 4 data stores 

for the seven different data sets (varying with respect to the number of triples) to 

get the better understanding of performance and scalability of these data stores.  

Virtuoso data store was found to be most efficient for loading and querying 

small amounts of data. It was also observed that the performance of 4store data 

store was consistent with increase in the data size and query complexity. 



39 

 

During the study it was observed that there is no performance 

improvement of query evaluation with increase in the number of nodes. The 

study shows higher evaluation times with greater number of nodes.  

The numbers of triples that are generated from an mzXML file ranges from 

10,000 to 1 billion. Scalability thus is an important factor while considering 

storage for proteomics data. Hence, in conclusion 4store can be recommended 

as one of the most suitable data store for storage and evaluation of cancer 

proteomics data. 

5.2. Discussions 

The data was loaded in an incremental manner in all the data stores. First 

10,000 triples were loaded, and then 40,000 triples were loaded on top of it to 

make it 50,000 triples. This was done since all the data stores do not accept 

large files consisting of more than 250,000 files in one load. So to obtain a 

consistent approach throughout incremental loading process was used. 

The results obtained in query 3 for single machine show a different trend 

as compared to results of other queries. In query 3 Virtuoso’s performance is 

poor as compared to other queries. This can be attributed to the fact that the 

Virtuoso data server also supports relational data. Virtuoso’s triple store has 

features implemented similar to relational data store. Query 3 explores the 

hierarchical and exponential nature of the RDF data. Hence, Virtuoso may 

perform poorly for these types of queries. 

Large sized data set were not loaded on clustered BigOWLIM but were 

loaded on the single machine. This created a bit of uncertainty about 

implementation of clustered BigOWLIM.  But after discussion with the developers 

of BigOWLIM and a look at forum it was identified to be a known existing problem 

in BigOWLIM. 

Comparing single machine with clusters did not give any improvement in 

query performance. This may be attributed to the fact that the maximum size of 



40 

 

data measure was 1 million triples. The performance cluster may prove useful if 

the data was in order 100 billion triples. It was noted that load timings for 

clustered 4store were significantly smaller than the time required for loading the 

same data on single machine. 

For comparison OWL files were generated from mzXML files. These are 

mass spectrometry files provided from an ongoing research. There are different 

softwares which generate mzXML files. Converting mzXML files into semantic 

language enables simpler exchange of data among researchers. Additional 

semantic layer enables richer queries and link to other RDF data. This 

comparison of data stores is valid for all the instances of mzXML ontology. Thus 

depending on the nature of the mzXML files data and the analysis and 

conclusion done in this research, one can decide which RDF data store is most 

suitable. 

5.3. Future Recommendations 

In this study the data was compared only on the basis of loading and 

retrieval of data. Inference power of these RDF data stores was not evaluated. 

The data was compared using the queries similar to the LUBM queries. One 

could expand this study by considering other benchmarks such as the Berlin 

SPARQL benchmark. (Bizer & Schulz., 2008). 

The comparison between the stores was done where the data was loaded 

in an incremental format due to the limitations of few stores. In future the data 

consisting of increasing sizes can be loaded separately to check for 

performance. 

Also only two clustered systems were considered. One could expand the 

study by considering clustered systems like clustered TDB, Yars2, Virtuoso, etc. 

Finally the study could be expanded by studying the effects of query execution of 

trillions of triples on a cloud based environment. 



41 

 

The XML Stylesheet developed to convert mzXML to OWL file does not 

support 4 element tags in the mzXML schema. It was tested on mzXML file 

generated from CompassXport. It can be extended for generic mzXML to OWL 

file conversion. 

5.4. Summary 

This chapter included the major findings in the research and addressed 

the problem statement stated in chapter 1. It also discussed some of the 

conclusions in the study and gave recommendations about the extension of the 

research. 



 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

LIST OF REFERENCES
  



42 

 

LIST OF REFERENCES 

Aduna Corporation. (n.d.). OpenRDF Corporation. Retrieved June 15, 2011, from 

Sesame Web site: http://www.openrdf.org/about.jsp 

Andreas H., J¨urgen U., Aidan H., & Stefan D. (2007). Yars2: A federated 

repository for querying graph structured data from the web. 6th 

International Semantic Web Conference and 2nd Asian Semantic Web 

Conference (pp. 211-224). Busan, South Korea: Springer-Verlag. 

Alisdair O. (2009). An Investigation into Improving RDF Store Performance. 

Unpublished thesis, University of Southampton, Southampton, United 

Kingdom. 

Alisdair O., Andy S., & Nick G. (2008). Clustered TDB: A clustered triple store for 

Jena (Tech. Rep.) Southampton, United Kingdom: University of 

Southampton, Electronics and Computer Science. 

BigOWLIM Corporation. (n.d.). BigOWLIM Corporation. Retrieved June10, 2011, 

from BigOWLIM Corporation Web site: http://www.ontotext.com/owlim/ 

Chris Bizer and Andreas Schulz. Berlin SPARQL Benchmark (BSBM). 

http://www4.wiwiss.fu-berlin.de/bizer/BerlinSPARQLBenchmark/, 2008. 

Website seen on 2008-06-01. 

Fredinand, M., Zirpins, C., & Trastour, D. (2004). Lifting XML schema to OWL. N. 

Koch, P. Fraternali, and M. Wirsing (Eds.),  4th International Conference, 

ICWE, (pp. 354-358). Munich, Germany: Springer



43 

 

Guo, Y., Pan, Z., Heflin, J. (2004). An Evaluation of Knowledge Base Systems for 

Large OWL Datasets.  (Report No. LU-CSE-04-012). Retrieved from 

http://swat.cse.lehigh.edu/pubs/guo04d.pdf 

Harris S., Lamb N., & Shadbolt N. (2009). 4store: The design and implementation 

of a clustered rdf store. In A. Fokoue, Y. Guo, and T. Liebig (Eds.), 

proceedings of the 5th International Workshop on Scalable Semantic Web 

Knowledge Base Systems (pp. 94-109). Washington DC, USA: CEUR-

WS. 

Kampman A., Harmelen F., & Broekstra J. (2002). Sesame: A Generic 

Architecture for Storing and Querying RDF and RDF Schema. 

Proceedings of The International Semantic Web Conference.  

Liu B., & Hu B. (2005). An evaluation of RDF storage systems for large data 

applications. In Proc. the 1st International Conference on Semantics, 

Knowledge and Grid (p.59). Tokyo, Japan: IEEE Computer Society. 

Ma, L., Yang, Y., Qiu, Z., Xie, G., & Pan, Y. (2006). Towards a complete owl 

ontology benchmark. In Y. Sure, and J. Domingue (Eds.) Proceedings of 

the third European Semantic Web Conference (pp.  124–139). New York, 

USA : Springer. 

Erling, O., & Mikhailov I. (2007). RDF Support in the Virtuoso DBMS. In Franconi 

et al. (Eds), Proceedings of the 1st Conference on Social Semantic Web, 

Leipzig, Germany. 

Prud’hommeaux, E., & Seaborne, A. (2008). SPARQL query language for RDF. 

Retrieved October 4, 2010, from  HTTP://WWW.W3.ORG/TR/RDF-

SPARQL-QUERY/ 



44 

 

Selcuk C., Huan L., & Reshma S. (2001). Resource Description Framework: 

Metadata and its applications. SIGKDD Explorations Newsletter, 3(1), 6–

19. 

SYSTAP, LLC. Bigdata. (n.d.). Bigdata. Retrieved June10, 2011, from SYSTAP 

Web site:  http://www.systap.com/bigdata.htm 

Tim B., James H., & Ora L. (2001, May). The Semantic Web. Scientific American, 

pp.28-37. 

Weaver, J., & Williams, G. T. (2009). Scalable RDF query processing on clusters 

and supercomputers.  In A. Fokoue, Y. Guo, and T. Liebig (Eds.), 

proceedings of the 5th International Workshop on Scalable Semantic Web 

Knowledge Base Systems (pp. 81-93). Washington DC, USA: CEUR-WS. 

Weiss, C., Karras, P., & Bernstein, A. (2008). Hexastore: sextuple indexing for 

semantic web data management. Proceedings of the VLDB Endowment, 

1, 1008 – 1019. 

Yuanbo, G., Zhengxiang, P., & Jeff, H. (2005). LUBM: A Benchmark for OWL 

Knowledge Base Systems. Web Semantics: Science, Services and 

Agents on the World Wide Web, 3(2–3), 158–182. 

 



 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

APPENDICES 



45 

 

Appendix A. 

Host configurations of nodes in cluster 

IP address Host Name 

10.112.42.21     heracles 

10.112.42.19     perseus 

10.112.42.17    pegasus 

10.112.42.16     odysseus 

10.112.42.15     cadmus 

10.112.42.14     bellerophon 

10.112.42.13     orion 

10.112.42.12     theseus 

10.112.42.10     achilles(Master Node) 



46 

 

Appendix B. 

Bash scripts used to run the queries: 

4store: 

#!/bin/sh 

 

for i in {1..100} 

do 

time 4s-query -f text store1 'PREFIX owl:<http://www.owl 

ontologies.com/mzxml.owl#> select * where {?s  ?p ?o}' 

done 

exit 

 

BigOWLIM and Bigdata: 

#!/bin/sh 

 

for i in {1..100} 

do 

openrdf-sesame-2.3.2/bin/console.sh -s http://localhost:8080/openrdf-sesame 

load4 << EOF 

sparql PREFIX owl:<http://www.owl-ontologies.com/mzxml.owl#> PREFIX 

rdf:<http://www.w3.org/1999/02/22-rdf-syntax-ns#> select ?x where {?s 

rdf:type  ?x}. 

exit. 

EOF 

done 

exit 

 

Virtuoso: 

#!/bin/sh 



47 

 

 

for i in {1..100} 

do 

/usr/local/virtuoso-opensource/bin/isql << EOF 

sparql PREFIX rdf:<http://www.w3.org/1999/02/22-rdf-syntax-ns#> select ?x from 

<http://load2> where {?s rdf:type ?x}; 

exit; 

EOF 

done 

exit 

 

 

 

  



48 

 

Appendix C. 

Commands to use the target systems: 

4store: 

1. 4s-backend-setup: To create database on single machine 

2. 4s-backend: To start database on single machine 

3. 4s-cluster-create: To create database on a cluster 

4. 4s-cluster-start: To start database on cluster 

5. 4s-import: To import data into data 

6. 4s-query: To query the database 

 

Bigdata: 

1. openrdf-sesame-2.3.2/bin/console.sh -s http://localhost:8080/openrdf-

sesame: To open sesame console 

2. create bigdata. :To create Bigdata repository 

Properties to be specified: 

Repository ID [bigdata]:  

Repository title [Bigdata store]:  

Properties: 

3. open <Repository ID>. : To open the repository 

4. load <file to be loaded>: To load the data into the repository 

5. SPARQL <query>: To query the repository 

6. close <Repository ID>. : To close the repository 

 

  



49 

 

BigOWLIM: 

1. openrdf-sesame-2.3.2/bin/console.sh -s http://localhost:8080/openrdf-

sesame: To open sesame console 

2. create Bigdata. :To create BigOWLIM repository 

Properties to be specified: 

Repository ID [BigOWLIMTest]:  

Repository title [BigOWLIM Test store]:  

Set of rules [owl-horst-optimized]:  

Storage folder [owlimTest-storage]:  

entity index size [200000]:  

imports(';' delimited):  

defaultNS(';' delimited):  

open <Repository ID>. : To open the repository 

3. create cluster: To create BigOWLIM cluster 

Repository ID [cluster]:  

Repository description [BigOWLIM Replication Cluster master node]: 

4. load <file to be loaded>: To load the data into the repository 

5. SPARQL <query>: To query the repository 

6. close <Repository ID>. : To close the repository 

 

Virtuoso: 

1. virtuoso-opensource/bin/virtuoso-t -f &: To start virtuoso server 

2. virtuoso-opensource/bin/isql: To start console 

3. DB.DBA.RDF_LOAD_RDFXML (file_to_string ('<location of 

file>'),'','<name to be loaded>'); : To load the data 

4. SPARQL <query> : To query the database 

5. Exit : To exit from the console 

 



50 

 

Appendix D. 

To create cluster setup: 

4store: 

1. Edit /etc/4s-cluster to write the hostnames of the nodes of the cluster. 

2. Use 4s-cluster-create & 4s-cluster-destroy to create and destroy the 

cluster. 

BigOWLIM: 

1. In sesame console use “create cluster” command. 

2. In /etc/tomcat6/tomcat6.conf added these lines to start remote port: 

JAVA_OPTS="-Dcom.sun.management.jmxremote.port=8089 -

Dcom.sun.management.jmxremote.authenticate=false -

Dcom.sun/management.jmxremote.ssl=false"  

3. Start a JMX client jconsole: jconsole localhost:8089 

4. Go to mbeans tab and press on the replication cluster option to add 

worker nodes to the master node using the addClusterNode operation. 

5. Configure the master node to be writeable. 

  



51 

 

Appendix E. 

Stylesheet to convert mzXML into OWL format. 

<xsl:stylesheet version="2.0" 

  xmlns:xsl="http://www.w3.org/1999/XSL/Transform"  

  xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#" 

       xmlns:x="http://sashimi.sourceforge.net/schema_revision/mzXML_3.0" 

  xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" 

    

xsi:schemaLocation="http://sashimi.sourceforge.net/schema_revision/mzXML_3.0 

http://sashimi.sourceforge.net/schema_revision/mzXML_3.0/mzXML_idx_3.0.xsd"  

> 

        <xsl:output media-type="text/xml" version="1.0" encoding="UTF-8" 

indent="yes" use-character-maps="owl"/> 

      

        <xsl:strip-space elements="*"/> 

        

        <xsl:character-map name="owl"> 

                <xsl:output-character character="&amp;" string="&amp;"/> 

        </xsl:character-map> 

 

 

<xsl:template match="/"> 

  <rdf:RDF xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#" 

  xmlns:xsd="http://www.w3.org/2001/XMLSchema#" 

  xmlns:rdfs="http://www.w3.org/2001/01/rdf-schema#" 

  xmlns:owl="http://www.w3.org/2002/07/owl#" 

  xmlns:mz="http://www.owl-ontologies.com/Ontology1267448365.owl" 

  xml:base="http://www.owl-ontologies.com/Ontology1267448365.owl"> 

   <owl:ontology rdf:about=""> 

    <owl:imports/> 

   </owl:ontology> 

   <xsl:apply-templates/> 

  </rdf:RDF> 

 </xsl:template> 

 

 

<xsl:variable name="number">0</xsl:variable> 

 

<xsl:template match="x:mzXML"> 

 

 

 <xsl:for-each select="//x:msRun"> 

<msRun rdf:ID="msRun_0"> 

 <_scanCount rdf:datatype="http://www.w3.org/2001/XMLSchema#int">  

<xsl:value-of select ="@scanCount"> </xsl:value-of> 

   </_scanCount> 

 

 <_startTime rdf:datatype="http://www.w3.org/2001/XMLSchema#string">  

<xsl:value-of select ="@startTime"> </xsl:value-of> 

   </_startTime> 

 

 <_endTime rdf:datatype="http://www.w3.org/2001/XMLSchema#string"> 

<xsl:value-of select ="@endTime"> </xsl:value-of> 

   </_endTime> 

 

 

 <xsl:for-each select="//x:parentFile"> 



52 

 

 

<parentFileslot> 

<parentFile rdf:ID="{generate-id()}"> 

<_fileName rdf:datatype="http://www.w3.org/2001/XMLSchema#string">  

<xsl:value-of select ="@fileName"> </xsl:value-of> 

   </_fileName> 

 

<_fileType rdf:datatype="http://www.w3.org/2001/XMLSchema#string">  

<xsl:value-of select ="@fileType"> </xsl:value-of> 

   </_fileType> 

 

<_fileSha1 rdf:datatype="http://www.w3.org/2001/XMLSchema#string">  

<xsl:value-of select ="@fileSha1"> </xsl:value-of> 

   </_fileSha1> 

</parentFile> 

</parentFileslot> 

</xsl:for-each> 

 

<xsl:for-each select="//x:msInstrument"> 

<msInstrumentslot> 

 

 <msInstrument rdf:ID="{generate-id()}"> 

 <xsl:for-each select="//x:msInstrument/x:msManufacturer"> 

<msManufacturerslot> 

  <msManufacturer rdf:ID="{generate-id()}"> 

   <_category 

rdf:datatype="http://www.w3.org/2001/XMLSchema#string"> 

   <xsl:value-of select ="@category"> </xsl:value-of> 

   </_category> 

 

   <_value 

rdf:datatype="http://www.w3.org/2001/XMLSchema#string"> 

   <xsl:value-of select ="@value"> </xsl:value-of> 

   </_value> 

  </msManufacturer> 

</msManufacturerslot> 

 </xsl:for-each> 

 

 

 <xsl:for-each select="//x:msInstrument/x:msModel"> 

 

<msModelslot> 

  <msModel rdf:ID="{generate-id()}"> 

   <_category 

rdf:datatype="http://www.w3.org/2001/XMLSchema#string"> 

   <xsl:value-of select ="@category"> </xsl:value-of> 

   </_category> 

 

   <_value 

rdf:datatype="http://www.w3.org/2001/XMLSchema#string"> 

   <xsl:value-of select ="@value"> </xsl:value-of> 

   </_value> 

  </msModel> 

</msModelslot> 

 

 

 </xsl:for-each> 

 

 

 <xsl:for-each select="//x:msInstrument/x:msIonisation"> 



53 

 

<msIonisationslot> 

  <msIonisation rdf:ID="{generate-id()}"> 

   <_category 

rdf:datatype="http://www.w3.org/2001/XMLSchema#string"> 

   <xsl:value-of select ="@category"> </xsl:value-of> 

   </_category> 

 

   <_value 

rdf:datatype="http://www.w3.org/2001/XMLSchema#string"> 

   <xsl:value-of select ="@value"> </xsl:value-of> 

   </_value> 

  </msIonisation> 

</msIonisationslot> 

 

 </xsl:for-each> 

 

 

 <xsl:for-each select="//x:msInstrument/x:msMassAnalyzer"> 

<msMassAnalyzerslot>  

  <msMassAnalyzer rdf:ID="{generate-id()}"> 

   <_category 

rdf:datatype="http://www.w3.org/2001/XMLSchema#string"> 

   <xsl:value-of select ="@category"> </xsl:value-of> 

   </_category> 

 

   <_value 

rdf:datatype="http://www.w3.org/2001/XMLSchema#string"> 

   <xsl:value-of select ="@value"> </xsl:value-of> 

   </_value> 

  </msMassAnalyzer> 

</msMassAnalyzerslot>  

 

 </xsl:for-each> 

 

 <xsl:for-each select="//x:msInstrument/x:software"> 

<softwareslot> 

  <software rdf:ID="{generate-id()}"> 

   <_type 

rdf:datatype="http://www.w3.org/2001/XMLSchema#string"> 

   <xsl:value-of select ="@type"> </xsl:value-of> 

   </_type> 

 

   <_name 

rdf:datatype="http://www.w3.org/2001/XMLSchema#string"> 

   <xsl:value-of select ="@name"> </xsl:value-of> 

   </_name> 

 

   <_version 

rdf:datatype="http://www.w3.org/2001/XMLSchema#string"> 

   <xsl:value-of select ="@version"> </xsl:value-of> 

   </_version> 

 

  </software> 

</softwareslot> 

 

 </xsl:for-each> 

 </msInstrument> 

</msInstrumentslot> 

 

</xsl:for-each> 



54 

 

 

<xsl:for-each select="//x:dataProcessing"> 

<dataProcessingslot> 

 

 <dataProcessing rdf:ID="{generate-id()}"> 

 <_centroided rdf:datatype="http://www.w3.org/2001/XMLSchema#string"> 

   <xsl:value-of select ="@centroided"> </xsl:value-of> 

 </_centroided> 

 

 <xsl:for-each select="//x:dataProcessing/x:software"> 

<softwareslot> 

 

  <software rdf:ID="{generate-id()}"> 

   <_type 

rdf:datatype="http://www.w3.org/2001/XMLSchema#string"> 

   <xsl:value-of select ="@type"> </xsl:value-of> 

   </_type> 

 

   <_name 

rdf:datatype="http://www.w3.org/2001/XMLSchema#string"> 

   <xsl:value-of select ="@name"> </xsl:value-of> 

   </_name> 

 

   <_version 

rdf:datatype="http://www.w3.org/2001/XMLSchema#string"> 

   <xsl:value-of select ="@version"> </xsl:value-of> 

   </_version> 

 

  </software> 

</softwareslot> 

 

 </xsl:for-each> 

 </dataProcessing> 

</dataProcessingslot> 

 

</xsl:for-each> 

 

 

 

 

<xsl:for-each select="//x:msRun/x:scan"> 

<xsl:variable name="number" select="$number + 1"/> 

<scanslot> 

 <scan rdf:ID="{generate-id()}"> 

 

 <_num rdf:datatype="http://www.w3.org/2001/XMLSchema#string"> 

   <xsl:value-of select ="@num"> </xsl:value-of> 

   </_num> 

 

 <_peaksCount rdf:datatype="http://www.w3.org/2001/XMLSchema#string"> 

   <xsl:value-of select ="@peaksCount"> </xsl:value-of> 

   </_peaksCount> 

 

 <_polarity rdf:datatype="http://www.w3.org/2001/XMLSchema#string"> 

   <xsl:value-of select ="@polarity"> </xsl:value-of> 

   </_polarity> 

 

 <_scanType rdf:datatype="http://www.w3.org/2001/XMLSchema#string"> 

   <xsl:value-of select ="@scanType"> </xsl:value-of> 

   </_scanType> 



55 

 

 

 <_filterLine rdf:datatype="http://www.w3.org/2001/XMLSchema#string"> 

   <xsl:value-of select ="@filterLine"> </xsl:value-of> 

   </_filterLine> 

 

 <_retentionTime rdf:datatype="http://www.w3.org/2001/XMLSchema#string"> 

   <xsl:value-of select ="@retentionTime"> </xsl:value-of> 

   </_retentionTime> 

 

 <_lowMz rdf:datatype="http://www.w3.org/2001/XMLSchema#string"> 

   <xsl:value-of select ="@lowMz"> </xsl:value-of> 

   </_lowMz> 

 

 <_highMz rdf:datatype="http://www.w3.org/2001/XMLSchema#string"> 

   <xsl:value-of select ="@highMz"> </xsl:value-of> 

   </_highMz> 

 

 <_basePeakMz rdf:datatype="http://www.w3.org/2001/XMLSchema#string"> 

   <xsl:value-of select ="@basePeakMz"> </xsl:value-of> 

   </_basePeakMz> 

 

 <_basePeakIntensity 

rdf:datatype="http://www.w3.org/2001/XMLSchema#string"> 

   <xsl:value-of select ="@basePeakIntensity"> </xsl:value-of> 

   </_basePeakIntensity> 

 

 <_totIonCurrent rdf:datatype="http://www.w3.org/2001/XMLSchema#string"> 

   <xsl:value-of select ="@totIonCurrent"> </xsl:value-of> 

   </_totIonCurrent> 

 

 

<xsl:for-each select="child::x:peaks"> 

<peaksslot> 

 <peaks rdf:ID="{generate-id()}"> 

 

 <_precision rdf:datatype="http://www.w3.org/2001/XMLSchema#string"> 

   <xsl:value-of select ="@precision"> </xsl:value-of> 

   </_precision> 

 

 <_byteOrder rdf:datatype="http://www.w3.org/2001/XMLSchema#string"> 

   <xsl:value-of select ="@byteOrder"> </xsl:value-of> 

   </_byteOrder> 

 

<_pairOrder rdf:datatype="http://www.w3.org/2001/XMLSchema#string"> 

   <xsl:value-of select ="@pairOrder"> </xsl:value-of> 

   </_pairOrder> 

  

<text rdf:datatype="http://www.w3.org/2001/XMLSchema#string"> 

<xsl:value-of select ="self::x:peaks"> </xsl:value-of> 

 </text> 

 

 </peaks> 

</peaksslot> 

 

 </xsl:for-each> 

 

<xsl:for-each select="//x:index"> 

 

<indexslot>  

<index rdf:ID="{generate-id()}">   



56 

 

 <xsl:for-each select="x:offset"> 

<offsetslot> 

<offset rdf:ID="{generate-id()}">   

 

 

<_id rdf:datatype="http://www.w3.org/2001/XMLSchema#string"> 

<xsl:value-of select ="@id"> </xsl:value-of> 

 </_id> 

 

<text rdf:datatype="http://www.w3.org/2001/XMLSchema#string"> 

<xsl:value-of select ="self::x:offset"> </xsl:value-of> 

 </text> 

 

</offset> 

</offsetslot> 

 

</xsl:for-each> 

</index> 

</indexslot>  

 

 </xsl:for-each> 

 

 

 

 <xsl:for-each select="//x:indexOffset"> 

<indexOffsetslot>  

<indexOffset rdf:ID="{generate-id()}">   

<text rdf:datatype="http://www.w3.org/2001/XMLSchema#string"> 

<xsl:value-of select ="//x:indexOffset"> </xsl:value-of> 

 </text> 

</indexOffset> 

</indexOffsetslot>  

 

 </xsl:for-each> 

 

 <xsl:for-each select="//x:sha1"> 

 

<sha1slot>  

  

<sha1 rdf:ID="{generate-id()}">   

<text rdf:datatype="http://www.w3.org/2001/XMLSchema#string"> 

<xsl:value-of select ="//x:sha1"> </xsl:value-of> 

 </text> 

</sha1> 

</sha1slot>  

 

 </xsl:for-each> 

 

 

</msRun> 

 </xsl:for-each> 

 

</xsl:template> 

 

 

</xsl:stylesheet> 

 


	Purdue University
	Purdue e-Pubs
	7-11-2011

	Comparison of Clustered RDF Data Stores
	Venkata Patchigolla


