21st Century Polytechnics

Gary Bertoline
Dean, Purdue Polytechnic Institute

Polytechnic Summit
June 6, 2017
The world has changed

WHAT THE ECONOMY OF TODAY AND TOMORROW DEMANDS

• Ability to ask good questions,
• Thinking and analytical skills to seek answers
• Information Literacy
• Collaboration & Communication
• Civil duty and sense of community
• Lifelong curiosity and learning
A university is to create and transmit knowledge through research and teaching courses

- After two years in college nearly half of all students showed no improvement in their complex reasoning, critical thinking, and writing skills

- Much of what is taught in college is now available free

- The value of explicit information is rapidly dropping to zero
HIGHER EDUCATION NEEDS TO CHANGE

The Challenges of 21st Century Teaching and Learning

- Many students graduate from even our most elite universities with little or no conceptual understanding of science, math, and technology that they have spent 4-years studying.
- They have learned the facts but not the ideas behind them.
- The traditional model of higher education cannot account for the exponential growth of information.
- For the 21st century, what you know is far less important than what you can do with what you know.
WHY POLYTECHNIC?

WHY THE NAME CHANGE?

The first Polytechnic:

- École Polytechnique: founded 1794 in Paris, France
- A new discipline for the Industrial Age

The 21st Century version of the Polytechnic:

- New discipline for the thinking and creative economy
- The T-shaped Professional

Our new definition of “polytechnic”:

- A college that uses innovative learning methods, real-world experiences, and industry partnerships to produce graduates uniquely qualified for life-long technology-driven careers. Purdue Polytechnic adds the blending of liberal arts to scientific theory and engineering practice

Root meaning:

- from Greek polytekhnos: “Skilled in many arts”
- poly = many
- tekhne = art or technical arts
SIX MAJOR AREAS OF TRANSFORMATION

Support + Progress = Excitement

- Teaching & Learning Innovation
- Curriculum Innovation
- Modernization of Learning Spaces
- Use-Inspired Research
- K-12 STEM Education and URM Opportunity
- Faculty Professional Development

- Tremendous Support
 - Board of Trustees
 - President
 - Provost

- Significant Progress
 - 6 areas of transformation
 - 10 elements of the transformed undergraduate learning experience

- Growing Excitement
 - Fall 2017 will represent 4th consecutive year of growing applications, deposits, and overall enrollment
 - 826 new beginners Fall 17
 - 200+ CODO gain each year
LEARNING EXPERIENCE TRANSFORMATION

10 ELEMENTS OF TRANSFORMING THE UNDERGRADUATE LEARNING EXPERIENCE

- Areas in which we have always excelled, but are expanding
 1. Theory-Based Applied Learning (“learn by doing”)
 2. Team Project-Based Learning

- Areas that are well proven and being adopted in all programs
 3. Required Industry-Driven Two-Semester Capstone Projects
 4. Required Internships or Workforce-Like Experiences
 5. Required Globalization/Cultural Immersions

- Areas in which we aim to set ourselves apart
 6. Modernized “Active Learning” Teaching Methods
 7. Integrated Humanities and Social Science Studies
 8. Integrated Learning-in-Context Curricula
 9. Competency Credentialing
 10. Faculty-to-Student Mentoring

The key is to design and implement all 10 elements in an integrated synchronous fashion and not approach each component in isolation.
KEY FINDINGS FROM SURVEY OF EMPLOYERS

KNOWLEDGE OF HUMAN CULTURES + PHYSICAL & NATURAL WORLD

<table>
<thead>
<tr>
<th>College Graduates Need...</th>
<th>According to This % of Employers*</th>
</tr>
</thead>
<tbody>
<tr>
<td>Broad knowledge in the liberal arts & sciences</td>
<td>80%</td>
</tr>
<tr>
<td>Awareness of global issues & knowledge about societies & cultures outside USA</td>
<td>78%</td>
</tr>
<tr>
<td>Applied knowledge in real-world settings</td>
<td>78%</td>
</tr>
<tr>
<td>Knowledge about science & technology</td>
<td>56%</td>
</tr>
</tbody>
</table>

*Hart Research Associates, “It Takes More Than a Major: Employer Priorities for College Learning and Student Success” (April, 2013)
www.aacu.org/leap/public_opinion_research.cfm
Key Findings from Survey of Employers

Intellectual and Practical Skills

College Graduates Need...

<table>
<thead>
<tr>
<th>Skill</th>
<th>% of Employers</th>
</tr>
</thead>
<tbody>
<tr>
<td>Critical thinking & analytical reasoning</td>
<td>82%</td>
</tr>
<tr>
<td>Complex problem solving</td>
<td>81%</td>
</tr>
<tr>
<td>Written & oral communication</td>
<td>80%</td>
</tr>
<tr>
<td>Information literacy</td>
<td>72%</td>
</tr>
<tr>
<td>Innovation & creativity</td>
<td>71%</td>
</tr>
<tr>
<td>Teamwork skills in diverse groups</td>
<td>67%</td>
</tr>
<tr>
<td>Quantitative reasoning</td>
<td>55%</td>
</tr>
</tbody>
</table>

*Hart Research Associates, “It Takes More Than a Major: Employer Priorities for College Learning and Student Success” (April, 2013)

www.aacu.org/leap/public_opinion_research.cfm
Educating for the 21st Century

Educate students for:

- Life in a time of profound change
- Life in a digital society
- Life in a diverse and global society
- Life in an evolving information economy
- Civic engagement
The T-Shaped Professional

21st Century competencies

- Deeper learning
- Analytical reasoning
- Effective communication
- Critical thinking
- Managing complexity
- Collaborative work
- Self-directed learning
- Cultural awareness
- Innovation

Depth of knowledge

- Technical content
- Domain theory
- Domain fundamentals
- Problem-solving skills
- Research skills

Methods

- High TRL research
- Student-centered teaching
- Cross-functional learning
- Contextual learning
- Work-based learning
- Internships
- Co-curricular experiences
- Industry driven curriculum